
Chapter 9
Accelerator Operations

M. Lamont, J. Wenninger, R. Steinhagen, R. Tomás García, R. Garoby,
R. W. Assmann, O. Brüning, M. Hostettler, and H. Damerau

9.1 Introduction

M. Lamont

The cost of building a particle accelerator is a major capital investment. Commis-
sioning should be swift and the subsequent exploitation of a facility must provide
an effective return. This return may be difficult to quantify unambiguously but
generally acceptable measures of performance can be established. These measures
might include: machine availability; integrated luminosity; protons on target; beam
hours to users and so on.

The role of accelerator operations is to maximize the performance of an acceler-
ator or accelerator complex by: minimizing downtime; maximizing the amount of
beam delivered to the users; fully optimizing the quality of beam delivered to the
users; and doing it all safely.

Accelerators and the control of particles beams have advanced considerably over
recent years. There is deep understanding of particle dynamics, innovative measure-
ment techniques, in-depth simulation and modelling, and widespread leverage of

Coordinated by M. Lamont.

M. Lamont (�) · J. Wenninger · R. Steinhagen · R. Tomás García · R. Garoby · R. W. Assmann ·
O. Brüning · M. Hostettler · H. Damerau
CERN (European Organization for Nuclear Research), Meyrin, Genève, Switzerland
e-mail: Mike.Lamont@cern.ch

© The Author(s) 2020
S. Myers, H. Schopper (eds.), Particle Physics Reference Library,
https://doi.org/10.1007/978-3-030-34245-6_9

519

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-34245-6_9&domain=pdf
mailto:Mike.Lamont@cern.ch
https://doi.org/10.1007/978-3-030-34245-6_9


520 M. Lamont et al.

twenty-first century technology. It is not possible to go into too much depth here,
instead some fundamentals that have been established from experience are outlined.
References are given to more detailed sources. Some key operational considerations
are outlined below and addressed in more detail in this chapter.

• Availability Accelerators are complex and their operations demands interfacing
to a wide number of systems. Some these may be regarded as technical services
e.g. cooling; cryogenics; electricity distribution. Others will have a more direct
relationship with beam based operation e.g. power converters; radio frequency
systems; beam instrumentation. One main challenge is to maintain the facility
in a operable state for the maximum amount of time. Preventative maintenance,
consolidation, fault tracking and fast problem resolution are required. In larger
complexes there can be a chain of dependencies from sources, linacs and so
on. Availability will be the cross product of the whole chain and associated
primary services. Mean time between failure of essential components have to
be evaluated at the design stage and appropriate component reliability assured.
An effective fault tracking system is essential to identify weaknesses and targets
for improvement.

• Reproducibility One key operational driver is reproducibility. In terms of the
magnetic machine this implies careful attention to the powering history via a
well defined pre-cycling strategy in a collider or careful cycle configuration in a
fast cycling machine. A on-line measurement of the dipole field in a dedicated
reference magnet system may be required. Reproducibility and stability of
orbit can be critical for a number of reasons including guaranteeing collimator
hierarchy or available aperture. Reproducibility of machine settings is to be
expected and must be guaranteed.

• Control The control system will act as the primary interface to the accelerator
systems and provide the means to communicate with a sub-system components.
It will also provide high level facilities for driving the accelerator through its duty
cycle. Although sometimes taken for granted, poorly designed controls can have
a debilitating effect on the operability of an accelerator. Careful evaluation of the
requirements and sufficient resources for development are required. Flexibility is
required for commissioning and machine studies; access to control functionality
and measurements for non-standard development should be considered.

• Instrumentation Effective beam instrumentation underpins control, optimiza-
tion and understanding. The importance of well specified, reliable, accurate
systems with appropriate acquisition systems and software cannot be understated.

• Optimization and stability The high performance demanded of modern
machines can demand operating within tight parameter envelopes. Appropriate
flexibility and precision in parameter control should be anticipated. Feedback
systems for control of the key beam parameters can become mandatory. These
could range from orbit and tune to transverse feedback systems. Harnessing
modern technology and techniques is vital and again, expert resources must be
given over to ensuring appropriate solutions. Commissioning these systems early
in the lifetime of a machine should be a priority.
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• Understanding Accelerator operations offers almost infinite possibilities for
empirical tweaking as a way around problems. There is no substitute for building
up real understanding of the key properties of a machine. These might include
aperture, optics, instabilities, beam losses, beam and luminosity lifetimes. Good
control and instrumentation are the tools of this trade and their importance is
again stressed.

• Safety High energy and high power machines bring with them a number of
risks. These risks have to be properly understood and protected against. For a
complex machine the process of understanding the risks and their, sometimes,
subtle interplay can be a painstaking process. Failure to perform this process
properly can prove costly.

9.2 Parameter Control

M. Lamont

The high level control system shall provide the following functionality:

• monitoring, recording and logging of accelerator status and process parameters;
• display of operator information regarding the accelerator status and beam

parameters;
• operational settings management should provide facilities for the settings

changes of all individual equipment systems; all settings changes shall be
recorded, with simple-to-use roll-back possibilities;

• automatic process control and sequence control during all beam related modes
of operation and covering all operational scenarios i.e. control within normal
operating limits;

• prevention of automatic or manual control actions which might initiate a hazard;
• detection of the onset of a hazard and automatic hazard termination (e.g. dump

the beam), or mitigation (e.g. establish control within safe operating limits).

In particular, control of the key beam parameters is vital to maintain good beam
lifetime and minimize beam loss at all stages of operation. A general operational
principle is to effect control at the appropriate level. Thus high level parameters such
tune, chromaticity, synchrotron tune, bucket area, phase advance should used where
appropriate. Software provides the appropriate translation to lower level hardware
parameters such as current and voltage. The results of more complex beam dynamics
analyses such as beta beating measurement and correction or the measurement and
correction of non-linear effects have also to be incorporated in a sensible way into
the machine settings.
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9.2.1 Magnetic Elements

For a given machine configuration, optics programs are generally used off-line to
generate the baseline settings in normalized strength for magnetic elements. These
strengths should be imported into the settings management system and be amenable
to adjustment as required. The required beam momentum is used to calculate the
field or gradient required in a magnet or series of magnets.

For example, the required quadrupole gradient given a normalized quadrupole
strength is calculated via Eq. (9.1).

k2 = e

p

dBz

dx
= 1

Bρ

dBz

dx
. (9.1)

Given a required field or gradient in a magnet circuit the next challenge is to
establish the required current to be supplied to the circuit. The two forms of Eq. (9.1)
reflect the two main approaches to the challenge of conversion from required field
or gradient to current.

The first approach depends on precise knowledge of the instantaneous total
bending field in a synchrotron. This information can be obtained from a closed-loop
measurement system, which generates and distributes a train of impulses (“B-
train”) representing the field in a reference unit powered in series with the machine,
or by a mathematical field model (“synthetic B-train”) possibly supplemented by
off-line measurements. The real-time measurements of the main dipole field are
then distributed to the power supply front-ends which perform a conversion from
required gradient to current. Several major uncertainty sources apply in these cases,
namely: temperature drifts, hysteresis behaviour in the iron, eddy current effects,
material ageing [1].

An alternative, used at LEP and the LHC, is an off-line approach. Here look-
up tables (gradient/field versus current) are pre-generated and used directly in the
calculation of magnet currents, usually at the higher level of the control system. The
LHC developed a semi-empirical model (“FiDeL” [2]) to generate the look-up tables
and a description of the dynamic behaviour of multipole field errors. This model was
based on a large database of test results which included all magnetic elements. The
measurements were statistically analysed to extract model parameters. The required
momentum is the taken as the driving parameter in the settings generation software;
the current in all magnetic circuits is then given by pushing the required fields and
gradients through the look-up tables.

9.2.2 Transverse Beam Parameters

Tune adjustment can be made using either the main quadrupoles circuits or
dedicated trim quadrupole circuits. In the linear approximation it is straightforward
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to pre-calculate the coefficients relating strength changes to a given tune change.
The key point here is to have on-line a rapid and easily available conversion between
a beam parameter, magnet strength and ultimately power supply current. Once
established the method can be used by on-line, off-line and real-time software.

The coefficients can either be established from standard definitions involving
Twiss parameters or by pre-calculating the corresponding coefficients using, say,
MADX, and use them with appropriate linear scaling to calculate the required
changes in quadrupole strengths. The same arguments hold for all other commonly
used operational parameters.

For chromaticity a matrix equation can be formed for the required change in
sextupole strength given a desired change in chromaticity. Operationally the matrix
coefficients can be pre-calculated either via the standard integrals or a machine
model and then used on-line. Different sextupole families are often used in colliders
to target different sources of chromaticity. Correction algorithms can be configured
to weight different families as required.

Correction of the coupling can be important for machine performance and beam
diagnostics. Sources of coupling include: tilted quadrupoles; solenoid fields; and
vertical orbit deviations in sextupoles. Anticipating these sources at the design
stage ensures that appropriately placed families of skew quadrupoles can be
used to correct all sources of coupling. In principle the coupling generated by
experimental solenoids and its correction can be pre-calculated. Correction of
coupling from random sources in the machine can either be performed empirically
or by compensating the coupling driving terms extracted from multi-turn BPM
measurements. Knobs to correct the real and imaginary part of the coupling driving
terms should be anticipated.

An effective method of measuring coupling is required. Methods range from
measurements of the cross-plane tune amplitudes; the closest tune approach; mea-
suring the cross-plane effects of beam excitation. More sophisticated measurement
techniques can identified local sources of coupling and local correction may be
possible if dedicated elements are available e.g. correction of coupling arising from
tilts of the inner triplet magnets in the LHC. On-line methods using the transverse
damper in AC-dipole mode to obtain spectral data around ring have provided
automatic on-line correction of the real and imaginary parts of the coupling in the
LHC.

The principles of orbit correction are described later in this chapter. Orbit dipole
kicks should be treated as a parameter like any other. Thus

θi = �B�s

Bρ

∣
∣
∣
∣
i

(9.2)

where θi is an orbit kick at a location si would slot into a settings management
system in a consistent way, along with the use of orbit correctors in predefined local
bumps and the like.
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9.2.3 Generalization

The parameter space of a particle accelerator can be complex and large and might
include the parameters such as tune, chromaticity and orbit but also others such as:
Landau damping octupoles; bunch length control with wigglers; compensation of
eddy current effects; higher order multipole correction with dedicated magnets etc.
In a machine with an energy ramp these parameters and required corrections will be
a function of time.

It should be easy to define combinations of parameters to give other higher level
parameters (a “knob” in CERN parlance). These knobs can be then manipulated to
control the ensemble. A simple example is a closed orbit bump. A more sophis-
ticated example would be an optics correction which could include quadrupole
strength adjustments and tune compensation.

Reliable settings management is mandatory. Generic tools for tracking all
changes to settings should be deployed providing a full record of all settings
changes. Archive and roll back facilities are essential. It is important that all
parameter control be dealt within the same parameter and settings management
system.

Besides the provision of tools for standard operations, the requirements of
machine studies and commissioning should be borne in mind. Exploiting the
machine in study mode often required non-standard measurements and non-standard
control actions on accelerator hardware. An appropriate scripting environment
(e.g. Python) with interfaces to control system functionality should allow the user
to fully exploit the potential of the hardware and control system in a flexible
and experimental way. Many of the tools thus developed can subsequently be
incorporated into the standard operational environment. At the LHC this has
included, for example, tools for beta beating measurement and correction, detection
and logging of beam instabilities etc.

9.3 Orbit Correction

J. Wenninger

The main role of orbit correction is to centre the trajectory (in a transfer line) or
the closed orbit (in a ring) inside the aperture or the magnetic elements, typically
quadrupoles or wiggler magnets. This is usually achieved using global correction
algorithms acting on all or a large part of the accelerator. In some cases local
excursions may be desired, requiring the use of local ‘bumps’ of the orbit or
trajectory.
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9.3.1 Global Orbit Correction

Consider a storage ring with M beam position monitors (BPM) and N correctors.
Orbit displacements �d (M-component vector) arising from corrector kick angles �θ
(N-component vector) are determined by the M × N linear response matrix A,

A�θ = �d , (9.3)

Amn =
√

βmβn

2 sin πν
cos (|φm − φn| − πν) . (9.4)

The elements of A may be obtained from the machine model or be determined
experimentally by measuring the deviation at each BPM resulting from exciting
each corrector individually.

The task of the orbit correction is to find a set of corrector kicks �θ that satisfy the
following relation,

�d + A�θ = 0 . (9.5)

In general the number of BPMs (M) and the number of correctors (N) are not
identical and Eq. (9.5) is either over- (M > N) or under-constrained (M < N).
In the former and most frequent case, Eq. (9.5) can not be solved exactly. Instead,
an approximate solution must be found, and commonly used least square algorithms
minimize the quadratic residual

S = ‖�d + A�θ‖2 . (9.6)

9.3.2 SVD Algorithm

When M ≥ N , the Singular Value Decomposition (SVD) [3] of matrix A has the
form A = UWVt ,
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. (9.7)

U is the M × N matrix whose column vectors �u(α), (α = 1, . . . , N) form
an orthonormal set, UtU = I. W is N × N diagonal matrix with non-negative
elements. Vt is the transpose of the N × N matrix V, whose column vectors
�v(α), (α = 1, . . . , N) form an orthonormal set, VtV = VVt = I.
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From Eq.(9.7), it follows that (α = 1, . . . , N),

A�v(α) = wα �u(α), At �u(α) = wα �v(α), (9.8)

and

AAt �u(α) = w2
α �u(α), AtA�v(α) = w2

α �v(α). (9.9)

When none of the diagonal elements wα vanish, the solution of Eq.(9.5) is �θ =
−VW−1Ut �d . �d may be expanded in terms of eigenvectors �u(α) [4],

�d =
N

∑

α=1

Cα �u(α) + �d0 , (9.10)

where Cα = �d · �u(α), while �d0 corresponds to the uncorrectable part of the orbit.
The corrector strength required for correction is

�θ = −
N

∑

α=1

Cα

wα

�v(α) . (9.11)

If a given wα = 0 indicating that the matrix is singular, one discards the
corresponding term from Eq. (9.11). An example for an eigenvalue spectrum is
given in Fig. 9.1 for LEP.

