Chapter 4 )
Tensor Network Approaches Qs
for Higher-Dimensional Quantum Lattice
Models

Abstract In this section, we will show several representative TN approaches for
simulating the quantum lattice models in (d > 1) dimensions. We will mainly
use the language of TN contractions. One may refer to several existing reviews
(Schollwock, Ann Phys 326:96-192, 2011; Verstraete et al., Adv Phys 57:143—
224, 2008; Cirac and Verstraete, J] Phys A Math Theor 42:504004, 2009; Orts,
Ann Phys 349:117, 2014; Haegeman and Verstraete, Ann Rev Condens Matter Phys
8(1):355-406, 2017) for more exhaustive understanding on the TN simulations for
quantum problems. We will focus on the algorithms based on PEPS, and show the
key roles that the 2D TN contraction algorithms presented in Sect.3 play in the
higher-dimensional cases.

4.1 Variational Approaches of Projected-Entangled Pair
State

Without losing generality, we consider a 2D quantum system with nearest-neighbor
coupling on an infinite square lattice as an example. The ground state can be
represented by an iPEPS (see Sect.2.2.4). Similar to MPS (Sect. 3.1.3), the central
task is to minimize the energy

= W), @

(Ylv)

There are in general two ways to do the minimization. One way proposed firstly
by Verstraete and Cirac [1] is considering the elements in the tensors as variational
parameters. The tensors in the TN are updated one by one. In a similar spirit as the
boundary-state methods (see Sect. 3.4), the key of this approach is to transform the
global minimization to local ones, where one tensor (say Pl see the PEPS form in
Eq. (2.23), Sect. 2.2.4) is updated by a local minimization problem

plilt feff plil
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plili yeff plil (4.2
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Fig. 4.1 The illustration of L4
H¢T in Eq. (4.2)

H¢!7 is an “effective” Hamiltonian by computing (1#|H |¥/) but after taking P 17 in
(| and PUlin |y) out. Figure 4.1 depicts H¢'T where H is written as an infinite
PEPO (iPEPO, also see Sect.2.2.6 for PEPO) for a better illustration. Similarly,
Ne/T is defined by computing (y|y) but after taking PU1™ and P! out.

Obviously, the computations of both H¢' and N7 are in fact to contract the
corresponding 2D TN’s where the 2D TN contraction algorithms are needed. In
[2], Corboz used CTMRG (see [3] or Sect. 3.3) to compute the contractions. In [4],
Vanderstraeten et al. further developed this idea to a gradient method, where the
gradient is calculated by implementing similar 2D TN contractions. The gradient is
given as

O _ BWIHW) /W) _ L dpun WIHIY) WA
gPUIT 9 PUTT B (W) (Wly)?

dplini (V).

By imposing the normalization condition (y/|¢) = 1 and shifting the ground-state
energy to zero by H < H — (Y|H|{), the gradient is simplified as

S piE = 20pu (VIHIY). (43)

Thus the gradient is computed by contracting the TN of (/| H |y) after taking Pl
out.

The gradient method is consistent with the effective Hamiltonian schemes. In
fact, one has aaflf = 2H¢// Plil_ At the minimal point, the gradient should vanish

a?’F = 0. It means 2H%/ Plil = 0, i.e., P!/l is the dominant eigenstate of HelT

with a zero eigenvalue. Considering the ground-state energy is shifted to zero, Pl!
is the ground state of the effective Hamiltonian H¢/7 .
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Note that the infinite PEPO (iPEPO) representation is not enforced to define
HeT In fact, it is not easy to obtain the iPEPO of an arbitrary 2D (or 3D)
Hamiltonian. The usual way is to start from the summation form of the Hamiltonian
H = 3 I:Ii j» and compute the contribution to B¢ from each I:Ii ; separately [2].
Each term is computed by contracting a 2D TN, where one can reuse the results to
improve the efficiency.

Following the same clue (minimizing E), algorithms were proposed to combine
TN with the QMC methods [5-9]. Still let us focus on those based on PEPS. One
may transform Eq. (4.1) as

_ Ysg WSH(S'IHIS)W(S)

E
s W(S)?

