
Chapter 4
Statistical Foundations of Nanoscale
Photonic Imaging

Axel Munk, Thomas Staudt and Frank Werner

Essentially, all models are wrong, but some are useful.
— George Box

4.1 Introduction

4.1.1 Background and Examples

The term ‘photonic imaging’ describes an optical imaging setup where the available
measurement data Y are counts of detected photons. The origin of these photons
can be diverse in its nature. In coherent X-ray imaging (see e.g. Chap. 2), photons
emitted by an X-ray source (like a free electron laser) are scattered (and/or absorbed)
by a specimen. In fluorescence microscopy (see e.g. Chap.1 or Chap.7), marker
molecules are excited by an excitation pulse and emit photons with a certain proba-
bility. These two examples are characteristic for the wide range of scenarios arising
in photonic imaging: in coherent X-ray imaging we have on the one hand single-
molecule diffraction data composed of only few photons [1], and on the other hand
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holographic experiments where millions of photons can be collected from one sam-
ple [2]. In fluorescence microscopy, the number of photons is intrinsically limited
to a few hundred or thousand per marker due to bleaching effects, and in case of
temporally resolved measurements, only a handful of photons is available per time
step [3]. Similar restrictions arise in related imaging modalities, including those
based on Förster resonance energy transfer (FRET) or metal induced energy transfer
(MIET), see e.g. Chap. 8 or [4, 5] for a discussion. Although not within the context
of nanoscale imaging, statistically related is astrophysical imaging. Here, there is no
a priori limit for the observation time and hence for the number of photons. How-
ever, the former is practically limited to several minutes to avoid severe motion blur,
see e.g. [6, 7] for examples. We also mention positron emission tomography (PET),
where the total number of emitted photons should be as small as possible tominimize
the radiation dose for the patient [8]. In all of these applications, detected photons
can also originate from undesired background contributions, whose nature strongly
depends on the experimental setup, adding additional noise to the observations.

4.1.2 Purpose of the Chapter

The aim of this chapter is to give an overview over prototypical approaches to model
the data emerging in photonic imaging from a statistical point of view, based on the
physical modeling of photon observation. A sketch of the typical imaging setup we
consider is presented in Fig. 4.1.

We assume that the imaging process is described by an underlying photon
intensity λ : Ω × [0, T ] → [0,∞) at the detector interface, where Ω is the spa-
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Fig. 4.1 Sketch of the imaging process. A source emits photons that are mapped on a (binned)
detection interface Ω through the optical system. The underlying photon intensity λ(·, t) at time t ,
which is determined by the physics of the specific imaging setup, is used for statistical modeling of
the detected signal
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tial domain of observation (which can be two- or three-dimensional) and T is
the total observation time. Let us enumerate the emitted photons by 1, . . . , N and
denote their specific detection position and time by (xi , ti ) ∈ Ω × [0, T ]. For a given
(measurable) subset A ⊂ Ω and time interval I ⊂ [0, T ] we write Y (A × I ) :=
#
{
1 ≤ i ≤ N

∣∣ xi ∈ A, ti ∈ I
}
to denote the number of photons observed in A dur-

ing I . The expected number of photons detected in A × I is by definition of λ given
by

E [Y (A × I )] =
∫

I

∫

A

λ (y, t) dy dt . (4.1)

Note that this includes all detected photons, including all background contributions.
We will always assume λ ≥ 0, which ensures that the integral in (4.1) is well-defined
(however it might be ∞).

Throughout this manuscript, we will discuss statistical models for the distribution
of the observations Y , depending on the physical measurement setup. We assume
λ to be given, as deriving or estimating λ and/or other model parameters described
(implicitly) by λ is the topic of other expositions (see e.g. Chap. 5 or Chap.11).

4.1.3 Measurement Devices

Depending on the type of sensor used for photon detection, different models for
photonic imaging settings have been proposed. One commonality of all measurement
setups is that the spatial domain of observationΩ is discretized into detector regions,
so-called bins. We will assume that the detectors on all bins have identical physical
properties, andwe denote the centers of such bins by x ∈ Ξ withΞ being the set of all
bin centers. If a charge-coupled device (CCD) camera is used for detection, all bins
(the pixels of the sensor) can be observed simultaneously. This is e.g. the case inmost
coherent X-ray experiments or astrophysical imaging. PET requires a tomographic
setup consisting of several photomultiplier tubes (PMT) surrounding the patient (see
e.g. [9]). In confocal fluorescence microscopy the most widely applied detectors are
based on avalanche photodiodes, which can measure photons in one bin at a time
only. Hence, the domain of observationΩ is typically scanned by physically moving
the specimen (or detector) at a fast pace. Temporal simultaneous photons can be
measured as well, requiring a different experimental setup (see e.g. [10]).

