Chapter 3 )
Two-Dimensional Tensor Networks Chock or
and Contraction Algorithms

Abstract In this section, we will first demonstrate in Sect. 3.1 that many important
physical problems can be transformed to 2D TNs, and the central tasks become
to compute the corresponding TN contractions. From Sects.3.2 to 3.5, we will
then present several paradigm contraction algorithms of 2D TNs including TRG,
TEBD, and CTMRG. Relations to other distinguished algorithms and the exactly
contractible TNs will also be discussed.

3.1 From Physical Problems to Two-Dimensional Tensor
Networks

3.1.1 Classical Partition Functions

Partition function, which is a function of the variables of a thermodynamic state
such as temperature, volume, and etc., contains the statistical information of a
thermodynamic equilibrium system. From its derivatives of different orders, we can
calculate the energy, free energy, entropy, and so on. Levin and Nave pointed out
in Ref. [1] that the partition functions of statistical lattice models (such as Ising
and Potts models) with local interactions can be written in the form of TN. Without
losing generality, we take square lattice as an example.

Let us start from the simplest case: the classical Ising model on a single square
with only four sites. The four Ising spins denoted by s; (i = 1,2, 3, 4) locate on
the four corners of the square, as shown in Fig. 3.1a; each spin can be up or down,
represented by s; = 0 and 1, respectively. The classical Hamiltonian of such a
system reads

Hy 55535, = J (5152 + 5253 + 5354 + S451) — h(s1 + 52 + 53 + 54), (3.1)

with J the coupling constant and / the magnetic field.
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Fig. 3.1 (a) Four Ising spins (blue balls with arrows) sitting on a single square, and the red lines
represent the interactions. The blue block is the tensor 7 (Eq. (3.2)), with the black lines denoting
the indexes of T'. (b) The graphic representation of the TN on a larger lattice with more than one
square. (¢) The TN construction of the partition function on infinite square lattice

When the model reaches the equilibrium at temperature T, the probability of each
possible spin configuration is determined by the Maxwell-Boltzmann factor

-B Hvls2s3s4 , (32)

TS1S2S3S4 =e

with the inverse temperature 8 = 1/T.! Obviously, Eq. (3.2) is a fourth-order tensor
T, where each element gives the probability of the corresponding configuration.

'In this paper, we set Boltzmann constant kg = 1 for convenience.
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The partition function is defined as the summation of the probability of all
configurations. In the language of tensor, it is obtained by simply summing over
all indexes as

Z= Z Tslszx354o (3.3)

S1525354

Let us proceed a little bit further by considering four squares, whose partition
function can be written in a TN with four tensors (Fig. 3.1b) as

Z= E Tslxzsés{ T5553s4s§ Tsé"séssxf, TSgS;SZPW' (3.4)
{ss'}

Each of the indexes {s'} inside the TN is shared by two tensors, representing the spin
that appears in both of the squares. The partition function is obtained by summing
over all indexes.

For the infinite square lattice, the probability of a certain spin configuration
(s1, 52, - - - ) is given by the product of infinite number of tensor elements as

—BHs —BH, —BH,
e ﬂ {s} — e B 51525354 @ B S4555657 ... — T5152S3S4TS4S5S637 - (35)

Then the partition function is given by the contraction of an infinite TN formed by
the copies of T (Eq. (3.2)) as

z=>Y 17w (3.6)

{s} n

where two indexes satisfy s! = s; if they refer to the same Ising spin. The graphic
representation of Eq. (3.6) is shown in Fig. 3.1c. One can see that on square lattice,
the TN still has the geometry of a square lattice. In fact, such a way will give a
TN that has a geometry of the dual lattice of the system, and the dual of the square
lattice is itself.

For the Q-state Potts model on square lattice, the partition function has the same
TN representation as that of the Ising model, except that the elements of the tensor
are given by the Boltzmann weight of the Potts model and the dimension of each
index is Q. Note that the Potts model with ¢ = 2 is equivalent to the Ising model.

Another example is the eight-vertex model proposed by Baxter in 1971 [2]. It is
one of the “ice-type” statistic lattice model, and can be considered as the classical
correspondence of the Z, spin liquid state. The tensor that gives the TN of the
partition function is also (2 x 2 x 2 x 2), whose non-zero elements are

1, si14+---+sy =even,

3.7
0, otherwise. 3.7)

Tsy.sy = {
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We shall remark that there are more than one ways to define the TN of the
partition function of a classical system. For example, when there only exist nearest-
neighbor couplings, one can define a matrix M,y = e ##s on each bond and put
on each site a super-digonal tensor I (or called copy tensor) defined as

L osi=--=sn;
Iy sy = . (3.8)
0, otherwise.

