
Chapter 6
Proximal Methods for Image Processing

An Introduction to ProxToolbox for Testing Algorithms
on the Göttingen Datasets

D. Russell Luke

Was ist dann eigentlich ein Hilbertischer Raum?
– David Hilbert to John von Neumann [1]

6.1 All Together Now

Amajor challenge in building and maintaining collaborations across disciplines is to
establish a common language. Sounds simple enough, but even a common language
is not helpful without a common understanding of the basic elements.When it comes
to the day-to-day exchange of data and software, this means building a common data
management and processing environment. Try to do this, however, and you learn very
quickly that even for something as concrete as building software that everyone can
use, there are differentways of interpreting andunderstandingwhat the software does.
In the context of X-ray diffraction, for instance, what a physicist might understand
as a software routine that simulates the propagation of an X-ray through an optical
device, a mathematician would understand as an operator with certain mathematical
properties.

The first successful algorithms for phase retrieval were developed and understood
by physicists as iterative procedures that simulate the forward and backward prop-
agation of a wave through an optical device, where in each iteration the computed
wave is adjusted to fit either measurement data or some experimental constraint,
like the shape of the aperture or the illuminating beam. Later, mathematicians rein-
terpreted these operations in terms of the application of projectors to iterates of a
fixed point mapping. Of most recent vintage is an effort by a new generation of
applied mathematicians to sidestep the more interesting aspects of the physicists’
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algorithms—namely that they occasionally don’t work—by lifting the problem to
a space that is too high-dimension for any practical purposes, and then relaxing
the underlying problem to something with theoretically nicer properties, but whose
solution bears little meaningful relationship to the problem at hand. At this point,
one is reminded of Richard Courant’s lamentation, “the broad stream of scientific
development may split into smaller and smaller rivulets and dry out.” [2] Here’s to
swimming against the current.

6.1.1 What Seems to Be the Problem Here?

The story of computational phase retrieval in X-ray imaging is a perfect example of
how different communities can come to understand the same things in very different
ways. This serves as a sort of origin story for the ProxToolbox [3]

http://num.math.uni-goettingen.de/proxtoolbox/

which is the subject of this chapter. The setting for phase retrieval has been presented
in Chap.2 and this will be the stuff cooked in the mathematical crucible that the
ProxToolbox represents.

The measurements are intensity readings which are denoted simply as a
nonnegative-valued vector I , with n elements corresponding to the pixels in the
CCD array (see 2.12). The model for these measurements is developed in Sect. 2.1.
The various modalities (near field/far field) have the general form

∥
∥(DF (ψ)) (xk, y j )

∥
∥ = √I (xk, y j ), (k = 1, 2, . . . , nx ) ( j = 1, 2, . . . , ny). (6.1)

In (2.12) the model is given in the continuum with the intensity I (x, y) at the
position (x, y) in the measurement plane. The actual measurements consist of pixels
indexed by k = 1, 2, . . . , nx and j = 1, 2, . . . , ny corresponding to positions (xk, y j )

in themeasurement plane. Themodel then represents a system of n ≡ nx ny equations
in 2n unknowns, the real and imaginary part of DF (ψ) at each of the n pixels. With
this discretization, the mapping DF is understood as a discrete Fresnel propagator
with Fresnel number F (see 2.84). To make things simpler, the indexes k and j are
combined uniquely into a single index i = 1, 2, . . . , n so that the data model is just

∥
∥(DF (ψ))i

∥
∥ = √Ii , ∀ i = 1, 2, . . . , n. (6.2)

The solution to the phase retrieval problem as presented here is the complex-valued
vectorψ ∈ C

n that satisfies (6.2) or,more generally (6.3).With only a singlemeasure-
ment the problem is underdetermined, that is, too many unknowns and not enough
equations. To further constrain the problem, there are a number of possibilities.
First, one could (and should) include a priori information implicit in the experiment
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http://dx.doi.org/10.1007/978-3-030-34413-9_6
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(support, nonnegativity, sparsity, etc). The next thing one could try is to adjust the
instrument in some known fashion and take several measurements of the same object.
The mapping DF is the model for the mapping of the electromagnetic field at the
object to the field where the intensity is measured, either near field or far field. For
the purpose of this tutorial, these are mappings from vectors in Cn to vectors in Cn .
This can be modified in a number of different ways. Representing n-dimensional
complex-valued vectors instead as two-dimensional vectors on an n-dimensional
product space, the phase retrieval problem is to find ψ = (ψ1,ψ2, . . . ,ψn) ∈ (R2

)n

(ψi ∈ R
2) satisfying (6.2) for all i in addition to qualitative constraints and/or addi-

tional measurements.1

Ptychography was briefly mentioned in Chap.2. Ptychography is harder to say
than to describe. A quilt is a ptychogram of sorts. Or put in more technical terms,
ptychography is a combination of blind deconvolution and computed tomography
for phase retrieval. The original idea proposed by Hegerl and Hoppe [4], was just
the computed tomography part: to stitch together the original object ψ from many
measurements at different settings of the instrument, modeled byD j , the j indexing
the setting. One of the implicit complications of conventional ptychography, which
differs from the original is that the illuminating beam is also unknown—this is the
blind deconvolution part.

In the above, different Fresnel numbers correspond to collecting the intensities Ii

at different planes orthogonal to the direction of propagation. This further constrains
the problem.Themodel is only a littlemore involved than simple phase retrieval (6.2).
For m different intensity measurements, each consisting of n pixels, the generalized
ptychography/phase diversity model takes the form

‖ (D j (ψ)
)

i ‖ = √Ii, j ∀i = 1, 2, . . . , n,∀ j = 1, 2, . . . m. (6.3)

This fits the first ptychographic reconstruction procedure [4] which assumed that
the illuminating beam, characterized by D j , was known. In the blind ptychography
problem – analogous to the blind deconvolution—the beam is not completely known.
This corresponds to what is commonly understood by ptychography inmodern appli-
cations [5–8]. To account for the unknown beam characteristics, the mapping D j is
further decomposed:

D j (z,ψ) ≡ F (Sj (z) � ψ
)

(6.4)

Here F is a parameter-free propagator and Sj : Cn → C
n denotes the j-th linear

operator representing some known adjustment to the beam—a lateral shift, or trans-
lation in the direction of propagation—z ∈ C

n is the unknown vector characterizing
the probe, and � is the elementwise Hadamard product.

The problem in blind ptychography is to reconstruct simultaneously the object
ψ and illuminating beam u from a given ptychgraphic dataset. Near-field, or in-line

1The issue of whether to represent the vectors as points in R
2n or points in C

n is notational. The
representation as points inCn is more convenient for the purpose of explanation, but on a computer
you will need to work with R2n .

http://dx.doi.org/10.1007/978-3-030-34413-9_6
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ptychography [9] involves moving the imaging plane along the axis of propagation
of the beam (i.e., away from the plane where the object lies). This is very similar to
phase diversity in astronomy [10], but there one changes the defocus in the far-field
instead of the imaging plane in the near field (also, one does not have to recover the
beam in astronomy applications). Mathematically, however, the two instances have
the same structure. In conventional far-field ptychographic experiments the beam is
much smaller than the specimen. The different measurements consist of scans of ψ
in the lateral direction with sufficient overlap between successive images. Lateral
translations and translations along the axis of propagation were combined in [11].
Note that the last case is least restrictive in terms of probe properties, see also [12]
for a detailed comparison and discussion.

The issue of existence of aψ that satisfies all the equations is discussed inChap. 23.
For this chapter, existence is recast as consistency of the measurements and the
physical model. The data is exact.2 What is not entirely accurate is the model for the
data and the computational bandwidth, e.g. finite precision arithmetic.

Though it might seem unintuitive, for algorithmic reasons, it is better to separate
the aspects of the imaging model having to do with the field at the object plane from
those having to do with the field at the image plane. Denote u ≡ (u1, u2, . . . , um)
with u j ∈ C

n ( j = 1, 2, . . . , m) and define the measurement sets

M j ≡
{

u ∈ C
n | ∥∥(Fu)i

∥
∥ = √

I j,i , (i = 1, 2, . . . , n)
}

( j = 1, 2, . . . , m) (6.5)

where F is a parameter-free propagator in (6.4). The sets M j are nothing more than
the phase sets, or the set of all vectors that could explain the data. Solutions to the
most general physical model represented by (6.3) consists of any triple of vectors
(z,ψ,u) ∈ C

n × C
n × (Cn)m in the set

M ≡ {(z,ψ,u) ∈ C
n × C

n × C
n×m | Sj (z) � ψ = u j , j = 1, 2, . . . , m

}

(6.6)

such thatu j ∈ M j and the beam z andobjectψ satisfy anyother reasonable qualitative
constraints. The constraints on the unknowns z, ψ and u are separable and given by

X ≡ {qualitative constraints on the probe}, (6.7a)

O ≡ {qualitative constraints on the specimen}, (6.7b)

M ≡ M1 × M2 × · · · × Mm, (measurement constraints). (6.7c)

As before, the qualitative constraints characterized by X and O are support, support-
nonnegativity or magnitude constraints corresponding respectively to whether the
illumination and specimen are supported on a bounded set, whether these (most
likely only the specimen) are “real objects” that somehow absorb or attenuate the

2This is a minority opinion, but it seems to be the height of hubris to think that an empirical
observation is an approximation to a theoretical model rather than the other way around. The only
thing that is indisputable is that the instrument behavior and the predicted behavior don’t match up
as well as desired.

http://dx.doi.org/10.1007/978-3-030-34413-9_6
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probe energy, or whether these are “phase objects” with a prescribed intensity but
varying phase. A support constraint for the set X , for instance, would be represented
by

X ≡ {z = (z1, z2, . . . , zn) ∈ C
n | |zi | ≤ R and for i /∈ IX zi = 0

}

, (6.8)

where IX is the index set corresponding to which pixels in the field of view the probe
beam illuminates and R is some given amplitude.