Most photon detectors rely on the photoelectric effect. With a certain probability
(the quantumefficiency), incident photonswill release photo electrons on the detector
surface. Since single electrons cannot be detected reliably, the signal is typically
amplified by a cascade of electron multiplying systems. This introduces additional
noise due to the stochastic nature of the multiplying steps. Another complication is
the existence of dead times. The dead time of a detection device refers to the time
interval (after activation) during which it is unable to record another event. Dead
times can, for example, arise due to the necessity to recharge conductors in-between
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measurements, or due to time delays caused by analog-to-digital conversion and data
storage. Details on the statistics of different detectors can be found in [11, Cpt. 12].

4.1.4 Structure and Notation

For the remainder of this chapter we will develop and discuss models for the right
part in Fig. 4.1 with different degrees of accuracy. The model choice mainly depends
on the total number of detected photons and on the spatial and temporal dependency
structure of the randomly generated photons. We will start with the Poisson model,
which is well-known and most common for many applications. It can be derived
immediately from (4.1) under the assumption of independence, which explains its
wide use in photonic imaging (see e.g. the reviews [7, 12] and the references therein).
However, if it is necessary to count photons on small time scales, or if independence
is not given, a more refined modeling is on demand. In these situations, we turn
towards Bernoulli and Binomial models subsequently, and discuss to what extend
they are compatible with the aforementioned Poisson model. Finally we turn to the
case of large counting rates, which lead to Gaussian models based on asymptotic
normality. We discuss differences and commonalities arising from the different base
models and indicate in which situation which model should be used. This will be
linked to different examples from this book, where we argue if our assumptions are
met or not.

Let us introduce the basic notation used in this chapter. We will always assume
that any observation y is the realization of a random variable Y , andwewill denote by
P probabilities w.r.t. this random object. By E and V we will denote the expectation
and variance w.r.t. P, respectively. The letters P,B and N will denote the Poisson,
Binomial and normal distribution introduced below. Random variables will always
be denoted by capital letters X, Xi , Z etc., and if we write i.i.d. for a sequence
X1, X2, . . . of random variables, this stands for independent identically distributed.

4.2 Poisson Modeling

Suppose we have a perfect photon detector that registers the individual arrival times
of all emitted photons reaching a binwithoutmissing any.Wewill focus on describing
a single bin for the moment to avoid notational difficulties. In this situation, the total
number of collected photons often can be modeled as Poissonian. A random variable
X follows a Poisson law with parameter (intensity) μ ≥ 0, if
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P [X = j] = μ j

j ! exp (−μ) , j ∈ N0.

We write X ∼ P (μ). The following fundamental theorem about point processes
explains why the Poisson distribution often comes into play when modeling photon
counts:

Theorem 4.1 Supposewe observe a randomnumber N of photons at randomarrival
times 0 ≤ t1 < · · · < tN ≤ T such that

(a) for each choice of disjoint intervals I1, . . . , In ⊂ [0, T ], the random variables
#
{
1 ≤ k ≤ N

∣∣ tk ∈ Ii
}
, 1 ≤ i ≤ n, corresponding to the number of observed

photons during Ii are independent, and
(b) there exists some integrable function μ on [0, T ] such that for any choice 0 ≤

a < b ≤ T it holds

E
[
#
{
1 ≤ k ≤ N

∣∣ a ≤ tk ≤ b
}] =

b∫

a

μ (t) dt.

Then, for all 0 ≤ a < b ≤ T , the number of photons observed between time a
and time b is Poisson distributed with parameter

∫ b
a μ (t) dt , i.e.

#
{
1 ≤ k ≤ N

∣∣ a ≤ tk ≤ b
} ∼ P

(∫ b

a
μ (t) dt

)
.

