Chapter 5 ®
Tensor Network Contraction Chock or
and Multi-Linear Algebra

Abstract This chapter is aimed at understanding TN algorithms from the per-
spective of MLA. In Sect.5.1, we start from a simple example with a 1D TN
stripe, which can be “contracted” by solving the eigenvalue decomposition of
matrices. This relates to several important MPS techniques such as canonicaliza-
tion (Ords and Vidal, Phys Rev B 78:155117, 2008) that enables to implement
optimal truncations of the bond dimensions of MPSs (Sect.5.1.1). In Sect. 5.2,
we discuss about super-orthogonalization (Ran et al., Phys Rev B 86:134429,
2012) inspired by Tucker decomposition (De Lathauwer et al., SIAM J Matrix
Anal Appl 21(4):1324-1342, 2000) in MLA, which is also a higher-dimensional
generalization of canonicalization; it is proposed to implement optimal truncations
of the iPEPSs defined on trees. In Sect.5.3.1, we explain based on the rank-1
decomposition (De Lathauwer et al., STAM J Matrix Anal Appl 21:1253-1278,
2000) that super-orthogonalization in fact provides the “loopless approximation” of
the iPEPSs on regular lattices (Ran et al., Phys Rev B 88:064407, 2013); it explains
how the approximations in the simple update algorithm works for the ground-state
simulations on 2D regular lattices (Jiang et al., Phys Rev Lett 101:090603, 2008).
In Sect. 5.4, we will discuss tensor ring decomposition (TRD) (Ran, Phys Rev E
93:053310, 2016), which is a rank-N generalization of the rank-1 decomposition.
TRD naturally provides a unified description of iDMRG (White, Phys Rev Lett
69:2863, 1992; Phys Rev B 48:10345-10356, 1993; McCulloch, Infinite size density
matrix renormalization group, revisited, 2008. arXiv:0804.2509), iTEBD (Vidal,
Phys Rev Lett 98:070201, 2007), and CTMRG (Orus and Vidal, Phys Rev B
80:094403, 2009; Fishman et al., Faster methods for contracting infinite 2D tensor
networks, 2017. arXiv:1711.05881) when considering the contractions of 2D TNss.

5.1 A Simple Example of Solving Tensor Network
Contraction by Eigenvalue Decomposition

As discussed in the previous sections, the TN algorithms are understood mostly
based on the linear algebra, such as eigenvalue and singular value decompositions.
Since the elementary building block of a TN is a tensor, it is very natural to think
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about using the MLA to understand and develop TN algorithms. MLA is also known
as tensor decompositions or tensor algebra [1]. It is a highly inter-disciplinary
subject. One of its tasks is to generalize the techniques in the linear algebra to
higher-order tensors. For instance, one key question is how to define the rank of
a tensor and how to determine its optimal lower-rank approximation. This is exactly
what we need in the TN algorithms.

Let us begin with a trivial example by simply considering the trace of the product
of N number of (¥ x x) matrices M as

N
T/ = Te(MNIMP ™y = T [T M™, (5.1

n=1

with M" = M. In the language of TN, this can be regarded as a 1D TN with
periodic boundary condition. For simplicity, we assume that the dominant eigenstate
of M is unique.

Allow us to firstly use a clumsy way to do the calculation: contract the shared
bonds one by one from left to right. For each contraction, the computational cost is
0()(3), thus the total cost is O(NX3).

Now let us be smarter by using the eigenvalue decomposition (assume it exists
for M) in the linear algebra, which reads

M =UAU", (5.2)
where A are diagonal and U is unitary satisfying UUT = UTU = I. Substituting
Eq. (5.2) into (5.1), we can readily have the contraction as

Te =Te(UAUTUAUT - - UAUT) =Te(UANUT) = Z AN (53)

The dominant computational cost is around O ( X3)-
In the limit of N — oo, things become even easier, where we have

Tr.# = hm Ao Z(A()) = A}, (5.4

where Ay is the largest eigenvalue, and we have limN_,oo(ﬁ—g)N =0fora > 0.1t
means all the contributions except for the dominant eigenvalue vanish when the TN
is infinitely long. What we should do is just to compute the dominant eigenvalue.
The efficiency can be further improved by numerous more mature techniques (such
as Lanczos algorithm).
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5.1.1 Canonicalization of Matrix Product State

Before considering a 2D TN, let us take some more advantages of the eigenvalue
decomposition on the 1D TN’s, which is closely related to the canonicalization
of MPS proposed by Orids and Vidal for non-unitary evolution of MPS [2]. The
utilization of canonicalization is mainly in two aspects: locating optimal truncations
of the MPS, and fixing the gauge degrees of freedom of the MPS for better stability
and efficiency.

5.1.2 Canonical Form and Globally Optimal Truncations of
MPS

As discussed in the above chapter, when using iTEBD to contract a TN, one needs
to find the optimal truncations of the virtual bonds of the MPS. In other words, the
problem is how to optimally reduce the dimension of an MPS.

The globally optimal truncation can be down in the following expensive way.
Let us divide the MPS into two parts by cutting the bond that is to be truncated
(Fig.5.1). Then, if we contract all the virtual bonds on the left-hand side and reshape
all the physical indexes there into one index, we will obtain a large matrix denoted
as L..5, o, that has one big physical and one virtual index. Another matrix denoted
as R} 1., Can be obtained by doing the same thing on the right hand side. The
conjugate of R is taken there to obey some conventions.

Then, by contracting the virtual bond and doing SVD as

ZLMS”’a”R:nJrl“"“ _ZL “Sn a/)\'u 971+l /’ (55)
an

the virtual bond dimension is optimally reduced to x by only taking the -
largest singular values and the corresponding vectors. The truncation error that
is minimized is the distance between the MPS before and after the truncation.
Therefore, the truncation is optimal globally concerning the whole MPS as the
environment.

‘I I II I lﬂﬂh

Fig. 5.1 An impractical scheme to get the global optimal truncation of the virtual bond (red).
First, the MPS is cut into two parts. All the indexes on each side of the cut are grouped into one
big index. Then by contracting the virtual bond and doing the SVD, the virtual bond dimension is
optimally reduced to x by only taking the y-largest singular values and the corresponding vectors
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Fig. 5.2 The MPS with two-site translational invariance

In practice, we do not implement the SVD above. It is actually the decomposition
of the whole wave-function, which is exponentially expensive. Canonicalization
provides an efficient way to realize the SVD through only local operations.

