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Preface

For many years the series Landolt-Börnstein—Group I Elementary Particles, Nuclei
and Atoms, Volume 21A (Physics and Methods Theory and Experiments, 2008),
Vol. 21B1 (Elementary Particles Detectors for Particles and Radiation. Part 1:
Principles and Methods, 2011), Vol. 21B2 (Elementary Particles Detectors for Par-
ticles and Radiation. Part 2: Systems and Applications), and Vol. 21C (Elementary
Particles Accelerators and Colliders, 2013), has served as a major reference work in
the field of high-energy physics.

When, not long after the publication of the last volume, open access became
a reality for HEP journals in 2014, discussions between Springer and CERN
intensified to find a solution for the “Labö” which would make the content available
in the same spirit to readers worldwide. This was helped by the fact that many
researchers in the field expressed similar views and their readiness to contribute.

Eventually, in 2016, at the initiative of Springer, CERN and the original Labö
volume editors agreed in tackling the issue by proposing to the contributing authors
a new OA edition of their work. From these discussions a compromise emerged
along the following lines: transfer as much as possible of the original material into
open access; add some new material reflecting new developments and important
discoveries, such as the Higgs boson; and adapt to the conditions due to the change
from copyright to a CC BY 4.0 license.

Some authors were no longer available for making such changes, having either
retired or, in some cases, deceased. In most such cases, it was possible to find
colleagues willing to take care of the necessary revisions. A few manuscripts could
not be updated and are therefore not included in the present edition.

We consider that this new edition essentially fulfills the main goal that motivated
us in the first place—there are some gaps compared to the original edition, as
explained, as there are some entirely new contributions. Many contributions have
been only minimally revised in order to make the original status of the field available
as historical testimony. Others are in the form of the original contribution being
supplemented with a detailed appendix relating recent developments in the field.
However, a substantial fraction of contributions has been thoroughly revisited by
their authors resulting in true new editions of their original material.
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We would like to express our appreciation and gratitude to the contributing
authors, to the colleagues at CERN involved in the project, and to the publisher,
who has helped making this very special endeavor possible.

Vienna, Austria Christian Fabjan
Geneva, Switzerland Stephen Myers
Geneva, Switzerland Herwig Schopper
July 2019
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Chapter 1
Accelerators, Colliders and Their
Application

E. Wilson and B. J. Holzer

1.1 Why Build Accelerators?

Accelerators are modern, high precision tools with applications in a broad spectrum
that ranges from material treatment, isotope production for nuclear physics and
medicine, probe analysis in industry and research, to the production of high energy
particle beams in physics and astronomy. At present about 35,000 accelerators exist
world-wide, the majority of them being used for industrial and medical applications.
Originally however the design of accelerators arose from the request in basic physics
research, namely to study the basic constituents of matter.

The first accelerators were inspired by the early experiments in nuclear physics.
In the early years of the twentieth century Rutherford discovered that by using
alpha particles from radioactive disintegration and detecting the pattern of particles
scattered by atoms one might deduce that the nucleus was a tiny but massive central
element in the atom. Alpha particles from disintegration can only be of energies of
10 MeV; comparable with the nuclear binding forces. Higher energies were needed
and a more reliable and steady supply to ease the tedium of counting occasional
flashes of light on the scintillation screen that was Rutherford’s detector. De Broglie
had shown that there was an inverse relationship between the momentum, and
hence the energy of a particle and the wavelength of its representation in quantum
mechanics.

λ = h

p
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2 E. Wilson and B. J. Holzer

where h represents Planck’s constant and p the particles’ momentum which relates
to its energy via the well-known equation of special relativity, E2 = p2c2 + m2c4.
The limit to the scale of detail that experiments can reveal is set by the length of
the wave which is scattered: rather as the wave breaking in the beach can only be
deflected by islands larger than itself. It was argued correctly that higher energy
particle, having the property of shorter wavelengths could better reveal the structure
of the nuclei that Rutherford has detected.

Such arguments led to the invention of the first accelerators and have sustained
the development of particle accelerators of higher and higher energy over the best
part of the last 100 years. At first, physicists used accelerators to probe the structure
of the nucleus, but went on to use higher energy accelerators to search for structure
in the “fundamental” particles—protons, neutrons and electrons they discovered.
Inevitably higher energies implied larger accelerators, for it was quickly discovered
that the best way to accelerate repetitively was to keep particle in a circular path
whose radius was itself proportional to energy, limited by the strength of the
magnetic field one might use to do the bending.

As energies were raised physicists found new and interesting particles to fit into
the pattern of those that their theories might predict. Einstein’s

E = mc2

tells us that only high energies will create the more massive particles. The latest and
largest accelerator, LHC, flagship of the whole community, was designed to search
for the Higgs Boson and the successful discovery of this missing puzzle piece in
2013 allowed us to complete the Standard Model of Particle Physics.

As we write, this machine is carrying on the search for physics beyond the
standard model, seeking to disclose the nature of dark matter and dark energy.

As more powerful accelerators have been developed for high energy particle
physics, advances in the field have been exploited in a whole range of smaller
accelerators for other applications. From the time of the first cyclotrons they have
been used for producing isotopes and for treating cancer. The development of
compact high-frequency linac structures triggered the manufacture of hundreds of
small electron linacs producing X-rays for cancer treatment in hospitals around
the developed and, latterly, the developing world. Electron rings of a few GeV,
specially designed to produce beams of synchrotron radiation have become popular.
Each facility serves scores of experiments to investigate the structure of complex
molecules—particularly the proteins of today’s biomedical studies. Proton accel-
erators of about 1 GeV produce pulsed beams of neutrons by spallation which are
used principally to study the structure of materials. In addition thousands of lower
energy accelerators are used in industry for sterilisation and ion implantation in the
fabrication of sophisticated CPU chips for computers.
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1.2 Types and Evolution of Accelerators

The development of accelerators to ever higher energy is marked by a number of
milestones. Each of these marks the invention of a new type of accelerator or the
invention of a new principle of transverse or longitudinal focusing which enables
a higher energy to be reached for a lower unit cost. The best way to describe
this evolution and introduce the different types of accelerator is to follow the road
charted by these milestones. Each is described in one of the sections which follow.

1.2.1 Early Accelerators

The nineteenth century had produced a number of electrostatic high-voltage gener-
ators. They were unpredictable in performance and electrical breakdown became
a serious problem above a few tens of kV. Early accelerators were simply two
electrodes enclosed in an evacuated tube with external connections to such high
voltage source. A proton or electron source close to one electrode at a potential of V
(or−V for electrons) provided the particles which were then accelerated towards the
second electrode at earth potential. They emerged or were observed through a small
hole in the earthed electrode. The energy acquired by each particle with charge,
e Coulombs, was just e∗V Joules or, in the units commonly used for accelerated
beams, V electron-Volts. An electron Volt is then just 1.6 × 10−19 Joules. If the
particle is a fully stripped ion of an atom with atomic number A and charge Z then
the energy is ZV/A electron Volts per nucleon.

The first high-voltage generator to approach 1 MeV was built by Cockcroft
and Walton [1–3] in the 1930s to accelerate particles for their fission experiments.
Their combination of diodes and capacitors, also known as rectifier circuit, is still
used today to apply high voltage to the ion or proton source at the beginning of
many linacs and synchrotrons although these are gradually being replaced by radio
frequency quadrupoles.

The early 1930s also saw the invention by R.J. Van der Graaf [4] of an
electrostatic generator which used a moving belt to carry charge into the high
voltage terminal until it reaches a potential of several MV (Fig. 1.1). Van der
Graaf accelerators have proved a useful source of low energy particles to this
day but are inevitably limited by problems of voltage breakdown. Voltages up
to 27 MV have been reached, putting the device in a discharge suppressing gas
atmosphere (e.g. SF6). Although it is possible in theory to chain together several
electrostatic accelerators, each with its cathode connected to the anode of the next,
each stage increases the potential between the ends of the device and between the
ends and ground and eventually electrical breakdown discharges the high voltage
terminals.
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Fig. 1.1 Van der Graaf
accelerator

Fig. 1.2 Wideröe’s sketch of
the ray transformer

1.2.2 The Ray Transformer

The earliest idea of how to overcome the limitations of electrostatic acceleration
involved using the time varying property of magnetic fields and came from the
inventive mind of Rolf Wideröe.

Beginning his studies at Karlsruhe Technical University in 1923, he wondered
if electrons in an evacuated ring would flow in the same way as the electrons in
copper if they replaced the secondary winding of a transformer. His notebooks of
that time contain sketches of a device he called a “ray transformer”; the first circular
accelerator and the precursor of the “betatron” [5].

These sketches show a beam tube, in the form of an annulus, R, placed in the
gap between the parallel poles or faces of a small electromagnet (on the left in Fig.
1.2). This magnet is in the form of a “C” and the field between the poles, Bz, guides
particles in a circular orbit in the mid plane between the poles. A circular hole is cut
in each pole through which the yoke of the transformer passes linking the beam tube.
The primary winding of the transformer, labelled W1, is powered with alternative
voltage from the mains. The beam tube is placed where one would normally expect
the secondary winding. The beam within it carries the induced secondary current.
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Unlike almost all accelerators that followed, the ray transformer relied entirely
upon the inductive effect of a varying magnetic field. It is the rate of change of
flux, φ, in the yoke which establishes an accelerating potential difference around
the beam’s path. The windings, that of the C-magnet and of the primary of the
transformer, W1, give independent control of the guide field and accelerating flux.

Wideröe calculated that electrons circulating in a ring of only 10 or 20 cm
diameter could reach several MeV within one quarter wave of the AC excitation
of the transformer. He had to use Einstein’s newly discovered theory of special
relativity to correctly describe the motion of particles close to the speed of light.
He also found an important principle which ensures that the beam radius does not
change as it accelerates. To ensure constant radius during acceleration the total flux
linking the beam including that generated by both sets of the coils, Ba, must be twice
that generated by the left hand coil pair which produces the field keeping the beam
in a circular orbit, Bg.

Ḃa = 2Ḃg

Unfortunately, Wideröe was dissuaded from building the ray transformer by
difficulties with surface fields and by his professor, who wrongly assumed the beam
would be lost because of gas scattering. However, his Ray Transformer and the 2
to 1 ratio, now known as the Wideröe principle, were important discoveries which
were put into practice 15 years later when D.W. Kerst and R. Serber [6] built a series
of betatrons.

Wideröe went on to develop a second basic acceleration method to overcome the
electrostatic limitation: the drift tube linac.

1.2.3 Repetitive Acceleration

There are two broad classes of accelerator characterized by the way they achieve
repetitive acceleration and which overcome the insulation problems of the elec-
trostatic machines. The simplest concept is that of the linear accelerator. Particles
pass though cavities excited by radio frequency generators. They arrive on the
threshold of each cavity with the energy they have already received and gain a
further increment in energy from the electric field in the cavity which points in
their direction of motion. Each cavity performs the function of the gap between the
anode and cathode of an electrostatic accelerator but, unlike the electrostatic case,
the increments of energy may be added together without developing a huge voltage
to ground in any part of the apparatus. Of course, there is a limit to the voltage
(energy increment) each cavity can apply and the length of the device becomes
very long for energies above 1 GeV. Nevertheless, a linac has become the only way
of accelerating highly relativistic electrons which radiate a large fraction of their
energy when bent into a circular path.
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As alternative concept, circular machines, like cyclotrons and synchrotrons use
the same set of accelerating cavities over and over again as the particles make
complete turns around the accelerator, being guided and focused by the magnet
structure of the ring which is thus constraining their orbit. On each turn an increment
of energy is added and, once accelerated, particles may be allowed to circulate
indefinitely at their top energy. Two circulating beams of say protons and antiprotons
or electrons and positrons can be sustained in the same ring and, colliding at
experiments around the circumference, create new particles up to a mass (centre
of mass energy as it is called) that is the sum of the two energies. Colliders are
today the preferred configuration for a high-energy machine. Earlier, new particles
were sought in the debris from a particles collision with a nucleon in a fixed target
but such collisions are limited to a smaller centre of mass energy—which rises only
as the square root of the accelerated beam energy.

1.2.4 Linear Accelerators

Although disappointed by the rejection of his ray-transformer as a subject for his
PhD, Wideröe was led to the idea of a linear accelerator by a paper by G. Ising
[7] who tried to overcome the voltage breakdown problem of a single stage of
acceleration by placing a series of hollow cylindrical electrodes one after another
in a straight line to form what today we would call a ‘drift tube linac’ or linear
accelerator. Wideröe realised that an oscillating potential applied to one drift tube
flanked by two others which are earthed, accelerates at both gaps provided the
oscillator’s phase changes by 180◦ during the flight time between gaps.

In 1927 he built a three-tube model which accelerated sodium ions. At the
wavelengths that radio transmitters generated at that time a particle travelling near
the velocity of light would travel hundreds of meters in the time it would take
for the r.f. to swing by half a sine wave. This would make the length of a drift
tube impractically large. Sodium ions, being rather heavy compared with protons or
electrons, travelled much slower than the velocity of light and this helped keep the
apparatus down to table-top proportions. Although he realised that one might extend
such a series of tubes indefinitely he did not take the idea any further as he was due to
start his professional employment designing high voltage circuit breakers. Between
1931 and 1934, D. Sloan and E.O. Lawrence at Berkeley took up Wideröe’s idea
and constructed linacs with as many as 30 drift tubes to accelerate mercury ions but,
these were never used for research.

Much later, in the mid-1940s, and when suitable high-power high-frequency
oscillators had become available to meet the needs of war-time radar, L.W. Alvarez
(1946) started to build the first serious proton linac at the Radiation Laboratory of
the University of California. Figure 1.3 shows an Alvarez linac. A series of drift
tubes are mounted within a copper-lined cylinder excited by a radio transmitter. As
in Wideröe’s linac, particles gain energy from the accelerating potential differences
between the ends of the drift tube, but now the phase shift between drift tube
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Fig. 1.3 left: The concept of the drift tube linac (from [8]); right: CERN’s Linac 1

gaps is 360◦. Each gap appears to the particle to be an identical field gradient
which accelerates particles from left to right. The particles are protected from the
decelerating phase while inside the metallic drift tubes. Although the particle gains
energy steadily as it passes each gap, the total voltage between parts of the assembly
and ground does not become larger along the length of the device as it would for an
electrostatic machine.

The distances between gaps, or the lengths of the tubes, increase as the particle
is accelerated since it travels an ever increasing distance during one swing of
the radio frequency oscillation. At low energy, we would expect this distance to
increase with the velocity or the root of the kinetic energy but when the energy is
large we find the length of the drift tubes and their spacing no longer increases—
a practical demonstration of special relativity. The Alvarez structure is still widely
used, especially for non-relativistic proton and ion beams.

It was well known at the time that waves might be propagated along a much
simpler smooth waveguide and that some of the modes have an accelerating electric
field in the direction of propagation. Closer examination however shows that the
stumbling block is that the phase velocity of these modes in a wave guide is
always greater than that of light and hence the particle sees a field which sometimes
accelerates and then decelerates as the wave overtakes the particle. It was later found
that the phase velocity could be reduced by a series of iris diaphragms in the pipe.
Such a structure (Fig. 1.4) is very popular in electron linacs and also in storage rings
in which the particle is close to the velocity of light and cavities need not be tuned
to follow the acceleration cycle.

These diaphragm-loaded linac structures have been commonly used as injectors
for circular accelerators to accelerate electrons and protons to energies in the range
10 to 1000 MeV. As compact high frequency structures they have also been widely
used to accelerate electrons to, typically 10 MeV, as a source of X-rays for cancer
therapy. An early and very successful adventure in the electron linac development
was the “two-mile long” Stanford Linear Accelerator at SLAC in California which
has been the work horse for a number of ground breaking fixed target experiments
and circulating beam storage ring projects at 20 to 50 GeV. With the help of two
semi-circular arcs it was used to bring beams of electrons and positrons into head-
on collision in the Stanford Linear Collider Project. This project, is forerunner for
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Fig. 1.4 Iris loaded structure
(from [9]). The ‘chimney’ is
the input waveguide

today’s projected Linear Colliders in which linear accelerators accelerate positrons
and electrons to energies approaching 1 TeV to collide them head on in a bid to
overcome the very considerable energy lost by an electron to synchrotron radiation
in circular lepton rings at high energy.

1.2.5 Cyclotrons

Unlike a linac, whose length must be extended to reach a higher energy, the
cyclotron, as it is called, is a relatively compact accelerator in which the energy
is only limited by the diameter and field strength of the magnet. The cyclotron idea
first occurred to E.O. Lawrence who, reading through Wideröe’s thesis, ruminated
on the possibility of using a magnetic field to recirculate the beam through two of
drift tubes. The cyclotron idea was published in 1930 [10] and another colleague,
M.S. Livingston, who was also later to contribute much to the field, was given the
job of making a working model as his doctoral thesis.

In Fig. 1.5 we see the two ‘Dee’s’ which comprise the positive and negative
electrodes of the accelerating system between the poles of the magnet. These are
like two halves of a closed cylinder divided along its diameter. A radio-frequency
generator excites them with an alternating field of constant frequency. The potential
difference between the ‘Dee’s’ accelerates the ions as they pass the gap between
the two halves of the structure. The fundamental trick is that the field oscillates at
the particle’s circulation frequency and hence the sign of the potential difference at
each gap is always in the accelerating direction.

As long as cyclotrons accelerate ions to modest energies, classical rather than
relativistic mechanics still applies. In Fig. 1.6 we see the balance between centripetal
acceleration of motion in a circle and the force exerted by the vertical magnetic field,

evB = mv2

ρ
, if v � c, (1.1)
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Fig. 1.5 The principle of the
cyclotron

Fig. 1.6 Balance of forces in
a cyclotron

and, rearranging, we can define the magnetic rigidity—the reluctance of the beam
to be bent in a curve:

B� = mv

e
, if v � c. (1.2)

In the relativistic regime if we replace the classical momentum, mv, by the
relativistic momentum, p = γmv, with γ being the Lorentz factor, we obtain the
equation, valid in the relativistic regime:

B� = p

e
. (1.3)

By good fortune the radius of the orbit in a cyclotron is proportional to the
velocity and the frequency of revolution this being the inverse of the time of
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revolution—just the length of one turn divided by the particle’s velocity

f = v

2π�
= v

2π
· eB
mv

. (1.4)

has a numerator and denominator which are both proportional to v. This frequency
remains constant as the particle is accelerated in the low energy, classical, regime.
Thus, the circulating particles stay in synchronisation with the oscillating RF field
and a continuous stream of ions injected in the centre will follow a spiral path to
reach their highest energy at the rim of the poles.

Unfortunately, the synchronism between r.f. voltage and revolution frequency
breaks down as the particles velocity begins to approach that of light and the
relativistic mass in the above equation is no longer constant. This happens over
30 MeV for protons and at double this energy for deuterons. Electrons are much too
light and relativistic to be accelerated in a cyclotron to any significant energy. For
them other acceleration concepts are more adequate, like the disk loaded travelling
wave linac or the betatron that both were described before.

The possible remedy of making the field stronger at the edge of the poles would
have preserved synchronism and continuous beams but, as we shall see, was in
conflict with the need to have a negative radial gradient to the field to provide vertical
weak focusing. As a consequence a more powerful concept had to be developed to
achieve highest particle beam energies: The synchrotron.

1.2.6 The Synchrotron

Meanwhile, in the 1940s, still higher energies were needed to pursue the aims of
physics and the stage was set for the discovery of the synchrotron principle which
opened the way to the series of circular accelerators and storage rings which have
served particles physics up to the present day. It was Australian physicist Mark
Oliphant who synthesized three old ideas into a new concept—the synchrotron. The
ideas were: accelerating between the gaps of resonators, varying the frequency, and
pulsing the magnet. In 1943 he described his invention in a memo to the UK Atomic
Energy Directorate (see [11]).

Particles should be constrained to move in a circle of constant radius thus enabling the use
of an annular ring of magnetic field . . . which would be varied in such a way that the radius
of curvature remains constant as the particles gain energy through successive accelerations
by an alternating electric field applied between coaxial hollow electrodes.

Unlike the cyclotron, the synchrotron accelerates the beam as a series of discrete
pulses or “bunches” as they are called. Each short pulse is injected at low field
and then the field rises in proportion to the momentum of particles as they are
accelerated. This ensures that the radius of the orbit remains constant. In contrast
to cyclotrons and betatrons, the synchrotron needs no massive poles to support a
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Fig. 1.7 A simple
accelerating cavity

magnetic field within the beam’s circular orbit. The guide field is instead provided
by a slender ring of individual magnets. The fact that the machine is pulsed and
the frequency must be controlled to track the increasing speed of particles is a
complication, but it solves the difficulty that isochronous cyclotron builders had
encountered in accelerating relativistic particles.