, (4.4)

where § = (s1,82,---) goes through all spin configurations and W(S) =
(s1s2---|r) is the coefficient of the iPEPS for the given configuration. QMC
sampling can be implemented by defining the weight function as W (S)? and the
estimator E(S) as

w(s’ N
E©S) =) W((S)) (S'1HIS), (4.5)
S/

so that the energy becomes

E = (ES) =) W(S)Z?E®). (4.6)
S

It is easy to see that the normalization condition of the weights )¢ W(S$)? =1is
satisfied.

The task becomes to compute W (S) and (S’ |ﬁ |.S) with different configurations.
The computation of (S’ |I-AI |S) is relatively easy since |S) and |S’) are just two
product states. The computation of W(S) is more tricky. When |y¢) is a PEPS on
a square lattice, W(S) is a 2D scalar TN by fixing all the physical indexes of the
PEPS as

w(s) =tTr [ ] P, 4.7
n

where RY[:] is a fourth-order tensor that only has the geometrical index.! The n-th
physical index is taken as s,. Considering that most of the configurations are not
translationally invariant, such QMC-TN methods are usually applied to finite-size
models. One may use the finite TN version of the algorithms reviewed in Sect. 3.

'One may refer to Eq. (2.23) to better understand Eq. (4.7).
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4.2 Imaginary-Time Evolution Methods

Another way to compute the ground-state iPEPS is to do imaginary-time evolution,
analog to the MPS methods presented in Sect. 3.1.3. For a d-dimensional quantum
model, its ground-state simulation can be considered as computing the contraction
of a (d + 1)-dimensional TN.

Firstly, let us show how the evolution operator for an infinitesimal imaginary-
time step T can be written as an iPEPO, which is in fact one layer of the 3D TN
(Fig.4.2). The evolution of the iPEPS is to put the iPEPS at the bottom and to
contract the TN layer by layer to it.

To proceed, we divide the local Hamiltonians on the square lattice into four
group: Heo = Yoyenig AU 4 HUGHLIF, o = S AT
HU-Ji+LJ] Heo = Y oven i odd AU+ gUGi+L ] gpd H,, =
D odd i, even j AU+ gli-ji+1.71 One can see that each two terms in one group
commute to each other. The evolution operator for an infinitesimal imaginary-time
step (t — 0) then can be written as

U = exp(—tH) (4.8)

= exp (—tﬁ[e’e]> exp (—II:][O‘O]) exp (—II:I[e"’]) exp (—tﬁ[”'e]> +0 (rz) .

T[I-]

Fig. 4.2 The evolution of a PEPS can be mapped to the contraction of a 3D TN
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Let us assume translational invariance to the Hamiltonian, i.e., Hl-/1 = Fltwol,
The element of two-body evolution operator is a fourth-order tensor Uy, =
1 i

(slfs}| exp(—rI:I[lw”]) |sis ;). Implement SVD or QR decomposition on U (4.2) as
Us,-sjs,fs;. = Z Lsislf,aRSjs},a' 4.9)
o

Then the two tensors T'2! and TR that form the iPEPO of U is obtained as

[L] —
Tss’,a1a2a3a4 = Lssl ,aj le §2,d) LS2S3,a3 LS3s’,a4 ,

e 4.10)
[R] _ '
Tss’,alaza_ga4 = Rssi,a1 Rsy52,a3 Rssy,a3 Rz ay -

515253

The four Ls (or Rs) in TX (or T8y correspond to the evolution operators of the
two-body terms in Aleel flool fleol and floel jp Eq. (4.9), respectively (see
the left part of Fig. 4.2).

While the TN for the imaginary-time evolution with the iPEPO is a cubic TN,
one may directly use the tensor U, which also gives a 3D but not cubic TN. Without
losing generality, we in the following will use the iPEPO to present the algorithms
for contraction a cubic TN. The algorithm can be readily applied to deal with
the statistic models on cubic lattice or other problems that can be written as the
contraction of a cubic TN.

The evolution U |[r) is to contract the iPEPO (one layer of the tensors) to the
iPEPS. In accordance to the translational invariance of the iPEPO, the iPEPS is also
formed by two inequivalent tensors (denoted by PIX1 and PIR1). Locally, the tensors
in the evolved iPEPS are given as

~[L] Z [L]
YO[]OQO[30{4 - ss’ a1a2a3a4 A ,o o030’ (4'11)