Considering an infinite MPS with two-site translational invariance (Fig. 5.2); it is
formed by the tensors A and B as well as the diagonal matrices A and I” as

Z U Aan—lAsn—l»an—lan Fan Bsnsanan-H Aan+l = tTr( o AAFBA e ) (56)
{a}

This is the MPS used in the iTEBD algorithm (see Sect. 3.4 and Fig. 3.5). Note that
all argument can be readily generalized to the infinite MPSs with n-site translational
invariance, or even to the finite MPSs.

An MPS is in the canonical form if the tensors satisfy

D AaAsaa AfAL g = larar, (5.7)
sa

D Asaalull gy Iy = laar, (5.8)
sa

Y TuBi o Ty B yur = lavar, (5.9)
sa

> BowaAaB g Ay = Luar, (5.10)
sa

where A and I are positive-defined (Fig.5.3). Equations (5.7)—(5.10) are called
the canonical conditions of the MPS. Note there will be 2n equations with n-site
translational invariance, meaning that each inequivalent tensor will obey to two (left
and right) conditions.

In the canonical form, A or I' directly give the singular values by cutting
the MPS on the corresponding bond. To see this, let us calculate Eq. (5.5) from
a canonical MPS. From the canonical conditions, matrices L and R are unitary,
satisfying LTL = I and RT R = I (the physical indexes are contracted). Meanwhile,
A (or I') is positive-defined, thus L, A (or I") and R of a canonical MPS directly
define the SVD, and A or I" is indeed the singular value spectrum. Then the optimal
truncations of the virtual bonds are reached by simply keeping yx-largest values of
A and the corresponding basis of the neighboring tensors. This is true when cutting
any one of the bonds of the MPS. From the uniqueness of SVD, Egs. (5.7) and (5.8)
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Fig. 5.3 Four canonical conditions of an MPS
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leads to a unique MPS representation, thus such a form is called “canonical”. In
other words, the canonicalization fixes the gauge degrees of freedom of the MPS.

For any finite MPS, the uniqueness is robust. For an infinite MPS, there will be
some additional complexity. Let us define the left and right transfer matrices M*
and MR of as

L _ .
Mam{azaé = ZAalAssHIGZA AS aldy (5.11)
s
* *
Matgjaras = 2o AsaasTonAS g T (5.12)

Then the canonical conditions (Eq.(5.7)) say that the identity is the left (right)
eigenvector of ML (MR), satisfying

_ 1L
Z aya ala |axd) =A Ia2a§9 (5.13)
aya)

__ 1R
Z way, ula (acah — A Ia1ai9 (5.14)
ara)

with AL (AR) the eigenvalue.
Similar eigenvalue equations can be obtained from the canonical conditions
associated to the tensor B, where we have the transfer matrices as

L — % k
Nala{azaé = Z Loy Bs.ayar Iy BS d|ab’ (5.15)
s
* *
Narajosss = 2 Boaras Aan B 1 Ay (5.16)
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Now the canonical conditions are given by four eigenvalue equations and can be
reinterpreted as the following: with an infinite MPS formed by A, B, A and I, it is
canonical when the identity is the eigenvector of its transfer matrices.

Simply from the canonical conditions, it does not require the “identity” to be
dominant eigenvector. However, if the identity is not the dominant one, the canonical
conditions will become unstable under an arbitrarily small noise. Below, we will
show that the canonicalization algorithm assures that the identity is the leading
eigenvector, since it transforms the leading eigenvector to an identity. In addition,
if the dominant eigenvector of M~ and MR (also N* and N¥) is degenerate, the
canonical form will not be unique. See Ref. [2] for more details.

5.1.3 Canonicalization Algorithm and Some Related Topics

Considering the iTEBD algorithm [3] (see Sect. 3.4), while the MPO represents a
unitary operator, the canonical form of the MPS will be reserved by the evolution
(contraction). For the imaginary-time evolution, the MPO is near-unitary. For the
Trotter step t — 0, the MPO approaches to be an identity. It turns out that in
this case, the MPS will be canonicalized by the evolution in the standard iTEBD
algorithm. When the MPO is non-unitary (e.g., when contracting the TN of a 2D
statistic model) [2], the MPS will not be canonical, and the canonicalization might
be needed to better truncate the bond dimensions of the MPS.

Canonicalization Algorithm An algorithm to canonicalize an arbitrary MPS was
proposed by Orts and Vidal [2]. The idea is to compute the first eigenvectors of the
transfer matrices, and introduce proper gauge transformations on the virtual bonds
that map the leading eigenvector to identity.

Let us take the gauge transformations on the virtual bonds between A and B as
an example. Firstly, compute the dominant left eigenvector v’ of the matrix NX M~
and similarly the dominant right eigenvector v¥ of the matrix N® MR . Then, reshape

vl and v¥ as two matrices and decompose them symmetrically as

R _ *
valdi = E Xalai/xaiai” 5.17)
af
L _ *
valﬂi - Yalai/ allai/' (5.18)

X and Y can be calculated using eigenvalue decomposition, i.e., v8 = WDWT with
X =Ww+/D.

Insert the identities X1 X and YY ! on the virtual bond as shown in Fig.5.4,
then we get a new matrix . = XI'Y on this bond. Apply SVD on .# as .# =
ur VT, where we have the updated spectrum I” on this bond. Meanwhile, we obtain
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Fig. 5.4 The illustration of the canonical transformations

the gauge transformations to update A and B as % = X~ 'U and ¥ = Viy~!,
where the transformations are implemented as

ASlydluz <~ ZAsl,alaOZ/aaz, (5.19)
a
le,alaz <~ Z Bs1,aa2%1a- (520)
a

Implement the same steps given above on the virtual bonds between B and A, then
the MPS is transformed to the canonical form.

Variants of the Canonical Form From the canonical form of an MPS, one can define
the left or right-canonical forms. Define the follow tensors

ALy = AaAgaa, (5.21)
AR = Asaa T, (5.22)
Bl = TuBy . (5.23)
Bf 0 = Bsaa Aa, (5.24)
AM = AaAgaa T (5.25)

The left-canonical MPS is defined by AL and B~ as

{Tr(--- ALBEAEBE ... (5.26)
Similarly, the right-canonical MPS is defined by AR and BR as

tTr(--- ARBRARBR .., (5.27)
The central-orthogonal MPS is defined as

{Tr(--- ALBLAMBRAR ...y, (5.28)
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One can easily check that these MPSs and the canonical MPS can be transformed to
each other by gauge transformations.