In practice one may want to limit the number of eigenvalues used for the
correction to control the r.m.s. strength of the orbit correctors or to avoid small
eigenvalues that are very sensitive to the accuracy of the model.
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Fig. 9.1 Vertical orbit eigenvalue spectrum for LEP. The last four eigenvalues correspond to
singular solutions in the low-beta sections around the interaction points
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The SVD algorithm is ideally suited for feedback application since the correction
can be cast in the simple form of a matrix multiplication once the SVD decomposi-
tion has been performed. This provides a fast and reliable correction procedure for
realtime orbit feedback.

9.3.3 MICADO Algorithm

MICADO [5] is a least square correction algorithm based on Householder trans-
formations. MICADO performs an iterative search for the most effective corrector
and is, together with SVD, one of the most common orbit correction algorithms.
For a non-singular matrix, a MICADO correction with all N correctors and an SVD
correction with all N eigenvectors yield identical solutions. For corrections with
a limited number of correctors or eigenvectors, and for singular matrices, the two
algorithms converge differently.

A major difference between SVD and MICADO is the corrector strength
distribution, MICADO using fewer but also much stronger kicks. The corrector
strength r.m.s. can be easily controlled with SVD over the number of eigenvalues
that are included in a correction. A correction of a small number of localized kicks
is very effectively handled by MICADO, particularly when the response matrix
is accurate, in which case MICADO can be used to identify the sources of the
kicks. On the other hand, corrections based on few eigenvectors with the largest
eigenvalues are similar to corrections of the main harmonics. Such a scheme spreads
out the correction of a few kicks over the whole machine which can be an asset
when the strength of correctors is limited. To compensate an isolated kick locally, a
large number of eigenvectors must be included in the correction such that the linear
combination forming �θc converges to a single nonzero corrector.

Singularities of the response matrix, associated to very small eigenvalues, are
handled more easily with SVD, since it is sufficient to avoid using the corresponding
eigenvectors in the corrections procedure. For the MICADO algorithm, it is
necessary to regularize matrix A by removing redundant correctors.

9.3.4 Local Orbit Bumps

A local bump may be build from three correctors with deflections θ1,2,3 at locations
1, 2, 3. The deflections may be expressed in terms of the lattice parameters,

θ2

θ1
= −

√

β1

β2

sin(φ3 − φ1)

sin(φ3 − φ2)
,

θ3

θ1
= −

√

β1

β3

sin(φ2 − φ1)

sin(φ2 − φ3)
.

(9.12)
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At a target point t between 1 and 2, the position and angular displacements are

dt = θ1
√

β1βt sin(φt − φ1) ,

d ′
t = θ1

√

β1

βt

[

cos (φt − φ1) − αt sin (φt − φ1)
]

.

(9.13)

At a point t between 2 and 3,

dt = θ3
√

β3βt sin (φ3 − φt) ,

d ′
t = − θ3

√

β3

βt

[

cos (φ3 − φt) + αt sin (φ3 − φt )
]

.

(9.14)

To control both position dt and angle d ′
t at the source point, a four-magnet local

bump is required. The four-magnet local bump with corrector locations 1, 2, 3, 4,
where the source point t is located between correctors 2 and 3 is given in terms of
optics functions by:

θ1 = dt (cos(φt − φ2) − αt sin(φt − φ2))√
βtβ1 sin(φ2 − φ1)

− d ′
t

√
βt/β1 sin(φt − φ2)

sin(φ2 − φ1)
,

θ2 = −dt (cos(φt − φ1) − αt sin(φt − φ1))√
βtβ2 sin(φ2 − φ1)

+ d ′
t

√
βt/β2 sin(φt − φ1)

sin(φ2 − φ1)
,

θ3 = −dt (cos(φ4 − φt ) − αt sin(φt − φ4))√
βtβ3 sin(φ4 − φ3)

+ d ′
t

√
βt/β3 sin(φt − φ4)

sin(φ4 − φ3)
,

θ4 = dt (cos(φ3 − φt) − αt sin(φt − φ3))√
βtβ4 sin(φ4 − φ3)

− d ′
t

√
βt/β4 sin(φt − φ2)

sin(φ4 − φ3)
.

(9.15)

9.3.5 Software

To be operationally useful the above algorithms must be fully integrated into
application software. The software should typically provide the following function-
ality:

• an interface to orbit and trajectory acquisition system;
• the ability to compare measured orbits with saved references;
• the ability to calculate orbit corrections with a range of correction strategies

(correction algorithm, number of correctors, number of eigenvalues) and send
resulting correction to the machine;

• the ability to introduced a fully configurable local bump into the machine;
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• facilities for dispersion measurement, harmonic analysis, energy offset analysis;
• facilities for threading, averaging and correction of the first N turns, injection

point correction;
• multi-turn capture and analysis facilities.

9.4 Beam Feedback Systems

R. Steinhagen

The domain of control system design is too vast to be comprehensively and
briefly covered and thus this section focuses only on the key aspects that are
applicable to accelerator control. The inclined reader is referred for a more detailed
introduction to [6]. One distinguishes two paradigms that are used to drive and
stabilise any given beam parameter:

• Feed-Forward which relies on the knowledge of the transfer function between
beam parameter, required current and corresponding effective magnetic field,
and essentially consists of inverting the scalar or matrix relations discussed
in Sect. 9.3, and for matrices most commonly done using a Singular-Value-
Decomposition based approach[7]. While this scheme is often sufficient, its
intrinsic weakness of being limited by inaccuracies of the magnet’s transfer
function, dynamic field effects such as e.g. the decay- and snapback phenomenon
in superconducting magnets and random external perturbations may lead to a
potentially out-of-tolerance systematic error �ε = 1 − ε, which is illustrated as
a difference between the reference and actual beam process variable in Fig. 9.2a.
Still, this type of control is suitable for many beam parameters such as the beam
momentum where the magnet and RF transfer functions involved are typically
known on the 0.1% level.

• Feedback may be used in case the beam parameter model is insufficient (due
to, for example, multiple dependencies or random perturbations) and at the
same time the parameter deviations being accessible by beam instrumentation
or diagnostics methods. In this case, the corresponding measurements can either
be used to: (a) improve the knowledge of the beam parameter to magnetic
field to current transfer function (feed-forward scheme), or (b) to ‘feed back’
part of the measured value into the reference that is send to the magnets or
RF systems. In this case the difference �ε = 1 − ε drives a controller that
iteratively optimises the actuator signal by minimising �ε till the actual beam
process variable matches the desired reference value as shown in Fig. 9.2b. Due
to intrinsic limitations such as the bandwidth of the magnetic circuits and non-
linear effects such as delays and rate-limits, the stabilisation is typically not
instantaneous. To cope with these effects requires a more complex form of
controller to optimise temporal convergence.
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Fig. 9.2 Feed-forward and feedback signal in response to a step reference change: the actual value
of process variable and residual errors 1-ε are indicated and vanishes to zero in case of an integral
feedback

The strength of feedbacks is that they require, in comparison to feed-forward
systems, only a rough process model while reducing the residual error through con-
tinuous adjustments or measure-and-correct iterations. For a steady-state scenario,
the final parameter stability is ultimately limited by the noise and systematic error
of the underlying beam parameter measurement. Since the robustness and stability
of the beam instruments directly translates through this into the robustness and
stability of the feedback loop, a good understanding of the underlying instrument,
measurement and diagnostic principles is of paramount importance while designing
beam-based feedback systems.

Two types of feedback are often distinguished: those acting within a given
accelerator cycle (e.g. during injection, acceleration, store, dump) and those acting
on a cycle-to-cycle basis where the disturbance measurements of the previous
cycle are used to drive the actual state.1 Both cases are similar and differ mainly
on the time-scale in between measurements and corrections, the latter offers less
strict requirements in terms of read-out speed and bandwidth of the involved beam
instrumentation’s acquisition system and is often initially favoured to a continuous
read-out. The basic measurement, control principles and issues remain the same
however.

9.4.1 Feedback Controller Design

A simple loop block diagram consisting of a single-input-single-output (SISO) beam
response G(s) and controller D(s) is shown in Fig. 9.3. Here, r is the desired beam

1The cycle-to-cycle feedbacks are sometimes incorrectly referred to as “fill-to-fill feed-forward”
though—in the strictest sense—they usually also rely on beam-based measurements.
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Fig. 9.3 First order closed
loop block diagram
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parameter reference, y the actual parameter state, e the feedback error being the
difference between both, and u the output that is generated by the controller that
minimise the error within the given constraints (e.g. response time, required power,
etc.). One distinguishes typically at least three different error sources that can enter
the feedback system: internal perturbations δi that are amplified by the same beam
transfer function G(s) as the to be stabilised parameter, external perturbations δd

and measurement noise δm that while not directly affecting the actual state y may
propagate to it depending on the choice of controller function D(s). Depending
on whether the system is implemented in the analogue or digital domain, it is
convenient to transform the differential or difference equations of controller and
beam process transfer functions using the Laplace2 or Z-Transform. Both transforms
translate complex convolutions in time domain to simple multiplications in the s- or
z-domain. For the sake of simplicity, further discussion uses the Laplace transform
but equally applies to Z-transformed digital systems.

For low-order beam parameters—such as orbit, tune, coupling, chromaticity
and energy—the effects of the RF and individual corrector circuits are usually
sufficiently linear and thus G(s) is often approximated by a scalar K or matrix
transfer function as described in Sect. 9.2 followed by a given time dependence.
The time dependence of most electrical magnet circuits and RF systems is well
approximated as first- (low-pass) and second-order (simple harmonic oscillator)
systems with transfer functions given as:

Gfirst order(s) = K

τs + 1
, (9.16)

Gsecond order(s) = Kω2
0

s2 + 2ζω0 · s + ω2
0

, (9.17)

2The Laplace transform of a function if (t) is given by F(s) = L{f (t)} = ∫ ∞
0 e−st f (t)dt and

is closely related to the Fourier transform. While not exact, in many cases replacing s → iω

yields the Fourier transformed form. As a good approximation, Laplace-transformed functions can
be translated to the Z-Transform using the bilinear transformation s = 2

Ts

z−1
z+1 with Ts being the

sampling period.
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with τ being the constant of the low-pass characteristic, ζ the damping factor and
ω0 the eigenfrequency of the system. In an ideal world the feed-forward (M(s) = 0)
controller design would try to achieve a unity gain system transfer function

Topen−loop(s) := D(s)G(s) → 1 , (9.18)

which for a perfect actuator response corresponds to inverting Eqs. (9.16) and (9.17).
However, in a real-world environment this can be only be achieved for reference
changes with limited time-constants due to intrinsic limits on the power converter’s
slew-rate. Also, any scaling error in D(s) or modelled G(s) would yield a static
error on the actual parameter output and discussed before.

If part of the actual parameter value is measured via a monitor transfer function
M(s), compared to the reference and the difference fed into the controller it is useful
to define the following transfer functions that describe the stability and sensitivity
to perturbations and noise

T (s) := y

r
= D(s)G(s)

1 + D(s)G(s)
, (9.19)

Sd(s) := y

δd

= 1

1 + D(s)G(s)
, (9.20)

Si(s) := y

δi

= G(s)

1 + D(s)G(s)
, (9.21)

Su(s) := u

δd

= D(s)

1 + D(s)G(s)
, (9.22)

where T (s) is the nominal closed-loop (feed-back) transfer function, Sd(s) the nom-
inal sensitivity defining the loop disturbance rejection, Si(s) the input-disturbance
sensitivity and Su(s) the control sensitivity. The state variables are indicated in
Fig. 9.3.

It can be easily see, inserting Eq. (9.18) into 9.19, that using the same ideal
open-loop controller relation described above in a closed-loop would yield a loop
response error of 50% even for a perfect system. However, assuming only a perfect
scalar controller D(s) = D0 on can see that the loop response converges to one
for larger controller gain D0 and in particular becomes less dependent on relative
errors of G(s) which again illustrates the advantages of feed-back over feed-forward
systems. However, at the same time one can show that the transfer function between
actual beam parameter and measurement noise is equal to the nominal transfer
function T (s) = y

δm
. Thus while simply increasing the scalar gain D0 yields a

perfect loop response to reference changes, it also causes the system to propagate
any measurement error directly onto the actual beam parameter.

Thus, from the beam diagnostics point of view, in case the given instrument is
to be used in beam-based feedbacks, the involved instrumentation performance is
sometimes prematurely optimised—often including significant filtering in M(s) to
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reduce the measurement noise—prior to closing the feedback loop. While this is
suitable for systems that are used for verification or monitoring only, it has certain
disadvantages when used in feedbacks e.g. through introducing additional sampling
delays. Combining the filtering of beam instruments and closed-loop responses
inside D(s) is not just equivalent to this from a noise point of view but also improves
the feedback response by minimising the total loop delay in these cases.

The discussed simple scalar controller are usually only used if the beam
parameter response is much faster than the required reference changes (e.g. feedback
that act on a cycle-to-cycle basis) but need to be extended for time dependent
components for the other cases. Classic feedback designs typically rely on the
discussion of denominator zeros in Eqs. (9.19) and (9.20) while keeping constraints
such as required bandwidth, minimisation of overshoot, limits on the maximum
possible excitation signal and robustness with respect to model and measurement
errors. For ideal processes, this yields adequate controller designs but often falls
short in providing a simple comprehensive method for estimating and modifying the
loop sensitivity (robustness) in the presence of process uncertainties, non-linearities
and noise.