Instead of the Dees of a cyclotron acceleration is provided in a synchrotron by
fields within a hollow cylindrical resonator or “pillbox” cavity, Fig. 1.7, excited by
a radio transmitter. A particle passes from left to right as it completes each turn of
the synchrotron receiving another increment in energy at each revolution.

The early synchrotrons, like the cyclotron before them, relied on a slight negative
radial gradient in the vertical magnet field to produce field lines which belly
outwards from the magnet gap. A small radial field component deflects any particles
which head off towards the poles back to the median plane. Unfortunately, this
field shape has the opposite (defocusing) effect horizontally but, up to a certain,
rather weak, gradient strength focusing is assured by a slight imbalance between the
central force and the centrifugal acceleration. The gradient cannot be too large—
hence the term “weak focusing”.

Oliphant was the first to start building a proton synchrotron (at Birmingham
University) but he was overtaken by Stan Livingston’s 3 GeV Cosmotron at
Brookhaven National Laboratory and later by the 6 GeV Bevatron at Berkeley.

Due to the weak focusing forces in these first synchrotrons, the particles’
excursions, both horizontally and vertically are large and the magnet pole width
and gap correspondingly so. Strong focusing changed this. It was invented at the
Cosmotron, which was actually the first proton synchrotron to operate, whose
weak focusing ‘C’ shaped magnet was open to the outside. The top energy of the
Cosmotron was limited by the extra fall-off in field caused by the effect of saturation.
Stan Livingston and E.D. Courant wanted to compensate this by re-installing some
of the C magnets with their return yokes towards the outside. They were afraid
of the variations in gradient around the ring but were surprised to calculate that
the focusing seemed to improve as the strength of the alternating component of
the gradient increased. Courant, Livingston, and H.S. Snyder [12, 13] were able to
explain this retrospectively with an optical analogy of alternating focusing by equal
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Fig. 1.8 The CERN 25 GeV proton synchrotron

convex and concave lenses which will transport rays which pass through the centres
of defocusing lenses.

Alternating gradient or strong focusing greatly reduces the beam’s excursions
and so the cross section of the magnet gap by more than an order of magnitude.
Its discovery enabled Brookhaven and CERN to build the next generation of
proton synchrotrons, AGS and PS, to reach 30 GeV—five times the energy of the
Bevatron—yet use beam pipes of only a few centimetres height and width.

This was to lead to huge economies in the cost per unit length of the magnet
system. Figure 1.8 shows how this was applied to the first of the two synchrotrons,
AGS and PS that used this focusing system. From then on all synchrotrons and, later,
storage ring colliders use this scheme. The history of synchrotrons has been always
to seek methods of improving focusing and economizing on magnet aperture. The
only other step function in their development to higher energies has been the use
of superconducting magnets whose higher fields reduce the circumference of the
machine by a factor between 3 and 5.

1.2.7 Phase Stability

When the first synchrotrons were built it was by no means obvious that the
circulating beam and the accelerating voltage would remain in step. There were
those who thought that any slight mistiming of the sine wave of accelerating voltage
in the cavity might build up over many turns until particles would begin to arrive
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within the negative, decelerating, phase of the sine wave and be left behind. Even if
one succeeded in achieving synchronism for the ideal, synchronous particle, others
of slightly different energy would not have the same velocity and take a different
time to circulate around the machine. Would not these particles gradually get out of
step until they were lost? After all, particles had to make many hundred thousand
turns before reaching full energy and while transverse focusing was understood
there was no apparent focusing available in the longitudinal direction. Fortunately
the comforting principle of phase stability, which prevents this happening, was
soon to be independently discovered by V. I. Veksler in Moscow in 1944 [14] and
McMillan in Berkeley in 1945 [15], opening the way to the construction of the first
synchrotrons. We shall return to this later.

When it came to the next generation of synchrotrons, interest focused on
colliding two opposing beams of particles. It had been known for some time that
the energy available in the centre of mass from a collision of particles, one in the
beam with energy E and the other of mass m0 in a fixed target, only increased
with the square root of the accelerators energy,

√
m0E. Two particles of the same

mass and energy E colliding head on made available all their energy in the centre
of mass, 2E. The difficulty was making the two bunches of particles of sufficient
density to have a significant probability of collision or, in technical jargon a high
enough luminosity. Once this problem was solved a series of colliders: ISR, SppS,
LEP, Tevatron, HERA and finally LHC followed. Some of these (ISR, HERA and
LHC) were two separate rings which intersected to collide particles at several points
around the circumference. Others (SppS and LEP) collided protons with antiprotons
and electrons with their anti-particles: positrons. These exploited the fact that beams
of particles and antiparticles will circulate on identical trajectories, but in opposite
directions, in a single ring of bending and focusing magnets.

At present several studies are ongoing, to pave the way to even higher energies,
mainly increasing the size of the machine and using super conducting magnets with
higher critical field, to gain more bending and focusing fields in the lattice. One
example, the Future Circular Collider study, FCC, under the guidance of CERN, is
studying a 100 km proton storage ring to achieve centre of mass energies of up to
100 TeV. The R & D effort of accelerators of this dimension and complexity, in any
case, has to be done by a truly international, in other words worldwide effort.
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Chapter 2
Beam Dynamics

E. Wilson and B. J. Holzer

2.1 Linear Transverse Beam Dynamics

Now let us look in detail at the motion of particles in the transverse coordinates of
the coordinate system defined in Fig. 2.1.

2.1.1 Co-ordinate System

The guide field of a synchrotron is usually vertically directed, causing the particle to
follow a curved path in the horizontal plane (Fig. 2.1). The force guiding the particle
in a circle is horizontal and is given by:

F = e· v ×B, (2.1)

where:

v is the velocity of the charged particle in the direction tangential to its path,
B is the magnetic guide field.

The guide field inside a dipole magnet is uniform and the ideal motion of the
particle is simply a circle of (local) radius of curvature, ρ(s). The trajectory of an
ideal particle (ideal in energy and without any amplitude) that is defined by the
arrangement of the dipole magnets is called design orbit. The machine is usually
designed with this orbit at the centre of its vacuum chamber. Now there is no such
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Fig. 2.1 Charged particle orbit in magnetic field

thing as an ideal particle. Still, we shall suppose that it is possible to find an orbit or
curved path for the non-ideal particle which closes on itself around the synchrotron,
which we call the closed or equilibrium orbit and it should be close enough to the
ideal design orbit.

2.1.2 Displacement and Divergence

A beam of particles enters the machine as a bundle of trajectories spread about the
ideal orbit. At any instant a particle may be displaced horizontally by x and vertically
by z from the ideal position and may also have divergence angles horizontally and
vertically:

x ′ = dx/ds, and z′ = dz/ds. (2.2)

The divergence would cause particles to leave the vacuum pipe except for the
carefully shaped field which restores them back towards the beam centre so that
they oscillate about the ideal orbit. The design of the restoring fields determines the
transverse excursions of the beam and the size of the cross section of the magnets
and is therefore of crucial importance to the cost of a project.

2.1.3 Bending Magnets and Magnetic Rigidity

The design of a synchrotron; the diameter of the ring and its sheer size and cost for
a given energy is driven by the fact that bending particle trajectories depends on a
magnetic rigidity. The rigidity increases with momentum and is a function of the
bending field which, for room temperature magnets, saturates at about 2 T.
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Fig. 2.2 Vector diagram showing differential changes in momentum for a particle trajectory

We will now briefly derive an expression for the magnetic rigidity of a relativistic.
A particle has a relativistic momentum vector p and travels perpendicular to a field
B which is into the plane of the diagram (Fig. 2.2).

We write the Lorentz force on the particle on its circular path as

FLorentz = e ∗ (v ×B)

Assuming an idealized homogeneous dipole magnet along the particle orbit,
having pure vertical field lines, the condition for a perfect circular orbit is defined
as equality between this Lorentz force and the centrifugal force.

F centrif ugal = γmv2

ρ

This yields the following condition for the idealized ring:

Bρ = p

e

where we are referring to protons and have accordingly set q = e. We conclude
that the beam rigidity Bρ, given by the magnetic field and the size of the machine,
defines the momentum of a particle that can be carried in the storage ring, or in
other words, it ultimately defines, for a given particle energy, the magnetic field of
the dipole magnets and the size of the storage ring.

We really should use the units Newton-second for p and express e in Coulombs
to give (Bρ) in Tesla·metres. However, in charged particle dynamics we often talk
in a careless way about the ‘momentum’ pc. This actually has the dimensions of an
energy and is expressed in units of GeV.
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Fig. 2.3 Geometry of a particle trajectory in a bending magnet of length � and deflecting angle θ

A useful rule of thumb formula based on these units is:

Bρ [T ·m ] = 3.3356 pc [GeV ] . (2.3)

2.1.4 Particle Trajectory in a Dipole Bending Magnet

The trajectory of a particle in a bending magnet or dipole of length � is shown in
Fig. 2.3. Usually the magnet is placed symmetrically about the arc of the particle’s
path. One may see from the geometry that:

sin (θ/2) = �

2�
= �B

2 (B�)
, (2.4)

and, if θ << π/2

θ ≈ �B

(B�)
. (2.5)

So the bending angle provided by a dipole magnet is given by the ration of its
integrated field strength and the beam rigidity.
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Fig. 2.4 Two views of a sphere rolling down a gutter as it is focused by the walls

2.1.5 Weak Focusing

We have mentioned that cyclotrons and early synchrotrons relied on weak focusing
to constrain circulating particles within the vacuum chamber. In order to provide
this, the vertical guide field has a slight negative gradient in the radial direction
around the rim of the accelerator. The field lines belly out from the outer gap of
the magnet. It can be shown, by applying ∇ × B = 0, that there will be horizontal
field components in this region. These produce vertically directed forces on errant
particles causing them to oscillate about the median plane in a potential well (Fig.
2.4).

The motion is analogous to a small sphere rolling down a slightly inclined gutter
with constant speed. Figure 2.4 shows two views of this motion and from the bottom
view we recognise the motion as a sine wave. Note too that the sphere makes four
complete oscillations along the gutter. In the language of accelerators, its motion
has a wave number or “tune”, Q = 4.

To complete the analogy of a weak focusing synchrotron we imagine that we
bend the gutter into a circle rather like the brim of a hat. We provide the necessary
instrumentation to measure the displacement of the sphere from the centre of the
gutter each time it passes a given mark on the brim and we also have a means
to measure its transverse velocity. With the aid of a computer, we might convert
this information into the divergence angle, which is used as vertical axis in Fig.
2.5:

x ′ = dx

ds
= v⊥

v‖
. (2.6)

We can make a ring shaped gutter out of a slightly different length of gutter
than is shown so that Q is not an integer. We can plot a point for each arrival of
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Fig. 2.5 The elliptical locus of a particle’s history in phase space as it circulates in a synchrotron

the sphere in a diagram of x′ against x which we call a ‘phase space diagram’ of
transverse motion. The sphere has a large transverse velocity as it crosses the axis
of the gutter and has almost zero transverse velocity as it reaches its maximum
displacement.

If we plot these ‘observations’ they will be an ellipse (Fig. 2.5) and the phase
of the oscillator will advance by Q evolutions each time the particle returns.
Of course, only the fractional part of Q may be deduced from our observations
since our measurements do not reveal what happens round the rest of the hat’s
brim.

Now let us use the analogy to define some of the transverse dynamical quantities
of a particle beam. The area of the ellipse is a measure of how much the particle
departs from the ideal trajectory, represented in the diagram by the origin.

Area = πε [mm · rad] . (2.7)

In accelerator notation we use ε, the product of the semi-axes of the ellipse as a
measure of the area called the emittance. The emittance is usually quoted in units
of π mm·mradians. Thus if the semi-axes are 1 mm and 1 mrad the emittance will
be 1 mm·mradian but the area will be π mm·mradian. The maximum excursion in
displacement, the major axis, of the ellipse is defined as:

x̂ = √εβ, (2.8)

At locations where the beta function reaches an extremum, i.e. α = 0, we obtain
hence

x̂ ′ = √ε/β. (2.9)
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We shall see that β (later to be called the envelope or betatron function) is a
property of the gutter, not the beam. In the synchrotron it varies around the ring
and is the envelope function we have plotted in Fig. 2.10 and again in Fig. 2.11.
By analogy, the “brim of the hat” which represents the alternating gradient focusing
system shown in this figure will vary its width and curvature around the crown and
β will follow this variation in some way.

2.1.6 Alternating Gradient Focusing

In Chap. 1 we described a major break-through in the design of synchrotrons: the
discovery of alternating gradient (AG) focusing (see [1] for an excellent summary
of the dynamics of AG focussing). This allowed designers to use much stronger
focusing systems with considerable savings in the space needed for the beam cross
section.

The principle is shown in Fig. 2.6 which depicts an optical system in which
each lens is concave in one plane while convex in the other and they alternate. It
is possible, even with lenses of equal strength, to find a ray which is always on
axis at the D lenses in the horizontal plane and therefore only sees the F lenses.
To appear like Fig. 2.6 the spacing of the lenses would have to be 2f. If the ray
is also central in the lenses which are vertically defocusing, the same condition
will apply simultaneously in the vertical plane. At least one particular particle
or trajectory corresponding to this ray will never be defocused and be contained
indefinitely.

The alternating gradient idea will work even when the rays in the D lenses do not
pass exactly at their centre and the lenses are not spaced by precisely 2f. In fact it is
sufficient for the lens strengths and spacing to be chosen to ensure that the particle
trajectories tend to be closer to the axis in D lenses than in F lenses as shown in Fig.
2.10.

Fig. 2.6 Optical analogy with an alternating pattern of lenses

http://dx.doi.org/10.1007/978-3-030-34245-6_1
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2.1.7 Quadrupole Magnets

The first alternating gradient synchrotorns used alternating magnetic lenses formed
by bending magnets having the same vertical guide field but a radial gradient of
alternating sign. In a modern synchrotron the functions of guiding and focussing
the beam are separated. The dipole magnets which do the guiding have no gradient.
The principal focusing elements are quite a different kind of magnet with four poles
which produce gradient but no bending. The poles of these quadrupole magnets are
truncated rectangular hyperbolae and alternate in polarity around the aperture circle
which just touches the poles.

Figure 2.7 shows a particle’s view of the fields and forces in the aperture of a
quadrupole as it passes through normal to the plane of the paper. The field shape
is such that it is zero on the axis of the device but its strength rises linearly with
distance from the axis. This can be seen from a superficial examination of Fig. 2.7 if
we remember that the product of field and length of any field line joining the poles
is a constant. Symmetry tells us that the field is vertical in the median plane (and
purely horizontal in the vertical plane of asymmetry). The field must be downwards
on the left of the axis if it is upwards on the right.

The horizontal focusing force, −evBz, has an inward direction on both sides
and, like the restoring force on a weight suspended from a spring, rises linearly
with displacement, x. The strength of the quadrupole is characterised by its gradient
dBz/dx normalised with respect to magnetic rigidity:

k = 1

(B�)

dBz

dx
. (2.10)

Fig. 2.7 Components of field and force in a magnetic quadrupole. Positive ions approach the
reader on paths parallel to the s axis (orthogonal to x and z) [2]
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The angular deflection given to a particle passing through a short quadrupole of
length, � and strength k, at a displacement x is therefore:

Δx ′ = θ = �B/ (Bρ) = �B′x/ (Bρ) = �kx. (2.11)

The use of x′ to indicate the divergence angle of a trajectory is defined in Fig.
2.5. Compare this with a converging lens in optics:

Δx ′ = −x/f (2.12)

and we see that the focal length of a horizontally focusing quadrupole is

f = −1/ (k�) (2.13)

The particular quadrupole shown in Fig. 2.7 would focus positive particles
coming out of the paper or negative particles going into the paper in the horizontal
plane. A closer examination reveals that such a quadrupole deflects particles with
a vertical displacement away from the axis—vertical displacements are defocused.
This can be seen if Fig. 2.7 is rotated through 90◦.

2.1.8 The Equation of Motion

Earlier we derived an expression for the change in divergence of a particle passing
through the quadrupole. A horizontally focusing quadrupole (which is at the same
time vertically defocusing) has a negative k.

We first look at the vertical plane. The angular deflection given to a particle
passing through a short quadrupole of length ds and strength k at a displacement
z is therefore:

dz′ = −kzds. (2.14)

From this we can deduce a differential equation for the motion

z′′ + k(s)z = 0. (2.15)

Here we would like to make a clear statement: While inside a lattice element,
say a quadrupole lens, the normalised gradient k is constant and we get a equation
that we know from Hook’s law in classical mechanics, (see Eq. 2.12), the situation
now is more general. We allow k(s) to change, while our particles are running
through the accelerator. The corresponding equation (2.15) is called Hill’s Equation,
a second order linear equation with a periodic coefficient, k(s) which describes the
distribution of focusing strength around the ring. The above form of Hill’s equation
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applies to the motion in the vertical plane while in the horizontal plane the effect of
the dipole magnets has to be included:

x ′′ +
[

1

ρ2(s)
− k(s)

]
x = 0. (2.16)

Here the sign in front of k(s) is reversed so that the quadrupole focuses. The extra
focusing term 1/ρ2 due to the curvature of the orbit can be significant in small rings.
In the old constant gradient synchrotrons, this weak focusing term was the only form
of horizontal focusing.

We see in Fig. 2.10, the pattern of one cell of a simple synchrotron lattice—a
pattern which is repeated many times around the circumference as may be seen in
Fig. 2.11 which shows—in addition to the focusing and defocusing lenses also the
bending magnets—bending magnets. Within this pattern of dipole and quadrupole
focusing and defocusing (F and D), particles make betatron oscillations within the
envelopes described by βx and βz, or more precisely, the square roots of these
quantities (here we use the variable y to represent either the horizontal or the vertical
coordinate, x or z)

y = √εβ(s) sin (φ(s)+ φ0) . (2.17)

If one tries to verify that this is the solution of Hills Equation an important and
necessary condition emerges:

φ′ = 1/β (2.18)

From which we see that 2πβ is the local wavelength of the transverse oscilla-
tions.

2.1.9 Matrix Description

Usually in alternating gradient (AG) machines, the ring is a repetitive pattern of
focusing fields that we call the “lattice”. Each lattice element may be expressed
by a matrix and whole sections of the ring which transport the beam from place
to place may be represented as the product matrix of the single element matrices
involved, which makes the description of particle trajectories very simple and very
elegant at the same time. Any linear differential equation, like Hill’s Equation, has
solutions which can be traced from one point, s1, to another, s2, by a 2 × 2 matrix,
the transport matrix:

(
y (s2)

y ′ (s2)

)
=
(
a b

c d

)(
y (s1)

y ′ (s1)

)
= M21

(
y (s1)

y ′ (s1)

)
. (2.19)
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The transport matrix M21 has a rather simple form for each focusing quadrupole
that the particle encounters and for the drift length between quadrupoles and it
is easy to compute the four elements numerically once we define the length and
focusing strength. We can trace particles by simply forming the product of these
elementary matrices. But there is also a general relation between the elements a, b,
c, d and the amplitude and phase of transverse motion between any two points. Each
term in M21 can be expressed as a function of β(s) and φ(s). The functions of β(s)
and φ(s) may be calculated by comparing the numerical result of multiplying the
individual matrices for quadrupoles and drift lengths with what we know must be
the general form of each element.

As a first step, we derive the general form of a periodic transport matrix.
To simplify the notation we drop the explicit dependence of β and φ on s from the

expressions—we will just have to remember that they vary with s. We also introduce
a new quantity:

w = √β. (2.20)

just to avoid too many terms in what follows.
In this new notation we can write the solution of the Hill Equation:

y = ε1/2w cos (ϕ + φ0) . (2.21)

Taking the derivative and substituting ϕ′ = 1/β = 1/w2 we have:

y ′ = ε1/2w′ cos (ϕ + φ0)− ε
1
2

w
sin (ϕ + φ0) . (2.22)

Next we substitute these explicit expressions for y and y′ in both sides of the
matrix equation. We do this first with the initial condition ϕ0 = 0, this is the so-called
‘cosine’ solution, and then we do it again for the ‘sine’ solution with ϕ0 = π /2. This
is exactly equivalent to tracing the paraxial and central rays through an optical lens.
We write φ2 − φ1 = φ for each case. Each of the two solutions give us two equations
for y and y′ and thus we obtain four simultaneous equations which can be solved for
a, b, c, d in terms of w, w′, and ϕ. The result is the most general form of the transport
matrix between the positions s1 and s2 :

M12 =
( w2

w1
cosϕ −w2w

′
1 sin ϕ w1w2 sin ϕ

− 1+w1w
′
1w2w

′
2

w1w2
sin ϕ −

(
w′1
w′2
− w2

w1

)
cosϕ w1

w2
cosϕ + w1w

′
2 sin ϕ

)

.