From the canonical conditions, A, AR, BL and BR are non-square orthogonal
matrices (e.g., Y, Ai . a,ASLf'; o = larar), called isometries. AM is called the central
tensor of the central-orthogonal MPS. This MPS form is the state ansatz behind the
DMRG algorithm [4, 5], and is very useful in TN-based methods (see, for example,
the works of McCulloch [6, 7]). For instance, when applying DMRG to solve 1D
quantum model, the tensors A" and B’ define a left-to-right RG flow that optimally
compresses the Hilbert space of the left part of the chain. AR and BR define a right-
to-left RG flow similarly. The central tensor between these two RG flows is in fact
the ground state of the effective Hamiltonian given by the RG flows of DMRG.
Note that the canonical MPS is also called the central canonical form, where the
directions of the RG flows can be switched arbitrarily by gauge transformations,
thus there is no need to define the directions of the flows or a specific center.

Relations to Tensor Train Decomposition It is worth mentioning the TTD [8]
proposed in the field of MLA. As argued in Chap.2, one advantage of MPS is
it lowers the number of parameters from an exponential size dependence to a
polynomial one. Let us consider a similar problem: for a N-th order tensor that has
d" parameters, how to find its optimal MPS representation, where there are only
[2dx + (N —2)d x?] parameters? TTD was proposed for this aim: by decomposing
a tensor into a tensor-train form that is similar to a finite open MPS, the number
of parameters becomes linearly relying to the order of the original tensor. The
TTD algorithm shares many similar ideas with MPS and the related algorithms
(especially DMRG which was proposed about two decades earlier). The aim of TTD
is also similar to the truncation tasks in the TN algorithms, which is to compress the
number of parameters.

5.2 Super-Orthogonalization and Tucker Decomposition

As discussed in the above section, the canonical form of an MPS brings a lot
of advantages, such as determining the entanglement and the optimal truncations
of the virtual bond dimensions by local transformations. The canonical form can
be readily generalized to the iPEPSs on trees. Can we also define the canonical
form for the iPEPSs in higher-dimensional regular lattices, such as square lattice
(Fig.5.5)? If this can be done, we would know how to find the globally optimal
transformations that reduces the bond dimensions of the iPEPS, just like what we
can do with an MPS. Due to the complexity of 2d TN’s, unfortunately, there is
no such a form in general. In the following, we explain the super-orthogonal form
of iPEPS proposed in 2012 [9], which applies the canonical form of tree iPEPS
to the iPEPS on regular lattices. The super-orthogonalization is a generalization
of the Tucker decomposition (a higher-order generalization of matrix SVD) [10],
providing a zero-loop approximation scheme [11] to define the entanglement and
truncate the bond dimensions.



5.2 Super-Orthogonalization and Tucker Decomposition 107

Fig. 5.5 The first two figures show the iPEPS on tree and square lattices, with two-site transla-
tional invariance. The last one shows the super-orthogonal conditions

5.2.1 Super-Orthogonalization

Let us start from the iPEPS on the (infinite) Bethe lattice with the coordination
number z = 4. It is formed by two tensors P and Q on the sites as well as four
spectra A® (k = 1,2,3,4) on the bonds, as illustrated in Fig.5.5. Here, we still
take the two-site translational invariance for simplicity.

There are eight super-orthogonal conditions, of which four associate to the tensor
P and four to Q. For P, the conditions are

>y PS,...ak...f{;,__al,c___]_[AgZ)Ag?*:QM, ~vVk), (529

S eAp—10k+10 n#k

where all the bonds along with the corresponding spectra are contracted except
for ay. It means that by putting a; as one index and all the rest as another, the
k-rectangular matrix S® defined as

s® = Psa | [ AP, (5.30)

SeQf—1 Ak Ak
n#k

is an isometry, satisfying S®TS® = . The super-orthogonal conditions of the
tensor Q are defined in the same way. A% is dubbed super-orthogonal spectrum
when the super-orthogonal conditions are fulfilled.

In the canonicalization of MPS, the vectors on the virtual bonds give the
bipartite entanglement defined by Eq. (5.5). Meanwhile, the bond dimensions can
be optimally reduced by discarding certain smallest elements of the spectrum.
In the super-orthogonalization, this is not always true for iPEPSs. For example,
given a translational invariant iPEPS defined on a tree (or called Bethe lattice,
see Fig.5.5a) [12-19], the super-orthogonal spectrum indeed gives the bipartite
entanglement spectrum by cutting the system at the corresponding place. However,
when considering loopy lattices, such as the iPEPS defined on a square lattice
(Fig.5.5b), this will no longer be true. Instead, the super-orthogonal spectrum
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provides an approximation of the entanglement of the iPEPS by optimally ignoring
the loops. One can still truncate the bond dimensions according to the super-
orthogonal spectrum, giving in fact the simple update (see Sect. 4.3). We will discuss
the loopless approximation in detail in Sect. 5.3 using the rank-1 decomposition.

5.2.2 Super-Orthogonalization Algorithm

Any PEPS can be transformed to the super-orthogonal form by iteratively imple-
menting proper gauge transformations on the virtual bonds [9]. The algorithm
consists of two steps. Firstly, compute the reduced matrix . ® of the k-rectangular
matrix of the tensor P (Eq. (5.30)) as

w (k) ()%
%akai - Z Z Ssu-ak,lakJrlm’ak SS"'ak—lak+1“',al,(' (531)

S Qk—1Gk41"

Compared with the super-orthogonal conditions in Eq.(5.29), one can see that
#® = I when the PEPS is super-orthogonal. Similarly, we define the reduced
matrix .4 ® of the tensor Q.

When the PEPS is not super-orthogonal, .#Z® and .4 are not identities but
Hermitian matrices. Decompose them as . ®) = X® x0T and 0 = y®©y ®OT
Then, insert the identities X (k)[X (k)]_l and Y(k)[Y (l‘)]_l on the virtual bonds to
perform gauge transformations along four directions as shown in Fig.5.6. Then,
we can use SVD to renew the four spectra by X0 AR y©T — @ A@y®T
Meanwhile, we transform the tensors as

k)1=1 7;()
Py g < Z Psv"'a/’("'[x( )]a//caz/{'Ua;Q/ak’ (5.32)
@ag
k)1=1 yy R)*
Qs < D Qo LY VL Vi (5.33)
@ag

—_————

O <D<

Ty K@ i)
X AT T

Fig. 5.6 The illustrations of gauge transformations in the super-orthogonalization algorithm
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Compared with the canonicalization algorithm of MPS, one can see that the
gauge transformations in the super-orthogonalization algorithm are quite similar.
The difference is that one cannot transform a PEPS into the super-orthogonal form
by a single step, since the transformation on one bond might cause some deviation
from obeying the super-orthogonal conditions on other bonds. Thus, the above
procedure should be iterated until all the tensors and spectra converge.

5.2.3 Super-Orthogonalization and Dimension Reduction by
Tucker Decomposition

Such an iterative scheme is closely related to the Tucker decomposition in MLA
[10]. Tucker decomposition is considered as a generalization of (matrix) SVD to
higher-order tensors, thus it is also called higher-order or multi-linear SVD. The
aim is to find the optimal reductions of the bond dimensions for a single tensor.