Here, Youla’s affine parameterisation method for optimal controllers is briefly
introduced, which is based on the analytic process inversion, first introduced in [8].
For an open-loop stable process G(s), the nominal closed-loop transfer function is
stable if and only if Q(s) is an arbitrary stable proper transfer function and D(s)

parameterised as:

D(s) = Q(s)

1 − Q(s)G(s)
. (9.23)

The stability of the closed loop system follows immediately out of the above
definition if inserted into Eqs. (9.19)–(9.22). The sensitivity functions in the Q(s)

form are given as:

T (s) = Q(s)G(s) , (9.24)

Sd(s) = 1 − Q(s)G(s) , (9.25)

Si(s) = (1 − Q(s)G(s))G(s) , (9.26)

Su(s) = Q(s) . (9.27)

Assuming G(s) is stable, the only requirement for closed loop stability is for Q(s)

to be stable. The strength of this method is the explicit controller design with respect
to required closed loop performance, as visible in Eq. (9.24), and required stability
(Eqs. (9.25)–(9.27)). Equations (9.24) and (9.25) are complementary and illustrate
the intrinsic limiting trade-off of feedbacks that either have a good disturbance
rejection or are robust with respect to noise. The ultimate limit is thus defined
rather by the bandwidth and noise performance of the corrector circuits and beam
measurements than by the feedback loop design itself.
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9.4.1.1 First and Second Order Example

The design formalism can be demonstrated using a simple first order system
G0(s) = K0

τ ·s+1 with open-loop gain K0 and time constant τ . A common controller
design ansatz is to write Q(s) as

Q(s) = FQ(s) · Gi
0(s) , (9.28)

with FQ(s) a trade-off function and Gi
0(s) the pseudo-inverse of the process. Since

G0 does not contain any unstable zeros, the pseudo-inverse equals the inverse and
is given by Gi

0(s) := [G0(s)]−1 = τ ·s+1
K0

. Q(s). In order for D(s) to be biproper,
FQ(s) must have a degree of one and can be written as:

FQ(s) = 1

αs + 1
. (9.29)

Inserting Eq. (9.28) into Youla’s controller parameterisation equation (9.23) yields
the following controller:

D(s) = τ

K0α
+ 1

K0αs
= Kp + Ki · 1

s
, (9.30)

which shows a simple PI controller structure with proportional gains Kp and integral
gain Ki . Inserting Eq. (9.28) into (9.24) yields

T0(s) = FQ(s) (9.31)

that the closed loop response is essentially determined by the choice of trade-off
function FQ(s) and that the closed loop bandwidth is proportional to the parameter
1/α. This can be used to tune the closed loop between: high disturbance rejection
but high sensitivity to measurement noise (small α) and low noise sensitivity but
low disturbance rejection (large α) depending on the operational scenario. The
maximum possible closed loop bandwidth is limited by the excitation, as described
by Eq. (9.27). In case of power converters, for example, the excitation is limited by
the maximum available voltage.

One can derive a similar optimal controller for a second-order system (Eq. (9.17))
using a similar ansatz:

Q(s) = FQ(s) · Gi(s) = ω2
cl

s2 + 2ζclωcl ‘s + ω2
cl

· Gi(s) (9.32)

yields the following controller PID structure

D(s) = Kp + Ki · 1

s
+ Kd · s

τds + 1
(9.33)
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with proportional gains Kp, integral gain Ki and integral gain Kd defined as:

Kp = 4ζclζ0ω0ωcl − ω2
0

4K0ζ
2
cl

, (9.34)

Ki = ω2
0ωcl

2K0ζcl

, (9.35)

Kd = 4ζ 2ω2
cl − 4ζ0ω0ζcl + ω2

0

8K0ζ
3
clωcl

, with τd = 1

2ζclωcl

. (9.36)

There are several options but the most commonly used discrete ‘velocity form’ of
above PID controller (without contracting sums) can be written as

u[n] = u[n − 1] + Kp · (e[n] − e[n − 1]) + Ki · Ts · e[n]

+ Kd

Ts

· (e[n] − 2e[n − 1] + e[n − 2]) (9.37)

with n being the sampling index, Ts the sampling frequency, u[n] the controller
output and e[n] the measured error signal. The error signal e[n] that is specifically
used for the last differential part of the controller is nearly always low-pass filtered
to suppress high-frequency noise that is common in discrete systems and that would
otherwise be amplified by the Kd term. Compared to analogue feedbacks, digital
feedbacks are more robust and their operation more reproducible compared to cases
where temperature drifts or other external factors would affect analogue controller.
Thus, in case the requested bandwidths are in the few Hz to MHz-range, digital
feedbacks are the de-facto standard. Still, digital controllers are fundamentally
limited by the intrinsic phase-lag caused by the sampling and dynamic range due
to the finite number of ADC bits available at that frequency. Thus for feedbacks
operating in the range of a few hundred to GHz range or where a high dynamic range
is required, analogue feedbacks are still used. In any case, neither fully analogue
nor fully digital representations are exact, and the final implementation is usually
validated using beam-based optimisation techniques.

9.4.1.2 Non-linear Systems

The same method can be extended to open-loop unstable and multi-input-multi-
output (MIMO) systems [8]. Real life feedbacks may contain significant delays λ

(due to e.g. data transmission, data processing etc.) and non-linearities GNL(s),
due to e.g. saturation and rate limits of the corrector circuits’ power supplies. The
modified process can be written, for example as:
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G(s) = G0(s) · e−λsGNL(s) . (9.38)

Using the same pseudo-inverse Gi
0(s) as for the above example and inserting

Eq. (9.28) into (9.23) yields a controller parameterisation DNL(s) including a
classic Smith-Predictor and anti-windup paths, discussed in more detail in [6, 9].
Inserting Eq. (9.28) including the delay and non-linearities into Eq. (9.24) yields
the following closed loop transfer function:

T (s) = FQ(s) · e−λsGNL(s) . (9.39)

Similar to the linear case discussed above, the closed loop is essentially defined by
the function FQ(s) that within limits can be chosen arbitrarily based on the required
disturbance rejection and robustness during possibly different operational scenarios
(gain-scheduling). Further information and a review on Youla’s parameterisation
can be found in [6, 10].

9.4.2 Inter-Loop Dependencies

Above described individual parameter control complexity is dwarfed by the chal-
lenge of operating parallel feedback loops on for example orbit, tune, chromatic-
ity, coupling, radial position and transverse bunch-by-bunch motion. Even in a
fully optimised scheme, some cross-talk is inevitable: the momentum modulation
required to measure chromaticity induces tune and radial offsets that are seen by the
tune, orbit and radial position feedbacks; transverse feedback, by design, minimises
the very same beam oscillations required to measure the tune. If not addressed at an
early design stage, a naïve one-by-one implementation of these feedback loops can
lead to serious interferences, coupling and instabilities.

There are various classic de-coupling strategies such as: diagonalisation, e.g
decoupling of horizontal and vertical planes; suppression of known cross-terms,
i.e. allowing certain variations which are required for measurements; dead-bands to
limit the operational ranges of one feedback in favour of another; time-scheduling
between feedback actions, such as alternating tune measurements with transverse
feedback operation; choosing different bandwidths for each loop.

An improved de-coupling strategy is to derive the dependent variable from the
compensated feedback actuator control signal. In this case the tune feedback is
operated at the maximum desired bandwidth, fully compensating radial modulation
induced tune changes. Chromaticity is in turn derived and corrected from the
amplitude of the actuator signal required to stabilise the tunes. Due to the finite
bandwidth and gain of the feedback, the actuator signal does not typically contain
the full modulation. An accurate chromaticity estimate needs to account for this
and should be complemented by the demodulation of the residual tune frequency
oscillation remaining on the beam. The required dispersion orbit variation and
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corresponding momentum mismatch need to be addressed differently. This is
done by subtracting them dynamically from the orbit and radial-loop feedback
reference targets. In machines running with transverse feedback systems, the tune
can similarly be derived from its actuator signal while keeping beam oscillations and
potential instabilities under control. Because of the various inter-loop dependencies,
it is beneficial to implement the tune, chromaticity, coupling, orbit and radial-loop
feedbacks in one global controller to minimise data exchange and synchronisation
requirements.

9.5 Optics Measurement and Correction

R. Tomás García

9.5.1 Introduction

The unavoidable misalignments and field errors of the different components of
an accelerator cause distortions of the machine optics with respect to the design.
Optics errors deteriorate the accelerator performance and can even challenge the
machine safety when operating with beam. Optics measurement and correction
techniques are therefore fundamental to keep optics errors as low as possible or
within specified tolerances [11]. The following sections review procedures and
techniques to measure and correct various optics parameters, focusing on circular
accelerators.

9.5.2 Optics Measurement Techniques

The tune is probably the most fundamental optics parameter as resonances need to
be avoided for efficient accelerator operation. One- and two-dimensional resonance
lines in the tune space have correspondances to Farey sequences [12]. The fractional
part of the tune, Q, is given by the frequency of the beam oscillations when sampled
turn-by-turn at any longitudinal location s,

z(N) = √

2Jβ(s) cos
(

2πQN + φ(s) + φ0
)

, (9.40)

where z stands for horizontal or vertical position and J and φ0 are the amplitude and
phase invariants of the beam oscillations. Exciting the beam oscillations above the
frequency noise floor of the Beam Position Monitors (BPMs) is crucial for the tune
measurement. All optics measurements involve some kind of excitation as discussed
below.
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9.5.2.1 Quadrupole Strength Modulation

A change in the integrated strength of a quadrupole �KL yields a change in
the tunes �Qx,y that can be unambiguously used to determine the average βx,y

functions over the quadrupole [13],

βx,y = ± 2

�KL

(

cot(2πQx,y)
(

1 − cos(2π�Qx,y)
) + sin(2π�Qx,y)

)

≈ ±4π
�Qx,y

�KL
,

(9.41)

where the ± sign refers to the horizontal and vertical planes, respectively. The
approximation displayed to the right of Eq. (9.41) is applicable for 2π�Qx,y 
 1
and Qx,y far away from the integer and the half-integer. This technique is routinely
used in many synchrotrons [14–18]. Hadron colliders typically operate with Qx

very close to Qy . In this case a good correction of coupling is required prior to
measurements with quadrupole strength modulation.

9.5.2.2 Closed Orbit Distortion

Exciting an orbit corrector with a deflection strength of �θ yields a closed orbit
distortion around the ring given by

�xco(s) = �θ

√
β(s)β(s0) cos

(|φ(s) − φ(s0)| − πQ
)

2 sin πQ
, (9.42)

where s is the location of the BPM and s0 is the location where the kick (�θ ) is
applied. The β(s) and φ(s) functions can be obtained at the BPMs as the result
of fitting to a collection of orbit distortions induced by, at least, three different
orbit correctors per plane, as done in KEKB [19]. Closed orbit distortions are
also the basis of another optics measurement and correction algorithm [20, 21]
where quadrupole strengths and other machine parameters are fitted to reproduce
a large ensemble of closed orbit acquisitions. This has demonstrated very effective
in synchrotron light sources, however its application to large scale machines as the
LHC requires unaffordable long times for measurements and computer calculations.

9.5.2.3 Betatron Oscillations, Free or Forced

The phase of the turn-by-turn free betatron oscillations, see Eq. (9.40), can be
directly used to compute phase advances between pairs of nearby BPMs. The
amplitude of the betatron oscillations can be used to measure β functions but it
requires a good control of the BPM calibration errors [22–24]. Instead the phase
advances between three or more BPMs can be used to obtain β and α functions as
described in [25–27].
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The Fast Fourier Transform (FFT) of the BPM signal, z(N), offers a poor
resolution on the phase measurement. Interpolated FTs like [28] or Singular Value
Decomposition (SVD) algorithms like [29] feature a higher performance in terms of
spectral resolution. The achievable resolution is usually limited by decoherence pro-
cesses that damp the bunch centroid oscillations. Furthermore, beam decoherence
also affects FT amplitudes and phases, which can be partially restored [30, 31, 42].
These limitations can be overcome by forcing betatron oscillations with the aid of
an AC dipole with a frequency close to the machine tune. Moreover, if the AC dipole
is ramped up and down adiabatically the beam emittance is preserved [32, 33].

The beam dynamics with forced oscillations features remarkable differences
from that of free oscillations [34–37]. In presence of an AC dipole the measured
β functions differ from the machine β functions. This difference is simply modelled
as a quadrupole error of strength KLac in the location of the AC dipole [38], where
KLac is given by

KLac = ±2
cos(2πQx,y) − cos(2πQac)

βac sin(2πQx,y)
≈ ±4π

Qac − Qx,y

βac

, (9.43)

where the ± sign refers to the horizontal and vertical planes, respectively. This
equivalence allows to apply exactly the same analysis to all experimental data but
using a modified reference model which includes the quadrupole error according to
the AC dipole settings.

9.5.2.3.1 Transverse Momentum Reconstruction

It is convenient to study the transverse phase space using normalized coordinates,
ẑ(N) = z(N)/

√
β. The turn-by-turn transverse normalized momentum, ẑ′(N) =

−√
2J sin

(

2πQN + φ(s) + φ0
)

, can be reconstructed by using the normalized
signal from two BPMs, ẑ1(N) and ẑ2(N), as

ẑ′
1(N) =

(

ẑ2(N) − ẑ1(N) cos(2π�12)
)

/ sin(2π�12) , (9.44)

where �12 is the phase advance between the two BPMs. If non-linear elements are
placed in between the two BPMs extra contributions to ẑ′

1(N) appear as described
in [39].

9.5.2.3.2 Coupling Measurement

Using the complex variable, hz(N) = ẑ(N) − iẑ′(N), the turn-by-turn motion in
presence of linear coupling is given by [40]

hx(N) = √

2Jxe
iφx(N) − i2f1001

√

2Jye
iφy(N) − i2f1010

√

2Jye
−iφy(N) ,

hy(N) = √

2Jye
iφy(N) − i2f ∗

1001

√

2Jxe
iφx(N) − i2f1010

√

2Jxe
−iφx(N) ,

(9.45)
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where φx,y(N) = 2πNQx,y+φx0,y0 and f1001 and f1010 are the coupling difference
and sum resonance terms, respectively. These terms are linearly related to the
elements of the coupling matrix as described in [41]. All the monomials in the right-
hand-side of Eqs. (9.45) correspond to a single spectral line of the complex spectrum
with frequencies ±Qx and ±Qy . By applying a complex FT to the hx,y variables
as reconstructed from the BPMs it is possible to measure the amplitude and phases
of the coupling terms. To achieve a measurement independent of BPM calibration
and beam decoherence, the values obtained from the horizontal and vertical planes
are geometrically averaged as described in [42]. The closest tune approach, �Qmin,
can be computed from the skew quadrupolar fields as [13],

�Qmin =
∣
∣
∣
∣

1

2π

∮

ds j (s)
√

βxβye
−i(φx−φy)+i(Qx−Qy)s/R

∣
∣
∣
∣

, (9.46)

where j (s) is the skew quadrupolar gradient around the ring and R is the machine
radius. �Qmin can also be computed from the difference resonance term f1001
around the ring by [43–45]

�Qmin =
∣
∣
∣
∣

4(Qx − Qy)

2πR

∮

dsf1001e−i(φx−φy)+i(Qx−Qy)s/R

∣
∣
∣
∣

(9.47)

≈
∣
∣
∣4(Qx − Qy)f1001e−i(φx−φy)

∣
∣
∣ � 4

∣
∣Qx − Qy

∣
∣ |f1001| , (9.48)

where x represents the ring average of x. Linear coupling in combination with
octupolar fields gives rise to an amplitude dependent closest tune approach [46, 47].

