Chapter 2 ®
Tensor Network: Basic Definitions Chock or
and Properties

Abstract This chapter is to introduce some basic definitions and concepts of TN.
We will show that the TN can be used to represent quantum many-body states, where
we explain MPS in 1D and PEPS in 2D systems, as well as the generalizations to
thermal states and operators. The quantum entanglement properties of the TN states
including the area law of entanglement entropy will also be discussed. Finally, we
will present several special TNs that can be exactly contracted, and demonstrate the
difficulty of contracting TNs in general cases.

2.1 Scalar, Vector, Matrix, and Tensor

Generally speaking, a tensor is defined as a series of numbers labeled by N indexes,
with N called the order of the tensor.! In this context, a scalar, which is one number
and labeled by zero index, is a zeroth-order tensor. Many physical quantities are
scalars, including energy, free energy, magnetization, and so on. Graphically, we
use a dot to represent a scalar (Fig. 2.1).

A D-component vector consists of D numbers labeled by one index, and thus is
a first-order tensor. For example, one can write the state vector of a spin-1/2 in a
chosen basis (say the eigenstates of the spin operator Staly as

¥) = C110) + Call) = Y Csls), @.1)

s=0,1

with the coefficients C a two-component vector. Here, we use |0) and |1) to represent
spin up and down states. Graphically, we use a dot with one open bond to represent
a vector (Fig.2.1).

INote that in some references, N is called the tensor rank. Here, the word rank is used in another
meaning, which will be explained later.

© The Author(s) 2020 25
S.-J. Ran et al., Tensor Network Contractions, Lecture Notes in Physics 964,
https://doi.org/10.1007/978-3-030-34489-4_2


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-34489-4_2&domain=pdf
https://doi.org/10.1007/978-3-030-34489-4_2

26 2 Tensor Network: Basic Definitions and Properties

e ¢ = mamm

Fig. 2.1 From left to right, the graphic representations of a scalar, vector, matrix, and tensor

A matrix is in fact a second-order tensor. Considering two spins as an example,
the state vector can be written under an irreducible representation as a four-
dimensional vector. Instead, under the local basis of each spin, we write it as

1
[¥) = Co0l0)|0) + Co1[0)[1) + Ciol1)10) + Cia|)]1) = Y Cyvls)ls’), (2.2)

ss'=0

with Cy a matrix with two indexes. Here, one can see that the difference between a
(D x D) matrix and a D?>-component vector in our context is just the way of labeling
the tensor elements. Transferring among vector, matrix, and tensor like this will be
frequently used later. Graphically, we use a dot with two bonds to represent a matrix
and its two indexes (Fig.2.1).

It is then natural to define an N-th order tensor. Considering, e.g., N spins, the
2N coefficients can be written as an N-th order tensor C,” satisfying

1

W)=Y Cosylsi)...lsn). (2.3)

S1~-SN=0

Similarly, such a tensor can be reshaped into a 2" -component vector. Graphically,
an N-th order tensor is represented by a dot connected with N open bonds (Fig. 2.1).

In above, we use states of spin-1/2 as examples, where each index can take two
values. For a spin-S state, each index can take d = 2.5 + 1 values, with d called the
bond dimension. Besides quantum states, operators can also be written as tensors. A
spin-1/2 operator SY (@ = x, ¥, z) is a (2 x 2) matrix by fixing the basis, where we

have S;",x,mz = (sis§|S°‘ |s1s2). In the same way, an N-spin operator can be written
1°2

as a 2N-th order tensor, with N bra and N ket indexes.>

We would like to stress some conventions about the “indexes” of a tensor
(including matrix) and those of an operator. A tensor is just a group of numbers,
where their indexes are defined as the labels labeling the elements. Here, we always
put all indexes as the lower symbols, and the upper “indexes” of a tensor (if exist)
are just a part of the symbol to distinguish different tensors. For an operator which
is defined in a Hilbert space, it is represented by a hatted letter, and there will be

21f there is no confuse, we use the symbol without all its indexes to refer to a tensor for conciseness,
e.g., use C to represent Cy, g -

3Note that here, we do not distinguish bra and ket indexes deliberately in a tensor, if not necessary.
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Fig. 2.2 The graphic representation of the Schmidt decomposition (singular value decomposition
of a matrix). The positive-defined diagonal matrix A, which gives the entanglement spectrum
(Schmidt numbers), is defined on a virtual bond (dumb index) generated by the decomposition

o “true” indexes, meaning that both upper and lower “indexes” are just parts of the
symbol to distinguish different operators.

2.2 Tensor Network and Tensor Network States

2.2.1 A Simple Example of Two Spins and Schmidt
Decomposition

After introducing tensor (and its diagram representation), now we are going to talk
about TN, which is defined as the contraction of many tensors. Let us start with
the simplest situation, two spins, and consider to study the quantum entanglement
properties for instance. Quantum entanglement, mostly simplified as entanglement,
can be defined by the Schmidt decomposition [1-3] of the state (Fig.2.2) as

) = Z Cyy'l5)]s") Z ZUWWV;;/|s>|s/>, (2.4)

ss'=0 ss'=0a=1

where U and V are unitary matrices, A is a positive-defined diagonal matrix in
descending order,* and x is called the Schmidt rank. X is called the Schmidt
coefficients since in the new basis after the decomposition the state is written in
a summation of x product states as |1/f = Y 4 ralt)alv)a, with the new basis
Iua—z Usals) and|va—z sa

Graphically, we have a small TN, where we use green squares to represent the
unitary matrices U and V, and a red diamond to represent the diagonal matrix A.
There are two bonds in the graph shared by two objects, standing for the summations
(contractions) of the two indexes in Eq. (2.4), a and @’. Unlike s (or s”), the space of
the index a (or @) is not from any physical Hilbert space. To distinguish these two
kinds, we call the indexes like s the physical indexes and those like a the geometrical
or virtual indexes. Meanwhile, since each physical index is only connected to one
tensor, it is also called an open bond.

4Sometime, X is treated directly as a x-component vector.
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Some simple observations can be made from the Schmidt decomposition.
Generally speaking, the index a (also @’ since A is diagonal) contracted in a TN carry
the quantum entanglement [4]. In quantum information sciences, entanglement is
regarded as a quantum version of correlation [4], which is crucially important to
understand the physical implications of TN. One usually uses the entanglement
entropy to measure the strength of the entanglement, which is defined as § =
—23°%_ | A21nA,. Since the state should be normalized, we have }"*_, 12 = 1. For
dim(a) = 1, obviously |¢) = Aq|u)1|v)1 is a product state with zero entanglement
S = 0 between the two spins. For dim(a) = y, the entanglement entropy S < In x,
where § takes its maximum if and only if Ay = --- = A,. In other words, the
dimension of a geometrical index determines the upper bound of the entanglement.

Instead of Schmidt decomposition, it is more convenient to use another language
to present later the algorithms: singular value decomposition (SVD), a matrix
decomposition in linear algebra. The Schmidt decomposition of a state is the SVD
of the coefficient matrix C, where A is called the singular value spectrum and its
dimension yx is called the rank of the matrix. In linear algebra, SVD gives the
optimal lower-rank approximations of a matrix, which is more useful to the TN
algorithms. Specifically speaking, with a given matrix C of rank-y, the task is to
find a rank- ¥ matrix C’ (¥ < x) that minimizes the norm

2
P=M-M|= > (My - M) (2.5)
AN
The optimal solution is given by the SVD as
x'—1
My =" UshradVy, (2.6)
a=0

In other words, M’ is the optimal rank- " approximation of M, and the error is given
by

2.7

which will be called the truncation error in the TN algorithms.