For the proof we refer to [13, Theorem1.11.8]. In terms of probability theory,
this theorem implies that the point process X := ∑N

i=1 δti , with δt denoting the Dirac
measure at t , is a Poisson point process with intensity μ if the stated assumptions are
satisfied.

Let us discuss these assumptions. Condition (b) underlies our whole modeling
procedure as described in (4.1) and seems universally evident. Temporal indepen-
dence of the arrival times in (a) is more critical but seems (at least approximately)
reasonable in many imaging modalities where photons arise from a high-intensity
source, including coherent X-ray imaging. However, if the photons arise from fluo-
rescent markers, temporal independence can be violated due to hidden internal states
of the fluorophores, energy transfer between different fluorophores on small time
and spatial scales (e.g. FRET), or dead times of the detectors.

If temporal independence is given, then Theorem4.1 states that the number Yx,t
of collected photons within a bin Bx until time t ∈ [0, T ] can naturally be modeled
by a Poissonian random variable with intensity

∫ t
0

∫
Bx

λ (y, τ ) dy dτ . This gives rise
to the following model:
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Poisson model
Let the spatial domain of observationΩ be discretized into bins Bx with centers
x ∈ Ξ . We assume that our observations are given by a field Yt := (

Yx,t
)
x∈Ξ

of random variables such that

Yx,t ∼ P
⎛

⎝
t∫

0

∫

Bx

λ (y, τ ) dy dτ

⎞

⎠ , x ∈ Ξ, t ∈ [0, T ] (4.2)

for some intensity function λ ≥ 0.

This is the basis ofmanypopularmodels covering a variety of distinct applications.
Examples include PET (see Vardi et al. [9]), astronomy and fluorescence microscopy
(see Bertero et al. [7] or Hohage and Werner [12]), or a more subtle model for CCD
cameras due to Snyder et al. [14, 15].

Note that so far we have assumed that all arriving photons are collected by the
detector. This will however be never the case due to several physical limitations, see
Fig. 4.2.

The specific efficiency depends strongly on the setup and can vary considerably.
Additionally to different quantum efficiencies of different detectors, it might also
happen that the detector does not cover all of Ω or has some dead subregions (like
interfaces between individual elements). This causes a loss of measured photons and
hence a statistical thinning of the random variable Yx,t . In this case, the actually

detector
interface

detection
plane

bin

photo
electron

dead time

unregistered photon

registered photon

(y,t)
y

Fig. 4.2 Statistical photon thinning at the detector interface. Photons that reach the detection plane
can stay undetected due to various reasons. For example, they can fail to free a photo electron, miss
the sensitive regions of the detector bins, or arrive during the dead time caused by a previously
recorded photon
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observed random variable Ỹx,t can be written as

Ỹx,t =
Yx,t∑

i=1

Xi (4.3)

with Bernoulli random variables Xi having success probability ηi ∈ [0, 1] where
each Xi indicates if the i th photon has been detected. If, in addition, the thinning

happens identically and independently for each photon, i.e. Xi
i.i.d.∼ B (1, η), only the

parameter in the Poisson law (4.2) changes, but not its distributional structure. More
precisely, in this case it follows (see the Appendix) that

Ỹx,t ∼ P
⎛

⎝η

t∫

0

∫

Bx

λ (y, τ ) dy dτ

⎞

⎠ .

Consequently, the imperfectness of a detector (as long as the induced thinning hap-
pens independent for each photon) can be seen as a scaling of the underlying photon
intensity λ by an efficiency factor η ∈ (0, 1]. In agreement with Fig. 4.1 we can hence
assume that all physical processes causing a thinning have already been treated when
modeling λ in the following.

Besides this kind of independent thinning, a further important issue in many
imaging modalities is the dead time Δt of the employed detector. Dead times can
vary significantly depending on the type of detector, but usually are in the range of
nanoseconds. If a photon arrives at time t ∈ [0, T ), the detector will only be able to
record the next photon arriving after t + Δt . Note that whenever Δt > 0, at most
T/Δt photons can be detected during the whole measurement, which contradicts
(4.2) in the sense that P

[
Yx,T > T/Δt

] = 0 in this case. Such an upper limit on the
total number of detected photons can crucially change the distribution, which can,
e.g., be seen from the following fact proven in the appendix:

Theorem 4.2 Fix x ∈ Ξ and let I1, . . . , Im be a decomposition of [0, T ] into
disjoint intervals. Denote by Xi the number of photons observed during Ii in bin
Bx. Assume model (4.2), and suppose that X1, . . . , Xm are independent. Then the
conditional distribution given Yx,T = N of (X1, . . . , Xm) is multinomial with param-
eter N and probability vector (p1, . . . , pm) where

pi =

∫

Ii

∫

Bx

λ (y, τ ) dy dτ

T∫

0

∫

Bx

λ (y, τ ) dy dτ

.