Then the TN of the partition function is the contraction of copies of M and I, and
possesses exactly the same geometry of the original lattice (instead of the dual one).

3.1.2 Quantum Observables

With a TN state, the computations of quantum observables as (| é|1//) and (Y |v)
are the contraction of a scalar TN, where O can be any operator. For a 1D MPS,
this can be easily calculated, since one only needs to deal with a 1D TN stripe. For
2D PEPS, such calculations become contractions of 2D TNs. Taking (|y) as an
example, the TN of such an inner product is the contraction of the copies of the local
tensor (Fig. 3.1c) defined as

_ *
Ta1a2a3a4 - PS a”aé’a”a” Pv al a2a3a4

3.9)

N

with P the tensor of the PEPS and a; = (a;, a!'). There are no open indexes left and

the TN gives the scalar (y|1). The TN for computing the observable (O ) is similar.
The only difference is that we should substitute some small number of T,4,454,
in original TN of (¥ |yr) with “impurities” at the sites where the operators locate.
Taking one-body operator as an example, the “impurity” tensor on this site can be
defined as

T[l] == P>,< "o 1 //0 P/ ral (310)

ajazasaq S,aya,aza, §,a 02035’4
s,s’

In such a case, the single-site observables can be represented by the TN contrac-
tion of

(W|Oyy  tTe TWT], ;T

= 3.11
Wi [, T G-1h
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For some non-local observables, e.g., the correlation function, the contraction of
(¥| O Ol |yr) is nothing but adding another “impurity” by

N
(w0 Oy = 1 TWUITUITT T. (3.12)
ni.j

3.1.3 Ground-State and Finite-Temperature Simulations

Ground-state simulations of 1D quantum models with short-range interactions can
also be efficiently transferred to 2D TN contractions. When minimizing the energy

= WAV (3.13)

(V1Y)

where we write |Y/) as an MPS. Generally speaking, there are two ways to solve
the minimization problem: (1) simply treat all the tensor elements as variational
parameters; (2) simulate the imaginary-time evolution

—BH
W) = lim ——1¥) (3.14)

1 T S —
B=oo | e=PH|y) |

The first way can be realized by, e.g., Monte Carlo methods where one could
randomly change or choose the value of each tensor element to locate the minimal
of energy. One can also use the Newton method and solve the partial-derivative
equations dE/dx, = 0 with x,, standing for an arbitrary variational parameter.
Anyway, it is inevitable to calculate E (i.e., (1//|ﬁ |[Y) and (yr|y)) for most cases,
which is to contraction the corresponding TNs as explained above.

We shall stress that without TN, the dimension of the ground state (i.e., the
number of variational parameters) increases exponentially with the system size,
which makes the ground-state simulations impossible for large systems.

The second way of computing the ground state with imaginary-time evolution
is more or less like an “annealing” process. One starts from an arbitrarily chosen
initial state and acts the imaginary-time evolution operator on it. The “temperature”
is lowered a little for each step, until the state reaches a fixed point. Mathematically
speaking, by using Trotter-Suzuki decomposition, such an evolution is written in a
TN defined on (D + 1)-dimensional lattice, with D the dimension of the real space
of the model.

Here, we take a 1D chain as an example. We assume that the Hamiltonian only
contains at most nearest-neighbor couplings, which reads

H=Y hynt1. (3.15)
n
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with fln‘,,H containing the on-site and two-body interactions of the n-th and n+ 1-th
sites. It is useful to divide H into two groups, H = H® + H? as

H¢ = Z ]:ln,n+lv H® = Z fln,n+1' (3.16)

even n odd n

By doing so, each two terms in H¢ or H° commutes with each other. Then the
evolution operator U (t) for infinitesimal imaginary time T — 0 can be written as

U(t)=e ™ =0 | o (12) [ﬁe, ﬁ”] . (3.17)

If 7 is small enough, the high-order terms are negligible, and the evolution operator
becomes

U@ ~[[0@nns1, (3.18)

with the two-site evolution operator U O+l = e~ THunt1

The above procedure is known as the first-order Trotter-Suzuki decomposition
[3-5]. Note that higher-order decomposition can also be adopted. For example, one
may use the second-order Trotter-Suzuki decomposition that is written as

—TtH 7%199 —tH? 7%1:18. (319)

With Eq. (3.18), the time evolution can be transferred to a TN, where the local
tensor is actually the coefficients of U(7), n+1, satisfying

r ot 2
Tsnsnﬂsr/lsr’lﬂ = (8,85, 11U (@ n.n+115n8n+1)- (3.20)

Such a TN is defined in a plain of two dimensions that corresponds to the spatial and
(real or imaginary) time, respectively. The initial state is located at the bottom of the
TN (B = 0) and its evolution is to do the TN contraction which can be efficiently
solved by TN algorithms (presented later).