2.2.2 Matrix Product State

Now we take a N-spin state as an example to explain the MPS, a simple but powerful
1D TN state. In an MPS, the coefficients are written as a TN given by the contraction
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Fig. 2.3 An impractical way to obtain an MPS from a many-body wave-function is to repetitively
use the SVD

of N tensors. Schollwdck in his review [S] provides a straightforward way to obtain
such a TN is by repetitively using SVD or QR decomposition (Fig. 2.3). First, we
group the first N — 1 indexes together as one large index, and write the coefficients as
a 2¥=1 x 2 matrix. Then implement SVD or any other decomposition (for example,
QR decomposition) as the contraction of C IN=11and A[N]

N—-1 N
Cwsl'“SNflsN = Z C£1‘~~S1\},1,aN,1A£N}aN,1' (28)

aN-—1

Note that as a convention in this paper, we always put the physical indexes in front
of geometrical indexes and use a comma to separate them. For the tensor C!V =1,
one can do the similar thing by grouping the first N — 2 indexes and decompose
again as

Cyyoosy sy = Z CIN-2] AN-1 2.9

1""SN-2,AN-2""SN—1,AN-2aN—1"
aN-2

Then the total coefficients become the contraction of three tensors as

Coposyrsy =, CIV2 AN AlV] (2.10)

“SN-2,AN—-2" "SN—1,AN—-2AdN—1""SN,AN—-1"
aN—-2aN -1

Repeat decomposing in the above way until each tensor only contains one physical
index, we have the MPS representation of the state as

Coposyisy = ALl ARl ANl AN (2.11)

S1,a1° 782,414z SN—1,AN—2aN—1" "SN,AN—-1"
ap-+aN-1

One can see that an MPS is a TN formed by the contraction of N tensors.
Graphically, MPS is represented by a 1D graph with N open bonds. In fact, an
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Fig. 2.4 The graphic representations of the matrix product states with open (left) and periodic
(right) boundary conditions

MPS given by Eq.(2.11) has open boundary condition, and can be generalized to
periodic boundary condition (Fig. 2.4) as

AWV (2.12)

A A[N 1]
SN-1SN S, aNal Sz alaz SN—1,AN-2aN—1""SN,AN—1aN’

Csy-.

where all tensors are third-order. Moreover, one can introduce translational invari-
ance to the MPS, ie., A"l = Aforn =1,2,---, N. We use X, dubbed as virtual
bond dimension of the MPS, to represent the dimension of each geometrical index.

MPS is an efficient representation of a many-body quantum state. For a N-spin
state, the number of the coefficients is 2" which increases exponentially with N. For
an MPS given by Eq. (2.12), it is easy to count that the total number of the elements
of all tensors is Nd x> which increases only linearly with N. The above way of
obtaining MPS with decompositions is also known as tensor train decomposition
(TTD) in MLA, and MPS is also called tensor-train form [6]. The main aim of TTD
is investigating the algorithms to obtain the optimal tensor-train form of a given
tensor, so that the number of parameters can be reduced with well-controlled errors.

In physics, the above procedure shows that any states can be written in an MPS,
as long as we do not limit the dimensions of the geometrical indexes. However, it
is extremely impractical and inefficient, since in principle, the dimensions of the
geometrical indexes {a} increase exponentially with N. In the following sections,
we will directly applying the mathematic form of the MPS without considering the
above procedure.

Now we introduce a simplified notation of MPS that has been widely used in
the community of physics. In fact with fixed physical indexes, the contractions of
geometrical indexes are just the inner products of matrices (this is how its name
comes from). In this sense, we write a quantum state given by Eq. (2.11) as

N
W) = tTrAMART AW 5155 sy = 1 Tr TT AP |sa). (2.13)

n=1

tTr stands for summing over all shared indexes. The advantage of Eq. (2.13) is to
give a general formula for an MPS of either finite or infinite size, with either periodic
or open boundary condition.
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2.2.3 Affleck—Kennedy-Lieb-Tasaki State

MPS is not just a mathematic form. It can represent non-trivial physical states.
One important example can be found with AKLT model proposed in 1987, a
generalization of spin-1 Heisenberg model [7]. For 1D systems, Mermin—Wagner
theorem forbids any spontaneously breaking of continuous symmetries at finite
temperature with sufficiently short-range interactions. For the ground state of AKLT
model called AKLT state, it possesses the sparse anti-ferromagnetic order (Fig.2.5),
which provides a non-zero excitation gap under the framework of Mermin—Wagner
theorem. Moreover, AKTL state provides us a precious exactly solvable example to
understand edge states and (symmetry-protected) topological orders.

AKLT state can be exactly written in an MPS with y = 2 (see [8] for example).
Without losing generality, we assume periodic boundary condition. Let us begin
with the AKLT Hamiltonian that can be given by spin-1 operators as

. 1, 4 I A A 1
H= Z |:5S" “Spy1 + E(Sn Su)’ + §:| : 2.14)

n

By introducing the non-negative-defined projector Py(S, + §n+1) that projects the
neighboring spins to the subspace of S = 2, Eq.(2.14) can be rewritten in the
summation of projectors as

H=73 P+ (2.15)
n

Thus, the AKLT Hamiltonian is non-negative-defined, and its ground state lies in its
kernel space, satisfying H [YaxrT) = 0 with a zero energy.

Now we construct a wave-function which has a zero energy. As shown in Fig. 2.6,
we put on each site a projector that maps two (effective) spins-1/2 to a triplet, i.e.,

..Toio ‘T.L To.oiu
Fig. 2.5 One possible configuration of the sparse anti-ferromagnetic ordered state. A dot repre-

sents the S = 0 state. Without looking at all the S = O states, the spins are arranged in the
anti-ferromagnetic way

Fig. 2.6 An intuitive graphic representation of the AKLT state. The big circles representing S = 1
spins, and the small ones are effective § = % spins. Each pair of spin-1/2 connecting by a red bond
forms a singlet state. The two “free” spin-1/2 on the boundary give the edge state
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the physical spin-1, where the transformation of the basis obeys

[+) = |00) (2.16)
~ 1

0) = — (|01 10Y), 2.17
|0) ﬁ(l ) +110)) (2.17)
|—) = |11). (2.18)

The corresponding projector is determined by the Clebsch—Gordan coefficients [9],
and is a (3 x 4) matrix. Here, we rewrite it as a (3 x 2 x 2) tensor, whose three
components (regarding to the first index) are the ascending, z-component, and
descending Pauli matrices of spin-1/2,

0 1 1 0 _ 0 0
+ z
= , = , = . 2.19
7 [o o} 7 [0—1] [1 o} @19
In the language of MPS, we have the tensor A satisfying

Ag,aa’ = O—(;;/a Alaa = U;a/v Az ua = Ua_a" (2.20)

Then we put another projector to map two spin-1/2 to a singlet, i.e., a spin-0 with

— 1
0) = —(|01) — [10)). (2.21)
0) 7 |01) — [10)
The projector is in fact a (2 x 2) identity with the choice of Eq. (2.19)
1 0
1= . 2.22
o Y] e2)

Now, the MPS of the AKLT state with periodic boundary condition (up to a
normalization factor) is obtained by Eq.(2.12), with every tensor A given by
Eq. (2.20). For such an MPS, every projector operator ﬁz(S‘n + 3‘,,+1) in the AKLT
Hamiltonian is always acted on a singlet, then we have H ['Yakrr) =0.