6.1.2 What Is an Algorithm?

One of the best known algorithms for phase retrieval is Fienup’s Hybrid Input-Output
algorithm (HIO) [13] discussed in 2.88. This algorithm illustrates just about every
difficulty one encounters in collaborating across disciplines, and sets the stage for
the rest of the tutorial below. In the present setting, HIO with a support constraint is
given as

(∀k ∈ N)(∀i = 1, 2, . . . , n) ψk+1
i =

{(PM(ψk)
)

i , if i ∈ D;
ψk

i − βk
(PM(ψk)

)

i , otherwise.
(6.9)

Here N is the set of counting numbers, D indicates an index set where it is imagined
that some constraints are satisfied; the mapping PM fits the current iterate ψk to the
data by propagating this guess through a model optical system, fixing the amplitude
at the measurement surface to match the observed intensity and then propagating
the resulting field back to the plane of the object. Putting (2.84) in into the present
context, with the set M consisting of just a single intensity image, M ≡ M1, yields

ψ+ 
 PM(ψ) 
 D−F (ψ̂), ψ̂i 
 √Ii
(DF (ψ))i
∥
∥(DF (ψ))i

∥
∥

(6.10)

The symbol
 indicates that this is not really and equivalence relation: for themoment
think of it as equivalence with exceptions.

One obvious exception is when (DF (ψ))i = 0. If you are a physicist you might
argue that (DF (ψ))i = 0 on a set of measure zero—a fancy way for saying never,
with infinite precision arithmetic. Except that electronic processors operate with
finite precision arithmetic and zero is therefore enormous on a computer. In fact, with
double precision, zero is not smaller than 1e − 16. To see what kind of error this can
lead to, suppose that (DF (ψ))i = −1e − 15 with infinite precision arithmetic, but
because of roundoff, the computer returns 1e − 15. A very small difference locally.
But suppose that, at this pixel, the measured intensity is Ii = 10. In computing the
projection, the computer returns a point with ŷi = 10 instead of ŷi = −10. This
makes an enormous difference. The typical user won’t see this kind of error often,

http://dx.doi.org/10.1007/978-3-030-34413-9_6
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but in numerical studies in [14] it happened about 12% of the time, which is not
insignificant. Anyone with experience in programming knows to be careful about
dividing. Without thinking much more about it, one usually codes some exception
to avoid problems when division gets too dicey.

But there is another reason to pay attention to this exceptional point: convexity.
The mathematical understanding of this and other phase retrieval algorithms origi-
nating from the optics community begins with viewing the entire collection of points
satisfying the data and the qualitative constraints as sets and then viewing the opera-
tions in the above iterative procedures as metric projections onto these sets. A metric
projector of a point ψ onto a set C is simply an operator that maps ψ to all points in
C that are nearest to ψ. The operation PM in (6.10) was long called a projection in
the optics literature, but it was not shown to be a metric projector until [14, Corollary
4.3] where it was pointed out that the projector is set-valued in general. Being more
careful one should write

ψ+ ∈ PM(ψ) =
{

D−F (ψ̂)

∣
∣
∣
∣
∣
ψ̂i ∈

{√
Ii

(DF (ψ))i‖(DF (ψ))i‖ , if (DF (ψ))i �= 0,√
IiS, if (DF (ψ))i = 0.

}

(6.11)

The symbol S denotes the unit sphere in the complex plane (R2) and
√

IiS is the
sphere of radius

√
Ii . The symbol ∈ is a reminder that the right hand side is a set of

elements, and the left hand side is just a selection—any selection—from this set. The
change in notation from “=” to “∈” is not just pedantic nit-picking, but underscores
the fact that the problem is fundamentally nonconvex, meaning that you can find two
points in the set where the line segment joining the two points leaves the set. In (6.11)
take two points on opposite ends of the sphere

√
IiS: the line joining them is not in√

IiS. If the sets M were convex (line segments joining any two points in the set are
contained in said set), then the projector would be single-valued and one could forget
the whole technicality, not to mention any worries about numerical instability.

Returning to iterative algorithms just in the context of phase retrieval (the probe z
is known and there is only a single measurement M = M1 so that the variables u are
not needed), the procedure (6.9) is a natural way to think of a numerical procedure
when approaching things physically: onemakes a guess for the objectψ0, propagates
it through the optical system according the model given by (6.10) and updates this
guess to ψ1 depending on whether the elements satisfy the data and some a priori
constraint. And repeat. The user would stop the iteration either when he needed to go
for coffee or when the iterates stop making progress, in some loosely defined way.
The subtle point here is that (6.9) is not a fixed point iteration, but rather a simulation
of a physical process.

Bauschke, Combettes and Luke [15] showed that the HIO algorithm (6.9) is
equivalent to

ψk+1 ∈ 1
2

(RS(RM + (βk − 1)PM) + Id+(1 − βk)PM
)

(ψk). (6.12)
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where Id is the identity mapping (does nothing to the point), S is the set of vectors
satisfying a bounded support constraint, and

RM ≡ 2PM − Id and RS ≡ 2PS − Id (6.13)

with

(PSψ) j =
{

ψ j if j ∈ D

0 else.
(6.14)

The mappings RS and RM are called reflectors because they send points to their
reflection points on the opposite side of the set onto which one projects. The iteration
(6.12) is the Hybrid Projection Reflection (HPR) algorithm proposed in [15]. When
βn = 1 for all n, then the iteration takes the form [16]

ψk+1 ∈ 1
2

(RS(RM + Id
)

(ψk). (6.15)

This is the popular Douglas-Rachford Algorithm [17] following the formulation of
Lions and Mercier in the context of monotone operator equations [18]. In both
cases, the desired point is a fixed point of the mapping T , that is a point ψ such
that ψ = T ψ where either T = 1

2

(RS(RM + (βk − 1)PM) + Id+(1 − βk)PM
)

or
T = 1

2

(RS(RM + Id
)

.
Whether or not the iterations above converge to a fixed point, and what this point

has to do with the problem at hand is the subject of Chap.23. For the purposes of
this tutorial, the algorithm will simply be run with the given mappings and the user
will be left to interpret the result. A few tools are provided within the ProxToolbox
to monitor the iterates according to mathematical, as opposed to physical, criteria.
For the beginning reader all that is important to keep in mind is that, first of all,
the algorithms don’t always converge, and second of all, when they converge, the
limit point is not a solution to the problem you thought you were solving, but you
can usually get there easily from the limiting fixed point. Another issue to keep
in mind is that the physical criteria that scientists apply to judge the quality of a
computed solution usually does not correspond to the mathematical criteria used
to characterize and quantify convergence of an algorithm. It is not uncommon to
see pictures of “solutions” returned by various algorithms at iteration k, or to see a
comparison of a root mean-squared error estimate of an iterate of various algorithms.
This is, from a mathematical perspective, not really meaningful for several reasons.
The first reason is that, unless the underlying optimization problem is tominimize the
root mean-squared error of something, there is no reason to expect that an algorithm
should do this. The second reason is that, as already mentioned, the iterates of some
algorithms, like Douglas-Rachford, are not the points that approximate solutions to
the desired optimization problem, but their shadows, defined as the projection of
these points onto a relevant set, are. Comparison of the quality of solutions returned
by algorithms is common, but it should be recognized that such comparisons are not
mathematical, but rather phenomenological, if of any scientific significance at all.

http://dx.doi.org/10.1007/978-3-030-34413-9_6
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The identification of the HIO algorithms with Douglas-Rachford, at least for one
parameter value, made a lot of sense when it was first discovered. The HIO algorithm
is famously unstable. The way most people use it today is to get themselves in the
neighborhood of a good solution by running 10–40 iterations of HIO, at which point
they switch to a more stable algorithm to clean up their images. The value of HIO or
Douglas-Rachford is that they rarely get stuck in local minimums. The identification
with Douglas-Rachford makes this phenomenon clear since it can be proved that,
if the sets S and M do not intersect, then Douglas-Rachford does not possess fixed
points. If M were convex, then you could even prove that the iterates must diverge to
infinity in the direction of the gap vector between best approximation pairs between
the sets [19]. For nonconvex problems like noncrystallographic phase retrieval, the
iterates need not diverge, but they cannot converge. In Chap.23 the convergence
theory is discussed in some detail.

As should be clear by now, there is no equation being solved here, but rather some
point is sought, any point, that satisfies an equation and any other kind of requirement
one might like to add. It is high time to bring the main character of this story to the
stage. In the most general format (ptychography) this has the form

General Problem

Find (z,ψ,u) ∈ M ∩ (X × O × M) .