(2.23)

This rather formidable looking expression simplifies a lot, if we refer to a full
circle, in other words, if we restrict M to apply between two identical points
in successive turns or cells of a periodic structure. Then w2 = w1, w′

2 = w′
1,
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and ϕ to become μ, the phase advance per cell. The matrix for one period is
now:

M =
(

cosμ− ww′ sinμ w2 sinμ

− 1+w2w′2
w2 sinμ cosμ+ww′ sinμ

)

. (2.24)

Next we invent some new functions of β:

β = w2,

α = −ww′ = −β ′
2 ,

γ = 1+(ww′)2

w2 = 1+α2

β
.

(2.25)

These functions (which are not the same as the parameters used in special
relativity!) are a complete and compact description of the dynamics. The matrix
now becomes even simpler:

M =
(

cosμ+ α sinμ β sinμ
− γ sinμ cosμ− α sinμ

)
=
(
a b

c d

)
. (2.26)

This is the Twiss matrix. It is the basic matrix for periodic lattices and should be
memorized.

We can imagine that if we can only find an independent way of computing the
numerical values of the four elements we can solve and find:

cosμ = (Tr M) /2 = (a + d) /2,
β = b/ sinμ > 0,
α = (a − b) / (2 sinμ) ,
γ = −c/ sinμ.

(2.27)

These Twiss parameters, μ, β, α, and γ , are therefore rigorously determined
by the overall effect of the focusing properties of the lattice elements. Still, they
vary around the ring and apply to the point chosen in the period as a starting and
finishing point. We shall see that each individual component, quadrupole, dipole, or
drift space in the ring has its own matrix and this provides the independent method of
calculation. We must first choose the starting point, the location, s, where we wish
to know β and the other Twiss parameters. By starting there and multiplying the
element matrices together for one turn we are able to find a, b, c, d numerically for
that location. We can then apply the above four equations to find the Twiss matrix.
If the machine has a natural symmetry in which there are a number of identical
periods, it is sufficient to do the multiplication up to the corresponding point in the
next period. The values of α, β, and γ would be the same if we went on for the
whole ring. By choosing different starting points we can trace β(s) and α(s). We
now give the matrices for the three basic lattice elements.
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2.1.10 Transport Matrices for Lattice Components

An empty space or drift length is the simplest of the lattice component matrices.
Figure 2.8(a) shows the analogy between a particle trajectory and a diverging ray in
optics. The angle of the ray and the divergence of the trajectory are related:

θ = tan−1 (x ′
)
. (2.28)

The effect of a drift length in phase space is a simple horizontal translation from
(x, x′) to (x+�x′, x′) and can therefore be written as a matrix:

(
x2

x ′2

)
=
(

1 �

0 1

)(
x1

x ′1

)
. (2.29)

The next case is that of a thin quadrupole magnet of infinitely small length but
finite integrated gradient:

�k = 1

(Bρ)

∂Bz

∂x
. (2.30)

The optical analogy of a thin quadrupole with a converging lens is illustrated in
Fig. 2.8(b). A ray, diverging from the focal point arrives at the lens at a displacement,
x, and is turned parallel by a deflection:

θ ≈ 1

f
x. (2.31)

This deflection will be the same for any ray at displacement x irrespective of
its divergence. This behaviour can be expressed by a simple matrix, the thin lens
matrix:

(
x2

x ′2

)
=
(

1 0
− 1/f 1

)(
x1

x ′1

)
. (2.32)

a b

Fig. 2.8 The effect of a drift—(a), left side—and a focusing quadrupole lens—(b) right side—on
a particle trajectory. The mathematical expressions are given in Eqs. (2.29) and (2.32)
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A particle arriving at a quadrupole lens at a displacement x obeys Hill’s equation

x ′′ + kx = 0. (2.33)

Hence the small deflection θ is just:

Δx ′ = −kx�. (2.34)

Comparing quadrupoles with optical lenses we remember that �k = 1/f and is
the power of the lens and that the matrix, for a thin lens, can be written:

(
1 0
− k� 1

)
. (2.35)

Under the influence of these focusing and defocusing fields, a particle trajectory
will finally look like a more or less zig-zag shaped curve; which for the example of
eight regular cells it is shown in Fig. 2.9.

Quadrupoles are sometimes not short compared to their focal length. One must
therefore use the matrices for a long quadrupole when one comes to compute the
final machine:

MF =
(

cos �
√
k 1√

k
sin �

√
k

−√
k sin �

√
k cos �

√
k

)

, and

MD =
(

cosh �
√
k 1√

k
sinh �

√
k

−√
k sinh �

√
k cosh �

√
k

)

.

(2.36)

x(mm)

s(m)

10

-10

0 10 20 30 40

Fig. 2.9 A single particle trajectory in a ring: At each part of the lattice the amplitude and angle,
(x, x′) of the particle are described by a matrix transformation, according to Eq. (2.32). The blue
line corresponds to an ideal particle, with x = x′ = 0 and so refers to the ideal orbit



2 Beam Dynamics 29

Fig. 2.10 The focusing effect of trajectory length in a pure sector dipole magnet

We can compare this with the solutions of Hill’s equations within F and D
quadrupoles:

z = cos
√
k� z0 + 1√

k
sin

√
k� z′0,

x = cosh
√
k� x0 + 1√

k
sinh

√
k� x ′0.

(2.37)

We have so far ignored the bending that takes place in dipole magnets and these
may be thought of as drift lengths in a first approximation. An exact calculation
should include the focusing effect of their ends. A pure sector magnet, whose
ends are normal to the beam will give more deflection to a ray which passes at
a displacement x away from the centre of curvature (Fig. 2.10). This particle will
have a longer trajectory in the magnet. The effect is exactly like a lens which focuses
horizontally but not vertically. The matrices for a sector magnet are:

MH =
(

cos θ ρ sin θ
− (1/ρ) sin θ cos θ

)
,

MV =
(

1 ρθ

0 1

)
.

(2.38)

Some bending magnets are not sector magnets as in Fig. 2.9, but have end
faces which are parallel. It is easier to stack laminations this way than on a curve.
The entry and exit angles are therefore, θ /2, and the horizontal focusing effect is
reduced but there is an additional focusing effect for a particle whose trajectory is
displaced vertically. In the computer model one may convert a pure sector magnet
into a parallel faced magnet by simply adding two thin lenses at each face. They are
horizontally defocusing and vertically focusing and their strength is:

k� = − tan (θ/2)

ρ
. (2.39)
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Unlike early lattice designers we have computers to help when we come to
multiply these elements together to form the matrix for a ring or a period of the
lattice [3–5]. A lattice program such as MAD [6] does all the matrix multiplication
to obtain (a, b, c, d) from each specified point, s, and back again. It prints out β
and ϕ and other lattice variables in each plane, and we can plot the result to find
the beam envelope around the machine. This is the way machines are designed.
Lengths, gradients, and numbers of FODO normal periods are varied to match the
desired beam sizes and Q values.

In Fig. 2.8 we saw the trajectory of a particle, oscillating in a pattern of alternating
focussing and defocusing quadrupoles (FODO). The trajectories in general all lie
within an envelope which has the general features of the optical model in Fig. 2.6. If
we were to repeat the observation of the displacement and divergence of a particle
on successive turns we would find the elliptical locus of its motion (Fig. 2.5). The
aspect ratio of this ellipse would depend upon where in the ring we choose to make
the observation. The ellipse would be squat near D lenses and elongated near F’s.
The figure would appear just the same if we were to plot it between what are F
quadrupoles in the vertical plane. Of course, the whole pattern of quadruples and
the envelope is shifted by the distance between adjacent quadrupoles because F-
quadrupoles in one plane are D in the other (et vice versa).

2.1.11 The Betatron Envelopes

To recapitulate, a modern synchrotron consists of pure bending magnets and
quadrupole magnets or lenses which provide focusing. These are interspersed
among the bending magnets of the ring in a pattern called the lattice. By suitable
choice of strength and spacing of the lenses the envelope function β(s) can be made
periodic in such a way that it is large at all F quadrupoles and small at all D’s.
Symmetry will ensure this is true also in the vertical plane. Particles oscillating
within this envelope will always tend to be further off axis in F quadrupoles than
in D quadrupoles and there will therefore be a net focusing action. We have already
seen that β is the aspect ratio of the phase space ellipse (see also [7, 8]).

In Fig. 2.11 we see an example of such a magnet pattern which is one cell, or
about 1% of the circumference, of the 400 GeV SPS at CERN. Although the SPS is
now considered a rather old fashioned machine its simplicity leads us to use it as an
example. The focusing structure is FODO and in this pattern half of the quadrupoles
(F) focus, while the other half, defocus (D) the beam. Bending magnets, which
in a first approximation do no focussing are represented together with other non-
focussing elements by the letter “O”. The envelope of these oscillations follows a
function β(s) which has waists near each defocusing magnet and has a maximum
at the centres of F quadrupoles. Since F quadrupoles in the horizontal plane are
D quadrupoles vertically, and vice versa, the two functions βh(s) and βv(s) are
one half-cell out of register in the two transverse planes. The function β has the
dimensions of length but the units bear no relation at this stage to physical beam
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Fig. 2.11 One cell of the
CERN SPS representing
1/108 of the circumference.
The pattern of dipole (B)
magnets and quadrupole (F
and D) lenses is shown above

size. The reader should be persuaded that particles do not follow the β(s) curves but
oscillate within them in a form of modified sinusoidal motion whose phase advance
is described by φ(s). The phase change per cell in the example shown is close to π/2
but the rate of phase advance is modulated throughout the cell.

2.2 Coupling

Until now we have considered the motion in the vertical and horizontal direction to
be orthogonal and independent. This is the ideal case. Now we look at what happens
when there is a skew quadrupole or solenoidal field in the machine which couples
horizontal motion into vertical and vice versa. This is rather a special case affecting
mainly electron synchrotrons and the reader may choose to skip to Sect. 2.3 and
leave coupling to a second reading.

In a fully coupled machine the betatron oscillations in the two transverse
directions are like two harmonic oscillators which transfer energy from one to the
other with a frequency which is just the difference between their Q’s. They act like
coupled pendula. In this way all the horizontal “emittance” can add to the vertical
emittance and the beam exceeds the available vertical aperture.

The phenomenon is particularly important in electron rings. The electron beam
would damp to zero emittance were it not for quantum emission in the horizontal
plane exciting betatron oscillations. There is no comparable excitation in the vertical
plane and only coupling of the horizontal oscillations into the vertical plane gives
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the beam any vertical dimensions. Vertical emittance, and the magnet gap needed to
accept it, is directly proportional to coupling.

2.2.1 Coupling Fields

There are two principal configurations of field which excite coupling. The first we
shall consider is a skew quadrupole, i.e. a quadrupole whose poles lie symmetrically
in the horizontal and vertical planes (Fig. 2.12).

A particle with horizontal position x, experiences not a Bz as would be the case
in a normal quadrupole and which would change its x′, but a Bx which together with
the paraxial velocity deflects vertically in the direction of v × B. Of course once the
particle has acquired a vertical displacement z after a number of turns it experiences
a vertical field, for in a skew quadrupole the field is:

Bx/ (Bρ) = kx,

Bz/ (Bρ) = −kz. (2.40)

Thus a horizontal displacement couples into the vertical plane leading to a verti-
cal divergence and displacement. The vertical displacement goes on to couple back
into the horizontal plane modifying the horizontal displacement and divergence—
and so it proceeds transferring transverse momentum back and forth from one plane
to the other.

A solenoid is the other field configuration that can couple the two planes but this
kind of coupling is less important in synchrotrons and we leave it to the reader to
consult a more exhaustive treatment of coupling in [9].

Fig. 2.12 The magnetic field and force in a skew quadrupole
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2.2.2 Qualitative Treatment of Coupling

In our treatment the theory is deliberately simplified to reveal the physical mecha-
nisms at work. We assume that the coupling is driven by a single skew quadrupole at
the centre of one of the existing lattice machine quadrupoles where β is maximum
and its derivative zero. We ignore the changes in betatron phase of one plane with
respect to the other within a single turn.

The skew quadrupole gradient is normalized:

k = 1
(Bρ)

(
∂Bx
∂x

)

z=0
,

l = length of the quadrupole.
(2.41)

Figure 2.13 on the left shows the betatron motion in the horizontal plane. We
have normalized the elliptical phase space trajectory into a circle at the location
of the skew quadrupole by multiplying the divergence by βx. On the right we
have done the same for the vertical plane. The angular kick �p, on passing
the skew quadrupole is calculated from a similar diagram for the vertical plane
and

Δpx = βxk�w cosQVθ, (2.42)

where w = √
εVβz is the radius of the circle for vertical motion, and u = √

εHβx
is the radius horizontally.

Fig. 2.13 Phase space diagram
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The kick, projected as an amplitude increment becomes:

δu = wβxk� sinQHθ cosQVθ. (2.43)

When we use:

sinA cosB = 1

2
sin (A− B)+ 1

2
sin (A+ B)

and ignore the second, high frequency term; we obtain the coupled equations for a
single passage:

δw
w
= −
√

εH
εV

√
βxβz

2 k� sin (QH −QV) θ,

δu
u
=
√

εV
εH

√
βxβz

2 k� sin (QH −QV) θ.
(2.44)

These are incremental equations which we must sum over the n turns as the
coupling enhances u at the expense of w.

Figure 2.14 shows diagrammatically the coupled motion. The vertical betatron
amplitude decrease from w + �w to w in one quarter period of the slow oscillation
which takes 1/4|QH − Qv| turns. The mean value of the cosine is taken as 2/π. We
then arrive at the expressions for the maximum excursions in amplitude:

Δw
w

=
√

εH
εV

√
βxβz

4π |QH−Qv|k�,
Δu
u
=
√

εV
εH

√
βxβz

4π |QH−Qv|k�.
(2.45)

We now move from the phase plane into real space. Some machines were
designed to have a rectangular “vacuum chamber” which would accept particles
which simultaneously have large horizontal and vertical “emittances”. In this sense
emittance is defined for a single particle

εH = πu2/βx, εV = πw2/βy. (2.46)

In the presence of coupling, the particle motion is a series of Lissajous figures
filling the rectangular cross-section but always touching it somewhere on each turn
(Fig. 2.15). It is inevitable therefore that if coupling increases either amplitude by
�u/u or �w/w, some fraction of particles will be lost.

A rigorous treatment of coupling is too lengthy to include here but the reader may
consult [9–11] for a complete description. This lengthier treatment leads to a model
in which the modes of betatron oscillations are no longer about the vertical and
horizontal planes but about two orthogonal principal planes inclined with respect to
the vertical and horizontal frame.
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Fig. 2.14 Coupled betatron oscillations for 1/|QH − Qv| turns

2.3 Liouville’s Theorem

Now let us return to the ‘mainstream’ of transverse dynamics. Liouville’s theorem is
a conservation law that applies to the area occupied by a number of particles plotted
in phase space.

We should think of a beam of particles as a cloud of points within a closed
contour in a transverse phase space diagram (Fig. 2.16). Liouville’s theorem tells
us that this area within the contour is conserved. The contour is usually, but not
always, an ellipse. In Fig. 2.5 we came across such an elliptical contour—the locus
of a particle’s motion plotted in phase space (x,x′) and we call its area, the emittance.
We could also think of it as a limiting contour enclosing all the particles in the beam
which we would again call the emittance—not of the particle but of the beam as a
particle ensemble.

We express beam emittance in units of π mm·milliradians. According to
Liouville the emittance area will be conserved as the beam passes down a transport
line or circulates in a synchrotron whatever magnetic focusing or bending operation
we do on the beam—provided that only conservative forces are taken into account.
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Fig. 2.15 Particle lost due to
coupling

Fig. 2.16 Liouville’s
theorem applies to this
contour

Even though the ellipse may appear to have many shapes around the accelerator
its phase space area will not change (Fig. 2.17). The aspect ratio of the ellipse
will change however. At a narrow waist, near a D quadrupole (a) in Fig. 2.17, its
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Fig. 2.17 How the conserved phase space appears at different points in a FODO cell

Fig. 2.18 The parameters of a phase-space ellipse containing an emittance ε at a certain point in
the lattice. The shape and orientation of the ellipse are determined by the Twiss parameters at the
given location

divergence will be large, while in an F quadrupole (d) where the betatron function
is maximum, its divergence will be small. The beam is also seen at a broad waist or
maximum in the beta function and a place where the beam is diverging.

In Fig. 2.18 we see how the various features of the ellipse are related to the
Twiss parameters. The equation of the ellipse, often called the Courant and Snyder
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invariant, has the form

γ (s)y2 + 2α(s)yy ′ + β(s)y ′2 = ε. (2.47)

Here y is used to mean either of the transverse displacements, x or z. It is straight
forward determine the relation between the shape and orientation of the (x,x′) ellipse
and the Twiss parameters α, β, γ as indicated in Fig. 2.18.

The invariance of the (x,x′) space area, as we move to different points in the ring
is an alternative statement of Liouville’s theorem.

A word of caution—another, stricter, version of Liouville’s theorem states that:

In the vicinity of a particle, the particle density in phase space is constant if the particles
move in an external magnetic field or in a general field in which the forces do not depend
upon velocity.

This rules out the application of Liouville’s theorem to situations in which space
charge forces within the beam play a role or when there is a velocity dependent effect
such as when particles emit synchrotron light. However we may apply Liouville
to proton beams which do not normally emit synchrotron light and to electrons
travelling for a few turns in a synchrotron. This is usually too short a time for
electrons to emit enough synchrotron light energy to affect their transverse motion.

Liouville’s theorem does not apply as a proton beam is accelerated. Observations
tell us this is not the case. The beam appears to shrink. This is because the co-
ordinates we have used so far, y and y′, are not ‘canonical’ in the sense defined by
Hamiltonian in his mechanics, which is part and parcel of Liouville’s mathematical
theory of dynamics. We should therefore express emittance in Hamilton’s canonical
phase space and relate this carefully to the co-ordinates, displacement, y, and
divergence, y′, which we have been using so far. We can then define an emittance
which is conserved even as we accelerate.

We shall have to be particularly careful not to confuse Twiss parameters, and
the parameters of special relativity: In special relativity we use β as the ratio of the
particles velocity and the speed of light and the Lorentz factor γ describes the total
energy divided by the rest energy. The reader will have to examine the context to be
sure. For those who have not met Hamiltonian mechanics, it is sufficient to know
that the canonical co-ordinates of relativistic mechanics are:

p = m0ẏ√
1 − v2/c2

, q = y. (2.48)

Here q or y is a general transverse co-ordinate, p its conjugate momentum and
we define β and γ when used in the context of special relativity to be:

β = v/c,

γ = 1/
√

1 − β2,

m0 = rest mass,
c = velocity of light.

(2.49)
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We may find the relationship between canonical momentum and divergence from
the substitution:

py = m0
dy

dt
γ = m0

ds

dt

dy

ds
γ = mc (βγ ) y ′. (2.50)

Writing Liouville’s Theorem expressed in canonical coordinates we can use the
above expression to define a conserved quantity and relate it to the area in (y, y′)
space

∫
pydy = m0c (βγ )

∫
y ′dy = p0

∫
y ′dy (2.51)

where p0 is the momentum in the direction of motion of the particle.
This invariant is the emittance, ε, of our transverse phase space multiplied by

the relativistic βγ which is proportional to momentum. Accelerator physicists often
call this the invariant or ‘normalised’ emittance:

ε∗ = βγ ε [π mm ·mrad] (2.52)

This normalised emittance, ε∗, is conserved as acceleration proceeds in a
synchrotron and the physical emittance within the right-hand side of the equation
must fall inversely with momentum if the whole term is to be conserved. Close to
the velocity of light this implies that it is inversely proportional to energy.

Emittance = πε =
∫
y ′dy = πε∗/ (βγ ) ∝ 1/p0. (2.53)

We therefore expect the beam dimensions to shrink as (Fig. 2.19) a phenomenon
called ‘adiabatic damping’.