9.5.2.3.3 Measurement of Non-linearities

Betatron oscillations are also used to measure resonance driving terms fjklm since
these affect the motion as follows [40]

hx(N) = √

2Jxeiφx (N) − i2
∑

jklm

jfjklm(2Jx)
j+k−1

2 (2Jy)
l+m

2 ei[(1−j+k)φx(N)+(m−l)φy(N)].

(9.49)

First sextupolar resonance driving terms measurements and applications were
carried out in [42], where the effects of beam decoherence on these measurements
are also described. First resonance terms measurements using AC dipoles to avoid
beam decoherence are described in [39].
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9.5.2.4 Dispersion Measurement

Dispersion is typically inferred from the orbit change induced by a shift in the RF
frequency, see e.g. [13]. This measurement is affected by the BPM calibration errors.
Alternatively it is possible to measure the ratio Dx/

√
βx (normalized dispersion)

independently of BPM calibration errors if
√

βx is inferred from the amplitude of
the beam oscillations [48].

9.5.3 Optics Correction Techniques

The most used correction approach consists in building a response matrix R of the
available machine variables on a collection of observables. For instance,

(

�Qx,�Qy,
��βx

βx

,
��βy

βy

,� �φx,� �φy,�
�Dx√
βx

)T

= R��kT , (9.50)

(

�� �f1001,� �f1001,�� �f1010,� �f1010,� �Dy

)T = Rs��kT
s , (9.51)

where �k stands for quadrupole strengths but also horizontal orbit bumps at the
sextupoles and �ks represents skew quadrupoles or vertical orbit bumps at sextupoles.
R and Rs are pseudo-inverted and applied to the measured deviations of the
optics parameters to compute the effective corrections. The correction should
incorporate appropriate weights as illustrated in [49]. The success of this approach
strongly depends on the configuration of errors and available correctors. Sextupolar
resonance driving terms have been successfully corrected using an equivalent
approach in [50]. For large localized errors this approach tends to distribute the
correction over many correctors around the machine.

9.5.3.1 Segment-by-Segment Technique

A more local approach, the segment-by-segment technique [51, 52], consists in
splitting the machine into a collection of independent beam lines by using as
starting optics parameters the measured βx,y, αx,y,Dx,y,D′

x,y, f1001, f1010. The
comparison of the measurements and the propagated optics parameters along the
segment will reveal discrepancies starting at the error location. The local error
sources or the effective corrections can be computed by means of matching
algorithms using only the machine variables in the segment.
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9.6 Longitudinal Control and Manipulations

H. Damerau and R. Garoby

RF systems in synchrotrons are primarily installed for beam acceleration.
However, they provide also the possibility to manipulate the longitudinal beam
characteristics like bunch length, energy spread, distance between bunches, number
of bunches, etc. [53]. The following section deals with the typical longitudinal beam
manipulations in synchrotrons, when synchrotron radiation is negligible.

9.6.1 Adiabaticity

The longitudinal motion that we consider is conservative (i.e. there is no energy
dissipation effect like synchrotron radiation, as well as no coupling of longitudinal
and transverse motion). Liouville’s theorem is then applicable, which states that the
local density of particles in the longitudinal phase plane is always constant [54].
The time scale for the rate of change is given by the oscillation frequency of the
individual particles at the centre of a bunch:

ωs ∝
(

hV · η cos φs

γ

) 1
2

, (9.52)

where h is the RF harmonic number, V the RF voltage, ϕs the stable phase and η the
slip factor (η = 1/γ 2 − 1/γ 2

t ). If the rate of change of the accelerator parameters is
slow enough for the distribution of particles to be continuously at equilibrium in the
longitudinal phase plane, longitudinal emittance is preserved [55]. Such a process
is called “adiabatic”. The degree of adiabaticity is assessed by the adiabaticity
parameter ε. It is defined as the relative change of the synchrotron frequency, ωs ,
during one period:

ε = 1

ω2
s

∣
∣
∣
∣

dωs

dt

∣
∣
∣
∣

. (9.53)

Adiabatic processes can be reversed in time.

9.6.2 Changing the Longitudinal Characteristics of the
Bunches

When a process is slow enough to be quasi-adiabatic (ε < 0.1), the particle
distribution is completely determined by the instantaneous beam and accelerator
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parameters. The area occupied in the longitudinal phase plane (emittance) remaining
constant, bunch length lb (in ns) and energy spread �Eb (in eV) evolve like:

lb ∝ 1

β
·
(

η

γ · hV cos ϕs

) 1
4

, (9.54)

�Eb ∝ β ·
(

γ · hV cos ϕs

η

) 1
4

. (9.55)

When the accelerator parameters (e.g. RF voltage or phase) are quickly varying,
the process is non-adiabatic and tracking simulations are required to evaluate the
final particle distribution. Although the local density of particles remains constant,
the contour containing all particles is usually not a stable trajectory in the final
state and the resulting emittance is therefore larger because of filamentation. Non-
adiabatic beam manipulations allow getting bunch lengths and energy spreads
which cannot be obtained with adiabatic processes (“bunch rotation”). They also
give the possibility to blow-up the longitudinal emittance in a controlled fashion
(“longitudinal controlled blow-up”).

9.6.3 Bunch Rotation

A step increase of the RF voltage triggers a “bunch rotation” in the longitudinal
phase plane during which the bunch length first decreases during 1/4 of a syn-
chrotron period (Fig. 9.4a).

A step decrease has the opposite effect of first lengthening the bunch. To achieve
the smallest possible bunch length, as required, for example, for transferring the
beam to the following synchrotron equipped with a higher frequency RF system,
this two effects can be combined [56, 57].

Fig. 9.4 Bunch rotation for bunch shortening. (a) 1/4 a synchrotron period in the longitudinal
phase plane after a fast voltage step; (b) bunch stretching prior to rotation by phase jump



544 M. Lamont et al.

Because the focusing voltage is sinusoidal, the rotated bunch has a marked S-
shape if, at any moment during the process, its length has exceeded � 1/3 of
an RF period. If very short bunches have to be obtained, the maximum tolerable
length is even smaller [53]. More sophisticated techniques making use of multiple
RF harmonics have been developed to improve the results [58].

To avoid the step increase in RF voltage, a phase jump by π of the RF voltage
can be applied instead [59]. The bunch is stretched at the unstable point between
two buckets (Fig. 9.4b). Switching the RF voltage back to its initial phase triggers
the rotation in the longitudinal phase plane.

9.6.4 Longitudinal Controlled Blow-Up

Increasing the longitudinal emittance is a convenient mitigation means against
instabilities by keeping the beam below threshold. Such a blow-up should not
generate tails in the distribution of particles. The most efficient and fast technique
makes use of a phase-modulated high frequency (VH , hH ) superimposed to the RF
holding the beam (hrf 
 hH ) [60, 61]:

VH = V̂H sin(hHωRt + α sin ωMt + ϑH) , (9.56)

α being the peak phase modulation, ωR the modulation frequency and ϑH a phase
constant. This high frequency phase-modulated voltage perturbs motion in the
longitudinal phase plane. Resonances can be induced which create a re-distribution
of density in the bunch. Parameters are in practice determined with computer
simulations and finely adjusted on the real accelerator. Typical ranges of values are
shown in Table 9.1. A smaller harmonic ratio hH/hrf can also be used, although
blow-up is then slower.

With RF voltage at a single harmonic controlled longitudinal blow-up is obtained
by modulating either the voltage [62] or the phase [63] with noise, which introduces
diffusion [64, 65]. To target specific parts of a bunch with the blow-up to shape its
distribution, bandwidth limited noise can be applied.

Table 9.1 Typical ranges of blow-up parameters

V̂H /V̂rf hH /hrf α [rad] ωH /ωs Duration [s]

0.1–0.3 >10 for fast blow-up 0.8π to 1.2π 3–12 ≥20 · (2π/ωs)
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9.6.5 Changing the Bunch Train

9.6.5.1 Iso-Adiabatic Rebunching (Debunching)

The simplest technique for bunching a continuous beam (e.g. a beam from a linac
after it has debunched because of its energy spread) with a minimum emittance
blow-up consists of applying an iso-adiabatic increase. With ωs ∝ V 1/2 (Eq. (9.52))
the RF voltage function which keeps the adiabaticity ε constant (ε < 0.1) becomes
(Fig. 9.5)

V (t) = VI
[

1 −
(

1 −
√

VI

VF

)
t
tF

]2 , (9.57)

VI being the initial RF voltage applied at the start of rebunching, and tF the moment
when the final RF voltage VF is reached. The adiabaticity of the process is inversely
proportional to its duration, ε ∝ 1/tF .

To minimize the emittance blow-up, VI has to be low, typically such that the
beam energy spread is significantly larger than the bucket height. However, for a
given adiabaticity, the smaller VI is, the smaller the initial synchrotron frequency
and hence the slower the whole rebunching process.

Debunching is the inverse process to transform a bunched beam into a continuous
beam. An iso-adiabatic voltage variation is also used, which is a time-reversed
version of the one used for rebunching (Fig. 9.5).

9.6.5.2 Splitting (Merging)

Splitting is used to multiply the number of bunches by 2 or 3 and merging is the
reverse process [66–68]. With respect to iso-adiabatic debunching-rebunching, these
processes have the advantage of preserving gaps without beam and keeping the
beam always under RF control. In theory as well as in practice, they can be quasi-
adiabatic and almost without blow-up.

Fig. 9.5 Iso-adiabatic
rebunching voltage Voltage V

Time t

tF

VF

VI
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Fig. 9.6 Bunch splitting in
two. (a) RF voltages vs. time;
(b) longitudinal phase plane
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Fig. 9.7 Bunch splitting in
three. (a) RF voltages vs.
time; (b) longitudinal phase
plane
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Splitting bunches in 2 can be obtained using two RF systems with an harmonic
ratio of 2 [67]. The bunch is initially held by the first system (V1, h1) while the
second (V2, h2 = 2h1) is stopped. The unstable phase on the second harmonic
is centred on the bunch. As V2 is slowly increased and V1 decreased the bunch
lengthens and progressively splits in two as illustrated in Fig. 9.6.

Good results are consistently obtained when the voltage V1(h1) = V1sep

is such that, at the moment when two separate bunches have just formed, the
initial bunch would fill 1/3 of the bucket acceptance in the absence of second
harmonic (V2(h2) = 0). Linear voltage variations with a total duration larger
than 5 synchrotron periods in the bucket (V1sep, h1) give satisfying results. Each
final bunch has ideally 1/2 the emittance of the initial one. Practically, less than
10% additional longitudinal emittance growth is achieved. The longitudinal bunch
distribution is preserved during the process. Splitting is also obtained when applying
an RF voltage at h2 > 2h1, resulting in empty buckets in between split bunches [69].

Splitting bunches in three requires three simultaneous RF systems on three
harmonics [68]. A stable phase on the third harmonic (3h0) coincides with the stable
phase on first one (h0) and with an unstable phase on the second harmonic (2h0).
The voltage variations are computed for obtaining three equal bunches of 1/3 the
initial emittance. Voltages and evolution in longitudinal phase space as a function
of time are illustrated in Fig. 9.7.
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Fig. 9.8 Slip stacking:
evolution in the longitudinal
phase plane during the
process
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9.6.6 Slip Stacking

Slip stacking is a non-adiabatic technique for combining bunches two by two [70,
71]. It is fast, but it leads to large emittance blow-ups. The two beams have to be held
by two slightly different RF frequencies. If the frequency difference is large enough
(�ω > 2ωs , where ωs is the synchrotron frequency in the centre of an unperturbed
bucket of one family), two families of buckets coexist which drift towards each
other because of their frequency difference (Fig. 9.8). Consequently, and provided
the acceptance of the buckets is large enough (acceptance > 2× emittance), the
bunches drift with them and slip past each other. When they are superimposed in
azimuth, pairs of bunches can be captured in large buckets centred at the middle
frequency.

Although improvements are possible, like reducing the frequency difference
towards the end of the process, the longitudinal contour enclosing a pair of bunches
in the final bucket always contains a large area without particles. Therefore the
emittance after filamentation is much more than doubled and longitudinal density is
accordingly reduced.

9.6.6.1 Batch Compression (Expansion)

Batch compression does not change the number of bunches but concentrates them
in a reduced fraction of the accelerator circumference [72]. It can be quasi-adiabatic
and consequently avoids longitudinal emittance blow-up.

The principle is slowly to increase the harmonic number of the RF controlling
the beam as shown in Fig. 9.9. Starting from harmonic h1, voltage is progressively
increased on harmonic h2 > h1 and decreased on h1, until harmonic h2 finally
holds the batch of bunches. The phase on h2 with respect to h1 must be such
that bunches converge symmetrically towards the centre of the batch. This can
be achieved for even (compression around unstable point between buckets) or odd
number of bunches (central bucket does not move in phase).