In other words, Theorem4.2 states that, conditioning on the total number of pho-
tons, the arrival times of individual photons behave like a Bernoulli process with
intensity τ 	→ ∫

Bx
λ (y, τ ) dy. This implies that conditioning on the total number
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of photons introduces a dependency structure between the number of counts during
different time intervals. Consequently, if Δt cannot be neglected, temporal indepen-
dence is not given anymore, hence corrupting the Poisson law, and differentmodeling
approaches are needed.

4.3 Bernoulli Modeling

To measure the temporal structure of the incoming photons, counting as described
above is not sufficient. In such cases, photons are consecutively counted during
(short) time frames. We suppose that the discretization of the temporal measurement
process is refined such that temporal aggregation underlying the Poisson model is
not appropriate anymore. This is described by (equidistant) time frames, which are
consecutive intervals I1, I2, . . . , In ⊂ [0, T ] of equal length δ > 0, chosen such that
the probability to observe more than one photon in each bin Bx during any interval is
sufficiently close to 0, and separated by a waiting time ε > 0, which allows to ignore
the dead time. In this situation, the following model is a reasonable approximation:

Bernoulli model
For x ∈ Ξ and 1 ≤ i ≤ n the randomvariableYx,i indicating if a photon arrives
in bin Bx during the time interval Ii follows a Bernoulli distribution,

Yx,i ∼ B (
1, px,i

)
, (4.4)

with success probability

px,i ≈
∫

Ii

∫

Bx

λ (y, τ ) dy dτ . (4.5)

As mentioned before, the detector will hardly count all arriving photons, which
causes a statistical thinning as in (4.3). If the thinning happens independently of
the photon arrivals, we obtain Ỹx,i ∼ B (

1, η · px,i
)
with the probability η that an

incident photon is detected, which immediately follows from X · Z ∼ B (
1, pp′) if

X ∼ B (1, p) is independent of Z ∼ B (
1, p′).

In many imaging setups, it would be difficult to store the whole time series Yx,i ,
for instance due to memory limitations. Examples include fluorescence microscopy
setups like confocal, STED or 4Pi microscopy, or coherent X-ray imaging, where
millions of photons are observed in short times, whichwould require an unreasonably
fine time discretization. For other examples like SMS microscopy, however, the
temporal structure can be important (e.g. for adjusting temporal drifts, see e.g. [16,
17]) and hence most of the data of the above model has to be used. If temporal
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dependencies are less important, it is sufficient to count photon arrivals in some
interval I ⊂ [0, T ] larger than δ, i.e. to consider Yx,I := ∑

Ii⊂I Yx,i . The distribution
of Yx,I depends strongly on the temporal dependency structure of the Yx,i . In case that
they are independent and px,i ≡ px for all 1 ≤ i ≤ n, we obtain a Binomial model:

Binomial model
For x ∈ Ξ and I ⊂ [0, T ], the number of photons observed in the bin centered
at x during the time interval I is

Yx,I ∼ B (# {Ii ⊂ I } , px) (4.6)

with px,i ≡ px for all 1 ≤ i ≤ n and px,i as in (4.5).

Note that if we proceed similarly with the thinned observations Ỹx,i , we obtain
Ỹx,I ∼ B (# {Ii ⊂ I } , η px), which is the canonical thinning of (4.6), see e.g. [18].

Independence of the Yx,i is strongly connected to the photon source, as discussed
above. If ε ≥ Δt , the dead times of the detectors have no influence on the temporal
dependency structure anymore. The second assumption, px,i ≡ px for all 1 ≤ i ≤ n,
is equivalent to stationarity of the underlying photon source, which again depends
on the imaging modality. If, e.g., a freeze-dried sample is imaged sufficiently fast,
then this assumption is reasonable.