This is a feasibility problem and what algorithms like (6.12) and (6.15) aim to
solve, if possible. For the moment, it is easiest to examine the more elementary phase
retrieval problem (ptychography with one measurement):

Find ψ ∈ S ∩ M. (6.16)

The sets S and M have the explicit characterizations

M ≡
{

ψ ∈ C
n
∣
∣
∣

∣
∣(DFψ)i

∣
∣ = √Ii , i = 1, 2, . . . , n

}

(6.17)

and
S ≡ {ψ ∈ C

n | ψi = 0 if i /∈ D
}

. (6.18)

The projectors onto these sets are given by (6.11) and (6.14). When the requirements
become so narrow that no point can satisfy all of them, the problem is said to be
inconsistent. The reason for the instability of HIO and Douglas-Rachford lies with
the failure of the setsS and M to havepoints in common.This indicates a fundamental
inconsistency of the physical model.

http://dx.doi.org/10.1007/978-3-030-34413-9_6
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The behavior of these algorithms in the presence of model inconsistency tends
to be mistaken for another bugbear of inverse problems, namely nonuniqueness. For
example, around the turn of the millennium, oversampling in the image domain was
proposed to overcome the nonuniqueness of phase reconstructions for noncrystallo-
graphic observations [20]. A fewmoments reflection on elementary Fourier analysis,
and careful reading of Chap. 2 is all you need to convince yourself, however, that
oversampling has less to do with uniqueness than with inconsistency. Increased,
but still finite, sampling in the image domain just pushes the inconsistency, or gap,
between the setsS and M to some level below either your numerical or experimental
precision. It might look like the iteration has converged, but what has really happened
is that the movement of the iterates has become so small that it is no longer detectable
with a fixed arithmetic precision. This is just a physical manifestation of the fact from
Fourier analysis that objects with compact support do not have compactly supported
Fourier transforms, and vice versa. Since the measurements are finite, the object that
is recovered cannot be finite. This means that the only time phase retrieval can be
consistent is when imaging periodic crystals.

To be sure, uniqueness is nice when you have it, but you first need to clear up
the issue of uniqueness of what. No wave ψ with compact support can generate the
given intensity I . When the problem is inconsistent, it suffices to find some point,
any point, that comes as close to both sets as possible. This is a best approximation
problem and takes the form of the usual optimization problem:

minimize
ψ∈Cn

λ
2(1−λ)

dist2(ψ,S)

subject to ψ ∈ M
. (6.19)

The reason for minimizing the distance squared instead of the distance is to have
a nice smooth objective function—it doesn’t really change the problem. Nor does
the factor λ

2(1−λ)
out front, but it has a huge impact on the next algorithm, which

solves (6.19). So the question of uniqueness amounts to whether problem (6.19)
has a unique solution. Experts in optimization don’t often worry about uniqueness,
but rather the existence of local minima to (6.19). This is one of the few remaining
unresolved mathematical issues in phase retrieval.

While, in most applications, the projections onto the sets X , O and M in (6.7)
have a closed form and can be computed very accurately and efficiently, there does
not seem to be any method, analytic or otherwise, for computing the projection onto
the set M defined by (6.6). This might be another good reason for avoiding a fea-
sibility model. Indeed, if the projections are too difficult, or impossible to compute
analytically, then the large part of the advantage of projection methods evaporates.
Nevertheless, this essentially two-set feasibility model suggests a wide range of
techniques within the family of projection methods, alternating projections, aver-
aged projections and Douglas–Rachford being representative members. In contrast
to these, methods based on optimizationmodels can avoid the difficulty of computing
a projection onto the setM by instead minimizing a nonnegative coupling function

http://dx.doi.org/10.1007/978-3-030-34413-9_6
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that takes the value 0 (only) onM. The model for this is a constrained least squares
minimization model

Find
(

z,ψ,u
)

∈ argmin {F (z,ψ,u) | (z,ψ,u) ∈ X × Y × M} (6.20)

where

F (z,ψ,u) ≡
m
∑

j=1

‖Sj (z) � ψ − u j‖2. (6.21)

What has happened here is that the set M defined by (6.6) has been replaced by
the least squares objective to avoid the complication of computing the projection
onto M.

The relaxed averaged alternating reflections algorithm (RAAR3) first proposed in
[21] addresses the instability of the Douglas-Rachford algorithm by anchoring the
usual Douglas-Rachford iterates to one of the sets:

ψk+1 ∈ (λ
2

(RS(RM + Id
)+ (1 − λ)PM

)

(ψk). (6.22)

When λ ∈ [0, 1) it was shown in [22] that this algorithm is equivalent to the Douglas-
Rachford algorithm applied to (6.19). For the moment, just recognise that this is a
convex combination of (6.15) with the projection onto the set M . If one wanted to
play around further, the constraints S and M can be changed without changing the
form of the fixed point iterations. For instance, if the thing one is trying to recover,ψ,
is actually an electron density, it should be a real-valued, positive vector; so instead
of the set S, one should restrict the possible points to

S+ ≡
{

ψ ∈ C
n

∣
∣
∣
∣
∣
ψi =

{

max{0,
(ψi )} if i ∈ D

0 else

}

. (6.23)

The RAAR algorithm then takes the form

ψk+1 ∈ (λ
2

(RS+(RM + Id
)+ (1 − λ)PM

)

(ψk),

which is hardly a change from (6.22). In fact, mathematically there is no qualitative
difference between the two. When translated back to the format of the original HIO
algorithm, this takes the form [21, Prop.2.1]4: (∀k ∈ N)( for i = 1, 2, . . . , n),

3The names for these algorithms have evolved since their first introduction. In [19] the procedure that
is today known as the Douglas-Rachford algorithmwas called the Averaged Alternating Reflections
algorithm, which then explains the genesis of the name RAAR for (6.22). Since Douglas-Rachford
is more or less the accepted name for (6.15), (6.22) is called DRλ in more recent matheamtical
articles. Nevertheless, RAAR is more common in the physics literature, so that is the nomenclature
used here. In the ProxToolbox, however, the DRλ nomenclature is used.
4(6.24) corrects a sign error in the lower half of [21, Eq (14)]
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ψk+1
i =

{(PM(ψk)
)

i
, if i ∈ Dand

(RM(ψk)
)

i
≥ 0;

λψk
i + (1 − 2λ)

(PM(ψk)
)

i
, otherwise.

(6.24)

Comparing (6.24) with (6.9), it is clear that these are very different algorithms. If
the object domain constraint were to change, (for instance, to a magnitude constraint
in the object plane for a complex-valued object) the physical description analogous
to (6.24) would change dramatically yet again, but the description as a fixed point
mapping would always have the form

ψk+1 ∈ TR AARψk ≡ (λ
2

(RO(RM + Id
)+ (1 − λ)PM

)

(ψk) (6.25)

where O is a placeholder for the constraint in the physical domain (see also (2.89)).
The main point here is that the mathematical properties of the fixed point mapping
TR AAR depend on the properties of the sets M and O , but the algorithm is always the
same.

From this point hence, theword algorithmwill be usedmore or less synonymously
with the phrase fixed point iteration. This will be a convenient way to pack several
(hundreds of) lines of code into a single symbol T , for the fixed point mapping. This
T takes a guess x0 and replaces it with an update x1. In mathematical terms, T maps
x0 ∈ X to x1 ∈ X where X is the domain and image spaces of T , the shorthand for
which is T : X → X . The domain and image spaces need not be the same, but for
fixed point iterations they are. One important feature of this way of thinking about
things is that the guess and the update are the same kinds of objects with the same
physical interpretation. This is different than a function or more generally a relation
which can map a point to anything, for instance a number, a color, or a set. A fixed
point iteration is the process of repeatedly applying the fixed point mapping T : given
x0, generate a sequence of points xk via

(∀k ∈ N) xk+1 = T xk . (6.26)

There are a number of accessories one can add to (6.26). These take the form:
given x0, and an update ruleAk (k = 1, 2, . . . ), generate a sequence of points xk via

(∀k ∈ N) yk+1 = T xk;
xk+1 = Ak

(

xk, yk+1
)

. (6.27)

The main difference between (6.26) and (6.27) is that in the latter the operations
from one iteration to the next can evolve and adjust along with the iterations. These
are invariably called accelerations because that is the name of the game.

http://dx.doi.org/10.1007/978-3-030-34413-9_6
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6.1.3 What Is a Proximal Method?

A proximal method is a fixed point iteration (6.26) or its acceleration (6.27) where
the fixed point mapping T consists of proximal mappings. A proximal mapping has
a specific mathematical definition, but before giving this an intuitive description will
probably be more helpful. A proximal mapping sends a point to one or more points
that strike a balance between solving a minimization problem and staying close to
the original point. The projectors of the previous section are proximal mappings. To
see this, consider the function

ιΩ (u) ≡
{

0, if u ∈ Ω,

+∞, else.
(6.28)

whereΩ is some set. Allowing this function to take the value+∞ is very convenient.
The optimization problem corresponding to minimizing ιΩ while staying as close as
possible to u is

minimize
u

ιΩ(u) + 1
2λ‖u − u‖2,

and the solution to this problem is written

argmin u

{

ιΩ(u) + 1
2λ‖u − u‖2} .