Let us define the k-reduced matrix of a tensor 7' as

(k) _ %
My = Y Taeaiaar-To o da (5.34)

ay-ak—1 Qg1

where all except the k-th indexes are contracted. The Tucker decomposition
(Fig.5.7) of a tensor T has the form as

Toay = 9 Soibye | JUS), (5.35)

ayaz--- k

where the following conditions should be satisfied:

* Unitarity. U® are unitary matrices satisfying UQOU®T = .
* All-orthogonality. For any k, the k-reduced matrix M® of the tensor S is
diagonal, satisfying

mM® =roy
k

aa a Laal - (5.36)
* Ordering. For any k, the elements of I"® in the k-reduced matrix are positive-
defined and in the descending order, satisfying Iy > I'7 > ---.

Fig. 5.7 The illustrations of
Tucker decomposition
(Eq. (5.35))
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From these conditions, one can see that the tensor 7 is decomposed as the
contraction of another tensor S with several unitary matrices. S is called the core
tensor. In other words, the optimal lower-rank approximation of the tensor can be
simply obtained by

Taray Z Sb1by-- ]_[U(fl),k (5.37)

ajay--=0

where we only take the first x terms in the summation of each index.
Such an approximations can be understood in terms of the SVD of matrices.
Applying the conditions of the k-reduced matrix of 7', we have
(k) _ k) (k) (R)F
My Z Upir Ty U (5.38)

a a bk
by

Since U™ is unitary and I"® is positive-defined and in the descending order,
the above equation is exactly the eigenvalue decomposition of M® . From the
relation between the SVD of a matrix and the eigenvalue decomposition of its
reduced matrix, we can see that U ® and I'® in fact give the SVD of the matrix

Tay - ap—yapsy -+ ar 38

k) y,(k
Ta1~~-ak71ak+1~-,ak = Zyal“'uk—lak+l' F( U(kl);k (5.39)

Then, The optimal truncation of the rank of each index is reached by the correspond-
ing SVD. The truncation error is obviously the distance defined as

X
K ®) 77 k)
e® = T o saprar — 9 Faraprapn-Th Ui | (5.40)

br=1

which is minimized in this SVD.

For the algorithms of Tucker decomposition, one simple way is to do the
eigenvalue decomposition of each k-reduced matrix, or the SVD of each k-
rectangular. Then for a K-th ordered tensor, K SVDs will give us the Tucker
decomposition and a lower-rank approximation. This algorithm is often called
higher-order SVD (HOSVD), which has been successfully applied to implement
truncations in the TRG algorithm [20]. The accuracy of HOSVD can be improved.
Since the truncation on one index will definitely affect the truncations on other
indexes, there will be some “interactions” among different indexes (modes) of
the tensor. The truncations in HOSVD are calculated independently, thus such
“interactions” are ignored. One improved way is the high-order orthogonal iteration
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(HOOI), where the interactions among different modes are considered by iteratively
doing SVDs until reaching the convergence. See more details in Ref. [10].

Compared with the conditions of Tucker decomposition, let us redefine the super-
orthogonal conditions of a PEPS as

* Super-orthogonality. For any k, the reduced matrix of the k-rectangular matrix
AP (Eq. (5.31)) is diagonal, satisfying

A, =11

aray, ax tagay (541
s Ordering. For any k, the elements of I"® are positive-defined and in the
descending order, satisfying Iy > I > ---.

Note that the condition “unitary” (first one in Tucker decomposition) is hidden in
the fact that we use gauge transformations to transform the PEPS into the super-
orthogonal form. Therefore, the super-orthogonalization is also called network
Tucker decomposition (NTD).

In the Tucker decomposition, the “all-orthogonality” and “ordering” lead to an
SVD associated to a single tensor, which explains how the optimal truncations
work from the decompositions in linear algebra. In the NTD, the SVD picture is
generalized from a single tensor to a non-local PEPS. Thus, the truncations are
optimized in a non-local way.

Let us consider a finite-size PEPS and arbitrarily choose one geometrical bond
(say a). If the PEPS is on a tree, we can cut the bond and separate the TN into three
disconnecting parts: the spectrum (A) on this bond and two tree brunches stretching
to the two sides of the bond. Specifically speaking, each brunch contains one virtual
bond and all the physical bonds on the corresponding side, formally denoted as
123 . (and lesz.-. o on the other side). Then the state given by the iPEPS can be

i 1 -
ertten as

R
Z iip+ A qj]l]Z (542)

To get the SVD picture, we need to prove that ¥~ and ¥ R in the above equation
are isometries, satisfying the orthogonal conditions as

z : i1ip-,a 1112 a/: ad’>

i1ige

Z jl]2 .a J|J2 o = laa'-

Jijz

(5.43)

Note that the spectrum A is already positive-defined according to the algorithm. To
this end, we construct the TN of le ine lfl(zR) alI/ilLi(zl_e_?  from its boundary. If the

PEPS is super-orthogonal, the spectra must be on the boundary of the TN because
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the super-orthogonal conditions are satisfied everywhere.! Then the contractions
of the tensors on the boundary satisfy Eq. (5.29), which gives identities. Then we
have on the new boundary again the spectra to iterate the contractions. All tensors
can be contracted by iteratively using the super-orthogonal conditions, which in
the end gives identities as Eq. (5.43). Thus, &% and ¥ ¥ are indeed isometries and
Eq. (5.42) indeed gives the SVD of the whole wave-function. The truncations of
the bond dimensions are globally optimized by taking the whole tree PEPS as the
environment.

For an iPEPS, it can be similarly proven that ¥~ and ¥R are isometries. One
way is to put any non-zero spectra on the boundary and iterate the contraction by
Eq.(5.31). While the spectra on the boundary can be arbitrary, the results of the
contractions by Eq.(5.31) converge to identities quickly [9]. Then the rest of the
contractions are exactly given by the super-orthogonal conditions (Eq. (5.29)). In
other words, the identity is a stable fixed point of the above iterations. Once the
fixed point is reached, it can be considered that the contraction is from infinitely far
away, meaning from the “boundary” of the iPEPS. In this way, one proves ¥ and
Wk are isometries, i.e., WLTWL = [ and W RTWR =,

5.3 Zero-Loop Approximation on Regular Lattices
and Rank-1 Decomposition

5.3.1 Super-Orthogonalization Works Well for Truncating the
PEPS on Regular Lattice: Some Intuitive Discussions

From the discussions above, we can see that the “canonical” form of a TN state is
strongly desired, because it is expected to give the entanglement and the optimal
truncations of the bond dimensions. Recall that to contract a TN that cannot be
contracted exactly, truncations are inevitable, and locating the optimal truncations
is one of the main tasks in the computations. The super-orthogonal form provides
a robust way to optimally truncate the bond dimensions of the PEPS defined on a
tree, analog to the canonicalization of MPS.