2.3.1 Chains of Accelerators

As a consequence of the adiabatic shrinking, the beam emittance is largest at low
energy, and so is the beam dimension. Proton accelerators need their full aperture
at injection and it is then that their design is most critical. For this reason it is
economic to split a single large ring into a chain of accelerators—the smaller
radius rings having a large aperture while the higher energy rings with large radius
can have smaller apertures. In these chains of proton accelerators, such as the
CERN accelerator complex, Linac – Booster – PS – SPS, the invariant emittance,
determined by the parameters of the beam as it leaves the ion source at the beginning
of the linac, may be conserved to several hundred GeV. Of course one must
guard against mismatches between machines or non-linear fields which dilate the
emittance.
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Fig. 2.19 Adiabatic
shrinking of the beam as
function of the beam
momentum during
acceleration

2.3.2 Exceptions to Liouville’s Theorem

The invariance of normalised emittance of a proton beam and the shrinking of its
physical emittance with energy is quite the opposite of what happens in an electron
machine. Liouville’s theorem only applies to conservative systems, where particles
are guided by external fields and not to electron machines where particles emit
some of their own energy. Electrons, being lighter than protons and hence more
relativistic, emit quanta of radiation as they are accelerated. This quantised emission
causes particles to jump around in momentum, leading to changes in the trajectories
amplitude and angle. These changes couple into both planes of transverse phase
space. At the same time, there is a steady tendency for particles near the edge of the
emittance to lose transverse energy and fall back towards the centre. In an electron
machine the emittance is determined not by the Liouville but by the equilibrium
between these two effects. In fact, it grows with E2.

Consider a number of protons which have the maximum amplitude present in the
beam. They follow trajectories at the perimeter of the ellipse but at any instant have
a random distribution of initial phases φ0. If we were able to measure y and y′ for
each and plot them in phase space, they would lie around the ellipse of area πε and
their co-ordinates would lie in the range of

−√βε ≤ y ≤ √
βε,

−√
εγ ≤ y ′ ≤ √

εγ .
(2.54)

Particles in a beam are usually distributed in a population which appears
Gaussian when projected on a vertical or horizontal plane. In a proton machine
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the emittance boundary used to be conventionally chosen to be that of a proton
with amplitude 2σ. This would include about 90% (strictly 87%) of a Gaussian
beam where σ is the standard distribution. In an electron machine a 2σ boundary
would be too close to the beam and an aperture stop placed at this distance would
rather rapidly absorb most of the beam as particles redistribute themselves, moving
temporarily into the tails due to quantum emission and damping. The safe physical
boundary for electrons depends on the lifetime required but is in the region of 6σ

to 10σ. The emittance which is normally quoted for an electron beam corresponds
to an electron with the amplitude of σ in the Gaussian projection. We are then free
to choose how many σ’s we must allow. There is consequently a factor 4 between
emittance defined by electron and proton experts.

2.4 Momentum Dependent Transverse Motion

In the previous chapters, we have studied the motion of a particle as it swings from
side to side about the ideal orbit around the synchrotron: the transverse motion.
Nothing is perfect, however, and so we cannot assume that each and every proton
in a large ensemble of up to 1011 particles will have exactly the ideal momentum.
Instead we expect a certain momentum spread in the beam and therefore we have
to study how transverse motion depends on small departures, �p/p0, from the
synchronous momentum p0.

2.4.1 Dispersion

The central closed orbit of a synchrotron is matched to an ideal (synchronous)
momentum p0. A particle of this momentum and of zero betatron amplitude will
pass down the centre of each quadrupole, be bent by exactly 2π by the bending
magnets in one turn of the ring and remain synchronous with the r.f. frequency. Its
path is called the central (or synchronous) momentum closed orbit. In Fig. 2.8 this
ideal orbit is the horizontal axis and we see particles executing betatron oscillations
about it but these oscillations do not replicate every turn. The synchronous orbit,
however, closes on itself so that x and x′ remain zero.

We now consider a closed orbit which is distorted in the horizontal plane by
non-ideal bends in the dipole. Figure 2.20 shows a particle with a lower momentum
�p/p < 0 and which is bent horizontally more in each dipole of a FODO lattice. We
could argue that the total deflection, being more than 2π would cause it to spiral
inwards and hit the vacuum chamber wall. On the other hand there is a closed orbit
for this lower momentum in which the extra bending forces are compensated by
extra focusing forces as the orbit is displaced inwards in the F quadrupoles and
less so in the defocusing in the D’s (Fig. 2.20). We may describe the shape of
this new closed orbit for a particle of unit �p/p by a dispersion function D(s). The
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Fig. 2.20 The extra inward
force given to a low
momentum particle by the
dipoles is balanced by the
focusing the quadrupoles and
defines a dispersion function

Fig. 2.21 The beam cross
sections in real space for
beams of three different
momenta at a point where the
dispersion function is large

displacement of the closed orbit is:

x(s) = D(s)
Δp

p0
. (2.55)

In Fig. 2.21 we see how the effect of dispersion for off momentum orbits adds to
the betatron motion to widen the beam cross section. The betatron motion of each
of the three particles: �p/p < 0, �p/p = 0, and �p/p > 0, is within an ellipse in
physical (x, z) space. The ellipses for each momentum are separated by a distance
D(s)�p/p. The semi-aperture required will be:

aV = √βVεV, aH = √βHεH +D(s)
Δp

p
. (2.56)

2.4.2 Chromaticity

This effect is equivalent to the chromatic aberration in a lens. It is defined as a
quantity Q′:

ΔQ = Q′Δp
p
. (2.57)
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The chromaticity [12] arises because the focusing strength of a quadrupole has
(Bρ) in the denominator and is therefore inversely proportional to momentum:

k = 1

(Bρ)

dBz

dx
. (2.58)

A small spread in momentum in the beam, ± �p/p, causes a spread in focusing
strength:

Δk

k
= ∓Δp

p
. (2.59)

Integrated over all focusing (and defocusing) elements in the ring, we obtain a
change in the tune of the machine

ΔQ = 1

4π

∫
β(s)δk(s)ds. (2.60)

This enables us to calculate Q′:

ΔQ = 1

4π

∫
β(s)δk(s)ds =

[ −1

4π

∫
β(s)k(s)ds

]
Δp

p
. (2.61)

The quantity in square brackets is the chromaticity Q′. To be clear, this is
called the natural chromaticity. For most alternating gradient machines, its value
is about −1.3Q. Of course there are two Q values relating to horizontal and vertical
oscillations and therefore two chromaticities. Chromaticity may be corrected with
sextupole magnets (see Chap. 3, and Sects. 6.1 and 8.1).

2.5 Longitudinal Motion

2.5.1 Stability of the Lagging Particle

Suppose two particles are well below the velocity of light. A particle A, that arrives
at the right moment to in the RF resonator and thus will obtain exactly the right
acceleration voltage. We call this particle “synchronous” (see Fig. 2.22). A second
particle, B, arrives late, and so receives an extra energy increment which will cause it
to speed up and overtake the synchronous particle, A. In so doing, its energy defect,
�E, grows and, provided the amplitude is not too large, its trajectory will follow an
ellipse in phase space. This describes this motion up and down the r.f. wave (Fig.
2.22) and may remind some readers of the representation of a simple harmonic
oscillator, or pendulum. When plotted in a phase space diagram of velocity versus
longitudinal displacement we indeed obtain a shape that is elliptical. The trajectory

http://dx.doi.org/10.1007/978-3-030-34245-6_3
http://dx.doi.org/10.1007/978-3-030-34245-6_6
http://dx.doi.org/10.1007/978-3-030-34245-6_8
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Fig. 2.22 The limiting trajectory for a particle in a ‘moving’ or accelerating bucket when the
stable phase is not zero

of this longitudinal movement in phase space is closed and over many turns the
average deviation from the synchronous energy is zero. This phase stability depends
upon the fact that δE is positive when φ − φs is small and positive [13, 14].

When a particle reaches the non-linear part of the r.f. wave and over the top of
the wave, it will still be restored and oscillate about the stable phase provided it
does not reach and pass the point where it receives less incremental energy than the
synchronous particle. On this non-linear part of the curve the motion is no longer
an ellipse but is distorted into a fish-shape but its trajectory is still closed and stable.
However, if a particle, C, oscillates with such large amplitude that it falls below
the synchronous voltage, an increase in φ will cause a negative �E which in turn
causes φ to move further away from the synchrotron particle. This particle is clearly
unstable and will be continuously decelerated. There is a particle which, starting at
φ = π− φs, would trace out a limiting fish-shaped trajectory which is the boundary
or separatrix between stable and unstable motion. The region within this separatrix
is called the r.f. bucket and is shown in the lower half of Fig. 2.22. Formulae for the
calculation of the parameters of moving buckets are to be found in [15].

Let us look more carefully at the argument that a particle, arriving late because
of its lower energy, would see a higher RF voltage from the rising waveform and,
accelerated to a higher velocity, would catch up with the synchronous particle.
Dispersion may make the situation more complicated. Giving the errant particle
more energy will speed it up but may also send it on an orbit of larger radius.

The path length that the particle, B, must travel around the machine, or more
correctly, the change in path length with momentum, must depend upon the
dispersion function. The closed orbit will have a mean radius:

R = R0 +D
Δp

p
. (2.62)

Close to the velocity of light where acceleration can increase momentum but not
velocity, the longer path length will more than cancel the small effect of velocity
and the particle, instead of catching up with its synchronous partner, will arrive
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even later than it did on the previous turn. This seems to defeat the whole idea of
phase stability. Depending on how the synchrotron is designed and which particles
it accelerates, there can be a certain energy where our initial ideas of phase stability
break down. This is called the transition energy. Fortunately there is also a way of
ensuring stability above transition.

2.5.2 Transition Energy

The rigorous argument to resolve the question of velocity versus path length is to
examine how the revolution time (or its reciprocal, the revolution frequency) varies
as the particle is given extra acceleration. The revolution frequency is:

f = βc

2πR
, (β = v/c) . (2.63)

This revolution frequency, f, depends on two momentum dependent variables,
the relativistic β=v/c and R, the mean radius. The penultimate equation gives the
change in the radius. The momentum dependence of β is determined by:

p = E0β√
1 − β2

. (2.64)

The rate of “catching up” depends upon a “slip factor”, η, which is defined as
logarithmic differential of frequency as a function of momentum. The procedure of
partial derivatives tells us there must be two terms. Hence:

ηrf = Δf/f

Δp/p
= p

β

dβ

dp
− p

R

dR

dp
= 1

γ 2 −
D

R0
. (2.65)

The first term on the right-hand side describes the increase in speed with p and
the other (negative), how the path to be completed increases with p.

The second term is energy independent while the first term shrinks as acceleration
proceeds. At low energy this is largest and η is >0. But, since γ = E/E0, the first term
becomes smaller than the second at high energy so that η changes sign from positive
to negative. During the acceleration process there is a certain energy, the transition
energy, at which η is momentarily zero. At transition, the value of γ satisfies:

1

γ 2
tr
= D

R
. (2.66)

In proton synchrotron design this condition tends to be encountered mid–way
through the acceleration cycle and can only be avoided with some ingenuity in the
design of the lattice. This was a worry to the designers of the PS and AGS, the
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Fig. 2.23 Shows how
changing the phase of the RF
voltage waveform can give
the lagging particle, B, less
energy rather than more and
lead to stability above
transition

first proton synchrotrons of high enough energy to encounter this problem during
acceleration but it was then realised that one could, almost instantaneously, change
the phase of the voltage wave in the RF cavities to be falling rather than rising at the
moment of the synchronous particles arrival (see Fig. 2.23). With such a reversed
slope, particles arriving late are given less than their ration of energy and take a
inner circular path—a short cut—to arrive earlier next time.

Electron machines are fortunate in that due to the small rest mass their Lorentz
factor γ , being 2000 times higher, ensures that the first term may be neglected and
such machines operate always above transition.

2.5.3 Synchrotron Motion

If we consider the motion of a particle on the linear part of the voltage wave of
an r.f. cavity it is not difficult to imagine that it approximates rather closely to a
harmonic oscillator. Unlike to the situation in the transverse plane, however, the
motion becomes more complicated when the oscillation amplitude is larger, and the
particle feels the non-linear part of the sinusoidal RF wave, or even more, for part
of its motion it finds itself over the crest of the wave. But first let us focus on a small
amplitude solution.

It is not hard to deduce from special relativity that the momentum may be written

p = m0c (βγ ) . (2.67)

The quantity �(βγ ) serves as the momentum co-ordinate in longitudinal phase
space. The other co-ordinate is the particle’s arrival phase, φ, with respect to the
zero crossing of the r.f. voltage at the cavity. Let us consider the simplest case of
a small oscillation in a stationary bucket, φs = 0 (when the particle is not being
accelerated).
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A particle with a small phase error will describe an ellipse in phase space which
one may write parametrically as

Δ(βγ ) = Δ̂(βγ ) sin 2πfst,

φ = φ̂ cos 2πfst,
(2.68)

where fs is the frequency of execution of these oscillations in phase which we call
the synchrotron frequency.

To reveal the differential equation behind this motion we must first remember that
the angular frequency 2πf of an oscillator is nothing other than the rate of change of
phase, φ̇ or to be exact −φ̇. (The negative sign stems from the fact that φ is a phase
lag.) We may therefore relate the rate of change in arrival phase to the difference in
revolution frequency of the particle, compared to that of the synchronous particle.

φ̇ = −2πh [f (Δβγ )− f (0)] = −2πhΔf. (2.69)

We have multiplied by, h, the harmonic number of the r.f. since φ is the phase
angle of the r.f. swing while f (�βγ ) is the revolution frequency. Here we can use
the definition of the slip factor η and then simply use some standard relativistic
relations to end up with �f as a function of �E, the energy defect with respect to
the synchronous particle:

Δf = ηf
Δp

p
= ηf

Δ (βγ )

(βγ )
= ηf

β2

Δγ

γ
= ηf

E0β2γ
ΔE. (2.70)

where E0 the total energy (including its rest mass) of the synchronous particle.
We differentiate once more to obtain a second order differential equation which

we hope to resemble a simple oscillator.

φ̈ = −2πhηf

E0β2γ

(
ΔĖ
)
. (2.71)

The extra energy given per turn to a particle whose arrival phase is φ will be

ΔE = eV0 (sin φ − sin φs) , (2.72)

and the rate of change of energy will be this times, f, the revolution frequency. So
we can write

φ̈ = −2πeV0hηf
2

E0β2γ
(sinφ − sinφs) . (2.73)

This is a fundamental and exact description of the motion provided the param-
eters should change slowly (the adiabatic assumption). We can simply integrate to
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find its solution numerically but to see an analytic solution for small amplitudes we
set φs = 0 and φ ≈ sinφ :

φ̈ + 2πeV0hηf
2

E0β2γ
φ = 0. (2.74)

The frequency of these synchrotron oscillations in longitudinal phase space is

fs =
√

|η| heV0

2πE0β2γ
f, (2.75)

or writing frf = hf we could equally express

fs =
√

|η| eV0

2πE0β2γ h
frf. (2.76)

In analogy to the transverse plane, we define a synchrotron tune, Qs, as the
number of such oscillations per revolution of the machine. This is analogous to
Q in transverse phase space.

Qs = fs

f
=
√
|η| ehV0 cosφs

2πE0β2γ
. (2.77)

Usually Qs is less than 10% of the revolution frequency. It drops down to zero at
γ transition where η is zero and then rises again. In large proton machines it can be
in the region 0 to 100 Hz and, but for the vacuum, one might hear it!

Close to γ tr we cannot strictly assume that β, γ , η, and f vary slowly in
comparison with the synchrotron oscillation which this equation describes. Hence
we should use a more exact form of the equation of motion and approximate only
when it seems that this is justified:

d

dt

[
E0β

2γ φ̇

2πηhf 2

]
+ eV0 (sin φ − sinφs) = 0. (2.78)

In a stationary bucket, when φs = 0, this exact differential equation for large
amplitude motion is identical to that for a rigid pendulum:

�
d2θ

dt2
+ g sin θ = 0. (2.79)

There is an extra term, sinφs, on the right hand side of the synchrotron equation
which is not there in the pendulum case but it could be introduced too for the
pendulum by using a magnetic ‘bob’ and biasing its equilibrium position to one
side by attaching a weight on a cantilever at right angles to the rod of the pendulum.
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Fig. 2.24 Adiabatic trapping
of coasting beam in growing
stationary bucket

In fact the unbiased pendulum corresponds to synchrotron motion when there is
no acceleration—we say the bucket is stationary. In Fig. 2.22 we saw how particles
close to the edge of the stable area of the bucket follow a fish-shaped trajectory
when φs = 0; before acceleration starts or when the beam is held at the same energy
in collider mode (see Fig. 2.24).

In order to accelerate φs must be made finite, in which case the figure changes
somewhat. The stable area becomes smaller and shaped like a fish—or rather a series
of fish chasing each other’s tails. Small amplitude motion will still be sinusoidal but
the ellipse will be centred on the stable phase φs and not on φ = 0.

2.5.4 Stationary Buckets

The size of the bucket depends on how close the stable phase, φs is to the crest of
the sine-wave. It shrinks to zero if φs = 90◦. There is a special case if φs is zero.
This is often the case as a beam injected into a synchrotron before acceleration has
started or in a collider where the r.f. simply holds the bunches together. The bucket
is then said to be ‘stationary’ stretching over all phases from −π to π. Its height is
the range of energies 2�E which the r.f. wave can constrain and this turns out to be
dependent on

√
V for a given φs. If V is reduced, the more energetic particles spill

out of the bucket.
Very often the particles are injected as a continuous ribbon without any longitu-

dinal structure crosshatched in Fig. 2.24. Usually acceleration has not yet started,
the magnetic field B is constant, and φs is zero. If V is increased slowly, the height
of the stationary bucket grows, and more and more of the energy spread in the beam,
�E, is trapped (Fig. 2.24). This is called “adiabatic trapping”.
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Chapter 3
Non-linear Dynamics in Accelerators

Werner Herr and Etienne Forest

3.1 Introduction

Non-linear effects in accelerator physics are important both during the design stage
and for successful operation of accelerators. Since both of these aspects are closely
related, they will be treated together in this overview. Some of the most important
aspects are well described by methods established in other areas of physics and
mathematics. Given the scope of this handbook, the treatment will be focused on
the problems in accelerators used for particle physics experiments. Although the
main emphasis will be on accelerator physics issues, some of the aspects of more
general interest will be discussed. In particular to demonstrate that in recent years
a framework has been built to handle the complex problems in a consistent form,
technically superior and conceptually simpler than the traditional techniques. The
need to understand the stability of particle beams has substantially contributed to the
development of new techniques and is an important source of examples which can
be verified experimentally. Unfortunately the documentation of these developments
is often poor or even unpublished, in many cases only available as lectures or
conference proceedings.

This article is neither rigorous nor a complete treatment of the topic, but rather an
introduction to a limited set of contemporary tools and methods we consider useful
in accelerator theory.
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3.1.1 Motivation

The most reliable tools to study (i.e. description of the machine) are simulations
(e.g. tracking codes).

• Particle Tracking is a numerical solution of the (nonlinear) Initial Value Problem.
It is a “integrator” of the equation of motion and a vast amount of tracking codes
are available, together with analysis tools (Examples: Lyapunov, Chirikov, chaos
detection, frequency analysis, . . . )

• It is unfortunate that theoretical and computational tools exist side by side
without an undertaking how they can be integrated.

• It should be undertaken to find an approach to link simulations with theoretical
analysis, would allow a better understanding of the physics in realistic machines.

• A particularly promising approach is based on finite maps [1].

3.1.2 Single Particle Dynamics

The concepts developed here are used to describe single particle transverse dynam-
ics in rings, i.e. circular accelerators or storage rings. This is not a restriction for the
application of the presented tools and methods. In the case of linear betatron motion
the theory is rather complete and the standard treatment [2] suffices to describe the
dynamics. In parallel with this theory the well known concepts such as closed orbit
and Twiss parameters are introduced and emerged automatically from the Courant-
Snyder formalism [2]. The formalism and applications are found in many textbooks
(e.g. [3–5]).

In many new accelerators or storage rings (e.g. LHC) the description of the
machine with a linear formalism becomes insufficient and the linear theory must be
extended to treat non-linear effects. The stability and confinement of the particles is
not given a priori and should rather emerge from the analysis. Non-linear effects are
a main source of performance limitations in such machines. A reliable treatment is
required and the progress in recent years allows to evaluate the consequences. Very
useful overview and details can be found in [6–8].