Due to the presence of RF voltage at two harmonics simultaneously during
each harmonic number step, the effective RF voltage is amplitude modulated at the
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Fig. 9.9 Batch compression (top to bottom) or expansion (bottom to top)

difference harmonic |h1 − h2|,

V =V1 sin h1ωRt + V2 sin h2ωRt

=2V0 cos

(
h1 + h2

2
ωRt

)

· sin

(
h1 − h2

2
ωRt

)

at V0 = V1 = V2 . (9.58)

In case h1 and h2 have common dividers, the process repeats gcd(h1, h2) (gated
common divider) times around the circumference, which allows to compress or
expand multiple batches of bunches simultaneously.

The amount of compression achievable in a single step is limited by the
acceptance of the buckets holding the edge bunches. A consequence is that multiple
batch compression steps are necessary to reach large compression factors, and
complicated manipulations of RF parameters are involved.

Non-linear voltage programs can be applied to improve the adiabaticity of the
process [73].

9.7 Collimation

R. W. Assmann

9.7.1 Introduction

The concept of a collimator and its design are introduced in [74]. The design process
for a collimation system and several important issues are discussed in [75]. In this
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chapter we focus on the performance and operational use of a collimation system.
We quickly introduce a few central definitions:

• A collimation system is an ensemble of collimators that is integrated into the
accelerator layout to intercept stray particles and to protect the accelerator.

• Collimation is acting in the normalized phase space. With z = x or z = y,
the Twiss functions βz and αz, and the emittance εz we define the normalized
coordinates zn and z′

n as:

zn = z√
εzβz

, z′
n = αzz + βzz

′
√

εzβz

. (9.59)

It is noted that the transverse beam size (Gaussian rms) is given by σz = √
εzβz.

• An unperturbed particle describes a circle in normalized phase space with
amplitude:

az =
√

z2
n + z

′2
n . (9.60)

• Collimator settings from the beam are defined in normalized coordinates (num-
bers of beam size σz) with n1 being the collimator family setting closest to the
beam, n2 the second closest setting, and so on. Several families usually define a
hierarchy that must be respected. Often this results in stringent tolerances on the
positioning of collimators.

9.7.2 Definition of Cleaning Efficiency and Performance

A collimation system is designed to intercept stray particles with maximum
efficiency and thus to protect critical regions of the accelerator. Critical regions
can be experiments that must be protected against background from beam halo,
super-conducting magnets that must be protected against quenches or hands-on
maintenance equipment that must be protected against activation from beam losses.
A system with 100% efficiency would absorb all impacting particles and power
with zero leakage into critical zones. However, the various nuclear processes in the
collimator jaw materials will always cause some particles to escape the system.
The creation of secondary and tertiary halo in a two-stage collimation system is
illustrated in Fig. 9.10.

9.7.2.1 Local Cleaning Inefficiency

For collimation it is convenient to define inefficiency or leakage [76]. We first
introduce inefficiency and then connect it to efficiency. The inefficiency ηc of a
collimation system with a primary collimation cut at n1 is defined as the ratio
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Fig. 9.10 Illustration of the
secondary and tertiary halo
created by a two-stage
collimation system in vertical
phase space (LHC example).
The scattering along the jaw
surface creates the
characteristic lines of halo
particles in phase space
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between the number Nleak of particles that leak out and reach a normalized
transverse amplitude acut

z and the number Nimpact of impacting particles:

ηc = Nleak(az > acut
z )

Nimpact

. (9.61)

We require that acut
z > n1. The value for az is given by the available machine

aperture and is often around 10 sigma. Modern collimation systems can reach quite
low inefficiencies with ηc in the range of 10−2 (1%) to 10−4 (0.01%). Efficiency η

can then be defined as η = 1 − ηc and is in the range of 99% to 99.99%.
Inefficiency is, however, not sufficient to characterize the performance of a

collimation system. It is important to realize that the large amplitude particles are
not lost at one location but are spread over some dilution length Ldil . For local losses
we define a local cleaning inefficiency η̃c [76]:

η̃c = ηc

Ldil

. (9.62)

Local cleaning inefficiency has a unit of 1/m. As the dilution is not uniform,
simulations are used to predict the local cleaning inefficiency η̃c along the whole
accelerator. This definition allows a direct comparison with measurements. Colli-
mation systems must be designed to minimize local cleaning inefficiency. This is
achieved by both minimizing global inefficiency (overall leakage) and maximizing
dilution. It is crucial to work on both aspects for achieving best performance.

9.7.2.2 Performance Reach with Collimation

The overall performance of an accelerator is often limited by the peak residual
loss that appears in one or few critical locations. It is therefore useful to define
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a maximum local cleaning inefficiency max[η̃c] over all critical locations. For
example, in a super-conducting storage ring max[η̃c] describes the peak loss per
m in super-conducting magnets. Alternatively, in a linac max[η̃c] may describe the
peak loss per m in the regions that must be protected for hands-on maintenance.

During the design phase one should define an allowable maximum beam loss rate
Rlim for critical locations. The maximum allowed loss rate Rloss at the collimators is
defined in particles per second. It depends on the allowable maximum beam loss rate
Rlim for critical locations and the maximum local inefficiency of the system [76]:

Rloss = Rlim

max[η̃c] . (9.63)

The loss rates Rloss can be converted into energy deposition rate Ploss using:

Ploss = Rloss

(p/s)
· Eb

(GeV)
· 1.6022 × 10−10 W . (9.64)

Considering a stored beam and assuming that all leaked particles are lost at
collimators we can relate Rloss = �N/�T to the number of particles Nmax and
beam lifetime τmin:

τmin = − �T

ln
(

1 − Rloss ·�T
Nmax

) ≈ Nmax

Rloss
. (9.65)

For convenience we give the equation for calculating the energy deposition rate for
any lifetime:

Ploss ≈ Nmax · (h)

τmin

· Eb

(GeV)
· 4.45 × 10−17 kW . (9.66)

The maximum achievable beam intensity can be expressed as a function of the
maximum local cleaning inefficiency, the minimum beam lifetime that must be
sustained and the limit of beam loss in critical regions [76]:

Nmax = τmin · Rlim

max[η̃c] . (9.67)

Similar equations can be given for single-pass accelerators. This equation can be
used during the design phase of an accelerator to specify the required collimation
performance once beam intensity, minimum beam lifetime and loss limits have been
determined. A proper design of a collimation system requires a well-defined target
for cleaning efficiency.
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9.7.3 Operational Settings and Tolerances

Modern collimation systems are often designed to form a multi-stage cleaning sys-
tem. The collimators then belong to different stages (families), where all collimators
of a given stage sit at the same setting (in normalized coordinates). The system will
only work correctly if the collimators fulfil the hierarchy requirement [77, 78]. For
the example illustrated in Fig. 9.11 the following condition must be fulfilled for the
collimation half gaps:

n1 < n2 < n3 < ntriplet < n4 < narc . (9.68)

Typical values for the half gaps n1 to n4 are in the range of 5 σz to 10 σz. The
differences in normalized settings are called collimator retractions �x:

�x1 = n2 − n1 ,

�x2 = n3 − n2 ,

�x3 = ntriplet − n3 , (9.69)

�x4 = n4 − ntriplet ,

�x5 = narc − n4 .

Primary stage
(low Z)

Secondary stage
(low Z)

Absorbing stage
(high Z)

Tertiary stage
(high Z) SC triplet

n3n4
n2n1

Primary
beam &
halo  

Secondary halo

Tertiary halo

Cleaning insertion Experimental insertion

Quartiary halo

SC arc(s)

Beam
orbit

ntriplet ( *)narc ( )

Fig. 9.11 Illustration of collimation hierarchy for the example of LHC collimation [79]. The
system establishes global, multi-stage cleaning of halo particles. To be effective, the different
collimator families must respect a strict hierarchy in normalized phase space
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The retraction values can become quite small. For example, in LHC at 7 TeV
retraction values can be smaller than 1 σz. At the same time emittance at high energy
becomes very small (0.5 nm for the LHC at 7 TeV) and the transverse beam size σz

can be as small as 140 μm. The smallest collimator retraction values can therefore
be in the range of 100 μm, imposing strict operational tolerances.

Various imperfections can reduce the available collimator retraction [78]:

• Beam loss deposits energy on the collimator jaws. The resulting heating can lead
to transient jaw deformations.

• If off-momentum beta beating is not or insufficiently corrected, the retraction
becomes a function of particle momentum and can be different for particles inside
a bunch. See discussion in [74].

• Inaccuracies in beam-based set-up for collimators in different families. See
discussion in next section.

• Drifts in beam orbit around the ring since last beam-based set-up or during the
beam cycle (for example during squeeze in IP beta function). The possible impact
on retraction is illustrated in Fig. 9.12. Most critical is a zero orbit change at a
primary collimator and a maximum change at a secondary collimator.

• Change in beta functions around the ring. The possible impact on retraction is
illustrated in Fig. 9.12. Most critical is a reduction in beta function at primary
collimators and an increase at secondary collimators.

A reduction in collimator retraction reduces the efficiency of the system (up to
a factor 10 is possible [80]) and can render it operationally unstable. At some
point a secondary collimator can start acting as a primary collimator and efficiency
can suddenly be reduced by two orders of magnitude. A collimation system
should always be quantified in terms of operational tolerances to make sure that
it is appropriately designed and can deliver the required performance. Two sided
collimators (as shown in the example of Fig. 9.12) are preferable for operational
stability.

Primary
collimator

Secondary collimators

Orbit offsets
Beta beating

Retraction
x

Primary
collimator

Secondary collimators

Retraction
x

Fig. 9.12 Illustration of machine errors (top: orbit error; bottom: beta beating) that can affect the
collimation hierarchy in normalized phase space and reduce cleaning efficiency
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9.7.4 Beam-Based Set-Up of Collimation

The previous section explained the criticality of correct collimator hierarchy. It
was shown that retraction values can be in the range of 100 μm. Collimators must
be centred around the beam with an accuracy that is a fraction of the collimator
retraction. Tolerances for collimator settings can then be in the range of a few 10’s
of μm. However, the exact beam position and size are not known a priori with this
accuracy. Collimators are therefore set up in a beam-based process. This beam-based
procedure differs for one-pass or stored beams.

• In a single pass accelerator or in transfer lines a collimator jaw is moved through
the beam [81–83]. This process is illustrated in Fig. 9.13. Initially (the jaw
is still out of the beam) there is a transmission of 100% of beam intensity
while downstream beam loss monitors (BLM’s) read zero (no showers from
the collimator). When the jaw is cutting the beam in its centre then there is
a transmission of about 50% and the BLM reads half of its maximum value.
Finally, when the jaw intercepts the full beam, the transmission is almost zero
and the BLM reads a maximum value, independent of the exact jaw position.
This “collimator scan” method allows calibrating the beam centre and size. A
related method establishes a collimation gap that is smaller than the beam size.
This gap is then scanned across the beam. The transmission and beam loss
signals are measured during the scan while recording the gap position. A precise
determination of beam centre and size is possible.

• In a storage ring the effects of phase space mixing and amplitude conservation are
used, as shown in Fig. 9.14. Any collimator (most often a primary collimator) can
be used to define a betatron cut in normalized phase space [77, 78, 81]. This can
be done with a single jaw. Assuming zero dispersion, the same phase space cut is
present all around the ring after phase space mixing (particles oscillating around

BLM

COLL

beam 
& halo

COLL

BLM

BLM

COLL

beam 
& halo

COLL BLM

BLM

COLL

beam 
& halo

COLL

BLM

I) II) III)

shower shower

Fig. 9.13 Illustration of beam-based set-up of a collimator in a beam line with single pass beam. A
collimator jaw is moved from out position (I) through a centre position (II) into a beam-intercepting
position (III). The beam centre is inferred by (a) measurement of beam-induced showers with a
beam-loss monitor and/or (b) by measurement of the not intercepted beam intensity
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Fig. 9.14 Illustration of beam-based set-up of collimators in a ring with stored beam. At first a
reference collimator is defined and one of its jaws is used to create an edge in the normalized
beam shape (I). Phase space mixing establishes the same edge all around the ring, in positive and
negative directions (in case of zero dispersion). Then the second jaw of the reference collimator is
moved to the same normalized position by observing beam loss (II). Analogous, a jaw from any
other collimator can be moved to the same defined beam cut (III)

the closed orbit, sweeping around the whole allowed phase space volume). The
second jaw of the reference collimator can then be moved to the same cut. A
sudden spike in beam loss measured downstream of the collimator is used to
detect the halo edge. Successively all collimators around the ring are set up to
the same cut in normalized phase space. In the end all jaws are centred on the
beam and any beta variations have been calibrated. It is noted that the method is
affected by systematic errors that must be taken into account. For example, each
set-up will scrape the beam halo by a small additional amount δ. It is advisable
to recheck the edge periodically with the reference collimator. Also, tilts in the
collimator jaws can induce errors in the knowledge of the collimation gap which
can limit the accuracy in determining local beam size.

Once collimators have been set up it is important to record all beam conditions,
especially the orbit and optics of the accelerator. This information can then be used
to re-establish the collimator set-up and hierarchy for extended periods of times.
Collimator set-ups could be used and kept operational for up to 5 months without
repeating a set-up for the LHC.

9.7.4.1 Measurement of Collimation Performance

Collimation performance can be measured if a distributed beam loss measurement
system has been installed around the ring [84, 85]. Ideally beam loss is measured at
all collimators [86, 87], all quadrupoles (here the beta functions are maximal) and
other critical locations [88]. An example measurement of collimation performance
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Fig. 9.15 Example for a measurement of collimation performance in the LHC at 450 GeV. The
data shows peak integrated losses over 1.3 s. A beam loss is provoked for beam 1 in the horizontal
plane. Losses are normalized to the peak loss in the ring. The peak loss appears as expected at
the betatron collimators and falls off exponentially over the betatron cleaning insertion. Leakage
around the ring is measured. The measurement resolution is limited by noise in the beam loss
monitors (6 orders of magnitudes below the peak loss)

in the LHC at 450 GeV is shown in Fig. 9.15. The procedure for such a measurement
is described below.

• The measurement should not disturb the orbit or the beta functions, as this would
decrease the cleaning efficiency. Therefore one induces a strong diffusion process
that rapidly increases the beam emittance. In a storage ring one can move the
beam onto a resonance, for example the 1

3 resonance.
• The integrated beam losses are monitored around the ring as the beam emittance

is blown up, for example with a 1.3 s integration time as shown in Fig. 9.15. The
data with the highest losses is selected.