2.2.4 Tree Tensor Network State (TTNS) and Projected
Entangled Pair State (PEPS)

TTNS is a generalization of the MPS that can code more general entanglement
states. Unlike an MPS where the tensors are aligned in a 1D array, a TTNS is given

SHere, one has some degrees of freedom to choose different projectors, which is only up to a gauge
transformation. But once one projector is fixed, the other is also fixed.
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Fig. 2.7 The illustration of (a) and (b) two different TTNSs and (c) MERA

by a tree graph. Figure 2.7a, b shows two examples of TTNS with the coordination
number z = 3. The red bonds are the physical indexes and the black bonds are the
geometrical indexes connecting two adjacent tensors. The physical ones may locate
on each tensor or put on the boundary of the tree. A tree is a graph that has no
loops, which leads to many simple mathematical properties that parallel to those of
an MPS. For example, the partition function of a TTNS can be efficiently exactly
computed. A similar but more power TN state called MERA also has such a property
(Fig.2.7¢c). We will get back to this in Sect. 2.3.6. Note an MPS can be treated as a
tree with z = 2.

An important generalization to the TNs of loopy structures is known as projected
entangled pair state (PEPS), proposed by Verstraete and Cirac [10, 11]. The tensors
of a PEPS are located in, instead of a 1D chain or a tree graph, a d-dimensional
lattice, thus graphically forming a d-dimensional TN. An intuitive picture of PEPS
is given in Fig.2.8, i.e., the tensors can be understood as projectors that map the
physical spins into virtual ones. The virtual spins form the maximally entangled
state in a way determined by the geometry of the TN. Note that such an intuitive
picture was firstly proposed with PEPS [10], but it also applies to TTNS.

Similar to MPS, a TTNS or PEPS can be formally written as

@) = tTrl_[ Plligy, (2.23)
n

where tTr means to sum over all geometrical indexes. Usually, we do not write
the formula of a TTNS or PEPS, but give the graph instead to clearly show the
contraction relations.

Such a generalization makes a lot of senses in physics. One key factor regards
the area law of entanglement entropy [12—17] which we will talk about later in this
chapter. In the following as two straightforward examples, we show that PEPS can
indeed represents non-trivial physical states including nearest-neighbor resonating
valence bond (RVB) and Z, spin liquid states. Note these two types of states on
trees can be similarly defined by the corresponding TTNS.
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(a) (b)
©PO®
©OO@

Fig. 2.8 (a) An intuitive picture of the projected entangled pair state. The physical spins (big
circles) are projected to the virtual ones (small circles), which form the maximally entangled states
(red bonds). (b)—(d) Three kinds of frequently used PEPSs

2.2.5 PEPS Can Represent Non-trivial Many-Body States:
Examples

RVB state was firstly proposed by Anderson to explain the possible disordered
ground state of the Heisenberg model on triangular lattice [18, 19]. RVB state
is defined as the superposition of macroscopic configurations where all spins are
paired to form the singlet states (dimers). The strong fluctuations are expected to
restore all symmetries and lead to a spin liquid state without any local orders. The
distance between two spins in a dimer can be short range or long range. For nearest-
neighbor RVB, the dimers are only the nearest neighbors (Fig. 2.9, also see [20]).
RVB state is supposed to relate to high-7, copper-oxide-based superconductor.
By doping the singlet pairs, the insulating RVB state can translate to a charged
superconductive state [21-23].

For the nearest-neighbor situation, an RVB state (defined on an infinite square
lattice, for example) can be exactly written in a PEPS of xy = 3. Without losing
generality, we take the translational invariance, i.e., the TN is formed by infinite
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Fig. 2.9 The nearest-neighbor RVB state is the superposition of all possible configurations of
nearest-neighbor singlets

/
/

copies of several inequivalent tensors. Two different ways have been proposed
to construct the nearest-neighbor RVB PEPS [24, 25]. In addition, Wang et al.
proposed a way to construct the PEPS with long-range dimers [26]. In the following,
we explain the way proposed by Verstraete et al. to construct the nearest-neighbor
one [24]. There are two inequivalent tensors: the tensor defined on each site whose
dimensions are (2 x 3 x 3 x 3 x 3) only has eight non-zero elements,

Po,0222 = Po,2022 = Po,22020 = Poooo0 =1 (2.24)
P 1222 = P1p122 = P12212 = Prooo1 =1 (2.25)

The two-dimensional index of P is a physical index with s = 0 representing spin
up and s = 1 spin down. The extra dimension for each of the other four geometrical
indexes is used for carrying the vacuum state. The tensor P is acting as projector
that maps the occupied geometrical index (either up or down) to a physical spin.
For example, P; 2122 means to map a virtual spin up which occupies the second
geometrical index to a real spin up. The rest elements are all zero, which means the
corresponding projections are forbidden.

Then a projector B is introduced for building spin singlets between two nearest-
neighbor sites connected by a shared geometrical bond in the RVB structure. B is a
(3 x 3) matrix with only three non-zero elements

Bor =1,Big=—1, By =1. (2.26)

Matrix B plays as a router, which only lets the singlet state defined as [10) — |10)
and vacuum state go through the path.

Then the infinite PEPS (iPEPS) of the nearest-neighbor RVB is given by the
contraction of infinite copies of P’s on the sites and B’s (Fig. 2.8) on the bonds as

|W)=Z 1_[ Ps,l,a,{a,zla;?a,‘l‘ 1_[ Ba}na}n l_[ |Sj>- (227)

{s,a} nesites mebonds jesites

After the contraction of all geometrical indexes, the state is the superposition of
all possible configurations consisting of nearest-neighbor dimers. This iPEPS looks
different from the one given in Eq. (2.23) but they are essentially the same, because
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one can contract the B’s into P’s so that the PEPS is only formed by tensors defined
on the sites.

Another example is the Z, spin liquid state, which is one of simplest string-net
states [27-29], firstly proposed by Levin and Wen to characterize gapped topological
orders [30]. Similarly with the picture of strings, the Z; state is the superposition of
all configurations of string loops. Writing such a state with TN, the tensor on each
vertex is (2 x 2 x 2 x 2) satisfying

1, ai+---+ay = even,

2.28
0, otherwise. ( )

The tensor P forces the fusion rules of the strings: the number of the strings
connecting to a vertex must be even, so that there are no loose ends and all strings
have to form loops. It is also called in some literatures the ice rule [31, 32] or Gauss’
law [33]. In addition, the square TN formed solely by the tensor P gives the famous
eight-vertex model, where the number “eight” corresponds to the eight non-zero
elements (i.e., allowed sting configurations) on a vertex [34].

The tensors B are defined on each bond to project the strings to spins, whose
non-zero elements are

Booo =1, By =1 (2.29)

The tensor B is a projector that maps the spin-up (spin-down) state to the occupied
(vacuum) state of a string.