Interestingly, the super-orthogonal form does not require the tree structure. For an
iPEPS defined on a regular lattice, for example, the square lattice, one can still super-
orthogonalize it using the same algorithm. What is different is that the SVD picture
of the wave-function (generally, see Eq. (5.5)) will not rigorously hold, as well as the
robustness of the optimal truncations. In other words, the super-orthogonal spectrum
does not exactly give the entanglement. A question rises: can we still truncate iPEPS
defined on a square lattice according to the super-orthogonal spectrum?

IWith the open boundary condition, one may consider the geometrical bond dimensions as one,
and define the spectra by the one-dimensional vector [21].
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Surprisingly, numeric simulations show that the accuracy by truncating according
to the super-orthogonal spectrum is still good in many cases. Let us take the ground-
state simulation of a 2D system by imaginary-time evolution as an example. As
discussed in Sect.4.2, the simulation becomes the contraction of a 3D TN. One
usual way to compute this contraction is to contract layer by layer to an iPEPS
(see, e.g., [22, 23]). The contraction will enlarge the virtual bond dimensions, and
truncations are needed. When the ground state is gapped (see, e.g., [9, 23]), the
truncations produce accurate results, which means the super-orthogonal spectrum
approximates the true entanglement quite well.

It has been realized that using the simple update algorithm [23], the iPEPS
will converge to the super-orthogonal form for a vanishing Trotter step t — 0.
The success of the simple update suggests that the optimal truncation method
on trees still works well for regular lattices. Intuitively, this can be understood
in the following way. Comparing a regular lattice with a tree, if it has the same
coordination number, the two lattices look exactly the same if we only inspect
locally on one site and its nearest neighbors. The difference appears when one
goes round the closed loops on the regular lattice, since there is no loop in the
tree. Thus, the error applying the optimal truncation schemes (such as super-
orthogonalization) of a tree to a regular lattice should be characterized by some
non-local features associated to the loops. This explains in a descriptive way why
the simple update works well for gapped states, where the physics is dominated
by short-range correlations. For the systems that possess small gaps or are gapless,
simple update is not sufficiently accurate [24], particularly for the non-local physical
properties such as the correlation functions.

5.3.2 Rank-1 Decomposition and Algorithm

Rank-1 decomposition in MLA [25] provides a more mathematic and rigorous
way to understand the approximation by super-orthogonalization (simple update)
to truncate PEPS on regular lattices [11]. For a tensor 7, its rank-1 decomposition
(Fig. 5.8) is defined as

K
Tunayax = 2 [ [ v, (5.44)
k=1
Fig. 5.8 The illustrations of N
rank-1 decomposition C/ 1%
(Eq. (5.44)) Q
Ty
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Fig. 5.9 The illustrations of self-consistent conditions for the rank-1 decomposition (Eq. (5.47))

where v® are normalized vectors and 2 is a constant that satisfies

= > Tuay-ax Hv(k)*. (5.45)

apaz--ag

Rank-1 decomposition provides an approximation of 7', where the distance between
T and its rank-1 approximation is minimized, i.e.,

K
r(gin Tuyayagx — $2 ]_[ vl (5.46)
oy |=1 k=1

The rank-1 decomposition is given by the fixed point of a set of self-consistent
equations (Fig. 5.9), which are

Y Tuayear [ 06 = 200 v k). (5.47)
all except ax JjFk

It means that v® is obtained by contracting all other vectors with the tensor. This
property provides us an algorithm to compute rank-1 decomposition: one arbitrarily
initializes the vectors {v®)} of norm-1 and recursively updates each vector by the
tensor and the rest vectors using Eq. (5.47) until all vectors converge.

Apart from some very special cases, such an optimization problem is concave,
thus rank-1 decomposition is unique.” Furthermore, if one arbitrarily chooses a set
of norm-1 vectors, they will converge to the fixed point exponentially fast with the
iterations. To the best of our knowledge, the exponential convergence has not been
proved rigorously, but observed in most cases.

2In fact, the uniqueness of rank-1 decomposition has not been rigorously proven.
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5.3.3 Rank-1 Decomposition, Super-Orthogonalization, and
Zero-Loop Approximation

Let us still consider an translational invariant square TN that is formed by infinite
copies of the 4th-order tensor T (Fig. 2.28). The rank-1 decomposition of 7 provides
an approximative scheme to compute the contraction of the TN, which is called the
theory of network contractor dynamics (NCD) [11].

The picture of NCD can be understood in an opposite way to contraction, but by
iteratively using the self-consistent conditions (Eq. (5.47)) to “grow” a tree TN that
covers the whole square lattice (Fig. 5.10). Let us start from Eq. (5.45) of £2. Using
Eq. (5.47), we substitute each of the four vectors by the contraction of 7" with the
other three vectors. After doing so, Eq. (5.45) becomes the contraction of more than
one T's with the vectors on the boundary. In other words, we “grow” the local TN
contraction from one tensor plus four vectors to that with more tensors and vectors.

By repeating the substitution, the TN can be grown to cover the whole square
lattice, where each site is allowed to put maximally one 7. Inevitably, some sites
will not have T, but four vectors instead. These vectors (also called contractors)
give the rank-1 decomposition of T as Eq. (5.44). This is to say that some tensors
in the square TN are replaced by its rank-1 approximation, so that all loops are
destructed and the TN becomes a loopless tree covering the square lattice. In this
way, the square TN is approximated by such a tree TN on square lattice, so that its
contraction is simply computed by Eq. (5.45).

The growing process as well as the optimal tree TN is only to understand the
zero-loop approximation with rank-1 decomposition. There is no need to practically

Fig. 5.10 Using the self-consistent conditions of the rank-1 decomposition, a tree TN with no
loops can grow to cover the infinite square lattice. The four vectors gathering in a same site give
the rank-1 approximation of the original tensor
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implement such a process. Thus, it does not matter how the TN is grown or where
the rank-1 tensors are put to destroy the loops. All information we need is given by
the rank-1 decomposition. In other words, the zero-loop approximation of the TN is
encoded in the rank-1 decomposition.