• The loss data is normalized to the highest loss all around the ring, which
by definition should occur at a collimator. Losses at different locations are
distinguished by colour.

The example in Fig. 9.15 shows the results that can be achieved when generating
a rapid horizontal emittance blow-up for one beam. The relative loss measurement
shown is very similar to the local cleaning inefficiency as defined above, if we ignore
differences in BLM response and realize that measured losses are per BLM and not
per meter. The measured maximum “local cleaning inefficiency” in a critical region
(super-conducting magnets) is about 2×10−5, illustrating a very good performance.
The collimators in the cleaning insertion and other areas in the ring intercept reliably
all losses and leakage is very small.
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9.8 Luminosity Optimization

O. Brüning and M. Hostettler

9.8.1 Introduction

The performance of a collider can be characterized by three main parameters:

• the centre of mass collision energy ECM (in the following we will assume two
beams with equal beam energies → ECM = 2 · Ebeam);

• the instantaneous luminosity specifying the rate at which certain events are
generated in the beam collisions (number of events per second = L(t) · σevent

with σevent being the cross section of the event of interest);
• the integrated luminosity specifying the total number of events that are produced

over a time interval t − t0.

The instantaneous luminosity is given by

L = frev · nb · N1 · N2

2π

√

(σ 2
x,1 + σ 2

x,2) ·
√

(σ 2
y,1 + σ 2

y,2)
· F · H, (9.70)

where frev is the revolution frequency, nb the number of bunches colliding at the
interaction point (IP), N1,2 are the particles per bunch and σx,1,2 and σy,1,2 the
horizontal and vertical beam sizes of the two colliding beams. F is the geometric
luminosity reduction factor due to collisions with a transverse offset or crossing
angle at the IP and H is the reduction factor for the hour glass effect that becomes
relevant when the bunch length is comparable or larger than the beta functions at the
IP (→ the transverse beta function varies over the luminous region where the two
beams interact with each other).

In the following we assume that all bunches of both beams have equal intensities
(N1 = N2 = Nb) and the same size at the IP. The transverse beam sizes at the IP
are given by

σx,y =
√

(β∗
x,y · εx,y) + D2

x,y · δ2
p, (9.71)

where δp is the relative momentum spread (δp = �p
p0

) of the particles within a
bunch, β∗

x,y and Dx,y are the horizontal and vertical beta and dispersion functions
at the IP and εx,y the horizontal and vertical emittances of the two beams.

Because the bunch intensities and beam sizes of a collider vary over time, the
instantaneous luminosity is implicitly a function of time.
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The integrated luminosity is defined by

L̂(t − t0) =
∫ t

t0

L(τ)dτ, (9.72)

where t0 is an arbitrary starting point, L(τ) the instantaneous luminosity at a given
time and t − t0 the time period of interest.

Optimizing the luminosity of a collider aims essentially at two goals:

• maximize the total number of events over a given time interval → maximize the
integrated luminosity;

• minimize the experimental background (e.g. events created by collisions of the
beams with rest gas molecules).

The first goal can be achieved by three means: maximizing the instantaneous
luminosity, maximizing the luminosity lifetime and minimizing the so called
‘turnaround’ time which specifies the time interval between the end of one physics
fill and the start of the next one.

Then second goal can be achieved by minimizing the vacuum pressure near the
IP (reduced rate of rest-gas collisions) and dedicated collimators and absorbers for
removing synchrotron light and stray particles before the beams collide at the IP.

The following discussion concentrates on the optimization of the luminosity in
circular colliders. The performance optimization of linear colliders will be discussed
separately.

9.8.2 Maximizing the Instantaneous Luminosity

Maximizing the instantaneous luminosity implies (in order of priority):

• maximize the number of particles per bunch (enters quadratically into the
luminosity);

• minimize the beam size at the interaction points (does not imply a ‘cost’ in
terms of total beam power and impedance but might require special focusing
quadrupoles near the experiment);

• maximize the number of bunches in the collider;
• optimize the overlap of the two beams at the IP (this essentially implies a precise

control of the orbit and optics functions at the IP during operation).

Leaving aside potential single bunch intensity limits due to collective effects and
instabilities, the instantaneous luminosity is limited by the strength of the non-linear
beam-beam interaction that the particles experience when the bunches of both beams
collide with each other at the IP. The strength of the beam-beam interaction can
be characterized by the linear head-on beam-beam parameter which specifies the
maximum tune shift due to the beam-beam interaction per IP that a particle at the
centre of a bunch experiences when the two bunches collide without a crossing angle
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and transverse offset. The beam-beam parameter is given by

ξx,y = Nb · rp · β∗
x,y

2π · γ · σx,y · (σx + σy)
, (9.73)

where β∗
x,y are the horizontal and vertical beta functions at the IP and rp is the

classical radius rp = e2/(4πε0mc2) for the colliding particles.
It is worthwhile underlining that for round beams with equal beam emittances in

both planes the beam-beam force is independent of the transverse beta-functions at
the IP and depends only on the normalized beam emittance. For such round beams
the beam-beam parameter can be written

ξ = Nbrp

4πεγ
, (9.74)

where εγ is the normalized emittance εn in a Hadron storage ring.
The beam-beam force provides additional focusing for colliders with beams of

opposite charge (e.g. particle anti-particle colliders like LEP) and an additional
defocusing strength for beam collisions between particles of the same charge (e.g.
particle-particle colliders like the LHC). In either case, the non-linear beam-beam
force generates an amplitude growth of the particle oscillations within a bunch
which eventually limits the maximum collider performance.

For large particle amplitudes (>2σ ) the (de-)focusing due to the beam-beam
force changes sign and there is a reduction of the effective tune shift which
eventually becomes negligible for very large oscillation amplitudes and effectively
averages to zero for head-on collisions. The beam-beam force therefore results in
different tune shift values for different particle amplitudes. Figure 9.16 shows on
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Fig. 9.16 Left: Schematic dependence of the beam-beam force on the particle oscillation ampli-
tude at the IP. Right: Tune foot print for the nominal LHC collisions covering oscillation amplitudes
from 0 to 6σ [89]
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the left-hand side a schematic picture for the dependence of the beam-beam force
on the particle oscillation amplitude and on the right-hand side as an example the
resulting tune foot print for the nominal LHC collisions covering particle amplitudes
from 0 to 6σ (the particles with zero amplitudes are located at the tip of the tune foot
print). Note that the LHC tune foot print shown features the effect of both head-on
and long range collisions.

With increasing instantaneous luminosity, the number of concurrent interactions
increases. The number of collisions per bunch crossing, the pile-up, is given by

μ = L

frevnb

σtot (9.75)

where σtot is the total cross-section for the interaction of beam particles.
The maximum acceptable pile-up may be limited by the capabilities of the

installed experimental detectors, e.g. due to a limited read-out rate or detector
dead time. It may also be limited by the accelerator itself, e.g. due to heating or
radiation limits. If this is the case, it imposes an additional limit for the instantaneous
luminosity; increasing the luminosity per colliding bunch pair (through intensity or
beam size at the IP) increases the pile-up proportionally. The luminosity of a collider
operating at the pile-up limit can be optimized through luminosity levelling, which
will be discussed in Sect. 9.8.7.

Similarly, the acceptable pile-up density in the luminous region around the IP
may be limited e.g. by the detector resolution. Apart from reducing the overall pile-
up, this can be mitigated by increasing the size of the luminous region or changing
the bunch distribution.

9.8.3 Collider with Strong Synchrotron Radiation Damping

In circular colliders with strong synchrotron radiation the amplitude growth due
to the beam-beam interaction is stabilized by the synchrotron radiation damping
yielding an increased but stable beam size at the IP. As a result, the instantaneous
luminosity no longer increases quadratically, but rather linearly, with the bunch
current above a certain limit of the beam-beam force and the beam-beam tune
shift reaches asymptotically a maximum value. This maximum value defines the
so called beam-beam limit in a collider with strong radiation damping. The actual
value of the beam-beam limit varies between different colliders and depends on
the actual operating point (the horizontal and vertical tunes) and the strength of
the synchrotron radiation damping. Figure 9.17 shows as an example the measured
vertical beam-beam parameter in LEP as a function of the bunch current for the LEP
operation with beam energies of 98 GeV and 101 GeV.

In an ideal storage ring without coupling and vertical dispersion, the vertical
beam size shrinks to a minimum value which is in theory only limited by the
quantum fluctuation of the synchrotron radiation. In the horizontal plane this effect
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Fig. 9.17 Measured vertical beam-beam limit in LEP for operation with beam energies of 98 GeV
and 101 GeV [90]. The beam-beam parameter has been derived from the measured luminosity
assuming a constant value of β∗. The straight line indicates the expected linear scaling of the
beam-beam parameter for operation below the beam-beam limit

is outweighed by the oscillation excitations due to the photon emission in regions
with dispersion and the equilibrium horizontal beam size increases as a result with
the beam energy. Provided the associated synchrotron radiation damping times are
short compared to the typical store length of the collider, the beam sizes are therefore
essentially determined by the synchrotron radiation yielding a flat beam with small
vertical and large horizontal beam sizes. In practice, the minimum attainable vertical
beam emittance is limited by the rms vertical dispersion and the coupling between
the horizontal and vertical motion along the storage ring. Furthermore, the minimum
vertical beam size at the IP is limited by the momentum spread within a bunch
and the spurious vertical dispersion at the IP (see Eq. (9.71)). Colliders with strong
synchrotron radiation are therefore normally optimized for the operation with flat
beams that have a large aspect ratio between the horizontal and vertical beam sizes at
the IP. The generation of non-equal betatron functions at the IP can be best provided
by a doublet quadrupole configuration of the focusing elements next to the IP (→
non-equal β∗ values in both planes for equal peak betatron function values inside
the doublet magnets).

Assuming vanishing dispersion functions at the IP, the beam-beam parameters of
a collider with flat beams and a large aspect ratio between the horizontal and vertical
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beam sizes are approximately proportional to

ξx ∝ Nb

εx

, (9.76)

ξy ∝ Nb ·
√

β∗
y√

εy
√

εx

· 1
√

β∗
x

. (9.77)

Optimizing the instantaneous luminosity for flat beams at the beam-beam limit
therefore implies:

• increasing the bunch intensity so that the horizontal beam-beam parameter
approaches the beam-beam limit;

• minimizing the vertical dispersion (via, for example, dispersion free steering) and
coupling along the whole the machine to get a small vertical emittance;

• minimizing the vertical beta function at the IP to reduce the vertical beam-beam
parameter;

• adjusting the horizontal beta function at the IP for obtaining approximately equal
beam-beam parameters in both planes.

For example, the LEP operation at the beam-beam limit for beam energies of 94.5
GeV, featured an aspect ratio of the horizontal and vertical beta functions at the IP
of ca. 31 (1.25 m/0.04 m) and an aspect ratio of the horizontal and vertical beam
sizes at the IP of ca. 51 (180 μm/3.5 μm) yielding for a bunch current of 780 μA
(ca. 1.4 × 1011 particles per bunch) theoretical beam-beam parameters of ξx ≈ 0.04
and ξy ≈ 0.06. Depending on the operation configuration and beam energy the
measured vertical beam-beam limit in LEP varied between ξbeam−beam = 0.05 and
0.01 [90–93].

Another interesting feature of the operation with large beam-beam parameters
is that the additional focusing due to the beam-beam interaction can also change
the beta-functions at the IP. This dynamic β∗ effect can result in a non-negligible
second order perturbation of the optic functions at the IP.

The luminosity can be further increased by increasing the number of bunches
in the machine. The maximum number of bunches in the collider is then either
limited by collective effects (e.g. impedance and collective oscillations, electron-
cloud effect for positron bunches or ion trapping for electron bunches) or by the
maximum acceptable synchrotron radiation power or the simple fact of having one
or two rings. If such considerations still permit a large number of bunches, it might
be necessary to introduce a crossing angle at the IP in order to avoid unwanted
collisions next to the IP (e.g. the KEKB factory). In this case, the luminosity
optimization becomes more complex. The crossing angle decreases the luminosity
and the beam-beam parameter at the IP via the geometric form factor F in Eq. (9.70)
and introduces a dependence of the luminosity on the crossing angle, the bunch
length and the transverse beam size in the plane of the crossing angle (see Sect. 6.4
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for more details). The luminosity optimization in this configuration will be discussed
in Sect. 9.8.5

9.8.4 Collider with Weak Synchrotron Radiation Damping

In circular colliders with weak synchrotron radiation damping (with damping times
much larger than a typical store length—typically the case for hadron colliders
where the relativistic γ factor is small) the amplitude growth of the particle
oscillations within a bunch due to the beam-beam interaction is not stabilized
and leads to emittance growth, the development of tails in the bunch distribution,
particle losses and a reduction of the beam lifetime and possibly an increase of
the experimental background. The above detrimental processes of the beam-beam
interaction become more pronounced the more resonances are covered by the
tune distribution for the particles within a bunch. The beam-beam limit in hadron
colliders is therefore more commonly expressed by the total maximum acceptable
tune spread within a bunch due to the beam-beam interactions rather than the
maximum attainable beam-beam parameter for a single interaction. For hadron
colliders the beam-beam limit is therefore the sum of all beam-beam related tune
spreads. For purely head-on collisions it is proportional to the number of collisions a
single bunch experiences during one revolution. For a collider that features parasitic
long range beam-beam encounters it also includes the tune spread contributions
from the long-range beam-beam interactions.

The maximum acceptable beam-beam related tune spread depends on the
operation point (transverse tune values) and other sources for tune spread in the
collider (e.g. tune spread due to magnetic octupole components) and typically varies
for different Hadron colliders between values of �Q = 0.015 and �Q = 0.03 (e.g.
RHIC and Tevatron). The ‘precise’ value of the quoted beam-beam limit in a Hadron
collider depends on the acceptable luminosity lifetime and background rates for a
given operation mode and is therefore somewhat less well defined as for the case
of lepton colliders with strong synchrotron radiation. For example, a beam-beam
driven tune spread of �Q = 0.03 is in principle attainable in the Tevatron operation
but the normal machine operation rather aims at a smaller beam-beam driven tune
spread of �Q = 0.02 (the quoted tune shift refers to the anti-proton beam—the
beam-beam tune shift for the proton beam is ca. five times smaller) [94].