2.2.6 Tensor Network Operators

The MPS or PEPS can be readily generalized from representations of states to those
of operators called MPO [35-42] or projected entangled pair operator (PEPO)® [43—
52]. Let us begin with MPO, which is also formed by the contraction of local tensors
as (Fig.2.10)

0=3 Wv[,ﬂ;,a,,anﬂ I5) (53 (2.30)

{s,a} n

Different from MPS, each tensor has two physical indexes, of which one is a
bra and the other is a ket index (Fig.2.11). An MPO may represent several non-
trivial physical models, for example, the Hamiltonian. Crosswhite and Bacon [53]
proposed a general way of constructing an MPO called automata. Now we show
how to construct the MPO of an Hamiltonian using the properties of a triangular

5Generally, a representation of an operator with a TN can be called tensor product operator (TPO).
MPO and PEPO are two examples.
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|ket>

Fig. 2.10 The graphic representation of a matrix product operator, where the upward and
downward indexes represent the bra and ket space, respectively

Fig. 2.11 The graphic representation of a projected entangled pair operator, where the upward and
downward indexes represent the bra and ket space, respectively

MPO. Let us start from a general lower-triangular MPO satisfying W:[:"(])O = ¢l
W:[:"(])1 = B and W:Enlll = Al with A" B and €™ some d x d square
matrices. We can write Wl in a more explicit 2 x 2 block-wise form as

cinl o
[n] _
Wil — (BP“ A[”]>' 2.31)

If one puts such a Wl in Eq. (2.30), it will give the summation of all terms in the
form of

N
0 = ZAII] ®,_,®A[ﬂ*1] ®B["] ®C[n+1] ®---®C[N]
n=1

—

n— N
[[A"eB™e [] cYl (2.32)
1 ®i=1 ®j=n+1

I
M=

n
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with N the total number of tensors and [ [, the tensor product.’” Such a property can
be easily generalized to a W formed by D x D blocks.

Imposing Eq. (2.32), we can construct as an example the summation of one-site
local terms, i.e., ), X1 8 with

W[n]:( I 0>, (2.33)

with X" a d x d matrix and I the d x d identity.
If two-body terms are included, such as y_,, X" + 3" y"zIn+1l we have

I 00
whl = | zn o o]. (2.34)
xlnl ylnl

This can be obviously generalized to L-body terms. With open boundary conditions,
the left and right tensors are

will=(100), (2.35)
0

wiNl = 10]. (2.36)
I

Now we apply the above technique on a Hamiltonian of, e.g., the Ising model in
a transverse field

H=Y 88  +hy 8. (2.37)
n m
Its MPO is given by
I 00
with=|{ 8§ 0o0]. (2.38)
h8* 8¢ 1

TForn = 0, Al (or BIO, Cl91) does not exist but can be defined as a scalar 1, for simplicity of the
formula.

8Note that X["1] and X["2] are not defined in a same space with n; # ny, Thus, precisely speaking,
> here is the direct sum. We will not specify this when it causes no confuse.
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Such a way of constructing an MPO is very useful. Another example is the
Fourier transformatlon to the number operator of Hubbard model in momentum
space Ay = b bk The Fourier transformation is written as

N
> kbl b, (2.39)
m,n=1

with l;n (I;Z) the annihilation (creation) operator on the n-th site. The MPO
representation of such a Fourier transformation is given by

I 0 0 0

. bt ekf 0 0
W, =1 " e 2.40
" b 0 efo (2:40)

b'h etk bt e=ikp [

with 7 the identical operator in the corresponding Hilbert space.

The MPO formulation also allows for a convenient and efficient representation
of the Hamiltonians with longer range interactions [54]. The geometrical bond
dimensions will in principle increase with the interaction length. Surprisingly,
a small dimension is needed to approximate the Hamiltonian with long-range
interactions that decay polynomially [46].

Besides, MPO can be used to represent the time evolution operator U(t) =e ™1
with Trotter—Suzuki decomposition, where t is a small positive number called
Trotter—Suzuki step [55, 56]. Such an MPO is very useful in calculating real,
imaginary, or even complex time evolutions, which we will present later in detail.
An MPO can also give a mixed state.

Similarly, PEPS can also be generalized to projected entangled pair operator
(PEPO, Fig.2.11), which on a square lattice, for instance, can be written as

0 Z 1_[ s[ns] ,alala} a4|5n)< /l (2.41)

{s,a} n

Each tensor has two physical indexes (bra and ket) and four geometrical indexes.
Each geometrical bond is shared by two adjacent tensors and will be contracted.

2.2.7 Tensor Network for Quantum Circuits

A special case of TN are quantum circuits [57]. Quantum circuits encode com-
putations made on qubits (or qudits in general). Figure 2.12 demonstrates the TN
representation of a quantum circuit made by unitary gates that act on a product state
of many constituents initialized as ﬂ® |0).



40 2 Tensor Network: Basic Definitions and Properties

0) . :
0) o _u
0)
0)

[¥)

Us U

Fig. 2.12 The TN representation of a quantum circuit. Two-body unitaries act on a product state
of a given number of constituents |0) ® - - - ® |0) and transform it into a target entangled state |/)
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Fig. 2.13 (a) The past casual cone of the red site. The unitary gate Us does not affect the reduced
density matrix of the red site. This is verified by computing explicitly p4 by tracing over all the
others constituents. (b) In the TN of p4, Us is contracted with UST , which gives an identity

An Example of Quantum Circuits In order to make contact with TN, we will
consider the specific case of quantum circuits where all the gates act on at most
two neighbors. An example of such circuit is the Trotterized evolution of a system
described by a nearest-neighbor Hamiltonian A= Zi’i 11 h i.i+1, where i, i41 label
the neighboring constituents of a one-dimensional system. The evolution operator
for a time ¢ is U(1) = exp(—i Hr), and can be decomposed into a sequence of
infinitesimal time evolution steps [58] (more details will be given in Sect. 3.1.3)

N
N t oA
U(t) = i —i—H| . 242
) NgnooeXP< iy ) (2.42)
In the limit, we can decompose the evolution into a product of two-body evolution

Ut) = li U(t); i1, 2.43
(t) ff})il,-l (Oiit1 (2.43)

where U,-,,'H(r) = exp(—itfzi,,-ﬂ) and T = t/N. This is obviously a quantum
circuit made by two-qubit gates with depth N. Conversely, any quantum circuit
naturally possesses an arrow of time, it transforms a product state into an entangled
state after a sequence of two-body gates.

Casual Cone One interesting concept in a quantum circuit is that of the causal cone
illustrated in Fig. 2.13, which becomes explicit with the TN representations. Given
a quantum circuit that prepares (i.e., evolves the initial state to) the state |y), we
can ask a question: which subset of the gates affect the reduced density matrix of a
certain subregion A of |¢)? This can be seen by constructing the reduced density
matrix of the subregion A po = trz|¥)(¥| with A the rest part of the system
besides A.
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The TN of the reduced density matrix is formed by a set of unitaries that define
the past causal cone of the region A (see the area between the green lines in
Fig. 2.13). The rest unitaries (for instance, the Us and its conjugate in the right sub-
figure of Fig. 2.13) will be eliminated in the TN of the reduced density matrix. The
contraction of the causal cone can thus be rephrased in terms of the multiplication
of a set of transfer matrices, each performing the computation from 7 to  — 1. The
maximal width of these transfer matrices defines the width of the causal cone, which
can be used as a good measure of the complexity of computing p4 [59]. The best
computational strategy one can find to compute exactly p4 will indeed always scale
exponentially with the width of the cone [57].