The parameter λ > 0 will become important in a moment, but it has no significance
in this context since the solution to the optimization problem above is the same for
all positive values of λ. The solution to this problem is the set of points in Ω that
are nearest to u, or the set PΩu. This should not be confused with the optimal value
of this problem, which in this context is just the distance of the point u to the set
Ω . For practical purposes one simply takes a selection from the set; this is denoted
u+ ∈ PΩu and u+ is called a projection.

The function ιΩ is not the only function one could use, hence the more general
use of the terminology proximal mapping for the general function f [23]

prox f,λ(u) ≡ argmin u

{

f (u) + 1
2λ‖u − u‖2} . (6.29)

Here the value of λ plays the role of dialing up or down the requirement of staying
close to the point u. This is often understood as a step-length parameter in the context
of algorithms: the smaller λ is, the greater the penalty for moving away from u.

The algorithm (6.15) written using the formalism of proximal mappings takes the
form

ψk+1 = 1
2

(R f0,λ0R f1,λ1 + Id
)

(ψk). (6.30)

HereR f0,λ0 and R f1,λ1 are called proximal reflectors defined by

R f0,λ0 ≡ 2 prox f0,λ0
− Id and R f1,λ1 ≡ 2 prox f1,λ1

− Id . (6.31)
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This is quite liberating because now, the same basic fixed point mapping can be
applied without any changes in the mathematical theory to a much broader range of
problem types.

It is worthwhile spending a few moments to marvel at prox. This is a mapping
from points in a space X to points in the same space; using mathematical notation
prox f,λ : X → X . But, look again at (6.29): this is the solution to another optimiza-
tion problem. There are two important things to notice about this observation, first
of which is that a mapping has been created out of an optimization problem. This is
what a mathematicianmight call pretty. The second thing to notice is that the value of
the optimization problem—“the answer to the ultimate question of life, the universe
and everything” [24]—is beside the point.5

6.1.4 On Your Mark. Get Set...

There are three groups of readers envisioned for this tutorial. The first group is
students, of either physics or mathematics, wishing to get hands-on numerical expe-
rience with classical algorithms for real-world problems in the physical sciences.
The second group is optical scientists who already know what they want to do, but
would like a repository of algorithms to see what works for their problem and what
does not work. The third group is applied mathematicians who have new algorithmic
ideas, but need to see how they perform in comparison to other known methods on
real data. A stripped-down version of the ProxToolbox is used at the University of
Göttingen to teach graduate and undergraduate courses in numerical optimization
and mathematical imaging. What is omitted from the student version is the repos-
itory of algorithms and some of the prox mappings— the students are expected to
write these themselves, with some guidance. Experienced researchers, it is expected,
will extract the parts of the toolbox they need and incorporate these into their own
software. To make it easy to identify the pieces, the toolbox has been organized
in a highly modular structure. The modularity comes at the cost of an admittedly
labyrinthine structure, which is the hardest thing to master and the main goal of the
rest of this tutorial.

6.2 Algorithms

The two different models discussed above, feasibility and constrained optimization
(6.19), lead to a natural classification of categories of algorithms. The development
presented here follows [25]. To underscore the fact that the algorithms can be applied
to problems other than X-ray imaging, the sets involved are denoted by Ω j for
j = 0, 1, 2, . . . , m and the points of interest are denoted with a u, instead of the

5In case you forgot, it’s 42.
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context-specific notation for a wavefield ψ. The sets Ω j are subsets of the model
space Cn (or R2n) and, since there can be more than just two sets, as in the case of
phase diversity or ptychography the integer m is just a stand-in for the number of
images and other qualitative constraints involved in an experiment.

6.2.1 Model Category I: Multi-set Feasibility

The multi-set feasibility problem is:

Feasibility

Find u ∈⋂m
j = 0 Ω j . (6.32)

The numerical experience is that this model format leads to the most effective
methods for solving phase-type problems. It is important to keep in mind, however,
that for all practical purposes the intersection above is empty, so the algorithm is not
really solving the problem since it has no solution.

Feasibility problems can be conveniently reformulated in an optimization format:

min
u∈Cn

m
∑

j=0

ιΩ j (u) , (6.33)

where ιΩ j is the indicator function (6.28) of the set Ω j . The fact that the intersection
is empty is reflected in the fact that the optimal value to problem (6.33) is +∞.
For the purposes of this tutorial anything bigger than, say, 42 will be approximately
infinity.

The easiest iterative procedure of all is the Cyclic Projections algorithm

Algorithm 6.2.1
Initialization. Choose u0 ∈ (Cn).
General Step (k = 0, 1, . . .)

uk+1 ∈ TC P(uk) where TC P ≡ PΩ0PΩ1 · · ·PΩm .
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In the context of phase retrieval with one observation and an object domain con-
straint this is called the Gerchberg-Saxton algorithm [26]. An early champion of pro-
jection methods for convex feasibility was Censor [27] who together with Cegielski
has written a nice review of the extensive literature on these methods [28]. A more
recent review of inconsistent feasibility can be found in [29]. The most complete
analysis of this algorithm for consistent and inconsistent nonconvex problems has
been established in [30] and is reviewed in Chap.23. In the inconsistent case the
fixed points generate cycles of smallest length locally over all other possible cycles
generated by projecting onto the sets in the same order. Rates of convergence have
been established generically for problems with this structure (see [30, Example 3.6]).
Rates are important for estimating how far a particular iterate is from the solution.
The most elementary convergence rate is linear convergence, also known as geomet-
ric or exponential convergence in various communities. A sequence (uk)k=0,1,2,... of
points uk is said to converge linearly (technically, Q-linearly) to a limit point u∗ with
a global rate c < 1 whenever

‖uk+1 − u∗‖ < c‖uk − u∗‖ ∀k = 0, 1, 2, . . . .

The Douglas-Rachford iteration given by (6.15) can only be applied directly to
two-set feasibility problems,

Find x ∈ Ω0 ∩ Ω1.

The fixed point iteration is given by

uk+1 ∈ TDRuk where TDR ≡ 1

2

(RΩ0RΩ1 + Id
)

, (6.34)

for RΩ0 and RΩ2 are generic set reflectors (see (6.13)). It is important not to forget
that, even if the feasibility problem is consistent, the fixed points of the Douglas-
RachfordAlgorithmwill not in general be points of intersection. Instead, the shadows
of the iterates defined as PΩ1(u

k), k = 0, 1, 2, . . . , converge to intersection points,
when these exist [19].

To extend this to more than two sets, Borwein and Tam [31, 32] proposed the
following variant:

Algorithm 6.2.2 (Cyclic Douglas-Rachford—CDR)
Initialization. Choose u0 ∈ C

n.
General Step (k = 0, 1, . . .)

uk+1 ∈ TC DRuk

where

http://dx.doi.org/10.1007/978-3-030-34413-9_6


180 D. R. Luke

TC DR ≡
(
1

2

(RΩ0RΩ1 + Id
)
)(

1

2

(RΩ1RΩ2 + Id
)
)

· · ·
(
1

2

(RΩmRΩ0 + Id
)
)

.

Different sequencing strategies than the one presented above are possible. In [33]
one of the pair of sets is held fixed. This has some theoretical advantages in a convex
setting, though no advantage was observed for phase retrieval.

The relaxed Douglas-Rachford algorithm(6.25) takes the general form: for λ ∈
(0, 1]

(DRλ/R AAR) uk+1 ∈
(

λ

2

(RΩ0RΩ1 + Id
)+ (1 − λ)PΩ1

)

(uk). (6.35)

Extending this to more than two sets yields the following algorithm, which was first
proposed in [25], where it is called CDRλ.

Algorithm 6.2.3 (Cyclic Relaxed Douglas-Rachford CDRλ)
Initialization. Choose u0 ∈ C

n and λ ∈ [0, 1].
General Step (k = 0, 1, . . .)

uk+1 ∈ TC DRλuk

where

TC DRλ ≡
(

λ

2

(RΩ0RΩ1 + Id
)+ (1 − λ)PΩ1

)

·
(

λ

2

(RΩ1RΩ2 + Id
)+ (1 − λ)PΩ2

)

· · ·
(

λ

2

(RΩmRΩ0 + Id
)+ (1 − λ)PΩ0

)

.

The analysis for RAAR and its precursor, Douglas-Rachford is contained in [30,
Sect. 3.2.2] and [34].

Another popular algorithm that can be derived from the Douglas-Rachford
algorithm in the convex setting [35] is the Alternating Directions Method of Mul-
tipliers (ADMM, [36]). For nonconvex problems like phase retrieval the direct link
between these methods is lost, though there have been some recent developments
and studies [37–39]. The ADMM algorithm falls into the category of augmented
Lagrangian-based methods. Here, problem (6.33) is reformulated as



6 Proximal Methods for Image Processing 181

min
x,u j ∈Cn

⎧

⎨

⎩
ιΩ0 (x) +

m
∑

j=1

ιΩ j

(

u j
) ∣
∣ u j = x, j = 1, 2, . . . , m

⎫

⎬

⎭
, (6.36)

so that one can apply ADMM to the augmented Lagrangian given by

L̃η

(

x, u j , v j
) ≡ ιΩ0 (x) +

m
∑

j=1

(

ιΩ j

(

u j
)+ 〈v j , x − u j

〉+ η
2‖x − u j‖2

)

, (6.37)

where η > 0 is a penalization parameter and v j , j = 1, 2, . . . , m, are the multipliers
which are associated with the linear constraints. The ADMM algorithm applied to
finding the critical points of the corresponding augmented Lagrangian (see (6.37))
is given by

Algorithm 6.2.4 (Nonsmooth ADMM1)
Initialization. Choose x0, u0

j , v
0
j ∈ C

n and fix η > 0.
General Step (k = 0, 1, . . .)