3.1.3 Layout of the Treatment

Following a summary of the sources of non-linearities in circular machine, the basic
methods to evaluate the consequences of non-linear behaviour are discussed. Since
the traditional approach has caused misconception and the simplifications led to
wrong conclusions, more recent and contemporary tools are introduced to treat
these problems. An attempt is made to provide the physical picture behind these
tools rather than a rigorous mathematical description and we shall show how the
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new concepts are a natural extension of the Courant-Snyder formalism to non-linear
dynamics. An extensive treatment of these tools and many examples can be found
in [7]. In the last part we summarize the most important physical phenomena caused
by the non-linearities in an accelerator.

3.2 Variables

For what follows one should always use canonical variables!
In Cartesian coordinates:

R = (X, PX, Y, PY ,Z, PZ, t) (3.1)

If the energy is constant (i.e. PZ = const.), we use:

(X, PX, Y, PY ,Z, t) (3.2)

This system is rather inconvenient, what we want is the description of the particle
in the neighbourhood of the reference orbit/trajectory:

Rd = (X, PX, Y, PY ,Z, t) (3.3)

which are considered now the deviations from the reference and which are zero for
a particle on the reference trajectory

It is very important that it is the reference not the design trajectory!
(so far it is a straight line along the Z-direction)

3.2.1 Trace Space and Phase Space

A confusion often arises about the terms Phase Space (x, px, . . .) or Trace Space
(x, x ′, . . .)

It is not laziness nor stupidity to use one or the other:

– Beam dynamics is strictly correct only with (x, px, . . .), (see later chapter) but in
general quantities cannot be measured easily

– Beam dynamics with (x, x ′, . . .) needs special precaution, but quantities based
on these coordinates are much easier to measure

– Some quantities are different (e.g. emittance)

It comes back to a remark made at the beginning, i.e. that we shall use rings
for our arguments. In single pass machine, e.g. linac, beam lines, spectrometers,
the beam is not circulating over many turns and several hours, therefore there is no
interest in stability issues. Instead for most of these applications what counts is the
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coordinates and angles at a given position (x, x ′, y, y ′), e.g. at the end of a beam
line or a small spot one an electron microscope. When “accelerator physicists” talk
about concepts such as tune, resonances, β-functions, equilibrium emittances etc.,
all these are irrelevant for single pass machine. There is no need to study iterating
systems. In these cases the use of the trace space is fully adequate, in fact preferred
because the quantities can be measured. In the end, the mathematical tools are very
different from the ones discussed in this article.

3.2.2 Curved Coordinate System

For a “curved” trajectory, in general not circular, with a local radius of curvature
ρ(s) in the horizontal (X–Z plane), we have to transform to a new coordinate system
(x, y, s) (co-moving frame) with:

X = (x + ρ) cos
(
s
ρ

)
− ρ

Y = y

Z = (x + ρ) sin
(
s
ρ

) (3.4)

The new canonical momenta become:

px = PX cos
(
s
ρ

)
+ PZ sin

(
s
ρ

)

py = PY

ps = PZ

(
1 + x

ρ

)
cos
(
s
ρ

)
− PX

(
1 + x

ρ

)
sin
(
s
ρ

) (3.5)

3.3 Sources of Non-linearities

Any object creating non-linear electromagnetic fields on the trajectory of the
beam can strongly influence the beam dynamics. They can be generated by the
environment or by the beam itself.

3.3.1 Non-linear Machine Elements

Non-linear elements can be introduced into the machine on purpose or can be
the result of field imperfections. Both types can have adverse effects on the beam
stability and must be taken into account.
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3.3.1.1 Unwanted Non-linear Machine Elements

The largest fraction of machine elements are either dipole or quadrupole magnets.
In the ideal case, these types of magnets have pure dipolar or quadrupolar fields
and behave approximately as linear machine elements. Any systematic or random
deviation from this linear field introduces non-linear fields into the machine lattice.
These effects can dominate the aperture required and limit the stable region of the
beam. The definition of tolerances on these imperfections is an important part of
any accelerator design.

Normally magnets are long enough that a 2-dimensional field representation is
sufficient. The components of the magnetic field can be derived from the potential
and in cylindrical coordinates (r,�, s = 0) can be written as:

Br(r,�) =
∞∑

n=1

(Bnsin(n�)+ Ancos(n�))

(
r

Rref

)n−1

, (3.6)

B�(r,�) =
∞∑

n=1

(Bncos(n�)− Ansin(n�))

(
r

Rref

)n−1

, (3.7)

where Rref is a reference radius and Bn and An are constants. Written in Cartesian
coordinates we have:

B(z) =
∞∑

n=1

(Bn + iAn)

(
r

Rref

)n−1

(3.8)

where z = x + iy = rei�. The terms n correspond to 2n-pole magnets and the
Bn and An are the normal and skew multipole coefficients. The beam dynamics set
limits on the allowed multipole components of the installed magnets.

3.3.1.2 Wanted Non-linear Machine Elements

In most accelerators the momentum dependent focusing of the lattice (chromaticity)
needs to be corrected with sextupoles [3, 4]. Sextupoles introduce non-linear fields
into the lattice that are larger than the intrinsic non-linearities of the so-called linear
elements (dipoles and quadrupoles). In a strictly periodic machine the correction can
be done close to the origin and the required sextupole strengths can be kept small.
For colliding beam accelerators usually special insertions are foreseen to host the
experiments where the dispersion is kept small and the β-function is reduced to a
minimum. The required sextupole correction is strong and can lead to a reduction
of the dynamic aperture, i.e. the region of stability of the beam. In most accelerators
the sextupoles are the dominant source of non-linearity. To minimize this effect is
an important issue in any design of an accelerator.
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Another source of non-linearities can be octupoles used to generate amplitude
dependent detuning to provide Landau damping in case of instabilities.

3.3.2 Beam–Beam Effects and Space Charge

A strong source of non-linearities are the fields generated by the beam itself. They
can cause significant perturbations on the same beam (space charge effects) or on
the opposing beam (beam-beam effects) in the case of a colliding beam facility.

As an example, for the simplest case of round beams with the line density n and
the beam size σ the field components can be written as:

Er = − ne

4πε0
· ∂
∂r

∫ ∞

0

exp(− r2

(2σ 2+q) )
(2σ 2 + q)

dq, (3.9)

and

B� = −neβcμ0

4π
· ∂
∂r

∫ ∞

0

exp(− r2

(2σ 2+q) )
(2σ 2 + q)

dq. (3.10)

In colliding beams with high density and small beams these fields are the dominating
source of non-linearities. The full treatment of beam-beam effects is complicated
due to mutual interactions between the two beams and a self-consistent treatment is
required. in the presence of all other magnets in the ring.

3.4 Map Based Techniques

In the standard approach to single particle dynamics in rings, the equations of
motion are introduced together with an ansatz to solve these equations. In the case
of linear motion, this ansatz is due to Courant-Snyder [2]. However, this treatment
must assume that the motion of a particle in the ring is stable and confined. For
a non-linear system this is a priori not known and the attempt to find a complete
description of the particle motion must fail.

The starting point for the treatment of the linear dynamics in synchrotrons is
based on solving a linear differential equation of the Hill type.

d2x(s)

ds2
+
(

a0 + 2
∞∑

n=1

an · cos(2ns)

)

︸ ︷︷ ︸
K(s)

x(s) = 0 .
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Each element at position s acts as a source of forces, i.e. we must write for the
forces K → K(s) which is assumed to be a periodic function, i.e. K(s +
C) = K(s)ring

The solution of this Boundary Value Problem must be periodic too!
It is therefore not applicable in the general case (e.g. Linacs, Beamlines, FFAG,

Recirculators, . . . ), much better to treat it as an Initial Value Problem.
In a more useful approach we do not attempt to solve such an overall equation

but rather consider the fundamental objects of an accelerators, i.e. the machine
elements themselves. These elements, e.g. magnets or other beam elements, are the
basic building blocks of the machine. All elements have a well defined action on a
particle which can be described independent of other elements or concepts such as
closed orbit or β-functions. Mathematically, they provide a “map” from one face of
a building block to the other, i.e. a description of how the particles move inside and
between elements. In this context, a map can be anything from linear matrices to
high order integration routines.

A map based technique is also the basis for the treatment of particle dynamics as
an Initial value Problem (IVP).

It follow immediately that for a linear, 1st order equation of the type

dx(s)

ds
= K(s) x(s) (and initial values at s0)

the solution can always be written as:

x(s) = a · x(s0) + b · x ′(s0)

x ′(s) = c · x(s0) + d · x ′(s0)
�⇒
(
x

x ′
)

s

=

A︷ ︸︸ ︷(
a b

c d

)(
x

x ′
)

s0

where the functionK(s) does not have to be periodic. Furthermore, the determinant
of the matrix A is always 1. Therefore it is an advantage to use maps (matrices)
for a linear systems from the start, without trying to solve a differential equa-
tion.

The collection of all machine elements make up the ring pr beam line and
it is the combination of the associated maps which is necessary for the descrip-
tion and analysis of the physical phenomena in the accelerator ring or beam
line.

For a circular machine the most interesting map is the one which describes
the motion once around the machine, the so-called One-Turn-Map. It contains all
necessary information on stability, existence of closed orbit, and optical parameters.
The reader is assumed to be familiar with this concept in the case of linear beam
dynamics (Chap. 2) where all maps are matrices and the Courant-Snyder analysis
of the corresponding one-turn-map produces the desired information such as e.g.
closed orbit or Twiss parameters.
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It should therefore be the goal to generalize this concept to non-linear dynamics.
The computation of a reliable one-turn-map and the analysis of its properties will
provide all relevant information.

Given that the non-linear maps can be rather complex objects, the analysis of the
one-turn-map should be separated from the calculation of the map itself.

3.5 Linear Normal Forms

3.5.1 Sequence of Maps

Starting from a position s0 and combining all matrices to get the matrix to position
s0 + L (shown for 1D only):

(
x

x ′
)

s0 + L

= MN ◦ MN−1 ◦ . . . ◦ M1︸ ︷︷ ︸
M(s0,L)

◦
(
x

x ′
)

s0

(3.11)

For a ring with circumference C one obtains the One-Turn-Matrix (OTM) at s0

(
x

x ′
)

s0 + C

=
(
m11 m12

m21 m22

)

︸ ︷︷ ︸
MOTM

◦
(
x

x ′
)

s0

(3.12)

Without proof, the scalar product:

(
x

x ′
)

s0

·MOTM

(
x

x ′
)

s0

= const. = J (3.13)

is a constant of the motion: invariant of the One Turn Map.
With this approach we have a strong argument that the construction of the One

Turn Map is based on the properties of each element in the machine. It is entirely
independent of the purpose of the machine and their global properties. It is not
restricted to rings or in general to circular machine.

Once the One Turn Map is constructed, it can be analysed, but this analysis does
not depend on how it was constructed.

As a paradigm: the construction of a map (being for a circular machine or not)
and its analysis are conceptual and computational separated undertakings.
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3.5.2 Analysis of the One Turn Map

The key for the analysis is that matrices can be transformed into Normal Forms.
Starting with the One-Turn-Matrix, and try to find a (invertible) transformation A
such that:

AMA−1 = R (or : A−1RA = M)

• The matrix R is:

– A “Normal Form”, (or at least a very simplified form of the matrix)
– For example (most important case): R becomes a pure rotation

• The matrix R describes the same dynamics as M , but:

– All coordinates are transformed by A
– This transformationA “analyses” the complexity of the motion, it contains the

structure of the phase space

M = A ◦ R ◦ A−1 or : R = A−1 ◦M ◦ A

The motion on an ellipse becomes a motion on a circle (i.e. a rotation): R is the
simple part of the map and its shape is dumped into the matrix A. R can be obtained
by the evaluation of the Eigenvectors and Eigenvalues.

One finds for the two components of the original map:

A =
⎛

⎜
⎝

√
β(s) 0

− α(s)√
β(s)

1√
β(s)

⎞

⎟
⎠ and R =

⎛

⎜
⎝

cos(�μ) sin(�μ)

− sin(�μ) cos(�μ)

⎞

⎟
⎠ (3.14)

Please note that the normal form analysis gives the eigenvectors (3.14) without any
physical picture related to their interpretation. The formulation using α and β is due
to Courant and Snyder. Amongst other advantages it can be used to “normalise” the
position x: the normalised position xn is the “non-normalized” divided by

√
β. The

variation of the normalised position xn is then smaller than in the non-normalized
case. This is also better suited for analytical calculation, e.g. involving perturbation
theory.

The Normal Form transformation together with this choice gives the required
information:

– μx is the “tune” Qx · 2π (now we can talk about phase advance!)
– β, α, . . . are the optical parameters and describe the ellipse
– The closed orbit (an invariant, identical coordinates after one turn!):
– MOTM ◦ (x, x ′)co ≡ (x, x ′)co
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3.5.3 Action-Angle Variables

More appropriate for studies of beam dynamics is the use of Action-Angle variables.
Once the particles “travel” on a circle, the motion is better described by the

canonical variables action Jx and angle �x :

2J

ψ

with the definitions and the choice is (3.14):

x = √
2Jxβx cos(�x)

px = −
√

2Jx
βx

(sin(�x)+ αx cos(�x))

Jx = 1
2 (γxx

2 + 2αxxpx + βxp
2
x)

(3.15)

– the angular position along the ring � becomes the independent variable!
– The trajectory of a particle is now independent of the position s!

– The constant radius of the circle
√

2J defines the action J (invariant of motion)

3.5.4 Beam Emittance

A sad and dismal story in accelerator physics is the definition of the emittance.
Most foolish in this context is to relate emittance to single particles. This is true in
particular when we have a beam line which is not periodic. In that case the Courant-
Snyder parameters can be determined from the beam. These parameters are related
to the moments of the beam, e.g. the beam size is directly related to the second order
moment < x2 >. Using the expression above for the action and angle, we can write
for this expression:

< x2 > = < 2Jxβx · cos2(�x) > = 2βx < Jx · cos2(�x) > . (3.16)
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The average of cos2 can immediately be evaluated as 0.5 and defining the emittance
as:

εx = < Jx >, (3.17)

we write

< x2 > = βx · εx. (3.18)

Using a similar procedure (details and derivation in e.g. [3], and to a much lesser
extent in [1]) one can determine the moments

< p2
x > = γx · εx, (3.19)

and

< x · px > = − αx · εx. (3.20)

Using these expressions, the emittance becomes readily

εx =
√
< x2 >< p2

x > − < x · px >2 (3.21)

Therefore, once the emittance is measured, the Courant-Snyder parameters are
determined by Eqs. (3.18), (3.19), and (3.20).

Since other definitions often refer to the treatment by Courant and Snyder, here
a quote from Courant himself in [9]:

Interlude 1

The invariant J is simply related to the area enclosed by the ellipse:

Area enclosed = 2πJ. (3.22)

In accelerator and storage ring terminology there is a quantity called the emittance
which is closely related to this invariant. The emittance, however, is a property of
a distribution of particles, not a single particle. Consider a Gaussian distribution in
amplitudes. Then the (rms) emittance, ε, is given by:

(xrms )
2 = βx(s) · εx. (3.23)

In terms of the action variable, J , this can be rewritten

εx = < J > . (3.24)

where the bracket indicates an average over the distribution in J .
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Other definitions based on handwaving arguments or those approximately valid
only in special cases, should be discarded, in particular those relying on presumed
distributions, e.g. Gaussian.

3.6 Techniques and Tools to Evaluate and Correct
Non-linear Effects

The key to a more modern approach shown in this section is to avoid the prejudices
about the stability and other properties of the ring. Instead, we must describe the
machine in terms of the objects it consists of with all their properties, including
the non-linear elements. The analysis will reveal the properties of the particles
such as e.g. stability. In the simplest case, the ring is made of individual machine
elements such as magnets which have an existence on their own, i.e. the interaction
of a particle with a given element is independent of the motion in the rest of
the machine. Also for the study of non-linear effects, the description of elements
should be independent of concepts such as tune, chromaticity and closed orbit. To
successfully study single particle dynamics, one must be able to describe the action
of the machine element on the particle as well as the machine element.

3.6.1 Particle Tracking

The ring being a collection of maps, a particle tracking code, i.e. an integrator of
the equation of motion, is the most reliable map for the analysis of the machine. Of
course, this requires an appropriate description of the non-linear maps in the code.
It is not the purpose of this article to describe the details of tracking codes and the
underlying philosophy, such details can be found in the literature (see e.g. [6]). Here
we review and demonstrate the basic principles and analysis techniques.

3.6.1.1 Symplecticity

If we define a map through �z2 = M12( �z1) as a propagator from a location “1” to a
location “2” in the ring, we have to consider that not all possible maps are allowed.
The required property of the map is called “symplecticity” and in the simplest case
where M12 is a matrix, the symplecticity condition can be written as:

M ⇒ MT · S ·M = S where S =

⎛

⎜⎜
⎝

0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0

⎞

⎟⎟
⎠ (3.25)



3 Non-linear Dynamics in Accelerators 63

The physical meaning of this condition is that the map is area preserving in the
phase space. The condition can easily be derived from a Hamiltonian treatment,
closely related to Liouville’s theorem.

3.6.2 Approximations and Tools

The concept of symplecticity is vital for the treatment of Hamiltonian systems. This
is true in particular when the stability of a system is investigated using particle
tracking. However, in practice it is difficult to accomplish for a given exact problem.
As an example we may have the exact fields and potentials of electromagnetic
elements. For a single pass system a (slightly) non-symplectic integrator may be
sufficient, but for an iterative system the results are meaningless.

To track particles using the exact model may result in a non-symplectic tracking,
i.e. the underlying model is correct, but the resulting physics is wrong.

It is much better to approximate the model to the extend that the tracking is
symplectic. One might compromise on the exactness of the final result, but the
correct physics is ensured.

As a typical example one might observe possible chaotic motion during the
tracking procedure. However, there is always a non-negligible probability that this
interpretation of the results may be wrong. To conclude that it is not a consequence
of non-symplecticity of the procedure or a numerical artifact it is necessary to
identify the physical mechanism leading to this observation.

This may not be possible to achieve using the exact model as input to a
(possibly) non-symplectic procedure. Involving approximations to the definition of
the problem should reveal the correct physics at the expense of a (hopefully) small
error. Staying exact, the physics may be wrong.

As a result, care must be taken to positively identify the underlying process.
This procedure should be based on a approximations as close as possible to the

exact problem, but allowing a symplectic evaluation.
An example for this will be shown in Sect. 3.6.3.4.

3.6.3 Taylor and Power Maps

A non-linear element cannot be represented in the form of a linear matrix and more
complicated maps have to be introduced [5]. In principle, any well behaved, non-
linear function can be developed as a Taylor series. This expansion can be truncated
at the desired precision.

Another option is the representation as Lie transformations [8, 10]. Both types
are discussed in this section.
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3.6.3.1 Taylor Maps

A Taylor map can be written using higher order matrices and in the case of two
dimensions we have:

zj (s2) =
4∑

k=1

Rjkzk(s1) +
4∑

k=1

4∑

l=1

Tjklzk(s1)zl(s1) (3.26)

(where zj , j = 1, . . . , 4, stand for x, x ′, y, y ′). Let us call the collec-
tion: A2 = (R, T ) the second order map A2. Higher orders can be defined
as needed, e.g. for the 3rd order map A3 = (R, T ,U) we add a third order matrix:

+
4∑

k=1

4∑

l=1

4∑

m=1

Ujklmzk(s1)zl(s1)zm(s1) (3.27)

Since Taylor expansions are not matrices, to provide a symplectic map, it is the
associated Jacobian matrix J which must fulfill the symplecticity condition:

Jik = ∂zi(s2)

∂zk(s1)
and J must fulfill : J t · S · J = S (3.28)

However, in general Jik �= const and for a truncated Taylor map it can
be difficult to fulfill this condition for all z. As a consequence, the number of
independent coefficients in the Taylor expansion is reduced and the complete,
symplectic Taylor map requires more coefficients than necessary [7].