Unitary Tensor Networks and Quantum Circuits The simplest TN, the MP can
be interpreted as a sequential quantum circuit [60]. The idea is that one can think
of the MPS as a sequential interaction between each constituent (a d-level system)
an ancillary D-level system (the auxiliary gDit, red bonds). The first constituent
interacts (say the bottom one shown in Fig.2.14) and then sequentially all the
constituents interact with the same D-level system. With this choice, the past causal
cone of a constituent is made by all the MPS matrices below it. Interestingly in
the MPS case, the causal cone can be changed using the gauge transformations
(see Sect.2.4.2), something very different to what happens in two-dimensional
TNs. This amounts to finding appropriate unitary transformations acting on the
auxiliary degrees of freedom that allow to reorder the interactions between the
D-level system and the constituents. In such a way, a desired constituent can be
made to interact first, then followed by the others. An example of the causal cone
in the center gauge used in iDMRG calculation [61] is presented in Fig.2.15.
This idea allows to minimize the number of tensors in the causal cone of a given
region. However, the scaling of the computational cost of the contraction is not
affected by such a temporal reordering of the TN, since in this case the width of the
cone is bounded by one unitary in any gauge. The gauge choice just changes the
number of computational steps required to construct the desired p4. In the case that
A includes non-consecutive constituents, the width of the cone increases linearly

‘ ‘ |0) I‘r\0>
|0) |0)

- |0) Lr|0>

= |0) |0)
|| o) 0)

‘ ‘ |0) IL|0>

Fig. 2.14 The MPS as a quantum circuit. Time flows from right to left so that the lowest
constituent is the first to interact with the auxiliary D-level system. Here we show the past causal
cone of a single constituent. Similarly, the past causal cone of A made by adjacent constituent has
the same form starting from the upper boundary of A
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Fig. 2.15 Using the gauge degrees of freedom of an MPS, we can modify its past causal cone
structure to make its region as small as possible, in such a way decreasing the computational
complexity of the actual computation of specific p4. A convenient choice is the center gauge used
in iDMRG

Fig. 2.16 The width of the causal cone increases as we increase the depth of the quantum circuit
generating the MPS state

with the number of constituents, and the complexity of computing p4 increases
exponentially with the number of constituents.

Again, the gauge degrees of freedom can be used to modify the structure of
the past causal cone of a certain spin. As an example, the iDMRG center gauge
is represented in Fig. 2.15.

An example of a TN with a larger past causal cone can be obtained by using more
than one layers of interactions. Now the support of the causal cone becomes larger
since it includes transfer matrices acting on two D-level systems (red bonds shown
in Fig. 2.16). Notice that this TN has loops but it still exactly contractible since the
width of the causal cone is still finite.

2.3 Tensor Networks that Can Be Contracted Exactly

2.3.1 Definition of Exactly Contractible Tensor Network States

The notion of the past causal cone can be used to classify TNSs based on the
complexity of computing their contractions. It is important to remember that the
complexity strongly depends on the object that we want to compute, not just the
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TN. For example, the complexity of an MPS for a N-qubit state scales only linearly
with N. However, to compute the n-site reduced density matrix, the cost scales
exponentially with n since the matrix itself is an exponentially large object. Here
we consider to compute scalar quantities, such as the observables of one- and two-
site operators.

We define the a TNS to be exactly contractible when it is allowed to compute
their contractions with a cost that is a polynomial to the elementary tensor
dimensions D. A more rigorous definition can be given in terms of their tree width
see, e.g., [57]. From the discussion of the previous section, it is clear that such
a TNS corresponds to a bounded causal cone for the reduced density matrix of
a local subregion. In order to show this, we now focus on the cost of computing
the expectation value of local operators and their correlation functions on a few
examples of TNSs.

The relevant objects are thus the reduced density matrix of a region A made of
a few consecutive spins, and the reduced density matrix of two disjoint blocks A
and A, of which each made of a few consecutive spins. Once we have the reduced
density matrices of such regions, we can compute arbitrary expectation values of
local operators by (&) =tr(pa0) and (ﬁAlﬁ;h) = IV(;OAIUAZﬁAlﬁAZ) with Oy,
™ ﬁ’gz arbitrary operators defined on the regions A, Ay, Aj.

2.3.2 MPS Wave-Functions

The simplest example of the computation of the expectation value of a local operator
is obtained by considering MPS wave-functions [8, 62]. Figure 2.17 shows an MPS
in the left-canonical form (see Sect.5.1.3 for more details). Rather than putting
the arrows of time, here we put the direction in which the tensors in the TN are
isometric. In other words, an identity is obtained by contracting the inward bonds
of a tensor in |¢) with the outward bonds of its conjugate in (| (Fig.2.18). Note
that |v) and (| have opposite arrows, by definition. These arrows are directly on
the legs of the tensors. The arrows in [y) are in the opposite direction than the time,
by comparing Fig.2.14 with Fig.2.18. The two figures indeed represent the MPS
in the same gauge. This means that the causal cone of an observable is on the right
of that observable, as shown on the second line of Fig.2.18, where all the tensors
on the left side are annihilated as a consequence of the isometric constraints. We

Fig. 2.17 The MPS wave-function representation in left-canonical form
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Fig. 2.18 The expectation value of a single-site operator with an MPS wave-function

</l/)|0ror’ ‘l/)> = =

—— —+— ——

Fig. 2.19 Two-point correlation function of an MPS wave-function

immediately have that the causal cone has at most the width of two. The contraction
becomes a power of the transfer operator of the MPS E =), Al ® A'T, where A;
and A'" represent the MPS tensors and its complex conjugate. The MPS transfer
matrix E only acts on two auxiliary degrees of freedom. Using the property that E
is a completely positive map and thus has a fixed point [8], we can substitute the
transfer operator by its largest eigenvector v, leading to the final TN diagram that
encodes the expectation value of a local operator.

In Fig. 2.19, we show the TN representation of the expectation value of the two-
point correlation functions. Obviously, the past causal cone width is bounded by
two auxiliary sites. Note that in the second line, the directions of the arrows on the
right side are changed. This in general does not happen in more complicated TNs as
we will see in the next subsection. Before going there, we would like to comment
the properties of the two-point correlation functions of MPS. From the calculation
we have just performed, we see that they are encoded in powers of the transfer
matrix that evolve the system in the real space. If that matrix can be diagonalized,
we can immediately see that the correlation functions naturally decay exponentially
with the ratio of the first to the second eigenvalue. Related details can be found in
Sect.5.4.2.
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2.3.3 Tree Tensor Network Wave-Functions

An alternative kind of wave-functions are the TTNSs [63-69]. In a TTNS, one can
add the physical bond on each of the tensor, and use it as a many-body state defined
on a Caley-tree lattice [63]. Here, we will focus on the TTNS with physical bonds
only on the outer leafs of the tree.