In addition, one can readily see that the evolution of a 2D state leads to the
contraction of a 3D TN. Such a TN scheme provides a straightforward picture
to understand the equivalence between a (d + 1)-dimensional classical and a
d-dimensional quantum theory. Similarly, the finite-temperature simulations of
a quantum system can be transferred to TN contractions with Trotter-Suzuki

decomposition. For the density operator p(8) = e# A , the TN is formed by the
same tensor given by Eq. (3.20).
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3.2 Tensor Renormalization Group

In 2007, Levin and Nave proposed TRG approach [1] to contract the TN of
2D classical lattice models. In 2008, Gu et al. further developed TRG to handle
2D quantum topological phases [6]. TRG can be considered as a coarse-graining
contraction algorithm. To introduce the TRG algorithm, let us consider a square TN
formed by infinite number of copies of a fourth-order tensor 74,434, (see the left
side of Fig. 3.2).

Contraction and Truncation The idea of TRG is to iteratively “coarse-grain” the
TN without changing the bond dimensions, the geometry of the network, and the
translational invariance. Such a process is realized by two local operations in each
iteration. Let us denote the tensor in the ¢-th iteration as 7®) (we take T© = T).
For obtaining T+ the first step is to decompose T by SVD in two different
ways (Fig.3.2) as

Ta(ll)aza3a4 = Z Ualazb Va3a4b7 (321)
b

Ta(ltzza3a4 = ZXa4a1bYa2a3b~ (3.22)
b

Note that the singular value spectrum can be handled by multiplying it with the
tensor(s), and the dimension of the new index satisfies dim(b) = x2 with x the
dimension of each bond of 7).

T(t+1)

Fig. 3.2 For an infinite square TN with translational invariance, the renormalization in the TRG
algorithm is realized by two local operations of the local tensor. After each iteration, the bond
dimensions of the tensor and the geometry of the network keep unchanged
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The purpose of the first step is to deform the TN, so that in the second step, a
new tensor 7+ can be obtained by contracting the four tensors that form a square
(Fig.3.2) as

(t41)
Tb1b2b3b4 <~ Z Vararby Yazazor Uasashs Xagayby- (3.23)

ayazazag

We use an arrow instead of the equal sign, because one may need to divide the
tensor by a proper number to keep the value of the elements from being divergent.
The arrows will be used in the same way below.

These two steps define the contraction strategy of TRG. By the first step, the
number of tensors in the TN (i.e., the size of the TN) increases from N to 2N,
and by the second step, it decreases from 2N to N /2. Thus, after ¢ times of each
iterations, the number of tensors decreases to the % of its original number. For this
reason, TRG is an exponential contraction algorithm.

Error and Environment The dimension of the tensor at the ¢-th iteration becomes
le, if no truncations are implemented. This means that truncations of the bond
dimensions are necessary. In its original proposal, the dimension is truncated by
only keeping the singular vectors of the x-largest singular values in Eq. (3.22). Then
the new tensor T+ obtained by Eq. (3.23) has exactly the same dimension as 7).

Each truncation will absolutely introduce some error, which is called the
truncation error. Consistent with Eq. (2.7), the truncation error is quantified by the

discarded singular values A as
[~ x2=1,2
b=x Ab

£ = T (3.24)
x==1,2
b=0 b
According to the linear algebra, ¢ in fact gives the error of the SVD given in
Eq. (3.22), meaning that such a truncation minimizes the error of reducing the rank
of T® which reads

x—1
€= |Ta(1[2¢2a3a4 - Z Ua1a2bVa3a4b|~ (3.25)
b=0

One may repeat the contraction-and-truncation process until 7®) converges. It
usually only takes ~10 steps, after which one in fact contract a TN of 2! tensors
to a single tensor.

The truncation is optimized according to the SVD of T®. Thus, T is called
the environment. In general, the tensor(s) that determines the truncations is called
the environment. It is a key factor to the accuracy and efficiency of the algorithm.
For those that use local environments, like TRG, the efficiency is relatively high
since the truncations are easy to compute. But, the accuracy is bounded since the
truncations are only optimized according to some local information (like in TRG
the local partitioning 7 ).
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One may choose other tensors or even the whole TN as the environment. In 2009,
Xie et al. proposed the second renormalization group (SRG) algorithm [7]. The
idea is in each truncation step of TRG, they define the global environment that is a
fourth-order tensor &z 11, = Yoy [ a"a”)aga” with 7@ the n-th tensor in
the z-th step and 7 the tensor to be truncated. & is the contraction of the whole TN
after getting rid of 7" and is computed by TRG. Then the truncation is obtained
not by the SVD of T but by the SVD of &. The word “second” in the name of
the algorithm comes from the fact that in each step of the original TRG, they use
a second TRG to calculate the environment. SRG is obviously more consuming,
but bears much higher accuracy than TRG. The balance between accuracy and
efficiency, which can be controlled by the choice of environment, is one main factor
to consider while developing or choosing the TN algorithms.