1. Update

xk+1 ∈ argmin x∈Cn

⎧

⎨

⎩
ιΩ0 (x) +

m
∑

j=1

(〈

vk
j , x − uk

j

〉+ η

2
‖x − uk

j‖2
)

⎫

⎬

⎭

= PΩ0

⎛

⎝
1

m

m
∑

j=1

(

uk
j − 1

η
vk

j

)
⎞

⎠ . (6.38)

2. For all j = 1, 2, . . . , m update (in parallel)

uk+1
j ∈ argmin u j ∈Cn

{

ιΩ j

(

u j
)+ 〈vk

j , xk+1 − u j
〉+ η

2
‖xk+1 − u j‖2

}

= PΩ j

(

xk+1 − ηvk
j

)

. (6.39)

3. For all j = 1, 2, . . . , m update (in parallel)

vk+1
j = vk

j + η
(

xk+1 − uk+1
j

)

. (6.40)

This can bewritten as a fixed point iteration on triplets (xk , uk, vk) ∈ C
n × C

mn ×
C

n , but it is not very convenient to see things this way. Note that the projections in
Step 2 of the algorithm can be computed in parallel, while the Cyclic Projections
and Cyclic Douglas-Rachford Algorithms must be executed sequentially. Note also
that the update of the block uk+1 incorporates the newest information from the block
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xk+1 together with the old data vk , while the update of the block vk+1 incorporates
the newest information from both blocks xk+1 and uk+1. This is in the same spirit
as the Gauss-Seidel method for systems of linear equations. Obviously, there is an
increase (by a factor of 3 + m) of the number of variables, but this is amild increase in
complexity in comparison to some recent proposals for phase retrieval which involve
squaring the number of variables! Indeed ADMM is starting point for just about all
the most successful methods for large-scale optimization with linear constraints (see,
for instance, [40] and references therein).

An ADMM scheme for phase retrieval has appeared in [41]. This is a terrible
algorithm for phase retrieval. It is included here, however, as a point of reference to
the Douglas-Rachford Algorithm.

6.2.2 Model Category II: Product Space Formulations

The second category of algorithms is a stepping stone to smooth optimizationmodels,
though this is not the most obvious way to motivate the strategy—the connection to
smoothing only becomes apparent after some consideration. The idea is to lift the
problem to the product space (Cn)m+1 which can be then formulated as a two-set
feasibility problem

Find u∗ ∈ Ω ∩ I,

where u∗ = (u∗
0, u∗

1, . . . , u∗
m

)

, Ω := Ω0 × Ω1 × · · · × Ωm and I is the diagonal set
of Cn(m+1) which is defined by {u = (u, u, . . . , u) : u ∈ C

n}. This also involves an
increase in the number of unknowns, but only by a factor of m which, while not
insignificant when m is large, can be managed through clever implementation. There
are two important features of this formulation. First of these is that the projection
onto the set Ω can be easily computed since

PΩu = (PΩ0u0,PΩ1u1, . . . ,PΩm um
)

,

where PΩ j , j = 1, 2, . . . , m, are given in (6.11). The second important feature is
that I is a subspace which also has simple projection given by PI (u) = ū where

u j = 1

m + 1

m
∑

j=0

u j .

This formulation immediately suggests the Cyclic Projections algorithm 6.2.1,
which, in the case of just two sets, is often called Alternating Projections
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Algorithm 6.2.5 (Alternating Projections—AP)
Initialization. Choose u0 ∈ C

n(m+1).
General Step (k = 0, 1, . . .)

uk+1 ∈ PIPΩuk .

But Algorithm 6.2.5 is equivalent to

uk+1
j ∈ 1

m + 1

m
∑

j=0

PΩ j u
k
j , j = 0, 1, . . . , m;

in other words, the Alternating Projections algorithm on the product space is equiva-
lent to the Averaged Projections algorithm 6.2.10 and the Alternating Minimization
Algorithm 6.2.11. Also the popular Projected Gradient method reduces to averaged
projections. To see this, consider the following minimization problem:

minimize
u∈Ω

1

2
dist2 (u, I) . (6.41)

The objective above is convex and, because I is a closed and convex set, continu-
ously differentiable with a Lipschitz continuous gradient given by ∇ dist2 (u, I) =
2 (u − PIu) (see (6.46)). The Projected Gradient Algorithm applied to this problem
follows easily.

Algorithm 6.2.6 (Projected Gradient—PG)
Initialization. Choose u0 ∈ C

n(m+1).
General Step (k = 0, 1, . . .)

uk+1 ∈ PΩ

(

uk − 1
2∇ dist2I(uk)

) ⇐⇒ uk+1 ∈ PΩPIuk

⇐⇒ yk+1 ∈ 1

m + 1

m
∑

j=0

PΩ j yk,

where uk+1
j = PΩ j yk+1.

This is not surprising since theminimization problem (6.41) is equivalent to (6.48).
To see this, note that by the definition of the distance function
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min
u∈Ω

1

2
dist2 (u, I) = min

u∈Ω
min
y∈I

1

2
‖u − y‖2 = min

u∈Ω
min
y∈Cn

1

2

m
∑

j=0

‖y − u j‖2

= min
y,u

⎧

⎨

⎩

m
∑

j=0

1

2
‖y − u j‖2

∣
∣ u j ∈ Ω j , j = 0, 1, . . . , m

⎫

⎬

⎭
.

In the convex setting, the Projected Gradient Algorithm has the advantage that it can
be accelerated [42, 43]. A Fast Projected Gradient Algorithm for problem (6.41)
looks like:

Algorithm 6.2.7 (Fast Projected Gradient—FPG)
Initialization. Chooseu0, y1 ∈ C

n(m+1) andαk = k−1
k+2 for all k = 0, 1, 2, . . . .

General Step (k = 1, 2, . . .)

uk ∈ PΩ

(

yk − 1
2∇ dist2

(

yk, I)) ,
yk+1 = uk + αk

(

uk − uk−1
)

⇐⇒
uk ∈ PΩPIyk,

yk+1 = uk + αk
(

uk − uk−1) .

There is no theory for the choice of acceleration parameter αk , k = 0, 1, 2, . . . , in
Algorithm6.2.7 for nonconvex problems, but numerical experience [25, 44] indicates
that this works pretty well. All that is missing is an explanation.

In the product space setting the best approximation problem takes the form

minimize
u∈Cn(m+1)

{
λ

2 (1 − λ)
dist2 (u, I) + ιΩ (u)

}

; (6.42)

Since there are only two functions, the proximal Douglas-Rachford or the relaxed
proximal Douglas-Rachford algorithms apply to (6.42) without any tricks:

Algorithm 6.2.8 (Relaxed Douglas-Rachford—DRλ/RAAR)
Initialization. Choose u0 ∈ C

n(m+1) and λ ∈ [0, 1].
General Step (k = 0, 1, . . .)

uk+1 ∈ λ

2

(RIRΩuk + uk
)+ (1 − λ)PΩuk . (6.43)

The relaxed Douglas-Rachford Algorithm is exactly the proximal Douglas-
Rachford algorithm applied to the problem (6.42) [22]; that is,
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1

2
(R1RΩ + Id) = λ

2
(RIRΩ + Id) + (1 − λ)PΩ,

where R1 ≡ 2 prox1, fλ (u) − u is the proximal reflector of the function fλ (u) ≡
λ

2(1−λ)
dist2 (u, I).

A different kind of relaxation to the Douglas-Rachford algorithm was recently
proposed and studied in [45]. This appears to be better thanAlgorithm6.2.8.When the
sets involved are affine, the algorithm is a convex combination of Douglas-Rachford
and Alternating Projections, but generally it takes the form

Algorithm 6.2.9 (Douglas-Rachford-Alternating-Projections)
Initialization. Choose u0 ∈ C

n(m+1) and λ ∈ [0, 1].
General Step (k = 0, 1, . . .)

uk+1 ∈ PI
(

(1 + λ)PΩuk − λuk
)− λ

(PΩuk − uk
)

. (6.44)

This algorithm is denoted by DRAP in the demonstrations below.

6.2.3 Model Category III: Smooth Nonconvex Optimization

The next algorithm, Averaged Projections, could be motivated purely from the feasi-
bility framework detailed above. But there is a more significant smooth interpretation
of this model, which motivates the smooth model class.

Algorithm 6.2.10 (Averaged Projections—AvP)
Initialization. Choose u0 ∈ C

n.
General Step (k = 0, 1, . . .)

uk+1 ∈ TAvP uk where TAvP ≡ 1

m + 1

m
∑

j=0

PΩ j .