The explicit maps for a sextupole is:

x2 = x1 + Lx ′1 − k2

(
L2

4 (x
2
1 − y2

1)+ L3

12 (x1x
′
1 − y1y

′
1)+ L4

24 (x
′2
1 − y ′21 )

)

x ′2 = x ′1 − k2

(
L
2 (x

2
1 − y2

1)+ L2

4 (x1x
′
1 − y1y

′
1)+ L3

6 (x
′2
1 − y ′21 )

)

y2 = y1 + Ly ′1 + k2

(
L2

4 x1y1 + L3

12 (x1y
′
1 + y1x

′
1)+ L4

24 (x
′
1y

′
1)
)

y ′2 = y ′1 + k2

(
L
2 x1y1 + L2

4 (x1y
′
1 + y1x

′
1)+ L3

6 (x
′
1y

′
1)
)

(3.29)

Writing the explicit form of the Jacobian matrix:

Jik =

⎛

⎜⎜⎜⎜⎜⎜⎜
⎝

∂x2
∂x1

∂x2
∂x ′1

∂x2
∂y1

∂x2
∂y ′1

∂x ′2
∂x1

∂x ′2
∂x ′1

∂x ′2
∂y1

∂x ′2
∂y ′1

∂y2
∂x1

∂y2
∂x ′1

∂y2
∂y1

∂y2
∂y ′1

∂y ′2
∂x1

∂y ′2
∂x ′1

∂y ′2
∂y1

∂y ′2
∂y ′1

⎞

⎟⎟⎟⎟⎟⎟⎟
⎠

→ k2 = 0

⎛

⎜⎜⎜⎜⎜⎜
⎝

1 L 0 0

0 1 0 0

0 0 1 L

0 0 0 1

⎞

⎟⎟⎟⎟⎟⎟
⎠

(3.30)
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For k2 �= 0 coefficients depend on initial values, e.g.:

∂y2

∂y1
= 1 + k2

(
L2

4
x1 + L3

12x1

′)
→ Power series are not symplectic, cannot be used

The non-symplecticity can be recovered in the case of elements with L = 0. It
becomes small (probably small enough) when the length is small.

As a result, the model is approximated by a small amount, but the symplecticity
(and therefore the physics) is ensured. An exact model but compromised integration
can fabricate non-existing features and conceal important underlying physics.

The situation is rather different in the case of single pass machines. The long
term stability (and therefore symplecticity) is not an issue and the Taylor expansion
around the closed orbit is what is really needed. Techniques like the one described
in Sect. 3.7.6 provide exactly this in an advanced and flexible formalism.

3.6.3.2 Thick and Thin Lenses

All elements in a ring have a finite length and therefore should be treated as “thick
lenses”. However, in general a solution for the motion in a thick element does not
exist. It has become a standard technique to avoid using approximate formulae to
track through thick lenses and rather perform exact tracking through thin lenses.
This approximation is improved by breaking the thick element into several thin
elements which is equivalent to a numerical integration. A major advantage of this
technique is that “thin lens tracking” is automatically symplectic. In this context
it becomes important to understand the implied approximations and how they
influence the desired results. We proceed by an analysis of these approximations
and show how “symplectic integration” techniques can be applied to this problem.

We demonstrate the approximation using a quadrupole. Although an exact
solution of the motion through a quadrupole exists, it is a useful demonstration since
it can be shown that all concepts developed here apply also to arbitrary non-linear
elements.

Let us assume the transfer map (matrix) for a thick, linearized quadrupole of
length L and strength K:

Ms→s+L =
(

cos(L · √K) 1√
K
· sin(L · √K)

−√K · sin(L · √K) cos(L · √K)

)

(3.31)

This map is exact and can be expanded as a Taylor series for a “small” length L:

Ms→s+L = L0 ·
(

1 0
0 1

)
+ L1 ·

(
0 1
−K 0

)
+ L2 ·

(− 1
2K 0
0 − 1

2K

)
+ . . . (3.32)



66 W. Herr and E. Forest

If we keep only terms up to first order in L we get:

Ms→s+L = L0 ·
(

1 0
0 1

)
+ L1 ·

(
0 1
−K 0

)
+O(L2) (3.33)

Ms→s+L =
(

1 L

−K · L 1

)
+O(L2) (3.34)

This map is precise to order O(L1), but since we have det M �= 1, this truncated
expansion is not symplectic.

3.6.3.3 Symplectic Matrices and Symplectic Integration

However, the map (3.34) can be made symplectic by adding a term −K2L2. This
term is of order O(L2), i.e. does not deteriorate the approximation because the
inaccuracy is of the same order.

Ms→s+L =
(

1 L

−K · L 1−KL2

)
(3.35)

Following the same procedure we can compute a symplectic approximation precise
to order O(L2) from (3.32) using:

Ms→s+L =
(

1 − 1
2KL

2 L

−K · L 1− 1
2KL

2

)
⇒
(

1 − 1
2KL

2 L− 1
4 KL3

−K · L 1 − 1
2KL

2

)

(3.36)

It can be shown that this “symplectification” corresponds to the approximation of a
quadrupole by a single kick in the centre between two drift spaces of length L/2:

(
1 1

2L

0 1

)(
1 0

−K · L 1

)(
1 1

2L

0 1

)
=
(

1 − 1
2KL

2 L− 1
4KL

3

−K · L 1 − 1
2KL

2

)
(3.37)

It may be mentioned that the previous approximation to 1st order corresponds to a
kick at the end of a quadrupole, preceded by a drift space of length L. Both cases
are illustrated in Fig. 3.1.

One can try to further improve the approximation by adding 3 kicks like in
Fig. 3.2 where the distance between kicks and the kick strengths are optimized to
obtain the highest order. The thin lens approximation in Fig. 3.2 with the constants:

a ≈ 0.675602, b ≈ − 0.175602, α ≈ 1.351204, β ≈ − 1.702410 (3.38)

provides an O(L4) integrator [11].
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Fig. 3.1 Schematic representation of a symplectic kick of first order (left) and second order (right)

.a L .a L

b L. b L.
β

αα

K  L.

. .K  L K  L

Fig. 3.2 Schematic representation of a symplectic integration with thin lenses of fourth order. The
figure shows the size of drifts and thin lens kicks

This process is a Symplectic Integration [12] and is a formal procedure to
construct higher order integrators from lower order ones. From a 2nd order scheme
(1 kick) S2(t) we construct a 4th order scheme (3 kicks = 3 × 1 kick) like:
S4(t) = S2(x1t) ◦ S2(x0t) ◦ S2(x1t) with:

x0 = −21/3

2 − 21/3
≈ − 1.702410 x1 = 1

2 − 21/3
≈ 1.351204 (3.39)

In general: If S2k(t) is a symmetric integrator of order 2k, then we obtain a
symmetric integrator of order 2k + 2 by: S2k+2(t) = S2k(x1t) ◦ S2k(x0t) ◦
S2k(x1t) with:

x0 = − 2k+1
√

2

2 − 2k+1
√

2
x1 = 1

2− 2k+1
√

2
(3.40)

Higher order integrators can be obtained in a similar way in an iterative procedure.
A very explicit example of the iterative construction of a higher order map from a
lower order can be found in [7].

This method can be applied to any other non-linear map and we obtain the same
integrators. The proof of this statement and the systematic extension can be done in
the form of Lie operators [12].

It should be noted that higher order integrators require maps which drift
backwards (3.38) as shown in Fig. 3.2 right. This has two profound consequences.
First, a straightforward “physical” interpretation of thin lens models representing
drifts and individual small “magnets” (a la MAD) makes no sense and prohibits the
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Fig. 3.3 Poincare section for tracking through a quadrupole. Comparison between exact solution,
non-symplectic (left) and symplectic (right) tracking. Shown are symplectic integrators of order 1
and 2

use of high order integrators. Secondly, models which require self-consistent time
tracking or s tracking (e.g. space charge calculations) must use integrators for which
s(t) is monotonic in the magnets.

3.6.3.4 Comparison Symplectic Versus Non-symplectic Integration

A demonstration of a non-symplectic tracking is shown in Fig. 3.3. A particle is
tracked through a quadrupole and the poincare section is shown. A quadrupole
is chosen because it allows a comparison with the exact solution. The non-
symplecticity causes the particle to spiral outwards. As comparison to the exact
tracking is shown. In Fig. 3.3 (right) the symplectic integrators of order 1 and
2 as derived above are used instead. The trajectory is now constant and the
difference to the exact solution is small. Although the model is approximated
but symplectic, the underlying physics (i.e. constant energy in this case)
is correct at the expense of a small discrepancy with respect to the exact
solution.

3.7 Hamiltonian Treatment of Electro-Magnetic Fields

A frequently asked question is why one should not just use Newton’s laws and the
Lorentz force. Some of the main reasons are:

– Newton requires rectangular coordinates and time, trajectories with e.g. “curva-
ture” or “torsion” need to introduce “reaction forces”. (For example: LHC has
locally non-planar (cork-screw) “design” orbits!).

– For linear dynamics done by ad hoc introduction of new coordinate frame.
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– With Hamiltonian it is free: The formalism is “coordinate invariant”, i.e. the
equations have the same form in every coordinate system.

– The basic equations ensure that the phase space is conserved

3.7.1 Lagrangian of Electro-Magnetic Fields

3.7.1.1 Lagrangian and Hamiltonian

It is common practice to use q for the coordinates when Hamiltonian and Lagrangian
formalisms are used. This is deplorable because q is also used for particle charge.

The motion of a particle is usually described in classical mechanics using the
Langrange functional:

L( q1(t), . . . qn(t), q̇1(t), . . . q̇n(t), t ) short : L(qi, q̇i , t) (3.41)

where q1(t), . . . qn(t) are generalized coordinates and q̇1(t), . . . q̇n(t) the corre-
sponding generalized velocities. Here qi can stand for any coordinate and any
particle, and n can be a very large number.

The integral

S =
∫
L( qi(t), q̇i (t), t ) dt . (3.42)

defines the action S.
The action S is used with the Hamiltonian principle: a system moves along a path

such that the action S becomes stationary, i.e. δS = 0
Is fulfilled when:

d

dt

∂L

∂q̇i
− ∂L

∂qi
= 0 (Euler − Lagrange equation) (3.43)

It is unfortunate that the term action is used in different contexts and must not
be confused with the action-angle variables defined earlier. The action above is a
functional rather than a variable.

Without proof or derivation it should be stated thatL = T−V = kinetic energy−
potential energy.

Given the Lagrangian, the Hamiltonian can be derived as:

H(�q, �p, t) =
∑

i

[pi q̇i − L(�q, �̇q, t)]. (3.44)
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The coordinates qi are identical to those in the Lagrangian (3.41), whereas the
conjugate momenta pi are derived from L as:

pi = ∂L

∂q̇i
. (3.45)

3.7.2 Hamiltonian with Electro-Magnetic Fields

Readers only interested in the final result can skip Eqs. (3.46)–(3.54).
A key for the correct Hamiltonian is the relativistic treatment. An intuitive

derivation is presented here, a simpler and elegant derivation should be based on
4-vectors [13]. The action S must be a relativistic invariant and becomes (now using
coordinates x and velocities v):

S =
∫
L( xi(t), vi (t), t ) γ · dτ. (3.46)

since the proper time τ is Lorentz invariant, and therefore also γ · L.
The Lagrangian for a free particle is usually a function of the velocity (see

classical formula of the kinematic term), but must not depend on its position.
The only Lorentz invariant with the velocity is [13]:

UμUμ = c2 (3.47)

where U is the four-velocity.
For the Lagrangian of a (relativistic) free particle we must write

Lf ree = −mc2
√

1 − β2
r = −mc2

√
1 − (

v

c
)2 = − mc2

γ
(3.48)

Using for the electromagnetic Lagrangian a form (without derivation, any
textbook):

L = e

c
v · �A − eφ (3.49)

Combining (3.48) and (3.49) we obtain the complete Lagrangian:

L = − mc2

γ
+ e

c
· �v · �A − e · φ (3.50)
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thus the conjugate momentum is derived as:

�P = ∂L

∂vi
= �p + e

c
�A

(
or �P = �p − q

c
�A
)

(3.51)

where �p is the ordinary kinetic momentum.
A consequence is that the canonical momentum cannot be written as:

Px = mcγβx (3.52)

Using the conjugate momentum the Hamiltonian takes the simple form:

H = �P · �v − L (3.53)

The Hamiltonian must be a function of the conjugate variables P and x and after a
bit of algebra one can eliminate �v using:

�v = c �P − e �A
√
( �P − e �A

c
)2 + m2c2

(3.54)

With (3.50) and (3.54) we write for the Hamiltonian for a (ultra relativistic, i.e.
γ � 1, β ≈ 1) particle in an electro-magnetic field is given by:

H(�x, �p, t) = c

√
( �P − e �A(�x, t))2 +m2c2 + e�(�x, t) (3.55)

where �A(�x, t), �(�x, t) are the vector and scalar potentials.

Interlude 2
A short interlude, one may want to skip to Eq. (3.60)

Equation (3.55) is the total energy E of the particle where the dif-
ference is the potential energy eφ and the new conjugate momentum
�P = ( �p − e

c
�A), replacing �p.

From the classical expression

E2 = p2c2 + (mc2)2 (3.56)

one can re-write

(W − eφ)2 − (c �P − e �A)2 = (mc2)2 (3.57)

(continued)
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The expression (mc2)2 is the invariant mass [13], i.e.

pμp
μ = (mc)2 (3.58)

with the 4-vector for the momentum [13]:

pμ = (
E

c
, �p) =

(
1

c
(W − eφ), �P − (

e

c
�A)
)

(3.59)

The changes are a consequence using 4-vectors in the presence of electro-
magnetic fields (potentials).

An interesting consequence of (3.51) is that the momentum is linked to the fields
( �A) and the angle x ′ cannot easily be derived from the total momentum and the
conjugate momentum. That is using (x, x ′) as coordinate are strictly speaking not
valid in the presence of electromagnetic fields.

In this context using (x, x ′) or (x, px) is not equivalent. A general, strong
statement that (x, x ′) is used in accelerator physics is at best bizarre.

3.7.3 Hamiltonian Used for Accelerator Physics

In a more convenient (and useful) form, using canonical variables x and px, py and
the design path length s as independent variable (bending field B0 in y-plane) and
no electric fields (for details of the derivation see [14]):

H =
due to t → s︷ ︸︸ ︷
−(1 + x

ρ
)

︸ ︷︷ ︸
·

kinematic︷ ︸︸ ︷√
(1 + δ)2 − p2

x − p2
y +

due to t → s︷ ︸︸ ︷
x

ρ
+ x2

2ρ2
︸ ︷︷ ︸

−
normalized︷ ︸︸ ︷
As(x, y)

B0ρ
(3.60)

where p = √
E2/c2 − m2c2 total momentum, δ = (p − p0)/p0 is

relative momentum deviation and As(x, y) (normalized) longitudinal (along s)
component of the vector potential. Only transverse field and no electric fields are
considered.



3 Non-linear Dynamics in Accelerators 73

After square root expansion and sorting the As contributions:

H =

kinematic︷ ︸︸ ︷
p2
x + p2

y

2(1+ δ)
−

dipole︷ ︸︸ ︷
xδ

ρ
︸︷︷︸
bending

+ x2

2ρ2
︸︷︷︸

f ocusing

+
quadrupole︷ ︸︸ ︷
k1

2
(x2 − y2)+

sextupole︷ ︸︸ ︷
k2

6
(x3 − 3xy2) + . . .

(3.61)

using : kn = k(n)n = 1

Bρ

∂nBy

∂xn

(
k(s)n = 1

Bρ

∂nBx

∂xn

)
(3.62)

– The Hamiltonian describes the motion of a particle through an element
– Each element has a component in the Hamiltonian
– Basis to extend the linear to a nonlinear formalism

A short list of Hamiltonians of some machine elements (3D)
In general for multipoles of order n:

Hn = 1

1 + n
Re
[
(kn + ik(s)n )(x + iy)n+1

]
+ p2

x + p2
y

2(1 + δ)
(3.63)

We get for some important types (normal components kn only):

drift space : H = −
√
(1 + δ)2 − p2

x − p2
y ≈ p2

x + p2
y

2(1 + δ)
(3.64)

dipole : H = −−xδ
ρ

+ x2

2ρ2 +
p2
x + p2

y

2(1 + δ)
(3.65)

quadrupole : H = 1

2
k1(x

2 − y2)+ p2
x + p2

y

2(1+ δ)
(3.66)

sextupole : H = 1

3
k2(x

3 − 3xy2)+ p2
x + p2

y

2(1 + δ)
(3.67)

octupole : H = 1

4
k3(x

4 − 6x2y2 + y4)+ p2
x + p2

y

2(1 + δ)
(3.68)
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Interlude 3
A few remarks are required after this list of Hamiltonian for particular
elements.

– Unlike said in many introductory textbooks and lectures, a multipole of
order n is not required to drive a nth order resonance—nothing could be
more wrong!!

– In leading order perturbation theory, only elements with an even order
(and larger than 2) in the Hamiltonian can produce an amplitude depen-
dent tune shift and tune spread.

3.7.3.1 Lie Maps and Transformations

In this chapter we would like to introduce Lie algebraic tools and Lie transforma-
tions [15–17]. We use the symbol zi = (xi, pi)where x and p stand for canonically
conjugate position and momentum. We let f (z) and g(z) be any function of x, p and
can define the Poisson bracket for a differential operator [18]:

[f, g] =
n∑

i=1

(
∂f

∂xi

∂g

∂pi
− ∂f

∂pi

∂g

∂xi

)
(3.69)

Assuming that the motion of a dynamic system is defined by a Hamiltonian H , we
can now write for the equations of motion [18]:

[xi,H ] = ∂H

∂pi
= dxi

dt
(3.70)

[pi,H ] = −∂H

∂xi
= dpi

dt
(3.71)

If H does not explicitly depend on time then:

[f,H ] = 0 (3.72)

implies that f is an invariant of the motion. To proceed, we can define a Lie operator
: f : via the notation:

: f : g = [f, g] (3.73)

where : f : is an operator acting on the function g.
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We can define powers as:

(: f :)2g =: f : (: f : g) = [f, [f, g]] etc. (3.74)

One can collect a set of useful formulae for calculations:
Some common special (very useful) cases for f :

: x : = ∂
∂p

: p : = − ∂
∂x

: x :2 =
applied twice︷ ︸︸ ︷: x :: x : = ∂2

∂p2 : p :2 =
applied twice︷ ︸︸ ︷: p :: p : = ∂2

∂x2

: xp : = p ∂
∂p
− x ∂

∂x
: x :: p : = : p :: x : = − ∂2

∂x∂p

: x2 : = 2x ∂
∂p

: p2 : = − 2p ∂
∂x

: xn : = n · xn−1 ∂
∂p

: pn : = − n · pn−1 ∂
∂x

(3.75)

Once powers of the Lie operators are defined, they can be used to formulated an
exponential form:

e:f : =
∞∑

i=0

1

i! (: f :)i (3.76)

This expression is call a “Lie transformation”.
Give the Hamiltonian H of an element, the generator f is this Hamiltonian

multiplied by the length L of the element.
To evaluate a simple example, for the case H = −p2/2 using the exponential

form and (3.75):

e: −Lp2/2 :x = x − 1

2
L : p2 : x + 1

8
L2(: p2 :)2x + ..

= x + Lp (3.77)

e: −Lp2/2 :p = p − 1

2
L : p2 : p + . . .

= p (3.78)

One can easily verify that for 1D and δ = 0 this is the transformation of a drift space
of length L (if p ≈ x ′) as introduced previously. The function f (x, p) = −Lp2/2
is the generator of this transformation.
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Interlude 4
The exact Hamiltonian in two transverse dimensions and with a relative
momentum deviation δ is (full Hamiltonian with �A(�x, t) = 0):

H = −
√
(1 + δ)2 − p2

x − p2
y −→ fdrif t = L ·H

The exact map for a drift space is now:

xnew = x + L · px√
(1 + δ)2 − p2

x − p2
y

pnewx = px

ynew = y + L · py√
(1 + δ)2 − p2

x − p2
y

pnewy = py

In 2D and with δ �= 0 it is more complicated than Eq. (3.78). In practice the
map can (often) be simplified to the well known form.