3.3 Corner Transfer Matrix Renormalization Group

In the 1960s, the corner transfer matrix (CTM) idea was developed originally by
Baxter in Refs. [8, 9] and a book [10]. Such ideas and methods have been applied
to various models, for example, the chiral Potts model [11-13], the 8-vertex model
[2, 14, 15], and to the 3D Ising model [16]. Combining CTM with DMRG, Nishino
and Okunishi proposed the CTMRG [17] in 1996 and applied it to several models
[17-27]. In 2009, Orts and Vidal further developed CTMRG to deal with TNs [28].
What they proposed to do is to put eight variational tensors to be optimized in
the algorithm, which are four corner transfer matrices C 2 ¢cBl ¢ and four
row (column) tensors R R R R onthe boundary, and then to contract the
tensors in the TN to these variational tensors in a specific order shown in Fig. 3.3.
The TN contraction is considered to be solved with the variational tensors when they
converge in this contraction process. Compared with the boundary-state methods in
the last subsection, the tensors in CTMRG define the states on both the boundaries
and corners.

Contraction In each iteration step of CTMRG, one choses two corner matrices on
the same side and the row tensor between them, e.g., C1'1, 121, and R[?). The update
of these tensors (Fig. 3.4) follows

ol (11 pl]
l;zb/ < Z Cblbz h]alb’ ’ (326)
(2]
R52a4b~3 < Z szazbz T910293a4 ’ (327)
~12] 21 R3]
C53b/ < Z Cb3b4 h4azb/ ’ (328)

where l;z = (b, ay) and l;3 = (b3, ay).
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Fig. 3.3 Overview of the CTMRG contraction scheme. The tensors in the TN are contracted to
the variational tensors defined on the edges and corners
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Fig. 3.4 The first arrow shows absorbing tensors RU T and RB! to renew tensors C [”,~R[2],~and
ct in left operation. The second arrow shows the truncation of the enlarged bond of C i R[Z],
and C2). Inset is the acquisition of the truncation matrix Z

After the contraction given above, it can be considered that one column of the
TN (as well as the corresponding row tensors R and R1) is contracted. Then one
chooses other corner matrices and row tensors (such as CI!1, C, and Ry and
implement similar contractions. By iteratively doing so, the TN is contracted in the
way shown in Fig. 3.3.
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Note that for a finite TN, the initial corner matrices and row tensors should be
taken as the tensors locating on the boundary of the TN. For an infinite TN, they
can be initialized randomly, and the contraction should be iterated until the preset
convergence is reached.

CTMRG can be regarded as a polynomial contraction scheme. One can see that
the number of tensors that are contracted at each step is determined by the length of
the boundary of the TN at each iteration time. When contracting a 2D TN defined
on a (L x L) square lattice as an example, the length of each side is L — 2t at the ¢-th
step. The boundary length of the TN (i.e., the number of tensors contracted at the
t-th step) bears a linear relation with ¢ as 4(L — 2¢) — 4. For a 3D TN such as cubic
TN, the boundary length scales as 6(L — 21)% — 12(L — 2t) + 8, thus the CTMRG
for a 3D TN (if exists) gives a polynomial contraction.

Truncation One can see that after the contraction in each iteration step, the bond
dimensions of the variational tensors increase. Truncations are then in need to
prevent the excessive growth of the bond dimensions. In Ref. [28], the truncation
is obtained by inserting a pair of isometries V and V' in the enlarged bonds. A
reasonable (but not the only choice) of V for translational invariant TN is to consider
the eigenvalue decomposition on the sum of corner transfer matrices as

AT AL ~[2]5
Z Cop Cop T Z Gy € b’b Z »Ab Vb’b (3.29)
b

b=0

Only the x largest eigenvalues are preserved. Therefore, V is a matrix of the
dimension Dy X x, where D is the bond dimension of 7" and x is the dimension
cut-off. We then truncate CIH, R?), and CI?! using V as

(1] Ay
Chpy = Z Chast Vit (3.30)
[2] Rl
Rb2a4b3 - Z b2a4b3 beZ b3b3 (331)
by.b3
[2] ~[21 v
Cb3bi - Z Cb 3b) bsb% (3.32)