The analysis of averaged projections for problems with this structure is covered
by the analysis of nonlinear/nonconvex gradient descent. This is classical and can
be found throughout the literature, but it is limited to guarantees of convergence to
critical points [46, 47]. For phase retrieval it is not known how to guarantee that all
critical points are global minimums, though this is a topic of intense interest at the
moment.

Although, in general, averaged projections has a slower convergence rate than its
sequential counterpart [48], there are two features that recommend thismethod. First,
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it can be run in parallel. Secondly, it appears to be more robust to problem incon-
sistency. Indeed, Averaged Projections algorithm is equivalent to gradient-based
schemes when applied to an adequate smooth and nonconvex objective function.
This well-known fact goes back to [49] when the sets Ω j , j = 0, 1, . . . , m, are
closed and convex. In particular, two very prevalent schemes are in fact equivalent
to AvP.

To see this, consider the problem of minimizing the sum of squared distances to
the sets Ω j , j = 0, 1, . . . , m, that is,

minimize
u∈Cn

f (u) ≡ 1

2 (m + 1)

m
∑

j=0

dist2
(

u,Ω j
)

. (6.45)

Since the sets Ω j , j = 0, 1, . . . , m, are nonconvex, the functions dist2
(

u,Ω j
)

are
clearly not differentiable, and hence, same for the objective function f (u). However,
in the context of phase retrieval, the sets Ω j , j = 0, 1, . . . , m, are prox-regular (i.e.
the projector onto these sets is single-valued near the sets [50]). From elementary
properties of prox-regular sets [51] it can be shown that the gradient of the squared
distance is defined and differentiable with Lipschitz continuous derivative (that is,
the corresponding Hessian) up to the boundary of Ω j , j = 0, 1, . . . , m, and points
where the coordinate elements of the vector u vanish. Indeed, for f given by (6.45)

∇ f (u) ≡ 1

m + 1

m
∑

j=0

(

Id−PΩ j

)

(u) . (6.46)

Thus, applying the gradient descent with unit stepsize to problem (6.45), one imme-
diately recovers the avareged projection algorithm.

The objective in (6.45) is as nice as one could hope for: it has full domain, is smooth
and nonegative and has the value zero at points of intersection. These kinds of models
are for obvious reasons favored in applications; unfortunately, these reasons are a
little old fashioned considering today’s mathematical technology for dealing with
nonsmooth objectives like (6.33).

Another way to approach problem (6.45) underscores connections with another
fundamental algorithmic strategy. Consider the following problem:

min
u∈Cn

f (u) ≡ 1

2

m
∑

j=0

dist2
(

u,Ω j
)

. (6.47)

Using the definition of the function dist2
(·,Ω j

)

, j = 0, 1, . . . , m, problem (6.47) is
equivalent to

min
x,u

⎧

⎨

⎩

m
∑

j=0

1

2
‖x − u j‖2

∣
∣ u j ∈ Ω j , j = 0, 1, . . . , m

⎫

⎬

⎭
, (6.48)



6 Proximal Methods for Image Processing 187

where u = (u0, u1, . . . , um) ∈ (Cn)m+1. The number of variables has now increased
(m + 1)-fold, which, for applications like ptychography starts to get worrying since
m can be large. But this is more a conceptual issue than practical.

Problem (6.48) always has an optimal solution (the objective is continuous and
the constraint is closed and bounded set, so by a theorem from Weierstrass the
minimum is attained). The optimization problem (6.48) consists of constraint sets
which are separable over the variables u j , j = 0, 1, . . . , m; this can be exploited to
divide the optimization problem into a sequence of easier subproblems. Alternating
Minimization (AM) does just this, and involves updating each variable sequentially:

Algorithm 6.2.11 (Alternating Minimization—AM)
Initialization. Choose

(

y0, u0
0, u0

1, . . . , u0
m

) ∈ (Cn)m+2.
General Step (k = 0, 1, . . .)

1. Update

yk+1 = argmin y∈Cn

m
∑

j=0

1

2
‖y − uk

j‖2 = 1

m + 1

m
∑

j=0

uk
j . (6.49)

2. For all j = 0, 1, . . . , m update (in parallel)

uk+1
j ∈ argmin u j ∈Ω j

1

2
‖u j − yk+1‖2 = PΩ j yk+1. (6.50)

By combining (6.49) and (6.50), the algorithm is written compactly as

yk+1 ∈ 1

m + 1

m
∑

j=0

PΩ j yk, (6.51)

which is just averaged projections, Algorithm 6.2.10! When m = 1, i.e., only one
image is considered, the Alternating Minimization Algorithm above coincides with
what is known as the Error Reduction Algorithm [52] in the optics community.

In [53] Marchesini studied an augmented Lagrangian approach to solving

min
ψ∈Cn

1

2n

m
∑

j=0

n
∑

i=1

(∥
∥
(D j (ψ)

)

i

∥
∥−√Ii j

)2
. (6.52)

This is a nonsmooth least-squares relaxation of problem (6.2). Generic linear least
squares problems take the form

min
y∈Cn

1

2n

m
∑

j=0

n
∑

i=1

(∥
∥
(

Fj (y)
)

i

∥
∥− bi j

)2
(6.53)
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where Fj is a linear mapping from C
n to C

n and bi j are positive scalars. When the
sets Ω j are defined by

Ω j ≡ {u ∈ C
n | ∥∥(Fj (u)

)

i

∥
∥ = bi j

}

(6.54)

and the variables y ∈ C
n and u = (u1, u2 . . . , um) ∈ C

mn with u j ∈ C
n satisfy y =

u j for each j = 1, 2, . . . , m, the resulting primal-dual/ADMM Algorithm takes the
form:

Algorithm 6.2.12 (AvP2)
Initialization. Choose any x0 ∈ C

n and ρ j > 0, j = 0, 1, . . . , m. Compute
u1

j ∈ PΩ j

(

y0
)

( j = 0, 1, . . . , m) and y1 ≡ (1/ (m + 1))
∑m

j=0 u1
j .

General Step. For each k = 1, 2, . . . generate the sequence
{(

yk,uk
)}

k=0,1,2,...
as follows:

• Compute

yk+1 = 1

m

m
∑

j=1

(

uk
j + 1

ρ j

(

yk − yk−1)
)

. (6.55)

• For each j = 1, 2, . . . , m, compute

uk+1
j = PΩ j

(

uk
j + 1

ρ j

(

2yk − yk−1
)
)

. (6.56)

This algorithm can be viewed as a smoothed/relaxed version of Algorithm 6.2.4, but,
when you look at it for the first time, the most obvious thing that jumps out at you
is that this is averaged projections with a tw-step recursion. This is why it has been
called AvP2 in [25].

The more general PHeBIE Algorithm 6.2.13 applied to the problem of blind
ptychography [54] reduces to Averaged Projections Algorithm for phase retrieval
when the illuminating field is known. To derive this method, note that for any
fixed y and u, the function u �→ F (z, y,u) given by (6.21) is continuously dif-
ferentiable and its partial gradient, ∇zF (z, y,u), is Lipschitz continuous with mod-
uli Lz (y,u). The same assumption holds for the function y �→ F (z, y,u) when z
and u are fixed. In this case, the Lipschitz moduli is denoted by L y (z,u). Define
L ′

z (y,u) ≡ max {Lz (y,u) , ηz} where ηz is an arbitrary positive number. Similarly
define L ′

y (z,u) ≡ max
{

L y (z,u) , ηy
}

where ηy is an arbitrary positive number. The
constant ηz and ηy are used to address the following issue: if the Lipschitz constants
Lz (y,u) and/or L y (z,u) are zero then one should replace them with positive num-
bers (for the sake of well-definedness of the algorithm). In practice, it is better to
chose them to be small numbers but for the analysis it can be chosen arbitrarily.
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Algorithm 6.2.13 (Proximal Heterogeneous Block Implicit-Explicit)
Initialization. Choose α,β > 1, γ > 0 and

(

z0, y0,u0
) ∈ X × O × M.

General Step (k = 0, 1, . . .)

1. Set αk = αL ′
z

(

yk,uk
)

and select

zk+1 ∈ argmin z∈X

{
〈

z − zk, ∇zF
(

zk, yk,uk
)〉+ αk

2
‖z − zk‖2

}

,

(6.57)
2. Set βk = βL ′

y

(

zk+1,uk
)

and select

yk+1 ∈ argmin y∈O

{
〈

y − yk, ∇yF
(

zk+1, yk,uk
)〉+ βk

2
‖y − yk‖2

}

,

(6.58)
3. Select

uk+1 ∈ argmin u∈M

{

F
(

zk+1, yk+1,u
)+ γ

2
‖u − uk‖2

}

. (6.59)

Algorithm 6.2.13, referred to as PHeBIE in Sect. 6.3.3, can be interpreted as a
combination of the algorithm proposed in [55] and a slight generalization of the
PALMAlgorithm [47]. In the context of blind ptychography (6.4), the block of vari-
ables y is replaced with the object ψ and the function F is the least squares objective
(6.21). A partially preconditioned version of PALM was studied in [56] for phase
retrieval, with improved performance over PALM. The regularization parameters αk

and βk , k = 0, 1, 2, . . . , are discussed in [54]. These parameters are inversely pro-
portional to the step size in Steps (6.57) and (6.58) of the algorithm. Noting that αk

and βk , k = 0, 1, 2, . . . , are directly proportional to the respective partial Lipschitz
moduli, the larger the partial Lipschitz moduli the smaller the step size, and hence
the slower the algorithm progresses.