For growing the TN, we shall remark that using the contraction of one 7" with
several vectors to substitute one vector is certainly not unique. However, the aim
of “growing” is to reconstruct the TN formed by 7. Thus, if T has to appear in
the substitution, the vectors should be uniquely chosen as those given in the rank-1
decomposition due to the uniqueness of rank-1 decomposition. Secondly, there are
hidden conditions when covering the lattice by “growing”. A stronger version is

Ta1a2a3a4 =T =T = Ta3a4a1a2- (5.48)

azarajas ajasaza;
And a weaker one only requires the vectors to be conjugate to each other as

D = v(3)T’ 0@ = @7 (5.49)
These conditions assure that the self-consistent equations encode the correct tree
that optimally in the rank-1 sense approximates the square TN.

Comparing with Eqgs. (5.29) and (5.47), the super-orthogonal conditions are
actually equivalent to the above self-consistent equations of rank-1 decomposition
11102 ag — Z aauz ak ga”aé’ ”K

by defining the tensor 7" and vector v as
/ A(k)A(]f,)*, (5.50)
k
o = Ay A", (5.51)
ak

with a; = (a;,a;). Thus, the super-orthogonal spectrum provides an optimal
approximation for the truncations of the bond dimensions in the zero-loop level.
This provides a direct connection between the simple update scheme and rank-1
decomposition.

K

1

5.3.4 Error of Zero-Loop Approximation and Tree-Expansion
Theory Based on Rank-Decomposition

The error of NCD (and simple update) is an important issue. From the first glance,
the error seems to be the error of rank-1 decomposition ¢ = [T — [], v®|. This
would be true if we replaced all tensors in the square TN by the rank-1 version.
In this case, the PEPS is approximated by a product state with zero entanglement.
In the NCD scheme, however, we only replace a part of the tensors to destruct the
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Fig. 5.11 The illustrations of )
rank-1 decomposition C/ Vv

R-1
(Eq. (5.52)) — z 0 0%
T v‘\ﬂf vG.H
=0 V'

21)

loops. The corresponding approximative PEPS is an entanglement state with a tree
structure. Therefore, the error of rank-1 decomposition cannot properly characterize
the error of simple update.

To control the error, let us introduce the rank decomposition (also called
CANDECOMP/PARAFAC decomposition) of 7 in MLA (Fig.5.11) that reads

R—1
Toyar.. = Z 2, ]_[ v, (5.52)
r=0 k

where v®") are normalized vectors. The idea of rank decomposition [26, 27] is
to expand 7T into the summation of R number of rank-1 tensors with R called the
tensor rank. The elements of the vector §2 can always be in the descending order
according to the absolute values. Then the leading term 2o [, v*? gives exactly
the rank-1 decomposition of 7', and the error of the rank-1 decomposition becomes
|8 2 T vl

In the optimal tree TN, let us replace the rank-1 tensors back by the full rank
tensor in Eq.(5.52). We suppose the rank decomposition is exact, thus we will
recover the original TN by doing so. The TN contraction becomes the summation
of RN terms with N the number of rank-1 tensors in the zero-loop TN. Each term
is the contraction of a tree TN, which is the same as the optimal tree TN except that
certain vectors are changed to v*") instead of the rank-1 term v*?_ Note that in
all terms, we use the same tree structure; the leading term in the summation is the
zero-loop TN in the NCD scheme. It means with rank decomposition, we expand
the contraction of the square TN by the summation of the contractions of many tree
TN’s.

Let us order the summation referring to the contributions of different terms.
For simplicity, we assume R = 2, meaning T can be exactly decomposed as the
summation of two rank-1 tensors, which are the leading term given by the rank-1
decomposition, and the next-leading term denoted as 71 = £21 [], v®&D We dub
as the next-leading term as the impurity tensor. Defining n as the number of the
impurity tensors appearing in one of the tree TN in the summation, the expansion
can be written as

Z—QN’XN:(QIY 3z
=0/ =l ” (5.53)

£ $20 i
n=0 et (n)
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zeroth order

first order

second order

Fig. 5.12 The illustrations of the expansion with rank decomposition. The yellow and red circles

stand for vg;"o) (zeroth order terms in the rank decomposition) and vf,lz’l) (first order terms),

respectively. Here, we consider the tensor rank R = 2 for simplicity

We use €' () to denote the set of all possible configurations of n number of the
impurity tensors, where there are 71 of T1s located in different positions in the tree.
Then Z¢ denotes the contraction of such a tree TN with a specific configuration
of T1’s. In general, the contribution is determined by the order of |£21/§2¢| since
|£21/820] < 1 (Fig.5.12).

To proceed, we choose one tensor in the tree as the original point, and always
contract the tree TN by ending at this tensor. Then the distance & of a vector is
defined as the number of tensors in the path that connects this vector to the original
point. Note that one impurity tensor is the tensor product of several vectors, and
each vector may have different distance to the original point. For simplicity, we take
the shortest one to define the distance of an impurity tensor.

Now, let us utilize the exponential convergence of the rank-1 decomposition.
After contracting any vectors with the tensor in the tree, the resulting vector
approaches to the fixed point (the vectors in the rank-1 decomposition) in an
exponential speed. Define % as the average number of the contractions that will
project any vectors to the fixed point with a tolerable difference. Consider any
impurity tensors with the distance ¥ > %, their contributions to the contraction
are approximately the same, since after %y contractions, the vectors have already
been projected to the fixed point.

From the above argument, we can see that the error is related not only to the error
of the rank-1 decomposition, but also to the speed of the convergence to the rank-
1 component. The smaller % is, the smaller the error (the total contribution from
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the non-dominant terms) will be. Calculations show that the convergence speed is
related to the correlation length (or gap) of the physical system, but their rigorous
relations have not been established yet. Meanwhile, the expansion theory of the TN
contraction given above requires the rank decomposition, which, however, is not
uniquely defined of an arbitrarily given tensor.

5.4 IDMRG,ITEBD, and CTMRG Revisited by Tensor Ring
Decomposition

We have shown that the rank-1 decomposition solves the contraction of infinite-size
tree TN and provides a mathematic explanation of the approximation made in the
simple update. Then, it is natural to think: can we generalize this scheme beyond
being only rank-1, in order to have better update schemes? In the following, we will
show that besides the rank decomposition, the tensor ring decomposition (TRD)
[28] was suggested as another rank-N generalization for solving TN contraction
problems.

TRD is defined by a set of self-consistent eigenvalue equations (SEEs) with
certain constraints. The original proposal of TRD requires all eigenvalue equations
to be Hermitian [28]. Later, a generalize version was proposed [29] that provides
an unified description of the iDMRG [4, 5, 7], iTEBD [3], and CTMRG [30]
algorithms. We will concentrate on this version in the following.