Besides temporal dependencies, the field of random variables can also have a spa-
tial dependency structure. In many modalities the random variables are independent
for different pixels or voxels x, but on sufficiently small scales some dependency can
occur, e.g., due to energy transfer between molecules.

4.3.1 Law of Small Numbers

It is a fundamental and well-known fact that a Binomial distribution can in certain
situations be approximated by a Poissonian distribution. In this section, we will
discuss how this provides a link between the initial Poisson modeling (4.2) and the
preceding Bernoulli modeling (4.6). To this end, we recall the so-called law of small
numbers, which will be stated in terms of Le Cam’s theorem [19]. For themoment we
suppress dependencies on x and consider only a single Binomial random variable,
corresponding to a fixed bin.

Theorem 4.3 (Lawof small numbers)Let X1, . . . , Xm be independent andBernoulli
distributed with success probabilities q1, . . . , qm. Then the distribution of X :=
X1 + · · · + Xm can be approximated by P (λm) with λm = −∑m

i=1 log (1 − qi ).
More precisely it holds that
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Fig. 4.3 Law of small numbers. Figure (a) shows the probabilities for a sum of 50 Bernoulli
variables with qi = 0.1 and the respective Poisson approximation with λ = −50 log(0.9) ≈ 5.
Figure (b) depicts the left hand side of (4.7) and the corresponding upper bound (right hand side
of (4.7)) of Theorem4.3 for increasing m and qi := 5/m

∞∑

k=0

∣∣∣∣P [X = k] − λk
m

k! exp (−λm)

∣∣∣∣ ≤ 2
m∑

i=1

(log (1 − qi ))
2 . (4.7)

For a textbook proof we refer to [20, Theorem5.1]. Figure4.3 visualizes the law of
small numbers. Note that the bound on the right-hand side of (4.7) can be simpli-
fied by using log (1 − x) ≤ −x , resulting in

∑m
i=1 q

2
i . We furthermore refer to [21,

Proposition4.3 and 4.4], where bounds of the supremum instead of the sum over k
on the left-hand side are given. Note that Theorem4.3 can be generalized to depen-
dent Bernoulli random variables at the price of a worse upper bound, see e.g. [20,
Theorem5.5].

A classical example for this law is the situation when qi ≡ qm for all 1 ≤ i ≤ m
and qm · m converges to some λ > 0, i.e., qm ∼ 1/m. In this case we may use
log (1 − x) ≈ −x for small x to obtainλm ≈ mqm → λ and2

∑m
i=1 (log (1 − qi ))

2 ≈
2
∑m

i=1 q
2
i = 2mq2

m ∼ 1/m → 0 as m → ∞, i.e., the Binomial distribution of X
converges rapidly to the Poisson distribution with parameter λ.

On the other hand, if the success probabilities qi ≡ q ∈ (0, 1) are fixed, the right-
hand side of (4.7) diverges. This seems intuitive, as in this situation convergence
towards a normal distribution has to be expected (cf. Sect. 4.4.1 below). This is in
line with the observation that a Poisson distribution with growing parameter λm =
−m log (1 − q) converges towards a normal distribution (cf. Sect. 4.4.2 below).

Let us now compare the two Poisson laws arising from Theorem4.3 and (4.2).
According to (4.4), our observations are Binomial random variables with success
probability

px,i ≈
∫

Ii

∫

Bx

λ (y, τ ) dy dτ ,

where we used that the probability to observe more than one photon is close to 0.
Hence, if we denote the largest time in Im by tm , and use again log (1 − x) ≈ −x ,
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then the number of photons observed until time tm is approximately Poisson dis-
tributed with parameter λx,m = px,1 + · · · + px,m ≈ ∫ tm

0

∫
Bx

λ (y, τ ) dy dτ ignoring
the waiting times. This is in good agreement with (4.2). According to (4.7), the error
in this approximation is bounded by

2
m∑

i=1

(
log

(
1 − px,i

))2 ≤ 2λx,m max
1≤i≤m

px,i ≤ C max
1≤i≤m

|Ii | ,

revealing it valid whenever the temporal discretization is sufficiently fine.