This brings to light an advantage of blocking strategies that is discussed in
Chap.12: algorithms that exploit block structures inherent in the objective function
achieve better numerical performance by taking heterogeneous step sizes optimized
for the separate blocks. There is, however, a price to be paid in the blocking strate-
gies that are explored here: namely, they result in procedures that pass sequentially
between operations on the blocks, and as such are not immediately parallelizable. The
ptychography application is very generous in that it permits parallel computations
on highly segmented blocks.

Nonsmooth analysis can be applied to the objective in (6.53), but this is still not
main stream enough to be the stuff of normal graduate training, so it remains rather
exotic. A popular way around this, is to formulate (6.53) as a system of quadratic
equations:

∥
∥
(

Fj (u)
)

i

∥
∥
2 = b2

i j , ∀ j = 1, 2, . . . , m, ∀ i = 1, 2, . . . , n. (6.60)

http://dx.doi.org/10.1007/978-3-030-34413-9_6
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The corresponding squared least squares residual of the quadratic model is plenty
smooth:

min
u∈Cn

G (u) ≡ 1

2

m
∑

j=0

n
∑

i=1

(∥
∥
(

Fj (u)
)

i

∥
∥
2 − b2

i j

)2
. (6.61)

There is a trick from conic programming that allows you to recast a quadratic
equation on R

n as a linear equation on the space of matrices, Rn×n . The idea in the
context of phase retrieval is called phase lift. The problem here is that, though the
quadratic equation has been replaced by a linear equation (albeit in a much larger
space), the desired solution is rank 1. Even though the set of fixed rank matrices is a
manifold, it is not convex, so there is conservation of difficulty. The way around this
is to replace the rank constraint with a norm—otherwise known as convex relaxation.
The reasoning here is that, for convex problems, all local solutions are also global
solutions to the problem; so you solve your convex problem and—poof— you have
the global solution to the nonconvex problem under certain (hard to verify) condi-
tions that guarantee the correspondence of the two problems. This is attractive as
an analytical strategy, but as an algorithmic strategy it is not practical. Blumensath
and Davies [57, 58] were the first ones to ask the question whether the conditions
that guarantee correspondence of the nonconvex problem and its convex relaxation
are also sufficient to guarantee that the nonconvex problem doesn’t have any critical
points other than global minima. They answered this question in the affirmative for
the projected gradient Algorithm6.2.6 and Hesse, Luke and Neumann showed that
this is also the case for alternating projections Algorithm6.2.5 [59]. So, there is no
need to resort to convex relaxations, which is good news indeed since the phase lift
method is not implementable on standard consumer-grade architectures for any of
the Göttingen data sets.
Other methods based on the quartic objective have gained popularity in the newer
generation of phase retrieval studies in the applied mathematics community. Notable
among these are methods called Wirtinger flow. Smoothness makes the analysis
easier, but the quartic objective has almost no curvature around critical points, which
makes convergence of first order methods much slower than first order methods
applied to nonsmooth objectives. See [14, Sect. 5.2] for a discussion of this and [25]
for numerical comparisons.

Accelerations. The formulation of problem (6.45) has a fixed weight between the
various distances. An extension of this is a dynamically weighted average between
the projections to the sets Ω j , j = 0, 1, . . . , m. This idea was proposed in [14]
where it is called extended least squares. In the context of sensor localization a
similar approach was also proposed in [60] where it is called Sequential Weighted
Least Squares (SWLS). The underlying model in [14] is the negative log-likelihood
measure of the sum of squared set distances:

minimize
u∈Cn

m
∑

j=0

ln
(

dist2
(

u,Ω j
)+ c

)

, (c > 0). (6.62)
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Gradient descent applied to this objective yields what was called the Dynamically
Reweighted Averaged Projections Algorithm (DyRePr) in [25].

Algorithm 6.2.14 (Dynamically Reweighted Averaged Projections)
Initialization. Choose u0 ∈ C

n and c > 0.
General Step (k = 0, 1, . . .)

uk+1 ∈ uk −
m
∑

j=0

2
(

dist2
(

uk,Ω j
)+ c

)
(

uk − PΩ j u
k
)

. (6.63)

The smoothness of the sum of squared distances (almost everywhere) opens the
door to higher-order techniques from nonlinear optimization that accelerate the basic
gradient descent method. Quasi-Newton methods, for instance, would do the trick,
and as observed in [61], they work unexpectedly well even on nonsmooth problems.

Algorithm 6.2.15 (Limited Memory BFGS with Trust Region)

1. (Initialization) Choose η̃ > 0, ζ > 0, � ∈ {1, 2, . . . , n}, u0 ∈ C
n, and set

ν = � = 0. Compute ∇ f
(

u0
)

and ‖∇ f
(

u0
) ‖ for

f (u) ≡ 1

2 (m + 1)

m
∑

j=0

dist2
(

u,Ω j
)

, ∇ f (u) ≡ 1

m + 1

m
∑

j=0

(

Id−PΩ j

)

(u) .

2. (L-BFGS step) For each k = 0, 1, 2, . . . if � = 0 compute uk+1 by some
line search algorithm; otherwise compute

sk = − (Mk
)−1 ∇ f

(

uk
)

,

where Mk is the L-BFGS update [62], uk+1 = uk + sk , f
(

uk+1
)

, and the
predicted change (see, for instance [63]).

3. (Trust Region) If ρ
(

sk
)

< η̃, where

ρ
(

sk
) = actual change at step k

predicted change at step k
,

reduce the trust region �k , solve the trust region subproblem for a new
step sk [64], and return to the beginning of Step 2. If ρ

(

sk
) ≥ η̃ compute

uk+1 = uk + sk and f
(

uk+1
)

.
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4. (Update) Compute ∇ f
(

uk+1
)

, ‖∇ f
(

uk+1
) ‖,

yk ≡ ∇ f
(

uk+1
)− ∇ f

(

uk
)

, sk ≡ uk+1 − uk,

and sk T
yk . If sk T

yk ≤ ζ, discard the vector pair {sk−�, yk−�} from storage,
set � = max{� − 1, 0}, �k+1 = ∞, μk+1 = μk and Mk+1 = Mk (i.e. shrink

the memory and don’t update); otherwise set μk+1 = yk T
yk

sk T yk
and �k+1 = ∞,

add the vector pair {sk, yk} to storage, if � = �, discard the vector pair
{sk−�, yk−�} from storage. Update the Hessian approximation Mk+1 [62].
Set � = min{� + 1, �}, ν = ν + 1 and return to Step 1.

This looks complicated but is standard in nonlinear optimization. Convergence is
still unexplained for the limited memory implementation.

6.3 ProxToolbox—A Platform for Creative Hacking

A platform for collecting and working with data should satisfy several objectives:

• data transfer
• sharing data processing algorithms
• comparing the performance of different algorithmic approaches
• teaching
• innovation.

The ProxToolbox has been used within the Collaborative Research Center Nanoscale
Photonic Imaging (SFB 755) at the University of Göttingen for each of the points
above. It is written to be able to incorporate new problems, data, and algorithms
without abandoning the old knowledge. This type of built-in knowledge retention
requires a structure that is burdensome for single-purpose users. Most colleagues and
students prefer to cannibalize the ProxToolbox—hacking is positively encouraged.
This tutorial and the demos in the toolbox are intended to put the user on a fast track
to successfully disassembling and re-purposing the basic elements.

Our presentation of the toolbox here is without specific reference to commands
and code to prevent this tutorial from being outdated within a few months. Certain
aspects of the code will change as new applications and new features get added
to the toolbox, but what will not change is the compartmentalization of various
mathematically and computationally distinct tools.

To download the toolbox and the data go to

http://num.math.uni-goettingen.de/proxtoolbox/

Here you will find links to the Matlab and Python versions of the toolbox, along with
documentation and literature. The toolbox has the following organizational structure:
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• Nanoscale Photonic Imaging demos
• Algorithms
• ProxOperators
• Drivers/Problems

– . . .

– Phase
· Demos
· DataProcessors
· ProxOperators

– Ptychography
· Demos
· DataProcessors
· ProxOperators

– . . .

• Utilities
• InputData
• Documentation

TheNanoscale Photonic Imaging demos folder. This folder contains scripts to gen-
erate the figures shown in this tutorial. This is the rabbit you will follow down the
hole.