There are currently several studies under way for looking into possibilities
of compensating part of the beam-beam generated tune spread either by the use
of wires with DC or pulsed currents for the compensation of the tune spread
arising from the long-range beam-beam interactions [95] or by the use of electron
lenses for a compensation of the tune spread generated by the head-on beam-beam
collisions [96, 97].

Without damping the beam sizes are mainly determined by the injector complex
and the ability to preserve the injected emittances in the collider during injection
and acceleration. Without natural equilibrium beam sizes, the luminosity with head-
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on collisions can be best optimized by deploying round beams (equal beam sizes
and emittances in both planes). The generation of equal betatron functions at the IP
can be best provided by a triplet quadrupole configuration of the focusing elements
next to the IP (this implies equal β∗ values in both planes for equal peak betatron
functions for both planes inside the triplet magnets). The beam-beam parameter in
this case is given by Eq. (9.74) and is entirely independent from the beta function
values at the IP. Optimizing the instantaneous luminosity in this case therefore
implies:

• increasing the beam brightness (Nb/εx,y) until the beam-beam limit is reached;
• increasing the bunch population at constant brightness;
• minimizing the beta functions at the IP in both planes.

The second point is limited by the available aperture along the whole collider and by
collective effects that might limit the maximum bunch intensity. The third point is
limited by the available aperture of the triplet elements next to the IP (the maximum
beta function in these elements is proportional to 1/β∗), the ‘hour glass’ effect
and eventual chromatic aberrations due to large betatron functions in the focusing
elements. The hour glass effect depends strongly on the bunch length and is only
relevant for a configuration with β∗ ≤ σs . Shortening the bunch length might be
another strategy for maximizing the luminosity in this case but the minimum bunch
length might itself be limited by other constrains such as the available RF voltage
and limitations on the maximum acceptable Intra-Beam-Scattering (IBS) growth
rates.

The maximum number of bunches in the collider is then either limited by
collective effects (e.g. electron-cloud effect for proton bunches), the maximum
acceptable stored beam power (e.g. machine protection issues) and the rate of
particle production in case the collider uses anti-protons in the collisions (e.g. the
Tevatron).

9.8.5 Luminosity Optimization in the Presence of a Crossing
Angle

If the operation of the collider permits a large number of bunches, it might be
necessary to introduce a crossing angle at the IP in order to avoid unwanted
collisions of the two beams next to the IP (e.g. the KEK-B factory and the LHC).
A crossing angle reduces the luminosity and the beam-beam parameter via the
geometric form factor F in Eq. (9.70). The geometric form factor is a function
of the crossing angle, the bunch length and the transverse beam size in the plane
of the crossing angle and therefore crossing angle operation introduces additional
parameter dependencies which make the luminosity optimization more complex.
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Fig. 9.18 Left: The geometric form factor as a function of the Piwinski angle. Right: the form
factor for the nominal LHC parameters as a function of β∗ for a constant bunch length and beam
separation in terms of transverse rms beam sizes

The geometric luminosity reduction factor becomes relevant for large Piwinski
angles (Θ ≥ 1) were the Piwinski angle is defined as:

Θ = σsφ

2σ⊥
. (9.78)

φ is the full crossing angle and σ⊥ the transverse beam size in the plane orthogonal
to the crossing angle. In terms of the Piwinski angle, the geometric reduction factor
can be expressed as

F = 1/
√

1 + Θ2. (9.79)

The left-hand side of Fig. 9.18 shows the geometric form factor as a function of the
Piwinski angle and the right-hand side as a function of β∗ for the data of the nominal
LHC assuming a constant bunch length and beam separation in terms of rms beam
sizes were the form factor is essentially a function of β∗. The right-hand side of
Fig. 9.18 illustrates with the example of the LHC that a collider with crossing angle
operation can rely on a performance increase though a reduction of β∗ only up to a
certain point. If the Piwinski angle becomes large, the desired performance gain is
essentially directly lost via the geometric form factor.

The resulting loss in luminosity can partially be compensated either by the use
of Crab cavities [98] which tilt the bunches longitudinally at the IP such that the
bunches effectively still collide head-on (see Fig. 9.19) or by the implementation of a
‘crabbed waist’ crossing scheme [99] for very large crossing angles and long and flat
bunches (σzφx,y >> σx,y) which shifts the location of the minimum beta function
in the plane orthogonal to the crossing angle along the bunch length with the help
of dedicated crab sextupole magnets. The crab waist optimization requires in fact a
crossing angle in the plane with the larger beam size dimension (the horizontal plane
for a collider with strong synchrotron radiation damping) and features three separate
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Effective cross section Effective cross section

Fig. 9.19 Schematic illustration of the crab-crossing collision scheme for large crossing angles.
Left: the beam interaction in the presence of a crossing angle without crab crossing. Right: the
beam interaction with crab crossing and a maximized bunch overlap during the collision

ingredients: operation at large Piwinski angle, a vertical β∗ value comparable to the
luminous area and a shift of the vertical betatron function waist of one beam along
the central trajectory of the other beam.

In the presence of two IPs with orthogonal crossing angle planes, small β∗ values
and round beams one can write the dependence of the luminosity and the head-on
beam-beam parameter approximately as follows (if the collider does not feature two
orthogonal crossing angle planes, the form factor will not reduce the beam-beam
parameter equally in both planes):

L ∝ �Qbb · Nb

β∗ , (9.80)

�Qbb ∝ Nb

ε
· F(β∗) . (9.81)

In this situation one can essentially distinguish four different strategies for optimiz-
ing the instantaneous luminosity (we limit the discussion here to the case of round
beam operation):

• keep the geometric form factor (and thus β∗) and the beam-beam parameter
constant and maximize the luminosity by increasing the bunch intensity at
constant brightness—this strategy requires sufficient aperture in the collider
for accommodating large beam emittances and the absence of any other bunch
intensity limitations (e.g. collective effects and single bunch instabilities);

• keep the beam emittance constant and increase the bunch intensity inversely
proportional to the geometric form factor when β∗ is lowered. This strategy
implies that the beam intensity in the collider is not limited by collective effects;

• keep the number of particles per bunch constant and vary the beam emittance
proportionally to the geometric form factor when β∗ is lowered;

• compensate the performance loss due to the geometric form factor (e.g. by the
use of Crab cavities or crabbed waist operation) and reduce β∗.
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9.8.6 Maximizing the Integrated Luminosity

Several effects can lead to an intensity decrease of the colliding beams over the
length of a physics store:

• the loss of particles via the actual collisions (beam burn off);
• particle losses via collisions with the rest gas and photons in the vacuum system;
• loss of particles via resonances (e.g. driven by the beam-beam interaction);
• particle losses through the Touschek effect;
• particle losses through aperture restrictions (relevant for colliders where the

beam distribution is an equilibrium distribution determined by the synchrotron
radiation and were any part of the distribution (e.g. the tails of the Gaussian
distribution) lost through aperture restrictions will be repopulated).

In addition, several effects can lead to an increase of the beam size via an emittance
blow-up:

• resonances in the machine (e.g. driven by the beam-beam interaction);
• noise in machine equipment (e.g. kicker and RF elements);
• intra beam scattering (IBS).

All the above effects together result in a reduction of the luminosity with time and
require the preparation of a new fill with fresh beams once the performance dropped
too much. The integrated luminosity depends then on the luminosity lifetime, the run
length and the ‘turnaround’ time required for preparing a new fill in the collider. The
turnaround time is defined as the time interval between the end of one fill and the
start of the next one. Assuming an exponential luminosity decay (L(t) = L0 ·e−t/τL)
the integrated luminosity per fill can be written as:

L̂f ill = L0 ·
[

1 − e−Trun/τL

]

, (9.82)

where τL is the luminosity lifetime, Trun the length of the physics operation and
L0 the initial instantaneous luminosity of the physics fill. The optimum run length
is a function of the average turnaround time of the collider and a high integrated
luminosity requires a short and reproducible turnaround time.

If the luminosity lifetime is not much longer than the average turnaround time the
total integrated luminosity might be limited by the machine reliability and variations
in the turnaround time. Furthermore, if the luminosity lifetime is too short, a fraction
of the generated luminosity might be lost for the experiments if not all detector
components can be fully operational from the very beginning of a physics fill when
the operation still performs beam adjustments and measurements.
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9.8.7 Luminosity levelling

For colliders limited by pile-up, the integrated luminosity can be significantly
improved by implementing a luminosity levelling scheme that initially reduces the
peak luminosity and levels it at a constant value that yields an acceptable pile-
up throughout a physics fill [100, 101]. In case different detectors with different
levels of acceptable pile-up are installed in a collider (e.g. at the LHC), it also
allows satisfying the requirements of the low pile-up detectors without impairing
the performance of the high luminosity experiments.

The effective luminosity lifetime increases when levelling the luminosity due
to the slower burn off rate and, for certain means of levelling (e.g. offset, crossing
angle), weaker head-on beam-beam effects. The luminosity evolution over a fill with
luminosity levelling consists of a first part, where the levelling is used to reduce the
instantaneous luminosity to a certain target value, possibly followed by a second
part where the luminosity is left to decay without levelling (Fig. 9.20).

If the beam emittance is constant and beam losses are dominated by burn off
while levelling, the beam current decays linearly and the levelling time is directly
proportional to the initial beam current:

Tlvl =
(

1 −
√

Llvl

Lpeak

)

nb Ni

nIPσtotLlvl
(9.83)

where nb is the number of bunches with initial intensity Ni , Lpeak is the theoretical
peak luminosity, Llvl is the levelled luminosity, σtot is the cross-section for the
interaction of beam particles, and nIP is the number of IPs.

In the following, the machine parameters commonly used to control the luminos-
ity for levelling are discussed.

Fig. 9.20 Luminosity
evolution in a burn-off
dominated scenario with and
without levelling. In the
levelled case, the peak
luminosity is initially levelled
down by a factor of 0.4. The
dotted line shows the
“virtual” luminosity which is
reduced to the target through
levelling. The levelling time
is Tlvl = 15 h 0 5 10 15 20 25 30
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Fig. 9.21 Luminosity
reduction factor as a function
of the transverse separation
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9.8.7.1 Levelling by Transverse Offset

A beam separation is introduced by local closed orbit bumps around the IPs. In the
presence of a crossing angle, the separation is typically applied perpendicular to the
crossing plane. This reduces the luminosity by a geometric factor given by

F = exp

(

− d2

4 σ⊥

)

(9.84)

where d is the separation and σ⊥ is the transverse beam size in the separation plane.
This factor is shown in Fig. 9.21.

When levelling by offset, the pile-up density decreases along with the total pile-
up. Since the required offsets are small (a few units of the transverse beam size)
and the bumps are locally closed, this levelling approach is operationally easiest.
However, it offsets the particles from the centre of the linear part of the beam-beam
force, reduces the beam-beam tune spread and drives odd-order resonances, which
can affect the beam stability. Furthermore, the luminosity becomes more sensitive
to small variation of the offset, requiring a good orbit control around the IP.

Offset levelling has been used successfully e.g. at the LHC with levelling factors
between 0.01 and 1. While this allowed for a great flexibility and worked well in
general, instabilities were observed with separated beams close to the beam-beam
limit [102].

9.8.7.2 Levelling by Crossing Angle

In the absence of crab-crossing, an increased crossing angle reduces the luminosity
as explained in Sect. 9.8.5. Levelling by crossing angle only affects the total pile-
up while the pile-up density remains constant (as the length of the luminous region
changes with the crossing angle). While the crossing angle can be controlled through
local closed orbit bumps, the resulting orbit excursions are significantly larger than
for a transverse separation. In particular for small β∗, the maximum orbit excursion
and hence the maximum crossing angle may be limited by the aperture of the triplet
elements next to the IP.
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Fig. 9.22 Luminosity levelling by reducing the crossing angle in steps over the course of a fill
at the LHC. Four crossing angle were used: 150 μrad (initial), 140 μrad, 130 μrad and 120 μrad
(final). Left: the geometric reduction factor F , which increases as the crossing angle is decreased.
Right: the resulting luminosity. The integrated gain due to the levelling (shaded area) was at the
level of 5%

In a collider with crab cavities, a similar effect can be achieved by varying the
crab cavity voltage instead of the external crossing angle. In this case, the bunches
collide tilted at the IP, reducing the effective cross-section and hence the geometric
factor.

Furthermore, levelling by crossing angle can also be used to improve the
performance of a collider limited by beam-beam interactions. Since the bunch
intensities decrease over the course of a fill, beam-beam forces (both head-on and
parasitic) decrease and allow for a smaller crossing angle. By gradually reducing
the crossing angle throughout a fill, the loss of luminosity due to the geometric
factor can be minimized. Since reducing the crossing angle increases the length of
the luminous region, the pile-up density remains constant during this operation. This
approach has e.g. been used at the LHC as of 2017. An example is given in Fig. 9.22.

9.8.7.3 Levelling by β∗

Adjusting the β∗ allows controlling the luminosity while keeping the beams head-
on, avoiding aperture restrictions of closed orbit bumps and providing a constant
beam-beam tune spread. It implies changing the local optics around the IP, which
will change the orbit and β functions locally. Therefore, care must be taken ensure
smooth transitions between different β∗ values and ensuring machine protection at
all times. In particular, orbit excursions must be kept under control e.g. by using
feedback systems and any collimators around the IP must be moved to match the
new optics.

To allow for arbitrary values of β∗ and independent levelling of all IPs, the
corresponding IP optics would need to be matched online during collider operation.
To reduce complexity, a discrete set of IP optics covering the range of β∗ needed
for operation can be pre-generated. If necessary, this can then be combined with
levelling by separation or crossing angle for a fine-grained luminosity control
between the foreseen β∗ steps.
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Fig. 9.23 β∗ and luminosity during a β∗ levelling test at the LHC. To demonstrate that the beams
can be squeezed and un-squeezed at the IPs as necessary, multiple cycles between β∗ = 40 cm and
β∗ = 30 cm were performed. The luminosity follows accordingly

levelling by β∗ is a baseline concept for novel accelerators (e.g. HL-LHC,
FCC-hh) and has been successfully demonstrated at the LHC. An example from
a machine test is given in Fig. 9.23.