The calculations with a TTNS normally correspond to the contraction of tree
TNs. A specific case of a two-to-one TTNS is illustrated in Fig. 2.20, named binary
Caley tree. This TN can be interpreted as a quantum state of multiple spins with
different boundary conditions. It can also be considered as a hierarchical TN, in
which each layer corresponds to a different level of coarse-graining renormalization
group (RG) transformation [64]. In the figure, different layers are colored differ-
ently. In the first layer, each tensor groups two spins into one and so on. The tree TN
can thus be interpreted a specific RG transformation. Once more, the arrows on the
tensors indicate the isometric property of each individual tensor that the directions
are opposite as the time, if we interpret the tree TN as a quantum circuit. Note again
that |v) and (1| have opposite arrows, by definition.

The expectation value of a one-site operator is in fact a tree TN shown in
Fig.2.21. We see that many of the tensors are completely contracted with their
Hermitian conjugates, which simply give identities. What are left is again a bounded
causal cone. If we now build an infinite TTNS made by infinitely many layers, and
assume the scale invariance, the multiplication of infinitely many power of the scale

Fig. 2.20 A binary TTNS made of several layers of third-order tensors. Different layers are
identified with different colors. The arrows flow in the opposite direction of the time while being
interpreted as a quantum circuit
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Fig. 2.21 The expectation value of a local operator of a TTNS. We see that after applying the
isometric properties of the tensors, the past causal cone of a single site has a bounded width. The
calculation again boils down to a calculation of transfer matrices. This time the transfer matrices
evolve between different layers of the tree

Fig. 2.22 The computation of the correlation function of two operators separated by a given
distance boils down to the computation of a certain power of transfer matrices. The computation
of the casual cone can be simplified in a sequential way, as depicted in the last two sub-figures

transfer matrix can be substituted with the corresponding fixed point, leading to a
very simple expression for the TN that encodes the expectation value of a single-site
operator.

Similarly, if we compute the correlation function of local operators at a given
distance, as shown in Fig. 2.22, we can once more get rid of the tensors outside the
casual cone. Rigorously we see that the causal cone width now increases to four
sites, since it consists of two different two-site branches. However, if we order the
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contraction as shown in the middle, we see that the contractions boil down again to a
two-site causal cone. Interestingly, since the computation of two-point correlations
at very large distance involves the power of transfer matrices that translate in scale
rather than in space, one would expect that these matrices are all the same (as a
consequence of scale-invariance, for example). Thus, we would get polynomially
decaying correlations [70].

2.3.4 MERA Wave-Functions

Until now, we have discussed with the TNs that, even if they can be embedded in
a 2D space, they contain no loops. In the context of network complexity theory,
they are called mean-field networks [71]. However, there are also TNs with loops
that are exactly contractible [57]. A particular case is that of a 1D MERA (and
its generalizations) [72-76]. The MERA is again a TN that can be embedded in
a 2D plane, and that is full of loops as seen in Fig.2.23. This TN has a very
peculiar structure, again, inspired from RG transformation [77]. MERA can also be
interpreted as a quantum circuit where the time evolves radially along the network,
once more opposite to the arrows that indicate the direction along which the tensors
are unitary. The MERA is a layered TN, with where layer (in different colors in
the figure) is composed by the appropriate contraction of some third-order tensors
(isometries) and some fourth-order tensors (disentangler). The concrete form of the

Fig. 2.23 The TN of MERA. The MERA has a hierarchical structure consisting of several layers
of disentanglers and isometries. The computational time flows from the center towards the edge
radially, when considering MERA as a quantum circuit. The unitary and isometric tensors and the
network geometry are chosen in order to guarantee that the width of the causal cone is bounded
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Fig. 2.25 Two-point correlation function in the MERA

network is not really important [76]. In this specific case we are plotting a two-to-
one MERA that was discussed in the original version of Ref. [75]. Interestingly, an
operator defined on at most two sites gives a bounded past causal cone as shown in
Figs.2.24 and 2.25.

As in the case of the TTNS, we can indeed perform the explicit calculation of
the past causal cone of a single-site operator (Fig.2.24). There we show the TN
contraction of the required expectation value, and then simplify it by taking into
account the contractions of the unitary and isometric tensors outside the casual cone
with a bounded width involving at most four auxiliary constituents.

The calculation of a two-point correlation function of local operators follows a
similar idea and leads to the contraction shown in Fig. 2.25. Once more, we see that
the computation of the two-point correlation function can be done exactly due to the
bounded width of the corresponding casual cone.

2.3.5 Sequentially Generated PEPS Wave-Functions

The MERA and TTNS can be generalized to two-dimensional lattices [64, 74]. The
generalization of MPS to 2D, on the other hand, gives rise to PEPS. In general, it
belongs to the 2D TN that cannot be exactly contracted [24, 78].
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Fig. 2.26 (a) A sequentially generated PEPS. All tensors but the central one (green in the figure)
are isometries, from the in-going bonds (marked with ingoing arrows) to the outgoing ones. The
central tensor represents a normalized vector on the Hilbert space constructed by the physical
Hilbert space and the four copies of auxiliary spaces, one for each of its legs. (b) The norm of such
PEPS, after implementing the isometric constraints, boils down to the norm of its central tensor

However for a subclass of PEPS, one can implement the contract exactly, which
is called sequentially generated PEPS [79]. Differently from the MERA where the
computation of the expectation value of any sufficiently local operator leads to a
bounded causal cone, sequentially generated PEPS has a central site, and the local
observables around the central site can be computed easily. However, the local
observables in other regions of the TN give larger causal cones. For example, we
represent in Fig. 2.26a sequentially generated PEPS for a 3 x 3 lattice. The norm
of the state is computed in (b), where the TN boils down to the norm of the central
tensor. Some of the reduced density matrices of the system are also easy to compute,
in particular those of the central site and its neighbors (Fig.2.27a). Other reduced
density matrices, such as those of spins close to the corners, are much harder to
compute. As illustrated in Fig.2.27b, the causal cone of a corner site in a 3 x 3
PEPS has a width 2. In general for an L x L PEPS, the casual cone would have a
width L /2.

Differently from MPS, the causal cone of a PEPS cannot be transformed by
performing a gauge transformation. However, as firstly observed by F. Cucchietti
(private communication), one can try to approximate a PEPS of a given causal cone
with another one of a different causal cone, by, for example, moving the center
site. This is not an exact operation, and the approximations involved in such a
transformation need to be addressed numerically. The systematic study of the effect
of these approximations has been studied recently in [80, 81]. In general, we have
to say that the contraction of a PEPS wave-function can only be performed exactly
with exponential resources. Therefore, efficient approximate contraction schemes
are necessary to deal with PEPS.
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(a)

Fig. 2.27 (a) The reduced density matrices of a PEPS that is sequentially generated containing
two consecutive spins (one of them is the central spin. (b) The reduced density matrix of a local
region far from the central site is generally hard to compute, since it can give rise to an arbitrarily
large causal cone. For the reduced density matrix of any of the corners with a L x L PEPS, which
is the most consuming case, it leads to a causal cone with a width up to L/2. That means the
computation is exponentially expensive with the size of the system

Fig. 2.28 If one starts with contracting an arbitrary bond, there will be a tensor with six bonds.
As the contraction goes on, the number of bonds increases linearly with the boundary 9 of the
contracted area, thus the memory increases exponentially as O (x?) with y the bond dimension

2.3.6 Exactly Contractible Tensor Networks

We have considered above, from the perspective of quantum circuits, whether a TNS
can be contracted exactly by the width of the casual cones. Below, we reconsider this
issue from the aspect of TN.