5.4.1 Revisiting iDMRG, iTEBD, and CTMRG: A Unified
Description with Tensor Ring Decomposition

Let us start from the iDMRG algorithm. The TN contraction can be solved using
the iDMRG [4, 5, 7] by considering an infinite-size row of tensors in the TN as
an MPO [31-35] (also see some related discussions in Sect.3.4). We introduce
three third-order variational tensors denoted by vl ok (dubbed as the boundary or
environmental tensors) and ¥ (dubbed as the central tensor). These tensors are the
fixed-point solution of the a set of eigenvalue equations. v’ and v¥ are, respectively,
the left and right dominant eigenvector of the following matrices (Fig. 5.13a, b)

’b/bl cbhby — Z Tacac ’b’lbéA“ble’ (5.54)

R *
Mc’h’lb|,cb’2hz = Z T“/C/aCBa’h’lbéBable’ (5.55)

aa’



120 5 Tensor Network Contraction and Multi-Linear Algebra

(@) (b) (©)
w yR
t 3 it
A B v v
() ox o
B ahle b a7

Fig. 5.13 The (a, b) and (c¢) show the three local eigenvalue equations given by Egs. (5.55) and
(5.57). The isometries A and B are obtained by the QR decompositions of ¥ in two different ways
in Eq. (5.56), as shown in (d)

where A and B are the left and right orthogonal parts obtained by the QR
decomposition (or SVD) of ¥ (Fig.5.13d) as

Wabb’ = Z Aabb” i’b//b/ - Z ll};b,, Bab//b/. (556)
b b

¥ is the dominant eigenvector of the Hermitian matrix (Fig. 5.13c) that satisfies

L R
‘%I’b’lb’z,ablbz = Z Ta’c/acvc/bqbl vcb’zbz' (5.57)

cc’

One can see that each of the eigenvalue problems is parametrized by the solutions
of others, thus we solve them in a recursive way. First, we initialize arbitrarily the
central tensors ¥ and get A and B by Eq.(5.56). Note that a good initial guess
can make the simulations faster and more stable. Then we update v* and v® by
multiplying with ML and M as Egs. (5.54) and (5.55). Then we have the new ¥
by solving the dominant eigenvector of .77 in Eq. (5.57) that is defined by the new
vl and vR. We iterate such a process until all variational tensors converge.

Let us rephrase the iDMRG algorithm given above in the language of TN
contraction/reconstruction. When the variational tensors give the fixed point, the
eigenvalue equations “encodes” the infinite TN, i.e., the TN can be reconstructed
from the equations. To do so, we start from a local representation of Z (Fig.5.14)
written as

L * L R
Z= Z Tacac !I/a/blbz l‘[/‘1173b4 vc’bl b3 Vebyby> (558)

where the summation goes through all indexes. According to the fact that ¥ is the
leading eigenvector of Eq. (5.57), Z is maximized with fixed v’ and v®. We here and
below use the symbol “=" to represent the contraction relation up to a difference of
a constant factor.
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Fig. 5.14 The eigenvalue
equations as illustrated
“encode” the infinite TN

Then, we use the eigenvalue equations of v and v to add one M’ and one M~
(Eqgs. (5.54) and (5.55)) in the contraction, i.e., we substitute vl by vEML and vR
by MRuR. After doing so for one time, a finite central-orthogonal MPS appears,
formed by A, B and ¥. Such substitutions can be repeated for infinite times, and
then we will have an infinite central-orthogonal MPS formed by ¥, A and B as

¢“‘an"‘ = Z e Aan72bn72bn71 Aanflbnflbn lIlanbnanrl Ban+1bn+lbn+2 Ban+2bn+2bn+3 e
{b}
(5.59)

One can see that the bond dimension of b,, is in fact the dimension cut-off of the
MPS.
Now, we have

Z=o po, (5.60)
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Fig. 5.15 The illustrations of
the TRD in Eq. (5.62)

|
_T__
|

where p is an infinite-dimensional matrix that has the form of an MPO (middle of
Fig.5.14) as

Povstt)yoee ooty = Z: T Tar'lfnancnﬂ Ta,’,+]Cn+1an+1Cn+2 e (5.61)
{c}

p is in fact one raw of the TN. Compared with Eq. (5.58), the difference of Z is only
a constant factor that can be given by the dominant eigenvalues of M~ and MR,

After the substitutions from Egs. (5.58)—(5.60), Z is still maximized by the given
@, since vL and v¥ are the dominant eigenvectors. Note that such a maximization
is reached under the assumption that the dominant eigenvector @ can be well
represented in an MPS with finite bond dimensions. Meanwhile, one can easily see
that the MPS is normalized |®...,,...| = 1, thanks to the orthogonality of A and B.
Then we come to a conclusion that @ is the optimal MPS that gives the dominant
eigenvector of p, satisfying @ = p®.3 Then, we can rewrite the TN contraction as
Z = limg o @7 pX @, where the infinite TN appears as pX (Fig. 5.14).

Now we define the tensor ring decomposition (TRD)*: with the following
conditions

+ Z (Eq.(5.58)) is maximized under the constraint that v* and v® are normalized,
. of p® is maximized under the constraint that @ is normalized,

the TRD (Fig. 5.15) of T is defined by T as

= L R
Tactac = Z 2 15y Pabsba Ve by Vebaby (5.62)
bibybsby

so that the TN contraction Z = Ta/c/acf’a/c/ac (Eq. (5.58)) is maximized. Like the
NTD and rank-1 decomposition, TRD belongs to the decompositions that encode
infinite TN’s, i.e., an infinite TN can be reconstructed from the self-consistent
equations (note the rank decomposition does not encode any TN’s). Comparing with

3For a Hermitian matrix M, v is its dominant eigenvector if [v| = 1 and v’ Mv is maximized.
4The definition of TRD given here is from Ref. [28], which is completely different from the tensor
ring decomposition proposed in Ref. [36]. While their TRD provides an approximation of a single
tensor, the TRD discussed in this paper is more like an encoding scheme of an infinite-size TN.
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Eq. (5.47), TRD is reduced to the rank-1 decomposition by taking the dimensions
of {b} as one.

It was shown that for the same system, the ground state obtained by iDMRG
is equivalent to the ground state by iTEBD, up to a gauge transformation [7, 37].
Different from this connection, TRD further unifies iDMRG and iTEBD. For
iTEBD, after combining the contraction and truncation given by Egs. (3.34) and
(3.38), we have the equation for updating the tensor there as

As,cc/: Z Txbs’b’As/,aa’Xab,cYa/b’,c/- (5.63)

s’aba’'b’

Looking at Egs. (5.55) and (5.55), Eq.(5.63) is just the eigenvalue equation for
updating v!E®] by plLBO] — prILETHILER]: the QR decomposition in Eq. (5.56)
guaranties that the “truncations in iTEBD” are implemented by isometries. In
other words, one can consider another MPS defined in the vertical direction,
which is formed by v!Z®1 and updated by the iTEBD algorithm. It means that
while implementing iDMRG in the parallel direction of the TN, one is in fact
simultaneously implementing iTEBD to update another MPS along the vertical
direction.