Error and Environment Same as TRG or TEBD, the truncations are obtained by
the matrix decompositions of certain tensors that define the environment. From
Eq. (3.29), the environment in CTMRG is the loop formed by the corner matrices
and row tensors. Note that symmetries might be considered to accelerate the
computation. For example, one may take Cl!l = P2l = ¢Bl = ¥ and
R = R2I = RBI = RI4l when the TN has rotational and reflection symmetries
(T arazas = Ta’lagagag after any permutation of the indexes).
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3.4 Time-Evolving Block Decimation: Linearized
Contraction and Boundary-State Methods

The TEBD algorithm by Vidal was developed originally for simulating the time
evolution of 1D quantum models [29-31]. The (finite and infinite) TEBD algorithm
has been widely applied to varieties of issues, such as criticality in quantum
many-body systems (e.g., [32-34]), the topological phases [35], the many-body
localization [36-38], and the thermodynamic property of quantum many-body
systems [39-45].

In the language of TN, TEBD solves the TN contraction problems in a linearized
manner, and the truncation is calculated in the context of an MPS. In the following,
let us explain the infinite TEBD (iTEBD) algorithm [31] (Fig. 3.5) by still taking
the infinite square TN formed by the copies of a fourth-order tensor 7 as an
example. In each step, a row of tensors (which can be regarded as an MPO) are
contracted to an MPS |y). Inevitably, the bond dimensions of the tensors in the MPS
will increase exponentially as the contractions proceed. Therefore, truncations are
necessary to prevent the bond dimensions diverging. The truncations are determined
by minimizing the distance between the MPSs before and after the truncation. After
the MPS |y) converges, the TN contraction becomes (Y| ), which can be exactly
and easily computed.

Contraction We use is two-site translational invariant MPS, which is formed by the
tensors A and B on the sites and the spectrum A and I” on the bonds as

Z e Aan—l Asn—lsan—lan Fan Bsnsanan+l Aan+1 . (333)
{a}

In each step of iTEBD, the contraction is given by

As,&ﬁ’ <~ Z sts’b’As’,aa’v Bs,&d/ <~ Z sts’b’ Bs’,aa’y (334)
’

s/ K

Fig. 3.5 The illustration of the contraction and truncation of the iTEBD algorithm. In each
iteration step, a row of tensors in the TN are contracted to the MPS, and truncations by SVD
are implemented so that the bond dimensions of the MPS keep unchanged
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where the new virtual bonds are entangled, satisfying a = (b, a) and a’ = (b', a’).
Meanwhile, the spectrum is also updated as

Aé < Aalb, F&/ < Fa’lb’v (335)

where 1 is a vector with 1;, = 1 for any b.

It is readily to see that the number of tensors in iTEBD will be reduced linearly
as tN, with ¢t the number of the contraction-and-truncation steps and N — 00
the number of the columns of the TN. Therefore, iTEBD (also finite TEBD) can
be considered as a linearized contraction algorithm, in contrast to the exponential
contraction algorithm like TRG.

Truncation Truncations are needed when the dimensions of the virtual bonds
exceed the preset dimension cut-off x. In the original version of iTEBD [31], the
truncations are done by local SVDs. To truncate the virtual bond a, for example,
one defines a matrix by contracting the tensors and spectrum connected to the target
bond as

My 50y = Y Aay Asy.ara T By iy Ad- (3.36)
a

Then, perform SVD on M, keeping only the x-largest singular values and the
corresponding basis as

x—1
Mslfll,szﬁz = Z Usl,fllara Vsz,a52~ (3.37)
a=0

The spectrum I” is updated by the singular values of the above SVD. The tensors A
and B are also updated as

Ay da = (A) WUy, dar Bsyaa = Vepaa(Aa) 7 (3.38)

Till now, the truncation of the spectrum I" and the corresponding virtual bond have
been completed. Any spectra and virtual bonds can be truncated similarly.