Normally, a TN cannot be contracted without approximation. Let us consider a
square TN, as shown in Fig.2.28. We start from contracting an arbitrary bond in
the TN (yellow shadow). Consequently, we obtain a new tensor with six bonds
that contains )(6 parameters (x is the bond dimension). To proceed, the bonds
adjacent to this tensor are probably a good choice to contract next. Then we will
have to restore a new tensor with eight bonds. As the contraction goes on, the
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Fig. 2.29 Two kinds of TNs that can be exactly contracted: (a) tree and (b) fractal TNs. In (b), the
shadow shows the Sierpifiski gasket, where the tensors are defined in the triangles

number of bonds increases linearly with the boundary 9 of the contracted area, thus
the memory increases exponentially as O (x?). For this reason, it is impossible to
exactly contract a TN, even if it only contains a small number of tensors. Thus,
approximations are inevitable. This computational difficulty is closely related to the
area law of entanglement entropy [17] (also see Sect.2.4.3), or the width of the
casual cone as in the case of PEPS. Below, we give three examples of TNs that can
be exactly contracted.

Tensor Networks on Tree Graphs We here consider a scalar tree TN (Fig. 2.29a)
with Ny, layers of third-order tensors. Some vectors are put on the outmost boundary.
An example that a tree TN may represent is an observable of a TTNS. A tree TN is
written as

Ny M,

Z= Z l—[ 1_[ Ta[:;r’lr,ll]»at1,m,2san.tt1,3 l_[ vL[li]’ (244)
k

{a} n=1m=1

with T the m-th tensor on the n-th layer, M), the number of tensors of the n-th
layer, and v[¥! the k-th vectors on the boundary.

Now we contract each of the tensor on the N -th layer with the corresponding
two vectors on the boundary as

vy, = y_ Tvemlylkily o], (2.45)

az ayazaz Yay “ap
ajaz

After the vectors are updated by the equation above, and the number of layers of the
tree TN becomes Ny — 1. The whole tree TN can be exactly contracted by repeating
this procedure.

We can see from the above contraction that if the graph does not contain any
loops, i.e., has a tree-like structure, the dimensions of the obtained tensors during
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the contraction will not increase unboundedly. Therefore, the TN defined on it can
be exactly contracted. This is again related to the area law of entanglement entropy
that a loop-free TN satisfies: to separate a tree-like TN into two disconnecting parts,
the number of bonds that needs to be cut is only one. Thus, the upper bond of
the entanglement entropy between these two parts is constant, determined by the
dimension of the bond that is cut. This is also consistent with the analyses based on
the maximal width of the casual cones.

Tensor Networks on Fractals Another example that can be exactly contracted is the
TN defined on the fractal called Sierpinski gasket (Fig.2.29b) (see, e.g., [82, 83]).
The TN can represent the partition function of the statistical model defined on the
Sierpifiski gasket, such as Ising and Potts model. As explained in Sec. II, the tensor
is given by the probability distribution of the three spins in a triangle.

Such a TN can be exactly contracted by iteratively contracting each three of the
tensors located in a same triangle as

Ta/|a2a3 = Z Tayb1by Tazboby Tazbsb, - (2.46)
b1bab3

After each round of contractions, the dimension of the tensors and the geometry
of the network keep unchanged, but the number of the tensors in the TN decreases
from N to N/3. It means we can exactly contract the whole TN by repeating the
above process.

Algebraically Contractible Tensor Networks The third example is called alge-
braically contractible TNs [84, 85]. The tensors that form the TN possess some
special algebraic properties, so that even the bond dimensions increase after each
contraction, the rank of the bonds is kept unchanged. It means one can introduce
some projectors to lower the bond dimension without causing any errors.

The simplest algebraically contractible TN is the one formed by the super-
diagonal tensor I defined as

15 ay = --- =4dan,

2.47
0, otherwise. ( )

Loy, ay = {

1 is also called copy tensor, since it forces all its indexes to take a same value.

For a square TN of an arbitrary size formed by the fourth-order Is, obviously
we have its contraction Z = d with d the bond dimension. The reason is that the
contraction is the summation of only d non-zero values (each equals to 1).

To demonstrate its contraction, we will need one important property of the copy
tensor (Fig.2.30): if there are n > 1 bonds contracted between two copy tensors,
the contraction gives a copy tensor

Loy = ayocydbycy (2.48)
p—
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Fig. 2.30 The fusion rule of the copy tensor: the contraction of two copy tensors of N;-th and
N-th order gives a copy tensor of (N1 + N, — N)-th order, with N the number of the contracted
bonds

This property is called the fusion rule, and can be understood in the opposite way: a
copy tensor can be decomposed as the contraction of two copy tensors.

With the fusion rule, one will readily have the property for the dimension
reduction: if there are n > 1 bonds contracted between two copy tensors, the
contraction is identical after replacing the n bonds with one bond

I PP P N RN S (2.49)
cpeC c

In other words, the dimension of the contracting bonds can be exactly reduced
from x" to x. Applying this property to TN contraction, it means each time when
the bond dimension increases after contracting several tensors into one tensor, the
dimension can be exactly reduced to x, so that the contraction can continue until all
bonds are contracted.

From the TN of the copy tensors, a class of exactly contractible TN can be
defined, where the local tensor is the multiplication of the copy tensor by several
unitary tensors. Taking the square TN as example, we have

_ * *
Twarasas = 9, Xby Ioybabybs Uarhy Vasos Usyps Vit (2.50)
b1byb3by

with U and V two unitary matrices. X is an arbitrary d-dimensional vector that can
be understood as the “weights” (not necessarily to be positive to define the tensor).
After putting the tensors in the TN, all unitary matrices vanish to identities. Then
one can use the fusion rule of the copy tensor to exactly contract the TN, and the
contraction gives Z = ]_[b(X T with N7 the total number of tensors.

The unitary matrices are not trivial in physics. If we take d = 2 and

V2/2 V22
U=V = , 2.51
[ﬁ/z —v2/2 @D
the TN is in fact the inner product of the Z, topological state (see the definition of
Z, PEPS in Sect. 2.2.3). If one cuts the system into two subregions, all the unitary
matrices vanish into identities inside the bulk. However, those on the boundary will
survive, which could lead to exotic properties such as topological orders, edge states,
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and so on. Note that Z, state is only a special case. One can refer to a systematic
picture given by X. G. Wen called the string-net states [27-29].

2.4 Some Discussions

2.4.1 General Form of Tensor Network

One can see that a TN (state or operator) is defined as the contraction of certain
tensors {7"} with a general form as

[n]
Ty = Z 1_[ Tsl sy alal- (2.52)

fa} n

The indexes {a} are geometrical indexes, each of which is shared normally two
tensors and will be contracted. The indexes {s} are open bonds, each of which
only belongs to one tensor. After contracting all the geometrical indexes, the TN
represents a .//'-th order tensor, with .4 the total number of the open indexes {s}.

Each tensor in the TN can possess different number of open or geometrical
indexes. For an MPS, each tensor has one open index (called physical bond) and
two geometrical indexes; for PEPS on square lattice, it has one open and four
geometrical indexes. For the generalizations of operators, the number of open
indexes is two for each tensor. It also allows hierarchical structure of the TN, such
as TTNS and MERA.