More general, acting on the phase space coordinates:

e:f :(x, p)1 = (x, p)2 (3.79)

is the Lie transformation which describes how to go from one point to another.
While a Lie operator propagates variables over an infinitesimal distance, the Lie

transformation propagates over a finite distance.
To illustrate this technique with some simple examples, it can be shown easily,

using the formulae above, that the transformation:

e
: − 1

2f x
2 :

(3.80)

corresponds to the map of a thin quadrupole with focusing length f , i.e.

x2 = x1

p2 = p1 − 1

f
x1
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A transformation of the form:

e
: − 1

2L(k
2x2 + p2) : (3.81)

corresponds to the map of a thick quadrupole with length L and strength k:

x2 = x1cos(kL)+ p1

k
sin(kL) (3.82)

p2 = −kx1sin(kL)+ p1cos(kL) (3.83)

The linear map using Twiss parameters in Lie representation (we shall call it : f2 :
from now on) is always of the form:

e: f2 : with : f2(x) = −μ

2
(γ x2 + 2αxp + βp2) (3.84)

In case of a general non-linear function f(x), i.e. with a (thin lens) kick like:

x2 = x1 (3.85)

p2 = p1 + f (x1) (3.86)

the corresponding Lie operator can be written as:

e: h : = e
: ∫ x0 f (u)du : or e: F : with F =

∫ x

0
f (u)du. (3.87)

An important property of the Lie transformation is that the one turn map is the
exponential of the effective Hamiltonian and the circumference C:

Mring = e:−CHeff :. (3.88)

The main advantages of Lie transformations are that the exponential form is always
symplectic and that a formalism exists for the concatenation of transformations. An
overview of this formalism and many examples can be found in [7]. As for the Lie
operator, one can collect a set of useful formulae. Another neat package with useful
formulae:

With a constant and f, g, h arbitrary functions:

: a : = 0 −→ e: a : = 1

: f : a = 0 −→ e: f :a = a



78 W. Herr and E. Forest

e: f : [g, h] = [e: f :g, e: f :h]

e: f : (g · h) = e: f :g · e: f :h

and very important:

M g(x) = e: f : g(x) = g(e: f : x) e.g. e: f : x2 = (e: f : x)2

M−1 g(x) = (e: f :)−1 g(x) = e− : f : g(x) note : 1

e: f : �= (e: f :)−1

(3.89)

3.7.3.2 Concatenation of Lie Transformations

The concatenation is very easy when f and g commute (i.e. [f, g] = [g, f ] = 0)
and we have:

e: h : = e: f : e: g : = e: f + g : (3.90)

The generators of the transformations can just be added.
To combine two transformations in the general case (i.e. [f, g] �= 0) we can

use the Baker–Campbell–Hausdorff formula (BCH) which in our convention can be
written as:

h = f + g + 1
2 : f : g + 1

12 : f :2 g + 1
12 : g :2 f

+ 1
24 : f :: g :2 f − 1

720 : g :4 f
− 1

720 : f :4 g + 1
360 : g :: f :3 g + . . .

(3.91)

In many practical cases, non-linear perturbations are localized and small compared
to the rest of the (often linear) ring, i.e. one of f or g is much smaller, e.g. f
corresponds to one turn, g to a small, local distortion.

In that case we can sum up the BCH formula to first order in the perturbation g
and get:

e: h : = e: f : e: g : = exp

[
: f +

( : f :
1 − e−:f :

)
g +O(g2) :

]
(3.92)

When g is small compared to f , the first order is a good approximation.
For example, we may have a full ring e:f2: with a small (local) distortion, e.g. a

multipole e:g: with g = kxn then the expression:

e: h : = e: f2 :e: kxn :, (3.93)
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allows the evaluation of the invariant h for a single multipole of order n in this case.
In the case that f2, f3, f4, are 2nd, 3rd, 4th order polynomials (Dragt-Finn

factorization [19]):

e: f : = e: f2 :e: f3 :e: f4 :, (3.94)

each term is symplectic and the truncation at any order does not violate symplectic-
ity.

One may argue that this method is clumsy when we do the analysis of a linear
system. The reader is invited to prove this by concatenating by hand a drift space
and a thin quadrupole lens. However, the central point of this method is that the
technique works whether we do linear or non-linear beam dynamics and provides a
formal procedure. Lie transformations are the natural extension of the linear matrix
formalism to a non-linear formalism. There is no need to move from one method to
another as required in the traditional treatment.

In the case an element is described by a Hamiltonian H , the Lie map of an
element of length L and the Hamiltonian H is:

e−L : H : =
∞∑

i=0

1

i! (−L : H :)i (3.95)

For example, the Hamiltonian for a thick sextupole is:

H = 1

3
k(x3 − 3xy2)+ 1

2
(p2

x + p2
y) (3.96)

To find the transformation we search for:

e−L : H :x and e−L : H :px i.e. for (3.97)

e−L : H :x =
∞∑

i=0

−Li
i! (: H :)ix (3.98)

We can compute:

: H :ix for each i (3.99)

to get:

: H :1x = −px, (3.100)

: H :2x = −k(x2 − y2), (3.101)
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: H :3x = 2k(xpx − ypy), (3.102)

. . . . (3.103)

Putting the terms together one obtains:

e−L : H :x = x + pxL− 1

2
kL2(x2 − y2)− 1

3
kL3(xpx − ypy)+ . . . (3.104)

3.7.4 Analysis Techniques: Poincare Surface of Section

Under normal circumstances it is not required to examine the complete time
development of a particle trajectory around the machine. Given the experimental
fact that the trajectory can be measured only at a finite number of positions around
the machine, it is only useful to sample the trajectory periodically at a fixed position.
The plot of the rate of change of the phase space variables at the beginning (or
end) of each period is the appropriate method and also known as Poincare Surface
of Section [20]. An example of such a plot is shown in Fig. 3.4 where the one-
dimensional phase space is plotted for a completely linear machine (Fig. 3.4, left)
and close to a 5th order resonance in the presence of a single non-linear element (in
this case a sextupole) in the machine (Fig. 3.4, right).

It shows very clearly the distortion of the phase space due to the non-linearity, the
appearance of resonance islands and chaotic behaviour between the islands. From
this plot is immediately clear that the region of stability is strongly reduced in the

Fig. 3.4 Poincare surface of section of a particle near the 5th order resonances. Left without non-
linear elements, right with one sextupole
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presence of the non-linear element. The main features we can observe in Fig. 3.4 are
that particles can:

• Move on closed curves
• Lie on islands, i.e. jump from one island to the next from turn to turn
• Move on chaotic trajectories

The introduction of these techniques by Poincare mark a paradigm shift from
the old classical treatment to a more modern approach. The question of long
term stability of a dynamic system is not answered by getting the solution to the
differential equation of motion, but by the determination of the properties of the
surface where the motion is mapped out. Independent how this surface of section
is obtained, i.e. by analytical or numerical methods, its analysis is the key to
understand the stability.

3.7.5 Analysis Techniques: Normal Forms

The idea behind this technique is that maps can be transformed into Normal Forms.
This tool can be used to:

• Study invariants of the motion and the effective Hamiltonian
• Extract non-linear tune shifts (detuning)
• Perform resonance analysis

In the following we demonstrate the use of normal forms away from resonances.
The treatment of the beam dynamics close to resonances is beyond the scope of this
review and can be found in the literature (see e.g. [6, 7]).

3.7.5.1 Normal Form Transformation: Linear Case

The strategy is to make a transformation to get a simpler form of the map M , e.g. a
pure rotation R(�μ) as schematically shown in Fig. 3.5 using a transformation like:

M = U ◦ R(�μ) ◦ U−1 or : R(�μ) = U−1 ◦M ◦ U (3.105)

with

U =
⎛

⎜
⎝

√
β(s) 0

− α(s)√
β(s)

1√
β(s)

⎞

⎟
⎠ and R =

⎛

⎜
⎝

cos(�μ) sin(�μ)

− sin(�μ) cos(�μ)

⎞

⎟
⎠ (3.106)

This transformation corresponds to the Courant-Snyder analysis in the linear
case and directly provides the phase advance and optical parameters. The optical
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Fig. 3.5 Normal form transformation in the linear case, related to the Courant-Snyder analysis

parameters emerge automatically from the normal form analysis of the one-turn-
map.

Although not required in the linear case, we demonstrate how this normal form
transformation is performed using the Lie formalism. Starting from the general
expression:

R(�μ) = U−1 ◦M ◦U (3.107)

we know that a linear map M in Lie representation is always:

e: f2 : with : f2 = −μ

2
(γ x2 + 2αxpx + βp2

x) (3.108)

therefore:

R(�μ) = U−1 ◦ e: f2(x) : ◦ U

= eU
−1 : f2 : U = e: U−1f2 : (3.109)

and (with U−1f2) f2 expressed in the new variables X,Px it assumes the form:

f2 = −μ

2
(X2 + P 2

x ) because :
(
X

Px

)
= U−1

(
x

px

)
(3.110)

i.e. with the transformation U−1 the rotation : f2 : becomes a circle in the
transformed coordinates. We transform to action and angle variables J and �,
related to the variables X and Px through the transformations:

X = √2Jβ sin�, Px =
√

2J

β
cos� (3.111)
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With this transformation we get a simple representation for the linear transfer
map f2:

f2 = −μJ and : R(�μ) = e: −�μJ : (3.112)

3.7.5.2 Normal Form Transformation: Non-linear Case

In the more general, non-linear case the transformation is more complicated and
one must expect that the rotation angle becomes amplitude dependent (see e.g. [6]).
A schematic view of this scheme is shown in Fig. 3.6 where the transformation
leads to the desired rotation, however the rotation frequency (phase advance) is now
amplitude dependent.

We demonstrate the power by a simple example in one dimension, but the
treatment is similar for more complex cases. In particular, it demonstrates that this
analysis using the algorithm based on Lie transforms leads easily to the desired
result. A very detailed discussion of this method is found in [6].

From the general map we have made a transformation such that the transformed
map can be expressed in the form e:h2: where the function h2 is now a function only
of Jx, Jy, and δ and it is the effective Hamiltonian.

In the non-linear case and away from resonances we can get the map in a similar
form:

N = e: heff (Jx, Jy, δ) : (3.113)

where the effective Hamiltonian heff depends only on Jx, Jx, and δ.

-3
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Fig. 3.6 Normal form transformation in the non-linear case, leading to amplitude dependent phase
advance. The transformation was done for non-resonant amplitudes
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If the map for heff corresponds to a one-turn-map, we can write for the tunes:

Qx(Jx, Jy, δ) = 1

2π

∂heff

∂Jx
(3.114)

Qy(Jx, Jy, δ) = 1

2π

∂heff

∂Jy
(3.115)

and the change of path length:

�s = −∂heff

∂δ
= αcδ (3.116)

In the non-linear case, particles with different Jx, Jy, δ have different tunes. Their
dependence on Jx, Jy is the amplitude detuning, the dependence on δ are the
chromaticities.

The effective Hamiltonian can always be written (here to 3rd order) in a form:

heff = + μxJx + μyJy + 1

2
αcδ

2 (3.117)

+ cx1Jxδ + cy1Jyδ + c3δ
3 (3.118)

+ cxxJ
2
x + cxyJxJy + cyyJ

2
y + cx2Jxδ

2 + cy2Jyδ
2 + c4δ

4

(3.119)

and then tune depends on action J and momentum deviation δ:

Qx(Jx, Jy, δ) = 1

2π

∂heff

∂Jx
= 1

2π

⎛

⎜
⎝μx +

detuning︷ ︸︸ ︷
2cxxJx + cxyJy +

chromaticity︷ ︸︸ ︷
cx1δ + cx2δ

2

⎞

⎟
⎠

(3.120)

Qy(Jx, Jy, δ) = 1

2π

∂heff

∂Jy
= 1

2π

⎛

⎜
⎝μy +

detuning︷ ︸︸ ︷
2cyyJy + cxyJx +

chromaticity︷ ︸︸ ︷
cy1δ + cy2δ

2

⎞

⎟
⎠

(3.121)

The meaning of the different contributions are:

– μx,μy : linear phase advance or 2π · i.e. the tunes for rings
– 1

2αc, c3, c4: linear and nonlinear “momentum compaction”
– cx1, cy1: first order chromaticities
– cx2, cy2: second order chromaticities
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– cxx, cxy, cyy : detuning with amplitude

The coefficients are the various aberrations of the optics.
As a first example one can look at the effect of a single (thin) sextupole. The map

is:

M = e
− : μJx + μJy + 1

2αcδ
2 :

e
: k(x3 − 3xy2) + p2

x+p2
y

2(1+δ) : (3.122)

we get for heff (see e.g. [6, 7]):

heff = μxJx + μyJy + 1
2αcδ

2 − kD3δ3 − 3kβxJxDδ + 3kβyJyDδ

Then it follows:

Qx(Jx, Jy, δ) = 1

2π

∂heff

∂Jx
= 1

2π
(μx − 3kβxDδ) (3.123)

Qy(Jx, Jy, δ) = 1

2π

∂heff

∂Jy
= 1

2π
(μy + 3kβyDδ) (3.124)

Since it was developed to first order only, there is no non-linear detuning with
amplitude.

As a second example one can use a linear rotation followed by an octupole, the
Hamiltonian is:

H = μ

2
(x2 + p2

x)+ δ(s − s0)
x4

4
= μJ + δ(s − s0)

x4

4
with : J = (x2 + p2

x)

2
(3.125)

The first part of the Hamiltonian corresponds to the generator of a linear rotation
and the second part to the localized octupole.

The map, written in Lie representation becomes:

M = e
(−μ

2 : x2 + p2
x :) e: x

4

4 : = e: −μJ : e: x
4

4 : = R e
: x4

4 : (3.126)

The purpose is now to find a generator F for a transformation

e− : F : M e: F : = e− : F : e: x
4

4 :
e: F : (3.127)

such that the exponents of the map depend only on J and not on x.
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Fig. 3.7 Schematic view of
tracking through a complex
element (x,x’,y,y’,s, δ) (x,x’,y,y’,s, δ)Algorithm

1 2

21
Output  zInput  z

Without going through the algebra (advanced tools exist for this purpose, see e.g.
[6]) we quote the result and with

F = − 1

64
{−5x4+3p4

x+6x2p2
x+x3px(8 cot(μ)+ 4 cot(2μ))+ xp3

x(8 cot(μ)−4 cot(2μ))}
(3.128)

we can write the map:

M = e− : F : e: −μJ + 3
8J

2 :
e: F : (3.129)

the term 3
8J

2 implies a tune shift with amplitude for an octupole.

3.7.6 Truncated Power Series Algebra Based on Automatic
Differentiation

It was argued that an appropriate technique to evaluate the behaviour of complex,
non-linear systems is by numerically tracking through the individual elements.
Schematically this is shown in Fig. 3.7 and the tracking through a complicated
system relates the output numerically to the input. When the algorithm depicted
in Fig. 3.7 represents the full turn in a ring, we obtained the most reliable one-
turn-map through this tracking procedure, assuming we have chosen an appropriate
representation of the maps for the individual elements.

3.7.6.1 Automatic Differentiation: Concept

This procedure may not be fully satisfactory in all cases and one might like to
get an analytical expression for the one-turn-map or equivalent. Could we imagine
something that relates the output algebraically to the input? This might for example
be a Taylor series of the type:

z2 =
∑

Cjz
j
1 =
∑

djf
(n)z

j
1 (3.130)

Then we have an analytic map (for all z1).
To understand why this could be useful, we can study the paraxial behaviour. In

Fig. 3.8 we show schematically the trajectories of particles close to the ideal orbit.
The red line refers to the ideal trajectory while the other lines show the motion of
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Fig. 3.8 Pictorial view of a paraxial analysis. Red line represents the ideal trajectory

individual particles with small deviations from the ideal path. The idea is that if we
understand how small deviations behave, we understand the system much better.

If we now remember the definition of the Taylor series:

f (x +�x) = f (x)+
∞∑

n=1

�xn

n! f (n)(x) (3.131)

we immediately realize that the coefficients determine the behaviour of small
deviations�x from the ideal orbit x. Therefore the Taylor expansion does a paraxial
analysis of the system and the main question is how to get these coefficients without
extra work?

The problem is getting the derivatives f (n)(a) of f (x) at a:

f ′(a) = lim
ε→0

f (a + ε)− f (a)

ε
(3.132)

Numerically this corresponds to the need to subtract almost equal numbers and
divide by a small number. For higher orders f ′′, f ′′′.., one must expect numerical
problems. An elegant solution to this problem is the use of Differential Algebra
(DA) [21].

3.7.6.2 Automatic Differentiation: The Algebra

Here we demonstrate the concept, for more details the literature should be consulted
[6, 7, 21].
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1. Define a pair (q0, q1), where q0, q1 are real numbers
2. Define operations on such pairs like:

(q0, q1) + (r0, r1) = (q0 + r0, q1 + r1) (3.133)

c · (q0, q1) = (c · q0, c · q1) (3.134)

(q0, q1) · (r0, r1) = (q0 · r0, q0 · r1 + q1 · r0) (3.135)

3. We define the ordering like:

(q0, q1) < (r0, r1) if q0 < r0 or (q0 = r0 and q1 < r1) (3.136)

(q0, q1) > (r0, r1) if q0 > r0 or (q0 = r0 and q1 > r1) (3.137)

4. This implies that:

(0, 0) < (0, 1) < (r, 0) (for any r) (3.138)

This means that (0,1) is between 0 and ANY real number, i.e. it is infinitely small,
corresponding to the “ε” in standard calculus.

Therefore we call this special pair “differential unit” d = (0, 1).
With our rules we can further see that:

(1, 0) · (q0, q1) = (q0, q1) and (q0, q1)
−1 =

(
1

q0
,− q1

q2
0

)

(3.139)

In general the inverse of a function f (q0, q1) can de derived like:

f ((q0, q1)) · (r0, r1) = (1, 0) (3.140)

using the multiplication rules. The inverse is then (r0, r1). For example:

(q0, q1)
2 · (r0, r1) = (1, 0) (3.141)

gives for the inverse:

(r0, r1) =
(

1

q2
0

,
−2q1

q3
0

)

(3.142)
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3.7.6.3 Automatic Differentiation: The Application

Of course (q, 0) is just the real number q and we define the “real” and the
“differential part”:

q0 = R(q0, q1) and q1 = D(q0, q1) (3.143)

For a function f (x) we have (without proof, see e.g. [21]):

D[f (x + d)] = D[f ((x, 0)+ (0, 1))] = f ′(x) (3.144)

We use an example instead to demonstrate this with the function:

f (x) = x2 + 1

x
(3.145)

Using school calculus we have for the derivative:

f ′(x) = 2x − 1

x2 and for x = 2 we get : f (2) = 9

2
, f ′(2) = 15

4
(3.146)

We now apply Automatic Differentiation instead. For the variable x in (3.145)
we substitute x → (x, 1) = (2, 1) and using our rules:

f [(2, 1)] = (x, 1)2 + (x, 1)−1 = (2, 1)2 + (2, 1)−1

= (4, 4)+ (
1

2
,−1

4
) = (

9

2
,

15

4
) = (f (2), f ′(2))

we arrive at a vector containing the differentials at x = 2. The computation of
derivatives becomes an algebraic problem, without need for small numbers. No
numerical difficulties are expected and the differential is exact.

3.7.6.4 Automatic Differentiation: Higher Orders

To obtain higher orders, we need higher derivatives, i.e. larger dimension for our
vectors:

1. The pair (q0, 1), becomes a vector of length N and with equivalent rules:

(q0, 1) ⇒ (q0, 1, 0, 0, . . . , 0) (3.147)

(q0, q1, q2, . . . qN) + (r0, r1, r2, . . . rN ) = (s0, s1, s2, . . . sN ) (3.148)
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c · (q0, q1, q2, . . . qN) = (c · q0, c · q1, c · q2, . . . c · qN) (3.149)

(q0, q1, q2, . . . qN) · (r0, r1, r2, . . . rN ) = (s0, s1, s2, . . . sN ) (3.150)

with:

si =
i∑

k=0

i!
k!(i − k)!qkri−k (3.151)

If we had started with:

x = (a, 1, 0, 0, 0 . . .) (3.152)

we would get:

f (x) = ( f (a), f ′(a), f ′′(a), f ′′′(a), . . . f (n)(a) ) (3.153)

Some special cases are:

(x, 0, 0, 0, ..)n = (xn, 0, 0, 0, ..) (3.154)

(0, 1, 0, 0, ..)n = (0, 0, 0, ..,

n+1︷︸︸︷
n! , 0, 0, ..) (3.155)

(x, 1, 0, 0, ..)2 = (x2, 2x, 2, 0, ..) (3.156)

(x, 1, 0, 0, ..)3 = (x3, 3x2, 6x, 6, ..) (3.157)

As another exercise one can consider the function f (x) = x−3

f (x) → f (x, 1, 0, 0, ..) = (x, 1, 0, 0, ..)−3 = (f0, f
′f ′′, f ′′′, ..)