Pl Z Pt 4.12)
S&]&z&;&;; - ss’ a1a2a3a4 S ,a1a0304° :

with the composite indexes &, = (ay, o) (x = 1,2, 3,4). Obviously, the bond
dimensions of the new tensors are increased by dim(a,) times. It is necessary to
preset a dimension cut-off x: when the bond dimensions become larger than y,
approximations will be introduced to reduce the dimensions back to x. One then
can iterate the evolution of the iPEPS with bounded computational cost. After the
iPEPS converges, it is considered that the ground state is reached. Therefore, one
key step in the imaginary-time schemes (as well as the similar contraction schemes
of 3D TN’s) is to find the optimal truncations of the enlarged bonds. In the following,
we will concentrate on the truncation of bond dimensions, and present three kinds of
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scheme known as full, simple, and cluster updates according to which environment
the truncations are optimized [10].2

4.3 Full, Simple, and Cluster Update Schemes

For truncating the dimensions of the geometrical bonds of an iPEPS, the task is to
minimize the distance between the iPEPSs before and after the truncation, i.e.,

e= 1) — [¥)l. (4.13)

With the normalization condition of the iPEPSs, the problem can be reduced to the
maximization of the fidelity

= (Y |y). (4.14)

As discussed in Sect. 3.1.2, & is in fact a scalar TN.

Full Update Among the three kinds of update schemes, full update seems to be the
most natural and reasonable, in which the truncation is optimized referring to the
whole iPEPS [10-16]. Let us consider a translationally invariant iPEPS. For square
lattice, the iPEPS is formed by the infinite copies of two tensors P/ and PIRI
located on the two sub-lattices, respectively. Their evolution is given by Eq. (4.10).
We use P4 and PIR] to denote the tensors with enlarged bond dimensions. Below,
we follow Ref. [13] to explain the truncation process. To truncate the fourth bond
ay of the tensor, for example, one firstly defines the tensor M by contracting a pair
of P11 and PIR]

L R
M, 5 a0 oa'as —}j pl] Rl (4.15)
slalazag,sza]%% S1,010020304 92 000304

Note that P!X) and PRI share the bond &, that is to be truncated. Compute the
environment tensor M€ by contracting the TN of 2 after taking a pair of PI] and
PRI out from the TN. ./ is in fact an eighth-order tensor of the same dimensions
as M. Decompose M¢ by SVD as

R]
Me —E [ . 4.1
$101G203,520 @54 Alalazm a O‘Vszo/laéa; a (4.16)

2The definition of the update schemes also apply to finite-size PEPS and the variational methods;
for example, the variational methods which contract the whole TN to update the (i)PEPS are also
called full update.
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Define a new matrix as M = A2V IRl ppyILIA1/2 gnd decompose it by SVD as
M ~ VLI AVIR] by taking only the x-largest singular values and singular vectors.
Finally, two tensors are updated by P = Al/2yILIT A=1/2yI[RIT 3pq pIR] —
Al2yIRI =172y L] Onpe can check

R
~ Z plR] (4.17)
Sla1a2a3 52(1 Olzﬂtg S1, ot10£20(3(¥4 52 &, a2a3a4

with the dimension of the shared bond dim(«4) = yx. We shall stress that Eq. (4.17)
is not the SVD of M; the decomposition and truncation are optimized by the SVD
of M*, hence is a non-local optimization.

With the formula given above, the task is to compute the environment tensor
M¢ by the contraction algorithms of 2D TN’s. In Ref. [13], the authors developed
the SRG, where M*¢ is computed by a modified version of TRG algorithm [17].
Other options include iTEBD [15], CTMRG [12], etc. Note that how to define
the environment as well as how to truncate by the environment may have subtle
differences in different works. The spirit is the same, which is to minimize the
fidelity in Eq. (4.14) referring to the whole iPEPS.

Simple Update A much more efficient way known as the simple update was
proposed by Jiang et al. [18]; it uses local environment to determine the truncations,
providing an extremely efficient algorithm to simulate the 2D ground states. As
shown in Fig. 2.8c, the iPEPS used in the simple update is formed by the tensors on
the site and the spectra on the bonds: two tensors P! and P!®] Jocated on the two
sub-lattices, and AL A[z], AB! and A4 on the four inequivalent geometrical bonds
of each tensor. The evolution of the tensors in such an iPEPS is given by Eq. (4.10).

i1 should be simultaneously evolved as Al (u w) = = Iy Ao, With I, = 1.