9.8.7.4 Alternative Methods and Combined Levelling Scenarios

In addition to the methods described above, the luminosity can also be reduced in a
controlled way by creating a longitudinal separation through RF cogging. However,
this is operationally challenging and intrinsically effects all IPs equally. In a collider
with synchrotron radiation damping of the transverse and longitudinal emittances,
controlled emittance blow-up (transverse or longitudinal) could be used likewise.

Also, two or more levelling methods described above can be combined to a
full levelling scenario for a collider which yields the optimal integrated luminosity
within the given constraints of pile-up, beam-beam effects and machine limitations
(e.g. aperture). For example, the luminosity could initially be reduced to a target
via a combination of β∗ and offset levelling; once this is not effective anymore,
the intensity and hence the beam-beam forces will have decreased, so the crossing
angle could be reduced to increase the luminosity, gaining extra time at the levelling
target. Once the crossing angle is small enough, the triplet aperture may allow for a
further reduction of β∗.

9.9 Machine Protection

J. Wenninger

Two main machine protection domains are considered. Firstly the protection of
accelerator equipment related to high power equipment. For example: the protection
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of powering equipment from overheating (magnets, power converters, high current
cables); the protection of superconducting magnets from damage after a quench;
and the safe operations of high power klystrons. Secondly there is the protection
of equipment from high stored beam energy. This is related to the high beam
power of high power proton accelerators such as ISIS, SNS and the PSI cyclotron,
to the emission of synchrotron light by electron/positron accelerators and to the
increase of energy stored in the beam (in particular for hadron colliders such
as TEVATRON, HERA and LHC). Effective protection in this case requires an
excellent understanding of accelerator physics and operation to anticipate the
failures that could lead to damage. It includes sophisticated beam and equipment
monitoring, a system to safely stop beam operation (e.g. dumping the beam) and
an interlock system providing the means to integrate the various systems. Machine
protection must be considered during design, construction and operation of the
accelerator.

9.9.1 Definition of Risk

The risk factor may be defined as the product of the probability of a failure
multiplied by the consequences of the failure (e.g. damage to equipment). The total
risk is the product of the individual risks factors of the possible failures in play.
Protection can be used to mitigate risk. In the accelerator domain it is clear that the
higher the risk factor, the more important that protection becomes.

The cost of given failure scenario can be estimated. The consequences may
be in terms of, for example: damage to equipment (repair requiring expenditure);
downtime of the accelerator; or the radiation dose to personnel accessing equipment;
or indeed a combination of the above.

The second factor entering into the risk is the probability that a given failure
happens. One can imagine that such an estimate be measured in number of failures
per year.

For operation with beam, a list of all possible failures that could lead to beam loss
into equipment should be considered. This is not obvious to establish since there are
a potentially large, but not innumerable, ways to lose the beam. However, the most
likely failure modes and, in particular, the worst case failures (in terms of cost) and
their probability must be considered.

9.9.2 Beam Losses and Consequences

Particle losses in a material lead to particle cascades. The maximum energy deposi-
tion can be deep in the material at the maxima of the hadronic and electromagnetic
showers. The energy deposition leads to a temperature increase and stress in the
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material that can be vaporised, melt, deform or lose its mechanical properties,
depending on the material and the beam impact.

There is already some risk of damage to sensitive equipment from an energy
deposition of some 10 kJ for a beam impact on the time scale of a few milliseconds.
The risk of damage to equipment from losses in the mega-Joule regime is enormous.

Equipment becomes activated due to beam losses. Rigorous radiation protection
measures are required and acceptable exposure limits must be clearly established.
For potential exposure to higher rates one possible approach is the ALARA principle
which aims to keep the exposure of personnel to radiation “As Low As Reasonably
Achievable”. Cool-down times might be required to respect this principle with
knock on costs to operational availability.

For accelerators with superconducting magnets there is a specific problem—
even with beam loss much below the damage threshold superconducting magnets
may quench due to the temperature increase induced by beam loss. In the case of a
quench, beam operation is interrupted leading to downtime for recovery. To avoid
beam induced quenches, beam losses are monitored and beam operation is aborted
if a predefined threshold is exceeded. Since the damage threshold is well above
the quench threshold, this strategy also protects the superconducting magnets from
damage.

There is no simple expression for the energy deposition of high energy particles,
since this depends on the particle type, the momentum, beam parameters and
material parameters (atomic number, density, specific heat). Programs such as
FLUKA [103], MARS [104] or [105] are used to estimate energy deposition as
well as the activation of the exposed material.

9.9.3 Time Constants for Beam Losses

Potential beam losses scenarios can be broken down according to the time scale of
the losses. Monitoring and reaction to losses must, of course, act at the appropriate
time scale.

9.9.3.1 Ultra Fast Beam Losses

Sources of failures that lead to a beam loss within very short time, typically in the
range of ns to μs are:

• failures of kicker magnets (during injection, at extraction, or during the use of
special kicker magnets used for beam diagnostics);

• failure during beam transfer via transfer lines between different accelerators or
from the accelerator to a target station.
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9.9.3.2 Very Fast Beam Losses

Sources for failures that lead to a very fast beam loss (typically in the range of ms)
are multi turn beam losses in circular accelerator. These can have a large number
of possible causes, most of which will concern the powering system of the main
magnets. Time constants could be in the order of some 10 turns.

9.9.3.3 Fast Beam Losses

Fast beam loss (some 10 ms to seconds) can have many different origins, for
example failures in the magnet powering system; vacuum valves that close; trips
of the RF acceleration system; beam instabilities; control system failures.

9.9.3.4 Slow Beam Losses

Slow beam losses (many seconds) can have many different origins, for example,
high vacuum pressure; failures in the powering system for corrector magnets;
operational error. The main difference between slow and fast losses is that the
operation crew could still be involved in the decision how to continue operation (for
example, to stop beam operation or to correct a parameter that is not set correctly).

9.9.4 Principles of Machine Protection

The key high level requirements for machine protection outline below.

• Protect the accelerator and ensure no, or minimal, damage. The highest priority
to avoid any damage to accelerator equipment.

• Protect the beam and ensure maximum machine availability. Complex protection
systems with many interlocks may reduce the availability of the machine. The
number of false interlocks stopping operation must be minimized. A “false”
interlock is defined as an interlock that stops operation although there is no risk
(for example when a sensor involved in an interlock gives an incorrect reading).

• Provide the evidence and ensure complete availability of all post mortem data
in case of failure, or false triggers of the machine protection system. When the
protection systems stop operation (e.g. dump the beam or inhibit injection), clear
diagnostics should be provided [106] to understand cause and consequences.
This requires fast diagnostics based on synchronised transient recording of all
the important parameters, as well as long term logging of parameters.

The principle components of a machine protection system are listed below.

• Systems to monitor the correct operation of all hardware.
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• Beam instrumentation to measure and check that beam parameters are in the
correct range.

• A beam dumping system, in general including a fast kicker magnet and absorber
block.

• Collimators and beam absorbers to provide passive protection against beam loss.
• A beam interlock system that links the different protection systems. Its role is

to ensure that the appropriate action is taken in case of problems (the beam is
extracted from a synchrotron, injection is stopped etc.). The interlock system
might include complex logic.

There are several principles that should be considered in the design of protection
systems, although it might not be possible to follow all these principles in all
cases.

• If the protection system does not work or is compromised, it should prevent
continued operation. The design should be fail-safe. In case of a failure in the
protection system, protection functionalities should not be compromised. As an
example, if the cable that triggers the extraction kicker of the beam dumping
system is disconnected, operation must be stopped and the beam dumped.

• Detection of internal faults: the protection system must monitor its status. In case
of an internal fault, the fault should be reported. If the fault is critical, operation
must be stopped.

• Remote testing of correction system behaviour should be possible. For example
between two runs unit testing should allow verification of the correct status of
the system.

• Critical systems should have built in redundancy of critical functionality (possi-
bly diverse redundancy, with the same or similar functions executed by different
systems).

• Critical processes for protection should not rely on complex software running
under an operating system and requiring the availability of a computer network.

• It should not be possible to remotely change the most critical parameters of a
given system. If parameters need to be changed, the changes must be controlled,
logged and password protection should ensure that only authorised personnel can
make the change.

• Safety, availability and reliability of the systems should be demonstrated. This is
possible by using established methods to analyse critical systems and to predict
failure rates.

• One should attempt to gain experience of operating the protection systems in
good time before they become critical, to gain experience and to build up
confidence. This could be done before beam operation, or during early beam
operation when the beam intensity is deliberately kept relatively low.
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9.9.5 Strategy for Protection

The best protection strategy is to prevent by design the occurrence of a potential
failure. As an example, fast kicker magnets for diagnostics that could deflect the
beams into the vacuum chamber should only be installed in high intensity machines
if they are indispensable. If they are installed the available kick strength should be
below the level that can kick the beam to the aperture.

Failure should be detected as early as possible, with priority at the hardware level
of the system at the origin of the failure. If the failure detection is fast enough, beam
operation may be stopped before the beam parameters are affected in a significant
way. As an example, a failure of a magnet power converter should be detected as
early as possible within the converter itself.

When a failure is detected, beam operation must be stopped. For synchrotrons
and storage rings the beam is extracted by a fast kicker magnets into a beam dump
block. Injection must be inhibited.

Since detecting failures at the hardware level is not always possible or fast
enough, beam diagnostics is needed to detect abnormal beam behaviour. This
requires reliable, and sometimes dedicated, beam instrumentation.

9.9.6 Active and Passive Protection

Active protection is based on detection of a failure or of the consequences of the
failure on the beam. After detection the beam must be turned off and injection
inhibited, or, the case of a storage ring, the beam must be dumped as soon as
possible.

Passive protection there is a certain class of failures when active protection is
not possible. For example, protection against misfiring of an injection or extraction
kicker magnet might include a beam absorber or collimator to catch any mis-kicked
beam. All possible beam trajectories in such case must be considered, and the
absorber must be designed and positioned to absorb the beam energy without being
damaged itself.

9.9.7 Interlock Management

In large complex accelerator with high beam currents it is unavoidable that there will
be a high number of interlocks. In certain phases of operation (e.g. commissioning)
when operating with limited beam power, the disabling of certain interlocks is
certainly to be envisaged. However, it is vital to track any disable interlocks and
ensure that they are re-enabled when required. In the LHC the disabling of a selected
number of interlocks is possible for low intensity, low energy beams. When the beam
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energy or intensity increase above damage level, the interlocks are automatically
enabled.

9.9.8 Beam Instrumentation for Machine Protection

Beam instrumentation plays an important role for machine protection, and is used
to monitor beam parameters and stop beam operation if a parameter is outside a
predefined range. If machine protection relies on the correct operation of beam
instruments, failures in beam instrumentation sub-systems need to be considered.

9.9.8.1 Beam Loss Monitors—BLM

BLMs are used for monitoring beam losses and can clearly play an important role in
machine protection. In simple terms the BLMs measure localized beam losses along
the accelerator and stop beam operation in case losses the losses become too high.
It is important that the monitors cover the entire accelerator and there is no region
with potential for losses without BLM coverage.

The monitors can be fast, for example, the LHC BLMs operate on a 40 μs time-
scale. The BLM system should be designed so that it can trigger a beam dump and
stop operation before beam losses on this scale can damage equipment.

Failure cases for the system might include defective BLMs providing no or too
low readings and therefore not providing a signal even in case of high beam losses;
and the thresholds could be set incorrectly. The former can be caught via rigorous
unit testing, the latter by strict and rigorous threshold management.

9.9.8.2 Beam Position Monitors—BPM

BPMs coupled with appropriate orbit or trajectory correction can ensure that the
beam is in the correct place in respect to the aperture. This position would normal
be around the centre of the beam pipe but there are many exceptions, for example
during extraction where a closed orbit bump is applied to position the beam close
to a septum magnet. BPMs can monitor the amplitude of such bumps and are
effectively redundant monitors of the magnet current in the closed orbit dipoles.

One possible issues is the presence of constant offset in BPM readings which can
be independent of the beam position. If a closed orbit feedback system is used, the
feedback tries to correct an erroneous position. A closed-orbit bump can develop
and, in the worst case, the beam touches the aperture. Even if the protection systems
work correctly and the beam is dumped there is some risk—for example, the beam
dump kicker might push the trajectories of part of the beam to the aperture.
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9.9.8.3 Beam Current Monitors

Beam current monitors can be used to monitor transmission and lifetimes of beams.
If the beam transmission between two locations of the accelerator complex is too
low, implying beam loss, the obvious action is to stop operation and address the
problem. If the beam lifetime in a synchrotron or storage ring is too low, one
dumps the beam. The dangers of erroneous readings are fairly clear. Duplication
of monitors can provide some level of redundancy.

9.9.9 Machine Protection at the LHC

A Livingston type plot (Fig. 9.24) shows the energy stored in the beam as a function
of particle momentum.

Machine Protection is required during all phases of operation since the LHC
is the first accelerator with the intensity of the injected beam already far above
threshold for damage. Protection during the injection process is mandatory. It is
striking that the energy stored in the nominal LHC beam at injection is about one
order of magnitude higher than the stored energy in the beam for other accelerators.
At 7 TeV fast beam loss with an intensity of about 5% of one single “nominal bunch”
can damage equipment (e.g. superconducting coils).

The only component that can stand a loss of the full beam are the beam dump
blocks—all other components would be severely damaged. The LHC beams must
always be extracted onto the beam dump blocks at the end of a fill and in case of
failure.

During powering at 7 TeV beam energy, about 10 GJ is stored in the super-
conducting magnets. Therefore quench protection and powering interlocks must be
operational and fully debugged and tested long before the start of beam operation.

Fig. 9.24 Energy stored in
the beams for different
accelerators (based on a
figure by R. Assmann)
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credit to the original author(s) and the source, provide a link to the Creative Commons licence and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons licence, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.
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