Error and Environment Similar to TRG and SRG, the environment of the original
iTEBD is M in Eq. (3.37), and the error is measured by the discarded singular values
of M. Thus, iTEBD seems to only use local information to optimize the truncations.
What is amazing is that when the MPO is unitary or near unitary, the MPS converges
to a so-called canonical form [46, 47]. The truncations are then optimal by taking
the whole MPS as the environment. If the MPO is far from being unitary, Oris and
Vidal proposed the canonicalization algorithm [47] to transform the MPS into the
canonical form before truncating. We will talk about this issue in detail in the next
section.
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Boundary-State Methods: Density Matrix Renormalization Group and Variational
Matrix Product State The iTEBD can be understood as a boundary-state method.
One may consider one row of tensors in the TN as an MPO (see Sect.2.2.6
and Fig.2.10), where the vertical bonds are the “physical” indexes and the bonds
shared by two adjacent tensors are the geometrical indexes. This MPO is also
called the transfer operator or transfer MPO of the TN. The converged MPS is
in fact the dominant eigenstate of the MPO.> While the MPO represents a physical
Hamiltonian or the imaginary-time evolution operator (see Sect.3.1), the MPS is
the ground state. For more general situations, e.g., the TN represents a 2D partition
function or the inner product of two 2D PEPSs, the MPS can be understood as
the boundary state of the TN (or the PEPS) [48-50]. The contraction of the 2D
infinite TN becomes computing the boundary state, i.e., the dominant eigenstate
(and eigenvalue) of the transfer MPO.

The boundary-state scheme gives several non-trivial physical and algorithmic
implications [48-52], including the underlying resemblance between iTEBD and
the famous infinite DMRG (iDMRG) [53]. DMRG [54, 55] follows the idea of
Wilson’s NRG [56], and solves the ground states and low-lying excitations of
1D or quasi-1D Hamiltonians (see several reviews [57-60]); originally it has no
direct relations to TN contraction problems. After the MPS and MPO become
well understood, DMRG was re-interpreted in a manner that is more close to TN
(see a review by Schollwock [57]). In particular for simulating the ground states
of infinite-size 1D systems, the underlying connections between the iDMRG and
iTEBD were discussed by McCulloch [53]. As argued above, the contraction of
a TN can be computed by solving the dominant eigenstate of its transfer MPO.
The eigenstates reached by iDMRG and iTEBD are the same state up to a gauge
transformation (note the gauge degrees of freedom of MPS will be discussed in
Sect. 2.4.2). Considering that DMRG mostly is not used to compute TN contractions
and there are already several understanding reviews, we skip the technical details
of the DMRG algorithms here. One may refer to the papers mentioned above if
interested. However, later we will revisit iDMRG in the clue of multi-linear algebra.

Variational matrix product state (VMPS) method is a variational version of
DMRG for (but not limited to) calculating the ground states of 1D systems with
periodic boundary condition [61]. Compared with DMRG, VMPS is more directly
related to TN contraction problems. In the following, we explain VMPS by solving
the contraction of the infinite square TN. As discussed above, it is equivalent to
solve the dominant eigenvector (denoted by [i)) of the infinite MPO (denoted by
rfzo) that is formed by a row of tensors in the TN. The task is to minimize (y|o|v¥)
under the constraint (yr|yr) = 1. The eigenstate |) written in the form of an MPS.

The tensors in |i) are optimized on by one. For instance, to optimize the n-th
tensor, all other tensors are kept unchanged and considered as constants. Such a local
minimization problem becomes Helt |T,) = ENS |T,) with & the eigenvalue.

2For simplicity, we assume the MPO gives an Hermitian operator so that its eigenstates and
eigenvalues are well-defined.



3.5 Transverse Contraction and Folding Trick 77

33403 IT. 5%

Fig. 3.6 The illustration of (a) He'F and (b) N¢/ in the variational matrix product state method

HeIT is given by a sixth-th order tensor defined by contracting all tensors in (Y |p|)
except for the n-th tensor and its conjugate (Fig. 3.6a). Similarly, N7 s also given
by a sixth-th order tensor defined by contracting all tensors in (i|1r) except for
the n-th tensor and its conjugate (Fig. 3.6b). Again, the VMPS is different from the
MPS obtained by TEBD only up to a gauge transformation.

Note that the boundary-state methods are not limited to solving TN contractions.
An example is the time-dependent variational principle (TDVP). The basic idea of
TDVP was proposed by Dirac in 1930 [62], and then it was cooperated with the
formulation of Hamiltonian [63] and action function [64]. For more details, one
could refer to a review by Langhoff et al. [65]. In 2011, TDVP was developed
to simulate the time evolution of many-body systems with the help of MPS [66].
Since TDVP (and some other algorithms) concerns directly a quantum Hamiltonian
instead of the TN contraction, we skip giving more details of these methods in this

paper.

3.5 Transverse Contraction and Folding Trick

For the boundary-state methods introduced above, the boundary states are defined
in the real space. Taking iTEBD for the real-time evolution as an example, the
contraction is implemented along the time direction, which is to do the time
evolution in an explicit way. It is quite natural to consider implementing the
contraction along the other direction. In the following, we will introduce the
transverse contraction and the folding trick proposed and investigated in Refs. [67—
69]. The motivation of transverse contraction is to avoid the explicit simulation of
the time-dependent state |y (7)) that might be difficult to capture due to the fast
growth of its entanglement.