One special kind of the TN is the scalar TN with no open bonds, denoted as

zZ= Z]‘[Tana,zl . (2.53)

{a} n

It is very important because many physical problems can be transformed to
computing the contractions of scalar TNs. A scalar TN can be obtained from the
TNs that has open bonds, suchas Z = 3, Jsyor Z = 3 {A}ﬁ{s}, where Z
can be the cost function (e.g., energy or fidelity) to be maximized or minimized. The
TN contraction algorithms mainly deal with the scalar TNs.

2.4.2 Gauge Degrees of Freedom

For a given state, its TN representation is not unique. Let us take translational
invariant MPS as an example. One may insert a (full-rank) matrix U and its
inverse U~" on each of the virtual bonds and then contracted them, respectively,

into the two neighboring tensors. The tensors of new MPS become AE wal =
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oo UabAL'?[lb,Ua_,;/. In fact, we only put an identity / = UU™', thus do not
implement any changes to the MPS. However, the tensors that form the MPS change,
meaning the TN representation changes. It is also the case when inserting an matrix
and its inverse on any of the virtual bonds of a TN state, which changes the tensors
without changing the state itself. Such degrees of freedom is known as the gauge
degrees of freedom, and the transformations are called gauge transformations.

The gauge degrees of on the one hand may cause instability to TN simulations.
Algorithms for finite and infinite PEPS were proposed to fix the gauge to reach
higher stability [86—88]. On the other hand, one may use gauge transformation to
transform a TN state to a special form, so that, for instance, one can implement
truncations of local basis while minimizing the error non-locally [45, 89] (we will
go back to this issue later). Moreover, gauge transformation is closely related to
other theoretical properties such as the global symmetry of TN states, which has
been used to derive more compact TN representations [90], and to classify many-
body phases [91, 92] and to characterize non-conventional orders [93, 94], just to
name a few.

2.4.3 Tensor Network and Quantum Entanglement

The numerical methods based on TN face great challenges, primarily that the
dimension of the Hilbert space increases exponentially with the size. Such an
“exponential wall” has been treated in different ways by many numeric algorithms,
including the DFT methods [95] and QMC approaches [96].

The power of TN has been understood in the sense of quantum entanglement:
the entanglement structure of low-lying energy states can be efficiently encoded
in TNSs. It takes advantage of the fact that not all quantum states in the total
Hilbert space of a many-body system are equally relevant to the low-energy or low-
temperature physics. It has been found that the low-lying eigenstates of a gapped
Hamiltonian with local interactions obey the area law of the entanglement entropy
[97].

More precisely speaking, for a certain subregion & of the system, its reduced
density matrix is defined as o = Tre(0), with & denotes the spatial complement
of Z. The entanglement entropy is defined as

S(pz) = —Tr{pzlog(pz)}- (2.54)

Then the area law of the entanglement entropy [17, 98] reads

S(pz) = O(10Z)), (2.55)
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with [0Z| the size of the boundary. In particular, for a D-dimensional system, one
has

S=o0IP, (2.56)

with [ the length scale. This means that for 1D systems, S = const. The area law
suggests that the low-lying eigenstates stay in a “small corner” of the full Hilbert
space of the many-body system, and that they can be described by a much smaller
number of parameters. We shall stress that the locality of the interactions is not
sufficient to the area law. Vitagliano et al. show that simple 1D spin models can
exhibit volume law, where the entanglement entropy scales with the bulk [99, 100].

The area law of entanglement entropy is intimately connected to another fact that
a non-critical quantum system exhibits a finite correlation length. The correlation
functions between two blocks in a gapped system decay exponentially as a function
of the distance of the blocks [101], which is argued to lead to the area law. An
intuitive picture can be seen in Fig.2.31. Let us consider a 1D gapped quantum
system whose ground state |14 pc) possesses a correlation length &..,. By dividing
into three subregions A, B, and C, the reduced density operator p4¢ is obtained
when tracing out the block B, i.e., pac = Trg|¥asc)(¥apc| (see Fig.2.32). In

N

Fig. 2.31 Bipartition of a 1D system into two half chains. Significant quantum correlations in
gapped ground states occur only on short length scales

A e}
o000 OGOCEOGOECOOGOE
B

lAC >> fcurr

Fig. 2.32 To argue the 1D area law, the chain is separated into three subsystems denoted by A,
B, and C. If the correlation length &, is much larger than the size of B (denoted by /4¢), the
reduced density matrix by tracing B approximately satisfies pac =~ pa ® poc
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the limit of large distance between A and C blocks with [4¢ > &.,r, One has the
reduced density matrix satisfying

PAC = Ppa ® pc, (2.57)

up to some exponentially small corrections. Then |/4pc) is a purification? of a
mixed state with the form [4p,) ® [¥g,c) that has no correlations between A and
C; here B; and B, sit at the two ends of the block B, which together span the original
block.

It is well known that all possible purifications of a mixed state are equivalent
to each other up to a local unitary transformation on the virtual Hilbert space.
This naturally implies that there exists a unitary operation Up on the block B that
completely disentangles the left from the right part as

Ia®@Up ® Ic|Vapc) = |¥an) ® |¥p.c)- (2.58)

UB implies that there exists a tensor By 4, With 0 < a,d’,s < x — 1 and basis
(v, (1w B}, {|wC)}) defined on the Hilbert spaces belonging to A, B, C such
that

[Wac) =Y Boaw W) IWE). (2.59)

saa

This argument directly leads to the MPS description and gives a strong hint that
the ground states of a gapped Hamiltonian is well represented by an MPS of finite
bond dimensions, where B in Eq. (2.59) is analog to the tensor in an MPS. Let us
remark that every state of N spins has an exact MPS representation if we allow x
to grow exponentially with the number of spins [102]. The whole point of MPS is
that a ground state can typically be represented by an MPS where the dimension y
is small and scales at most polynomially with the number of spins: this is the reason
why MPS-based methods are more efficient than exact diagonalization.

For the 2D PEPS, it is more difficult to strictly justify the area law of entan-
glement entropy. However, we can make some sense of it from the following
aspects. One is the fact that PEPS can exactly represent some non-trivial 2D states
that satisfies the area law, such as the nearest-neighbor RVB and Z, spin liquid
mentioned above. Another is to count the dimension of the geometrical bonds 2
between two subsystems, from which the entanglement entropy satisfies an upper
bound as S < log 2.10

9Purification: Let p be a density matrix acting on a Hilbert space .4 of finite dimension n. Then
there exists a Hilbert space .73 and a pure state |Y/) € ¢4 ® 3 such that the partial trace of
| ) (| with respect to S#3: p = Trg|¥){¥|. We say that |¢) is the purification of 5.

100ne can see this with simply a flat entanglement spectrum, A,, = 1/ for any n.
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After dividing a PEPS into two subregions, one can see that the number of
geometrical bonds N, increase linearly with the length scale, i.e., N, ~ [. It means
the dimension & satisfies 2 ~ x!, and the upper bound of the entanglement entropy
fulfills the area law given by Eq. (2.56), which is

NN I8 (2.60)

However, as we will see later, such a property of PEPS is exactly the reason that
makes it computationally difficult.
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