To truncate the fourth geometrical bond of P!l (and PIRl), for example, we
construct a new tensor by contracting P2 and PRl and the adjacent spectra as

My, 618283.5.d, ahay = Z 51, a1a2a3a4 r[2Ri1a2a3a4)‘¢[x11])‘c[x221)‘a3 )‘gij/;%[izz]/ig/ig]'
(4.18)
Then implement SVD on M as
X
gy ult o WUl (4.19)

5101 G2a3,520) A5, s1@16003,0" Y 5@ ahal.a
a=1
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where one takes only the x-largest singular values and the basis. P!! and PR are
updated as

~ -1 /. -1 /. -1
Pl = O8) 02 (02)”
S1,010203¢ sjaponas,a o] o o3

~ -1 /. -1 /. —1
piRl _ylRl ()\[.”) (A@) (A[}]) .
§2,01003¢ SR 03,0 o %) a3

The spectrum A4 is updated by A in the SVD.

The above procedure truncates dim(c4) to the dimension cut-off x, which can be
readily applied to truncate any other bonds. According to the discussion about SVD
in Sect. 2.2.1, the environment is the two tensors and the adjacent spectra As in M,
where the As play the role of an “effective” environment that approximate the true
environment (M¢ in the full update). From this viewpoint, the simple update uses
local environment. Later by borrowing from the idea of the orthogonal form of the
iPEPS on Bethe lattices [19-26], it was realized that the environment of the simple
update is the iPEPS on the infinite trees [27-29], not just several tensors. We will
talk about this in detail in the next chapter from the perspective of the multi-linear
algebra.

(4.20)

Cluster Update By keeping the same dimension cut-off, the simple update is
much more efficient than the full update. On the other hand, obviously, the full
update possesses higher accuracy than the simple update by considering better the
environment. The cluster update is between the simple and full updates, which is
more flexible to balance between the efficiency and accuracy [10, 27, 30].

One way is to choose a finite cluster of the infinite TN and define the environment
tensor by contracting the finite TN after taking a pair of PIL1 and PIR] out. One
can consider to firstly use the simple update to obtain the spectra and put them
on the boundary of the cluster [30]. This is equivalent to using a new boundary
condition [27, 29], different from the open or periodic boundary conditions of a finite
cluster. Surely, the bigger the cluster becomes, more accurate but more consuming
the computation will be. One may also consider an infinite-size cluster, which is
formed by a certain number of rows of the tensors in the TN [10]. Again, both the
accuracy and computational cost will in general increase with the number of rows.
With infinite rows, such a cluster update naturally becomes the full update. Despite
the progresses, there are still many open questions, for example, how to best balance
the efficiency and accuracy in the cluster update.

4.4 Summary of the Tensor Network Algorithms in Higher
Dimensions

In this section, we mainly focused on the iPEPS algorithm that simulates the ground
states of 2D lattice models. The key step is to compute the environment tensor,
which is to contract the corresponding TN. For several special cases such as trees



References 95

and fractal lattices, the environment tensor corresponds to an exactly contractible
TN, and thus can be computed efficiently (see Sect.2.3.6). For the regular lattices
such as square lattice, the environment tensor is computed by the TN contraction
algorithms, which is normally the most consuming step in the iPEPS approaches.

The key concepts and ideas, such as environment, (simple, cluster, and full)
update schemes, and the use of SVD, can be similarly applied to finite-size cases
[31, 32], the finite-temperature simulations [27, 28, 33-39], and real-time simula-
tions [31, 40] in two dimensions. The computational cost of the TN approaches
is quite sensitive to the spatial dimensions of the system. The simulations of 3D
quantum systems are much more consuming than the 2D cases, where the task
becomes to contract the 4D TN. The 4D TN contraction is extremely consuming,
one may consider to generalize the simple update [29, 41], or to construct finite-size
effective Hamiltonians that mimic the infinite 3D quantum models [29, 42]

Many technical details of the approaches can be flexibly modified according
to the problems under consideration. For example, the iPEPO formulation is very
useful when computing a 3D statistic model, which is to contract the corresponding
3D TN. As for the imaginary-time evolution, it is usually more efficient to use
the two-body evolution operators (see, e.g., [12, 18]) rather than the iPEPO.
The environment is not necessarily defined by the tensors; it can be defined by
contracting everything of the TN except for the aimed geometrical bond [28, 33].
The contraction order also significantly affects the efficiency and accuracy. One may
consider to use the “single-layer” picture [10, 31], or an “intersected” optimized
contraction scheme [43].
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