Transverse Contraction Let us consider to calculate the average of a one-body
operator o(t) = (W (¢t)|o|y¥(¢)) with |y (7)) that is a quantum state of infinite size
evolved to the time ¢. The TN representing o(¢) is given in the left part of Fig. 3.7,
where the green squares give the initial MPS |1/ (0)) and its conjugate, the yellow
diamond is 0, and the TN formed by the green circles represents the evolution
itH

operator ¢''” and its conjugate (see how to define the TN in Sect. 3.1.3).
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Fig. 3.7 Transverse contraction of the TN for a local expectation value (O (¢))

To pgrform the transverse contraction, we treat each column of the TN as an
MPO 7. Then as shown in the right part of Fig.3.7, the main task of computing
o(t) is to solve the dominant eigenstate |¢) (normalized) of .7, which is an MPS
illustrated by the purple squares. One may solve this eigenstate problems by any of
the boundary-state methods (TEBD, DMRG, etc.). With |¢), o(#) can be exactly and
efficiently calculated as

o(r) = (®loly @) _ (¢1TI9) (3.39)

WOW®) (9| T1)

with 9; is the column that contains the operator 6. Note that the length of |¢) (i.e.,
the number of tensors in the MPS) is proportional to the time ¢, thus one should use
the finite-size versions of the boundary-state methods. It should also be noted that
7 may not be Hermitian. In this case, one should not use |¢) and its conjugate, but
compute the left and right eigenstates of .7 instead.

Interestingly, similar ideas of the transverse contraction appeared long before
the concept of TN emerged. For instance, transfer matrix renormalization group
(TMRG) [70-73] can be used to simulate the finite-temperature properties of a 1D
system. The idea of TMRG is to utilize DMRG to calculate the dominant eigenstate
of the transfer matrix (similar to .77). In correspondence with the TN terminology,
it is to use DMRG to compute |¢) from the TN that defines the imaginary-time
evolution. We will skip of the details of TMRG since it is not directly related to TN.
One may refer the related references if interested.
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Fig. 3.8 The illustration of the folding trick

Folding Trick The main bottleneck of a boundary-state method concerns the
entanglement of the boundary state. In other words, the methods will become
inefficient when the entanglement of the boundary state grows too large. One
example is the real-time simulation of a 1D chain, where the entanglement entropy
increases linearly with time. Solely with the transverse contraction, it will not
essentially solve this problem. Taking the imaginary-time evolution as an example,
it has been shown that with the dual symmetry of space and time, the boundary
states in the space and time directions possess the same entanglement [69, 74].

In Ref. [67], the folding trick was proposed. The idea is to “fold” the TN before
the transverse contraction (Fig.3.8). In the folded TN, each tensor is the tensor
product of the original tensor and its conjugate. The length of the folded TN in
the time direction is half of the original TN, and so is the length of the boundary
state.

The previous work [67] on the dynamic simulations of 1D spin chains showed
that the entanglement of the boundary state is in fact reduced compared with that
of the boundary state without folding. This suggests that the folding trick provides
a more efficient representation of the entanglement structure of the boundary state.
The authors of Ref. [67] suggested an intuitive picture to understand the folding
trick. Consider a product state as the initial state at # — 0 and a single localized
excitation at the position x that propagates freely with velocity v. By evolving for
a time ¢, only (x &£ vt) sites will become entangled. With the folding trick, the
evolutions (that are unitary) besides the (x & vt) sites will not take effects since they
are folded with the conjugates and become identities. Thus the spins outside (x £ vt)
will remain product state and will not contribute entanglement to the boundary state.
In short, one key factor to consider here is the entanglement structure, i.e., the fact
that the TN is formed by unitaries. The transverse contraction with the folding trick
is a convincing example to show that the efficiency of contracting a TN can be
improved by properly designing the contraction way according to the entanglement
structure of the TN.
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3.6 Relations to Exactly Contractible Tensor Networks
and Entanglement Renormalization

The TN algorithms explained above are aimed at dealing with contracting optimally
the TN that cannot be exactly contracted. Then a question arises: Is a classical com-
puter really able to handle these TNs? In the following, we show that by explicitly
putting the isometries for truncations inside, the TNs that are contracted in these
algorithms become eventually exactly contractible, dubbed as exactly contractible
TN (ECTN). Different algorithms lead to different ECTN. That means the algorithm
will show a high performance if the TN can be accurately approximated by the
corresponding ETNC.