4.4 Gaussian Modeling

4.4.1 As Approximation of the Binomial Model

Besides the approximation by a Poisson distribution, it is well-known that a Binomial
model can also be approximated by a Gaussian one under suitable circumstances.
Let us start with the Bernoulli model (4.4) and suppose that all Yx,i are independent
with px,i ≡ px. If we are interested in the total number of counts Yx := ∑n

i=1 Yx,i in
bin x, the de Moivre-Laplace theorem states that

Yx − npx√
npx (1 − px)

−→ Z as n → ∞ (4.8)

in distribution, where Z ∼ N (0, 1) follows a standard normal distribution. Note
that Yx−npx√

npx(1−px)
is just the centered and standardized version of the total number of

counts Yx. This implies that the distribution of Yx can be approximated by a Gaussian
distribution with mean npx and variance npx (1 − px) if n is sufficiently large. This
gives rise to a first Gaussian model:

Gaussian model I
For each x ∈ Ξ , the number of photons observed in the bin centered at x up to
time T is

Yx ∼ N (npx, npx (1 − px)) (4.9)

where n = n(T ) ∼ T/δ with the length δ of the individual time frames.

The rate of convergence in (4.8) can be made more precise. For instance a special
case of the Berry-Esseen theorem states
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sup
y∈R

∣∣∣∣P
[

Yx − npx√
npx (1 − px)

≤ y

]
− Φ(y)

∣∣∣∣ <

√
10 + 3

6
√
2π

p2x + (1 − px)
2

√
npx (1 − px)

(4.10)

where Φ denotes the distribution function of N (0, 1), i.e.,

Φ(y) = 1√
2π

∫ y

−∞
exp

(
− x2

2

)
dx .

In fact, the constant on the right-hand side of (4.10) cannot be improved [22]. An
interpretation of this theorem is that the approximation leading to the model (4.9) is
reasonable as soon as npx (1 − px) > 9, which implies the right-hand side of (4.10)
to be bounded by

√
10+3

18
√
2π

≈ 0.137.
If the success probabilities px,i do vary in i , the de Moivre-Laplace theorem (4.8)

cannot be applied immediately. However, it is still possible, under certain conditions,
to derive an approximateGaussianmodel of the form (4.9) by applying the Lindeberg
central limit theorem (see e.g. [23]). It states that the sum Yx, after centralization and
standardization, still converges to N (0, 1) in distribution even for non identically
distributed Yx,i . This motivates a second Gaussian model:

Gaussian model II
For each x ∈ Ξ , the number of photons observed in the bin centered at x up to
time T is

Yx ∼ N
(

n∑

i=1

px,i ,
n∑

i=1

px,i
(
1 − px,i

)
)

. (4.11)

Note that, if the random variables Yx,i are dependent, the type of dependency very
much determines whether a central limit theorem is still valid (with different limiting
variance), see e.g. [24] or [25–27] for mixing sequences, and [28] for martingale
difference sequences, to mention two large classes of examples.

4.4.2 As Approximation of the Poisson Model

The Poisson model in (4.2) can also be approximated by a Gaussian one. This relies
on the fact that the Poisson distribution is infinitely divisible, which means that
whenever X ∼ Poi (μ), then X can be represented as X = X1 + · · · + Xn for any n ∈
N with i.i.d. random variables X1, . . . , Xn ∼ Poi (μ/n). Consequently, the central
limit theorem states that

X − μ√
μ

−→ Z , as μ → ∞
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with Z ∼ N (0, 1). The general Berry-Esseen theorem can also be used to bound the
error of an approximation of X−μ√

μ
by Z , namely one obtains (see also [29])

sup
y∈R

∣∣∣∣P
[
X − μ√

μ
≤ y

]
− Φ(y)

∣∣∣∣ <
5

2

1√
μ

. (4.12)

Hence, if μ is sufficiently large, the distribution of X can be approximated by
a Gaussian distribution with mean and variance μ. If we suppose that Yx,t satisfies
(4.2) and that

∫ t
0

∫
Bx

λ (y, τ ) dy dτ → ∞ as t → ∞, then the above reasoning gives
rise to another Gaussian model:

Gaussian model III
For each x ∈ Ξ , the number of photons observed in the bin centered at x up to
time t is