Particularly, when one uses iDMRG to solve the ground state of a 1D system,
the MPS formed by v!Z®1 in the imaginary-time direction satisfies the continuous
structure [29, 38] that was originally proposed for continuous field theories [39].
Such an iTEBD calculation can also be considered as the transverse contraction of
the TN [38, 40, 41].

CTMRG [30, 42] is also closely related to the scheme given above, which leads
to the CTMRG without the corners. The tensors ¥, vL and v¥ correspond to the
row and column tensors, and the equations for updating these tensors are the same
to the equations of updating the row and column tensors in CTMRG (see Eqgs. (3.27)
and (3.31)). Such a relation becomes more explicit in the rank-1 case, when corners
become simply scalars. The difference is that in the original CTMRG by Orts et al.
[30], the tensors are updated with a power method, i.e., ¥ <« ¥ and LB
MIILBOYILB] Recently, eigen-solvers instead of power method were suggested in
CTMRG ([42] and a related review [43]), where the eigenvalue equations of the row
and column tensors are the same to those given in TRD. The efficiency was shown
to be largely improved with this modification.

5.4.2 Extracting the Information of Tensor Networks From
Eigenvalue Equations: Two Examples

In the following, we present how to extract the properties of the TN by taking
the free energy and correlation length as two example related to the eigenvalue
equations. Note that these quantities correspond to the properties of the physical
model and have been employed in many places (see, e.g., a review [44]). In the
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following, we treated these two quantities as the properties of the TN itself. When
the TN is used to represent different physical models, these quantities will be
interpreted accordingly to different physical properties.

For an infinite TN, the contraction usually gives a divergent or vanishing value.
The free energy per tensor of the TN is defined to measure the contraction as

, (5.64)

with Z the value of the contraction in theory and N denoting the number of tensors.
Such a definition is closely related to some physical quantities, such as the free
energy of classical models and the average fidelity of TN states [45]. Meanwhile, f
can enable us to compare the values of the contractions of two TN’s without actually
computing %

The free energy is given by the dominant eigenvalues of ML and MZ. Let us
reverse the above reconstructing process to show this. Firstly, we use the MPS in
Eq. (5.59) to contract the TN in one direction, and have 2 = (limg _, o nK VoI =
limg _ o0 nX with 7 the dominant eigenvalue of p. The problem becomes getting 7.
By going from @' p® to Eq. (5.58), we can see that the eigenvalue problem of @ is

transformed to that of .7 in Eq. (5.57) multiplied by a constant limg_, K({< with
Ko the dominant eigenvalue of M’ and MR and K the number of tensors in p. Thus,
we have n = T’)()K§ with 5o the dominant eigenvalue of 7. Finally, we have the TN
contraction % = [r;mcég 1¥ = n&l’ with KK = N.By substituting into Eq. (5.64),
we have f = —Inkg —limg_ (Inno)/ K1 = —Inko.

The second issue is about the correlations of the TN. The correlation function of
a TN can be defined as

F (77‘[1'1]’ T[rz]> - g(f"[rl]’ f[rz]> /% — g(’f‘[l‘l]’ T[rz]>
¥ (T[rﬂ, T[fﬂ) /%2, (5.65)

where Z(T™1], TI2]) denotes the contraction of the TN after substituting the
original tensors in the positions rq and rj by two different tensors 71! and T1¥2,
T'r1 denotes the original tensor at the position r.

Though the correlation functions depend on the tensors that are substituted with,
and can be defined in many different ways, the long-range behavior share some
universal properties. For a sufficiently large distance (|r; — rz| > 1), if 7" and
T'r2] are in a same column, F satisfies

F ~ gmInir2l/s, (5.66)
One has the correlation length

& =1/(nno—Inny), (5.67)
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with ngo and 7 the two dominant eigenvalues of 7. If 7M1 and T'*2] are in a same
row, one has

§ =1/(Inko — Inky), (5.68)

with ko and k the two dominant eigen\jalues ~of MLE®),
To prove Eq. (5.67), we rewrite 2 (T*1], T1r2ly/ 2 ag

¥ (T[fﬂ, T[‘ﬂ) 1% =[®ip (T[fﬂ, T[‘ﬂ) o]/ (@quﬁ) . (5.69)

Then, introduce the transfer matrix M of @ pd,ie., o p® =TrM K with K —
oo. With the eigenvalue decomposition of .Z = ijz_ol njvjv ; with D the matrix
dimension and v; the j-th eigenvectors, one can further simply the equation as

5 (T[rl 7 rg]) /Y = (m/no)lrl_rz‘ ///( rl]) vjv ]T/// (f[n]) %
0

o

~.
Il

(5.70)

with .2 (T'"]) the transfer matrix after substituting the original tensor at r with Tl
Similarly, one has

¥ (T [r1] T) )% =i (T ( “1) v0, (5.71)
s (T, T“Z') /% = vl (T“zl) Y. (5.72)
Note that one could transform the MPS into a translationally invariant form (e.g.,

the canonical form) to uniquely define the transfer matrix of @¥p®. Substituting
the equations above in Eq. (5.65), one has

o

-1

F (T T) = 3 (/o)™ gt (FE0) vyl (T7) v, (573)
1

~.
Il

When the distance is sufficiently large, i.e., [r; — r2| > 1, only the dominant term
takes effects, which is

F (’f[l'l]’ f[l’ﬂ) ~ (/o) f/%( r1]> vl (T[n )vo. (5.74)

Compared with Eq. (5.66), one has £ = 1/(Inng — Inn;). The second case can be
proven similarly.

These two quantities are defined independently on specific physical models that
the TN might represent, thus they can be considered as the mathematical properties
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of the TN. By introducing physical models, these quantities are closely related to
the physical properties. For example, when the TN represents the partition function
of a classical lattice model, Eq. (5.64) multiplied by the temperature is exactly the
free energy. And the correlation lengths of the TN are also the physical correlation
lengths of the model in two spatial directions. When the TN gives the imaginary-
time evolution of an infinite 1D quantum chain, the correlation lengths of the TN
are the spatial and dynamical correlation length of the ground state.

It is a huge topic to investigate the properties of the TN’s or TN states. Paradigm
examples include injectivity and symmetries [46—61], statistics and fusion rules [62—
65]. These issues are beyond the scope of this lecture notes. One may refer to the
related works if interested.
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