Figure 3.9 shows the ECTN emerging in the plaquette renormalization [75] or
higher-order TRG (HOTRG) algorithms [76]. Take the contraction of a TN (formed
by the copies of tensor 7') on square lattice as an example. In each iteration step, four
nearest-neighbor T's in a square are contracted together, which leads to a new square
TN formed by tensors (71) with larger bond dimensions. Then, isometries (yellow

R Bl
. n

Fig. 3.9 The exactly contractible TN in the HOTRG algorithm
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triangles) are inserted in the TN to truncate the bond dimensions (the truncations
are in the same spirit of those in CTMRG, see Fig.3.4). Let us not contract the
isometries with the tensors, but leave them there inside the TN. Still, we can move
on to the next iteration, where we contract four 7W’s (each of which is formed
by four 7 and the isometries, see the dark-red plaques in Fig. 3.9) and obtain more
isometries for truncating the bond dimensions of 7!, By repeating this process
for several times, one can see that tree TNs appear on the boundaries of the coarse-
grained plaques. Inside the 4-by-4 plaques (light red shadow), we have the two-layer
tree TNs formed by three isometries. In the 8-by-8 plaques, the tree TN has three
layers with seven isometries. These tree TNs separate the original TN into different
plaques, so that it can be exactly contracted, similar to the fractal TNs introduced in
Sect.2.3.6.

In the iTEBD algorithm [29-31, 47] (Fig.3.10), one starts with an initial MPS
(dark-blue squares). In each iteration, one tensor (light blue circles) in the TN
is contracted with the tensor in the MPS and then the bonds are truncated by
isometries (yellow triangles). Globally seeing, the isometries separate the TN into
many “tubes” (red shadow) that are connected only at the top. The length of the tubes
equals to the number of the iteration steps in iTEBD. Obviously, this TN is exactly
contractible. Such a tube-like structure also appears in the contraction algorithms
based on PEPS.

For the CTMRG algorithm [28], the corresponding ECTN is a little bit com-
plicated (see one quarter of it in Fig.3.11). The initial row (column) tensors and
the corner transfer matrices are represented by the pink and green squares. In each

Fig. 3.10 The exactly contractible TN in the iTEBD algorithm
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)
O

T{(}JV' T?‘_()—k}’ N

Fig. 3.11 A part of the exactly contractible TN in the CTMRG algorithm

iteration step, the tensors (light blue circles) located most outside are contracted
to the row (column) tensors and the corner transfer matrices, and isometries
are introduced to truncate the bond dimensions. Globally seeing the picture, the
isometries separate the TN into a tree-like structure (red shadow), which is exactly
contractible.

For these three algorithms, each of them gives an ECTN that is formed by two
part: the tensors in the original TN and the isometries that make the TN exactly
contractible. After optimizing the isometries, the original TN is approximated by
the ECTN. The structure of the ECTN depends mainly on the contraction strategy
and the way of optimizing the isometries depends on the chosen environment.

The ECTN picture shows us explicitly how the correlations and entanglement are
approximated in different algorithms. Roughly speaking, the correlation properties
can be read from the minimal distance of the path in the ECTN that connects
two certain sites, and the (bipartite) entanglement can be read from the number
of bonds that cross the boundary of the bipartition. How well the structure suits
the correlations and entanglement should be a key factor of the performance of a
TN contraction algorithm. Meanwhile, this picture can assist us to develop new
algorithms by designing the ECTN and taking the whole ECTN as the environment
for optimizing the isometries. These issues still need further investigations.

The unification of the TN contraction and the ECTN has been explicitly utilized
in the TN renormalization (TNR) algorithm [77, 78], where both isometries and
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unitaries (called disentangler) are put into the TN to make it exactly contractible.
Then instead of tree TNs or MPSs, one will have MERAs (see Fig.2.7c, for
example) inside which can better capture the entanglement of critical systems.

3.7 A Shot Summary

In this section, we have discussed about several contraction approaches for dealing
with 2D TNs. Applying these algorithms, many challenging problems can be
efficiently solved, including the ground-state and finite-temperature simulations of
1D quantum systems, and the simulations of 2D classical statistic models. Such
algorithms consist of two key ingredients: contractions (local operations of tensors)
and truncations. The local contraction determines the way how the TN is contracted
step by step, or in other words, how the entanglement information is kept according
to the ECTN structure. Different (local or global) contractions may lead to different
computational costs, thus optimizing the contraction sequence is necessary in many
cases [67, 79, 80]. The truncation is the approximation to discard less important
basis so that the computational costs are properly bounded. One essential concept
in the truncations is “environment,” which plays the role of the reference when
determining the weights of the basis. Thus, the choice of environment concerns
the balance between the accuracy and efficiency of a TN algorithm.
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