Yx,t ∼ N
⎛

⎝
t∫

0

∫

Bx

λ (y, τ ) dy dτ ,

t∫

0

∫

Bx

λ (y, τ ) dy dτ

⎞

⎠ . (4.13)

4.4.3 Comparison

Let us briefly compare the Gaussian models I-III in (4.9), (4.11) and (4.13) respec-
tively. It is clear that (4.11) is a generalization of (4.9) to the case of non-identical
success probabilities px,i , and both coincide if px,i is independent of i . To com-
pare (4.11) with (4.13), we recall our previous computation that px,1 + · · · + px,n =∫ tn
0

∫
Bx

λ (y, τ ) dy dτ → ∞ where tn is the largest time in the sub-interval In . Con-
sequently, (4.11) and (4.13) differ only in the variance by 1 − px,i , which is usually
small. Hence, all three Gaussian models are in good agreement, and (4.13) can be
considered the most simple one which should be used.

4.4.4 Thinning

Taking into account the detection efficiency η ∈ [0, 1] as discussed before, we will
arrive at models similar to (4.9), (4.11) and (4.13) with the only difference being that
px, px,i or λ are multiplied by η. In this sense, the canonical thinning of the Poisson
or Binomial models carries over to the Gaussian one.
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4.4.5 Variance Stabilization

Note that the variance in the Gaussian models I-III is always inhomogeneous, which
hinders data analysis with standard methods and causes further difficulties. This can
be overcome by variance stabilization. The most popular choice is the celebrated
Anscombe transform, which is applied to the Poisson model (4.2) to obtain asymp-
totically a normal distribution with variance 1. It is based on the following result (see
e.g. [30, Lemma 1]):

Lemma 4.1 (Anscombe’s transform) Let μ > 0 and Y ∼ P (μ) be a Poisson dis-
tributed random variable. Then it holds for all c ≥ 0 that

E

[
2
√
Y + c

]
= 2

√
μ + 4c − 1

4
√

μ
+ O

(
1

μ
3
2

)

,

V

[
2
√
Y + c

]
= 1 + 3 − 8c

8μ
+ O

(
1

μ2

)
.

From this we can conclude that the choice c = 3/8 ensures that the variance of
2
√
Y + c does no longer depend on the parameter μ up to second order. To reduce

the bias, c = 1/4 is the best choice. Furthermore, applying this result to the Poisson
model in (4.2) gives rise to a fourth Gaussian model:

Gaussian model IV
For each x ∈ Ξ , denote the number of photons observed in the bin centered at
x up to time t by Yx,t . Then we assume

2

√

Yx,t + 3

8
∼ N

⎛

⎜
⎝2

⎛

⎝
t∫

0

∫

Bx

λ (y, τ ) dy dτ

⎞

⎠

1/2

, 1

⎞

⎟
⎠ (4.14)

for each x ∈ Ξ .

We emphasize the importance of the model (4.14) in statistics, as it turns out to
be equivalent in a strict sense to the previously discussed Poisson model (4.2) as the
total number of photons (and hence the parameter t) tends to ∞ (see e.g. [31–33]).

4.5 Conclusion

In this chapter we introduced models for photonic imaging setups with different
degrees of accuracy. The most common and basic Poisson model (4.2) is accurate as
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soon as the temporal dependency can be neglected and the detector has no significant
dead time. If furthermore the number of observed photons is sufficiently large on
each bin, then the Gaussian model (4.13) can be used. In case of significant temporal
dependency, the Bernoulli model (4.4) with time resolved individual photon arrivals
or the resulting Binomial model (4.6) should be considered instead.

An overview about appropriate model choices for the various imaging techniques
discussed previously is provided in Fig. 4.4.

In fluorescence microscopy, STED based methods, which scan the sample pix-
elwise, record about 10–100 photons per fluorescent marker. Due to low temporal
dependencies, we are thus in the scope of the binomial or Poisson models [3]. Even
though a Gaussian approximation seems questionable as in regions of low intensities
only a few photons per bin can be collected, it has been successfully applied employ-
ing variance stabilizing techniques [34]. In order to analyze STORM/PALM data,
the full range of modeling approaches is applied. Individual frames contain spots
with single or several photons and weak temporal dependency, calling for Bernoulli,
binomial, or Poisson models, while Gaussian approximations are used successfully
for drift and rotational corrections [17]. FRET/MIET based imaging heavily relies
on the interactions of fluorescent markers, so that the assumption of temporal inde-
pendence is violated. This makes the Bernoulli model the model of choice, or if more
photons are counted, also the Binomial model can be applied [4, 5].