The Algorithms folder. This folder contains a general algorithm wrapper that loops
through the iterations calling the desired algorithm. This is exactly T in (6.26),
and the T∗ indicates which specific algorithm is run, from Algorithm 6.2.1 through
Algorithm 6.2.9. After the specific fixed point operator is applied, a specialized
iterate monitor is called. This will depend both on the problem and the algorithm
being run. The default is a generic iterate monitor that merely checks the distance
between successive iterates. By default, the stopping criterion for the fixed point
iteration is when the step between successive iterates falls below a tolerance given
by the user. But for some algorithms and some problems, this may not be the best
or most informative data about the progress of the iteration. For instance, if the
problem is a feasibility problem (6.32), then the feasibility iterate monitor not only
computes the difference between successive iterates, but also the distance between
sets (the gap) at a given iterate. In this context, a reasonable comparison between
algorithms is not the step-size, but rather between the gap achieved by different
algorithms. If one is running a Douglas-Rachford-type algorithm on a feasibility
problem, then as explained above, the iterates themselves don’t have to converge,
but their shadows, defined as the projection of the iterates onto one of the sets, will
give a good indication of convergence of some form. Still other algorithms, like
ADMM 6.2.12, generate several sequences of iterates (three in the case of ADMM),
only two of which converge nicely when everything goes well [65]. As much as
possible, the iterate monitoring is automated so that the user does not have to bother
with this. But users who are interested in algorithm development will want to pay
close attention to this.
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TheProxOperators folder. Some prox operators are generic, like a projector onto the
diagonal of a product space I (otherwise known as averaging), or the prox of the �1-
norm (soft thresholding), or the prox of the �0-function (hard thresholding). General
prox operators are stored here. These alwaysmap an input to another point in the same
space, but how they do this depends on the strucure of the input u (array, dimension,
etc.). Some problems involve prox mappings that are specific to that problem, like
Sudoku. These specific prox mappings are stored under the Problem/Drivers folder.

The Drivers/Problems folder. This is the folderwhere the specific problem instances
are stored. The problems that are of interest for this chapter are phase and ptychogra-
phy, though there are other problems, like computed tomography, sensor localization
and Sudoku. The Phase subfolder contains a general problem family handler called
“phase”. Since all phase problems have similar features, this problem handler makes
sure that all the inputs and outputs are processed in the same way. The toolbox works
through input files stored in the demos subfolder. The input files contain names of
data sets, data processors, algorithm names and parameters, and other user defined
parameters like stopping tolerances, output choices and so forth. The input filesmight
be augmented by a graphical user interface in the future. The link between the exper-
imentalist and the mathematician is through the data processor. The data processor
for the Göttingen data sets is easily identified and contains all the required parameter
values for specific experiments conducted at the Institute for Physics in Göttingen.
The data that the processor manipulates is not contained in the ProxToolbox release,
but is stored separately andmust be downloaded from the links provided on the Prox-
Toolbox homepage. Prox operators specific to phase retrieval, such as the projection
onto the intensity data (6.11), are also stored at this level.
The InputData folder. The data, which is intended to be stored or linked in the
directory “InputData”, is not included in the software toolbox in the interest of
portability. This tutorial will only cover demonstrations with the Phase datasets and
the Ptychography datasets. As these sets grow and develop, the links may change to
reflect different hosts.

The Utilities folder. This is where generic image and data manipulation tools are
stored.

6.3.1 Coffee Break

The first walk through the Toolbox is demonstrated on an image set produced by
undergraduates in Tim Salditt’s laboratory at the Institute for X-ray Physics at the
University of Göttingen. The data is the CDI intensity datafile contained in the Phase
dataset linked to the ProxToolbox homepage. There is a demonstration of the Cyclic
Projections Algorithm 6.2.1 in the folder Nanoscale Photonic Imaging demos. To
run the demonstration, just typeCoffee demo at theMatlab prompt (assumingMatlab
has the demo folder and all the data folders in its path) or python Coffee demo.py
at the shell prompt if you are working with Python. The data set presented here
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(Ii , in problem (6.2) with n = 1282) is a diffraction image of visible light shown in
Fig. 6.1a (log intensity scale). The physical parameters of the image (magnification
factor, Fresnel number, etc.) are not given, so the easiest thing to do is to assume
a perfect imaging system and expert experimentalists. The imaging model is then
just an unmodified Fourier transform, that is, far-field imaging. The object was a
real, nonnegative obstacle, supported on some patch in the object plane, so that the
qualitative constraint O is of the form (6.23). The onlyway to know that the algorithm
is converging at least to a local best approximation point is to monitor the successive
iterates and feasibility gap Fig. 6.1b–c. A small feasibility gap is not necessarily
desireable, since this also means that the noise is being faithfully recovered. For the
demonstration shown here, a low-pass filter is applied to the data since almost all
of the recoverable information about the object is contained in the low-frequency
elements. It might seem counterintuitive, but the larger the feasibility gap (i.e., the
more inconsistent the problem is), the faster the algorithm converges. In Chap. 23
this is explained. The original object was a coffee cup which the generous reader can
see if he tilts his head to the left and squints really hard (Fig. 6.1d right). When you
run the demo, don’t be surprised if your reconstruction is an upside down version of
what is shown here—this is a symptom of nonuniqueness of solutions to the phase
problem.

(b) (c)

(d)

(a)

Fig. 6.1 a Observation (log scale) from optical diffraction experiment. b Step-size and c gap size
between constraint sets versus iteraton for several algorithms [25]. d Typical recovery from the
algorithms

http://dx.doi.org/10.1007/978-3-030-34413-9_6
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6.3.2 Star Power

The next demonstration is of the reconstruction of a test object (the Siemens star)
from near field X-ray data provided by Tim Salditt’s laboratory at the Institute for
X-ray Physics at the University of Göttingen. Here the structured illumination shown
in Fig. 6.2a left is modeled byD j , j = 1, 2, . . . , m, in problem (6.3) withm = 1. The
image shown in Fig. 6.2a right is in the near field, so themappingDF in problem (6.2)
is the near-field Fresnel transform [66]. In the model (6.3) this image is represented
by Ii j , j = 1, 2, . . . , m, with m = 1. The qualitative constraint is that the object is
a pure phase object, that is, the field in the object domain has amplitude 1 at each
pixel.

A reconstruction with this data that does not take noise into account is shown
in Fig. 6.3. What is remarkable here is that if one only looks at the convergence
of the algorithms and judges by the achieved gap before termination, it appears
that the quasi-Newton accelerated average projections algorithm (QNAvP) is clearly
the best Fig. 6.3b–c. But when you look at the reconstructions Fig. 6.3a the QNAvP
reconstruction is the worst. The problem here is that the noise has also been faithfully
recovered.

In [67] a regularization strategy is proposed that blows a ball around the data (either
Euclidean or Kullback-Leibler, as appropriate) and takes any reasonable point within
the ball. The justification is that, if the data is noisy anyway, you don’t want to match

(b)

(d)

(a)

(c)

Fig. 6.2 Near field X-ray holography experiment with a Siemens test object [25]. a The empty
beam. b Observed pattern. c Initial guess for object amplitude. d Initial guess for object phase
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(a)
CP DR DRAP

AvP QNAvP

(b)

Fig. 6.3 a Reconstruction of regularized near field holography experiment with empty beam cor-
rection for the same data shown in Fig. 6.2. b Step-size and c gap between the constraint sets versus
iteration [25]

it exactly. For a more precise development of this intuition see Chap.4. Though it is
not obvious, projecting onto such fattened data sets is more expensive than projecting
onto the original noisy data. The latter is viewed as an approximate and extrapolated
projection onto the fattened set. The algorithm is terminated when the iterates are
within a tolerable distance of the data. A demonstration of this is shown in Fig. 6.4.
The theoretical justification for this strategy is quite technical, but effectively what
one is doing is running the old algorithms with early termination.

6.3.3 E Pluribus Unum

The demonstration Ptychography demo shown in Fig. 6.5 computes the probe and
object from a far-field raster scan of 676 overlapping patches of the Siemens star,
illuminated by a narrow X-ray beam. The mathematical problem is to minimize
the objective function given in (6.3). The demonstration shows how the PHeBIE
algorithm 6.2.13 does this. Since blind deconvolution has many local solutions, the
process has two phases: the first conventional phase retrieval on the data with a probe

http://dx.doi.org/10.1007/978-3-030-34413-9_6
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(a)
CP DR DRAP

AvP QNAvP

(b)

Fig. 6.4 a Reconstruction of regularized (i.e. early termination) near field holography experiment
with empty beam correction for the same data shown in Fig. 6.2a. b Step-size and c gap between
the constraint sets versus iteration

ansatz, the second phase simultaneous phase retrieval and probe determination in
what is essentially a nonlinear blind deconvolution. In the Ptychography demo the
first phase is executed with the DRλ algorithm on the product space: 676 images
of size (1922) accounting for 26 equal translations of the beam side to side and 26
equal shifts of the beam top to bottom. The second phase is executedwith the PHeBIE
algorithm starting from the last iterate of the first phase.

6.4 Last Word

One of the most rewarding things about participating in the Nanoscale Photonic
Imaging Collaborative Research Center at the University of Göttingen has been
working with scientists from different disciplines with different sensibilities and
intuition. Collaboration starts with mutual respect and an openness for new ways of
thinking about things. This has resulted in better mathematics and better science,
both grounded in real world experience but with an attention to abstract structures.
This has forced the examination of aspects of abstract models that, at first glance,
don’t seem that important, but turn out to be decisive in practice.
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(a)
Probe guess Object amp, start Object phase, start

(b)
Recon probe amplitude Recon probe (imaginary)

Recon object amp Recon object phase

(c)

Fig. 6.5 a Initial probe and warm start object initialization of a far field ptychography experiment
for the scan data. b Probe and object reconstructed by the PHeBIE algorithm 6.2.13. c Step size
and objective function values versus iteration
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