Another example in the scope of the Bernoulli model is the 3-photon correlation
technique (see e.g. Chap.16), where molecular structures are probed by femtosecond
X-ray pulses. This leads to a high number of images consisting of a few photons

Fig. 4.4 Overview over viable model choices for different imaging methods. Projects of the SFB
755 associated to the respective methods are marked in gray

http://dx.doi.org/10.1007/978-3-030-34413-9_16
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only, out of which only triples are used. Inference based on this sequence of images
is additionally complicated by rotations of the single target molecules [1].

X-ray diffraction imaging also allows for a whole range of models. On first glance
it seems that a Gaussian model is sufficient, as in total millions of photons are
collected. However, depending on the specific setup, the photon intensity λmay vary
strongly over the detection region. If imaging is performed in a near-field regime, as
e.g. in many X-ray microscopy setups, the number of photons in the lower intensity
regions is about one order of magnitude lower than in the high intensity regions,
allowing for a Gaussian model. In contrast to this are far field methods where on
high intensity bins 104 photons can be collected, but in low intensity regions only a
handful of photons arrives, revealing a Binomial and/or Poisson model more suitable
[12].

Acknowledgements We are grateful to SimonMaretzke, Tim Salditt and Britta Vinçon for several
helpful comments.

Appendix: Poisson Thinning

Let μ > 0, η ∈ (0, 1) and suppose Y ∼ P (μ), X1, X2, . . . ∼ B (1, η) independent.
The η-thinning of Y is defined as

Ỹ :=
Y∑

i=1

Xi .

Wewill now show that the distribution of Ỹ is still Poissonian, but with parameter
η · μ. To this end, observe that the probability of Ỹ being k is given by the sum over
all probabilities of Y being l and exactly k out of the first l Xi ’s being 1, i.e.

P

[
Ỹ = k

]
=

∞∑

l=k

P

[

Y = l,
l∑

i=1

Xi = k

]

=
∞∑

l=k

P [Y = l]P

[
l∑

i=1

Xi = k

]

by independence. Inserting thePoissondistributionofY and theBinomial distribution
of
∑l

i=1 Xi gives
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P

[
Ỹ = k

]
=

∞∑

l=k

μl

l! exp (−μ)

(
l

k

)
ηk (1 − η)l−k

= exp (−μ)

k! (ημ)k
∞∑

l=k

(μ (1 − η))l−k

(l − k)!

= exp (−μ)

k! (ημ)k exp (μ (1 − η))

= (ημ)k

k! exp (−μη) ,

which proves Ỹ ∼ P (ημ).

Appendix: Conditioned Poisson Processes

Suppose we observe a random number N of photons at random arrival times 0 ≤
t1 < · · · < tN ≤ T such that the number of photons between time a and time b is
Poisson distributed with parameter

∫ b
a μ (t) dt for a fixed function μ ≥ 0. Given a

decomposition of [0, T ] into disjoint intervals I1, . . . , Im , denote by

Yi := #
{
1 ≤ j ≤ N

∣∣ t j ∈ Ii
}
, 1 ≤ i ≤ m

the number of photons observed during Ii . Assume furthermore that Y1, . . . ,Ym are
independent. We will now show that the conditional distribution given N = n of
(Y1, . . . ,Ym) is multinomial with parameter n and probability vector (p1, . . . , pm)

where

pi =

∫

Ii

μ (t) dt

T∫

0
μ (t) dt

.

Therefore let n1, . . . , nm ∈ N0 such that
∑m

i=1 ni = n. Then we have

P
[
Y1 = n1, . . . , Ym = nm

∣∣ N = n
] = P [Y1 = n1, . . . , Ym = nm , N = n]

P [N = n]

=

m∏

i=1
exp

(
− ∫

Ii
μ (t) dt

)
1
ni !

(∫
Ii

μ (t) dt
)ni

exp
(
− ∫ T

0 μ (t) dt
)

1
n!
(∫ T

0 μ (t) dt
)n

= n!
m∏

i=1

pnii
ni !

which proves the claim.
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