︸ ︷︷ ︸
next : multiply both sides with (x,1,0,0)3

(1, 0, 0, ..) = (x, 1, 0, 0, ..)3 · (f0, f
′, f ′′, f ′′′, . . .)

(1, 0, 0, ..) = (x3, 3x2, 6x, 6, ..) · (f0, f
′, f ′′, f ′′′, . . .) using (3.157)

(1, 0, 0, ..) = (x3 · f0︸ ︷︷ ︸
q0 = 1

, 3x2 · f0 + x3·f ′
︸ ︷︷ ︸

q1 = 0

, 6x · f0 + 2 · 3x2 · f ′ + x3·f ′′
︸ ︷︷ ︸

q2 = 0

, . . .)

This can easily be solved by forward substitution:

1 = x3 · f0 → f0 = x−3

0 = 3x2 · f0 + x3 · f ′ → f ′ = − 3x−4

0 = 6x · f0 + 2 · 3x2 · f ′ + x3 · f ′′ → f ′′ = 12x−5

....

(3.158)
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Using the same procedure for f (x) = x−1 one obtains:

(x, 1, 0, 0, ..)−1 = (
1

x
.− 1

x2 ,
2

x3 , . . .) (3.159)

For the function we have used before (3.145) :

f (x) = x2 + 1

x
(3.160)

and using (adding!) the expressions (3.156) and (3.159) one has:

(f0, f
′, f ′′, f ′′′) = (x2 + 1

x
, 2x − 1

x2
, 2 + 2

x3
, ..) (3.161)

3.7.6.5 Automatic Differentiation: More Variables

It can be extended to more variables x, y and a function f (x, y):

x = (a, 1, 0, 0, 0 . . .) (3.162)

y = (b, 0, 1, 0, 0 . . .) (3.163)

and get (with more complicated multiplication rules):

f ((x + dx), y + dy)) =
(
f,

∂f

∂x
,
∂f

∂y
,
∂2f

∂x2 ,
∂2f

∂x∂y
, . . .

)
(x, y) (3.164)

3.7.6.6 Differential Algebra: Applications to Accelerators

Of course it is not the purpose of these tools to compute analytical expressions
for the derivatives, the examples were used to demonstrate the techniques. The
application of these techniques (i.e. Truncated Power Series Algebra [6, 21]) is
schematically shown in Fig. 3.9. Given an algorithm, which may be a complex
simulation program with several thousands of lines of code, we can use the
techniques to “teach” the code how to compute the derivatives automatically.

Algorithm
(f,f’,f”,f”’,f””,...) (f,f’,f”,f”’,f””,...)

21

21
Input  z Output  z

Fig. 3.9 Schematic view of application of Truncated Power Series Algebra
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When we push f (x) = (a, 1, 0, 0, 0 . . .) through the algorithm, using our rules,
we get all derivatives around a, i.e. we get the Taylor coefficients and can construct
the map!

What is needed is to replace the standard operations performed by the computer
on real numbers by the algebra defined above. The maps are provided with the
desired accuracy and to any order.

Given a Taylor series to high accuracy, the wanted information about stability of
the system, global behaviour and optical parameters can be derived more easily. It
should be stressed again that the origin is the underlying tracking code, just acting
on different data types with different operations.

3.7.6.7 Differential Algebra: Simple Example

A simple example is shown below where the original “tracking code” is shown
in the left column (DATEST1) and the corresponding modified code in the right
column (DATEST2). The operation is rather trivial to demonstrate the procedure
more easily. The code is written in standard FORTRAN 95 which allows operator
overloading, but an object oriented language such as C++ or Python are obviously
well suited for this purpose. Standard FORTRAN-95 is however more flexible
overloading arbitrary operations. The DA-package used for demonstration only is
loaded by the command use myownda in the code. To make the program perform
the wanted operation we have to make two small modifications:

1. Replace the types real by the type mytaylor (defined in the package).
2. Add the “differential unit” (0, 1), the monomial in this implementation to the

variable.
PROGRAM DATEST1
use my_own_da
real(8) x,z, dx
my_order=3
dx=0.0
x=3.141592653_8/6.0_8+dx
call track(x, z)
call print(z,6)
END PROGRAM DATEST1

SUBROUTINE TRACK(a, b)
use my_own_da
real(8) a,b
b = sin(a)
END SUBROUTINE TRACK

PROGRAM DATEST2
use my_own_da
type(my_taylor) x,z, dx
my_order=3
dx=1.0d0.mono.1 ! this is our (0,1)

x=3.141592653_8/6.0_8+dx
call track(x, z)
call print(z,6)
END PROGRAM DATEST2

SUBROUTINE TRACK(a, b)
use my_own_da
type(my_taylor) a,b
b = sin(a)
END SUBROUTINE TRACK

Running these two programs we get the results in the two columns below. In the
left column we get the expected result from the real calculation of the expression
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sin(π/6)) = 0.5, while in the right column we get additional numbers sorted
according to the array index.

(0,0) 0.50000000E+00 (0,0) 0.50000000E+00
(1,0) 0.86602540E+00
(0,1) 0.00000000E+00
(2,0) -0.25000000E+00
(0,2) 0.00000000E+00
(1,1) 0.00000000E+00
(3,0) -0.14433756E+00
(0,3) 0.00000000E+00
(2,1) 0.00000000E+00
(1,2) 0.00000000E+00

The inspection shows that these numbers are the coefficients of the Taylor expansion
of sin(x) around x = π/6:

sin(
π

6
+�x) = sin(

π

6
)+cos(

π

6
)�x1− 1

2
sin(

π

6
)�x2− 1

6
cos(

π

6
)�x3 (3.165)

We have indeed obtained the derivatives of our “algorithm” through the tracking
code.

Some examples related to the analysis of accelerator physics lattices.
In example 1 a lattice with 8 FODO cells is constructed and the quadrupole is

implemented as a thin lens “kick” in the center of the element. Note that the example
is implemented in the horizontal and the longitudinal planes. For the second example
an octupole kick is added to demonstrate the correct computation of the non-linear
effect, i.e. the detuning with amplitude.

The procedure is:

1. Track through the lattice and get Taylor coefficients
2. Produce a map from the coefficients
3. Perform a Normal Form Analysis on the map

program ex1

use my_own_da
use my_analysis
type(my_taylor) z(3)
type(normalform) NORMAL
type(my_map) M,id

real(dp) L,DL,k1,k3,fix(3)

do j = 1,8
z(1) = z(1)+DL/2*z(2)
z(2) = z(2)-kf*DL*z(1)/(1 + z(3))
z(1) = z(1)+DL/2*z(2)

z(1) =z(1)+LC*z(2)

z(1) = z(1)+DL/2*z(2)
z(2) = z(2)-kd*DL*z(1)/(1 + z(3))
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! set up initial parameters
my_order=4 ! maximum order
4
fix=0.0 ! fixed point
id=1
z=fix+id

! set up lattice parameters
LC=62.5 ! half cell length
DL=3.0 ! quadrupole length
kf= 0.00295278 ! strength
kd=-0.00295278 ! strength

z(1) = z(1)+DL/2*z(2)

z(1) =z(1)+LC*z(2)
enddo

call print(z(1),6)
call print(z(2),6)

M=z ! overloads coefficient with the map
normal=m ! overloads map with normal
form

write(6,*) normal%tune, normal%dtune_da
end program ex1

(0,0,0) 0.9369211296691E-01
(0,0,1) -0.9649503806747E-01

(1,0,0) 0.9083165810508E-01
(0,1,0) 0.1667704101367E+03

(1,0,1) 0.1238115392391E+01
(0,1,1) -0.3527698956093E+02
(1,0,2) -0.1567062442887E+01
(0,1,2) 0.3478356898518E+02
(1,0,3) 0.1896009493384E+01
(0,1,3) -0.3429014840944E+02

(1,0,0) -0.5139797664004E-02
(0,1,0) 0.1572511594903E+01
(1,0,1) 0.1027959532801E-01
(0,1,1) -0.5648018984066E+00
(1,0,2) -0.1541939299201E-01
(0,1,2) 0.5570922019106E+00
(1,0,3) 0.2055919065602E-01
(0,1,3) -0.5493825054146E+01

From the elements in the Taylor expansion,
the result for the matrix per cell:

�xf = 0.09083�xi + 166.77�pi

�pf = −0.00514�xi + 1.5725�pi

The output from the normal form analysis
are (per cell!):
Tune = (0,0,0) = 0.093692
Chromaticity = (0,0,1) = -0.096495

program ex2

use my_own_da

do j = 1,8
z(1) = z(1)+DL/2*z(2)
z(2) = z(2)-kf*DL*z(1)/(1 + z(3))
z(1) = z(1)+DL/2*z(2)
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use my_analysis
type(my_taylor) z(3)
type(normalform) NORMAL
type(my_map) M,id

real(dp) L,DL,k1,k3,fix(3)

! set up initial parameters
my_order=4 ! maximum order 4
fix=0.0 ! fixed point
id=1
z=fix+id

! set up lattice parameters
LC=62.5 ! half cell length
DL=3.0 ! quadrupole length
kf= 0.00295278 ! strength
kd=-0.00295278 ! strength

z(2) =z(2)*k3*z(1)**3/1+z(3) ! add
octupole kick
z(1) =z(1)+LC*z(2)

z(1) = z(1)+DL/2*z(2)
z(2) = z(2)-kd*DL*z(1)/(1 + z(3))
z(1) = z(1)+DL/2*z(2)

z(1) =z(1)+LC*z(2)
enddo

call print(z(1),6)
call print(z(2),6)

M=z ! overloads coefficient with the map
normal=m ! overloads map with normal
form

write(6,*) normal%tune, normal%dtune_da
end program ex2

(0,0,0) 0.9369211296691E-01
(0,0,1) -0.9649503806747E-01

(2,0,0) 0.5383744464902E+02
(0,2,0) 0.5383744464902E+02
(0,0,2) 0.1009289258270E+00
(2,0,1) 0.2116575633218E+02
..........
(1,0,0) 0.9083165810508E-01
(0,1,0) 0.1667704101367E+03
(1,0,1) 0.1238115392391E+01
(0,1,1)-0.3527698956093E+02
(3,0,0)-0.1578216232118E+01
(2,1,0)-0.1429958442579E+02
(1,2,0)-0.4318760015031E+02

..........
(1,0,0)-0.5139797664004E-02
(0,1,0) 0.1572511594903E+01
(1,0,1) 0.1027959532801E-01
(0,1,1)-0.5648018984066E+00
(3,0,0)-0.1505298087837E-01

From the elements in the Taylor expansion,
the result for the matrix per cell:

�xf = 0.09083�xi + 166.77�pi

�pf = −0.00514�xi + 1.5725�pi

The output from the normal form analysis
are (per cell!):
Tune = (0,0,0) = 0.093692
Chromaticity = (0,0,1) = -0.096495

The added octupole kick results in a
detuning with amplitude of dQ/dJ = 53.837
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Defined assignments:

M = z, constructs a map M using the coefficients z
NORMAL = M, computes a normal form NORMAL using the map M

In FORTRAN95 derived “type” plays the role of “structures” in C, and NORMAL
contains:

NORMAL%tune is the tune Q
NORMAL%dtune_da is the detuning with amplitude dQ

da

NORMAL%R, NORMAL%A, NORMAL%A**-1 are the matrices
such that: M = A R A−1

from the normal form transformation one obtains α, β, γ . . .

Below a comparison is shown in Fig. 3.10 using the lattice function (e.g. β) obtained
with this procedure and the optical functions from the corresponding MAD-X
output.

One finds that βmax ≈ 300 m, βmin ≈ 170 m and perfect agreement.
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Fig. 3.10 Comparison: β-function from the model and the corresponding result from MAD-X
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3.8 Beam Dynamics with Non-linearities

Following the overview of the evaluation and analysis tools, it is now possible to
analyse and classify the behaviour of particles in the presence of non-linearities.
The tools presented beforehand allow a better physical insight to the mechanisms
leading to the various phenomena, the most important ones being:

• Amplitude detuning
• Excitation of non-linear resonances
• Reduction of dynamic aperture and chaotic behaviour.

This list is necessarily incomplete but will serve to demonstrate the most important
aspects.

To demonstrate these aspects, we take a realistic case and show how the effects
emerge automatically.

3.8.1 Amplitude Detuning

It was discussed in Sect. 3.7.5 that the one-turn-map can be transformed into a
simpler map where the rotation is separated. A consequence of the non-linearities
was that the rotation frequency becomes amplitude dependent to perform this
transformation. Therefore the amplitude detuning is directly obtained from this
normal form transformation.

3.8.1.1 Amplitude Detuning due to Non-linearities in Machine Elements

Non-linear elements cause an amplitude dependent phase advance. The compu-
tational procedure to derive this detuning was demonstrated in the discussion on
normal for transformations in the case of an octupole Eqs. (3.125) and (3.129). This
formalism is valid for any non-linear element.

Numerous other examples can be found in [6] and [5].

3.8.1.2 Amplitude Detuning due to Beam–Beam Effects

For the demonstration we use the example of a beam-beam interaction because it is
a very complex non-linear problem and of large practical importance [7, 22].

In this simplest case of one beam-beam interaction we can factorize the machine
in a linear transfer map e:f2: and the beam-beam interaction e:F :, i.e.:

e: f2 : · e: F : = e: h : (3.166)
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with

f2 = − μ

2
(
x2

β
+ βp2

x) (3.167)

whereμ is the overall phase, i.e. the tune Q multiplied by 2π , and β is the β-function
at the interaction point. We assume the waist of the β-function at the collision point
(α = 0). The function F(x) corresponds to the beam-beam potential (3.87):

F(x) =
∫ x

0
f (u)du (3.168)

For a round Gaussian beam we use for f (x) the well known expression:

f (x) = 2Nr0

γ x
(1 − e

−x2

2σ 2 ) (3.169)

Here N is the number of particles per bunch, r0 the classical particle radius, γ the
relativistic parameter and σ the transverse beam size.

For the analysis we examine the invariant h which determines the one-turn-
map (OTM) written as a Lie transformation e:h:. The invariant h is the effective
Hamiltonian for this problem.

As usual we transform to action and angle variables J and �, related to the
variables x and px through the transformations:

x = √2Jβsin�, px =
√

2J

β
cos� (3.170)

With this transformation we get a simple representation for the linear transfer map
f2:

f2 = −μJ (3.171)

The function F(x) we write as Fourier series:

F(x)⇒
∞∑

n=−∞
cn(J )e

in� with cn(J ) = 1

2π

∫ 2π

0
e−in�F(x)d�

(3.172)

For the evaluation of (3.172) see [7]. We take some useful properties of Lie operators
(e.g. [6, 7]):

: f2 : g(J ) = 0, : f2 : ein� = inμein�, g(: f2 :)ein� = g(inμ)ein�

(3.173)
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and the CBH-formula for the concatenation of the maps (3.92):

e: f2 : e: F : = e: h : = exp

[
: f2 +

( : f2 :
1− e− : f2 :

)
F +O(F 2) :

]

(3.174)

which gives immediately for h:

h = −μJ +
∑

n

cn(J )
inμ

1 − e−inμ e
in� = −μJ +

∑

n

cn(J )
nμ

2 sin( nμ2 )
e
(in�+ i

nμ
2 )

(3.175)

Equation (3.175) is the beam-beam perturbed invariant to first order in the perturba-
tion using (3.92).

From (3.175) we observe that for ν = μ
2π = p

n
resonances appear for all integers

p and n when cn(J ) �= 0.
Away from resonances a normal form transformation gives:

h = − μJ + c0(J ) = const. (3.176)

and the oscillating term disappears. The first term is the linear rotation and the
second term gives the amplitude dependent tune shift (see (3.114)):

�μ(J ) = − 1

2π

dc0(J )

dJ
(3.177)

The computation of this tuneshift from the equation above can be found in the
literature [7, 23].

3.8.1.3 Phase Space Structure

To demonstrate how this technique can be used to reconstruct the phase space
structure in the presence of non-linearities, we continue with the very non-linear
problem of the beam-beam interaction treated above. To test our result, we compare
the invariant h to the results of a particle tracking program.

The model we use in the program is rather simple:

• linear transfer between interactions
• beam-beam kick for round beams
• compute action J = β∗

2σ 2 (
x2

β∗ + p2
xβ

∗)
• compute phase � = arctan(px

x
)

• compare J with h as a function of the phase �
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Fig. 3.11 Comparison: numerical and analytical model for one interaction point. Shown for 5σx
(left) and 10σx (right). Full symbols from numerical model and solid lines from invariant (3.175)

The evaluation of the invariant (3.175) is done numerically with Mathematica. The
comparison between the tracking results and the invariant h from the analytical
calculation is shown in Fig. 3.11 in the (J ,�) space. One interaction point is used
in this comparison and the particles are tracked for 1024 turns. The symbols are
the results from the tracking and the solid lines are the invariants computed as
above. The two figures are computed for amplitudes of 5 σ and 10 σ . The agreement
between the models is excellent. The analytic calculation was done up to the order
N = 40. Using a lower number, the analytic model can reproduce the envelope of
the tracking results, but not the details. The results can easily be generalized to more
interaction points [22]. Close to resonances these tools can reproduce the envelope
of the phase space structure [22].

3.8.2 Non-linear Resonances

Non-linear resonances can be excited in the presence of non-linear fields and play a
vital role for the long term stability of the particles.

3.8.2.1 Resonance Condition in One Dimension

For the special case of the beam-beam perturbed invariant (3.175) we have seen that
the expansion (3.175) diverges when the resonance condition for the phase advance
is fulfilled, i.e.:

ν = μ

2π
= p

n
(3.178)

The formal treatment would imply to use the n-turn map with the n-turn effective
Hamiltonian or other techniques. This is beyond the scope of this handbook and
can be found in the literature [6, 7]. We should like to discuss the consequences of
resonant behaviour and possible applications in this section.
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3.8.2.2 Driving Terms

The treatment of the resonance map is still not fully understood and a standard
treatment using first order perturbation theory leads to a few wrong conclusions. In
particular it is believed that a resonance cannot be excited unless a driving term
for the resonance is explicitly present in the Hamiltonian. This implies that the
related map must contain the term for a resonance in leading order to reproduce
the resonance. This regularly leads to the conclusion that 3rd order resonances
are driven by sextupoles, 4th order are driven by octupoles etc. This is only a
consequence of the perturbation theory which is often not carried beyond leading
order, and e.g. a sextupole can potentially drive resonances of any order. Such a
treatment is valid only for special operational conditions such as resonant extraction
where strong resonant effects can be well described by a perturbation theory. A
detailed discussion of this misconception is given in [6]. A correct evaluation must
be carried out to the necessary orders and the tools presented here allow such a
treatment in an easier way.

3.8.3 Chromaticity and Chromaticity Correction

For reasons explained earlier, sextupoles are required to correct the chromaticities.
In large machines and in particular in colliders with insertions, these sextupoles
dominate over the non-linear effects of so-called linear elements.

3.8.4 Dynamic Aperture

Often in the context of the discussion of non-linear resonance phenomena the
concept of dynamic aperture in introduced. This is the maximum stable oscillation
amplitude in the transverse (x, y)-space due to non-linear fields. It must be
distinguished from the physical aperture of the vacuum chamber or other physical
restrictions such as collimators.

One of the most important tasks in the analysis of non-linear effects is to provide
answers to the questions:

• Determination of the dynamic aperture
• Maximising the dynamic aperture

The computation of the dynamic aperture is a very difficult task since no
mathematical methods are available to calculate it analytically except for the trivial
cases. Following the concepts described earlier, the theory is much more complete
from the simulation point of view. Therefore the standard approach to compute the
dynamic aperture is done by numerical tracking of particles.
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The same techniques can be employed to maximise the dynamic aperture, in
the ideal case beyond the limits of the physical aperture. Usually one can define
tolerances for the allowed multipole components of the magnets or the optimized
parameters for colliding beams when the dominant non-linear effect comes from
beam-beam interactions.

3.8.4.1 Long Term Stability and Chaotic Behaviour

In accelerators such as particle colliders, the beams have to remain stable for many
hours and we may be asked to answer the question about stability for as many as 109

turns in the machine. This important question cannot be answered by perturbative
techniques. In the discussion of Poincare surface-of-section we have tasted the
complexity of the phase space topology and the final question is whether particles
eventually reach the entire region of the available phase space.

It was proven by Kolmogorov, Arnol’d and Moser (KAM theorem) that for
weakly perturbed systems invariant surfaces exist in the neighbourhood of integrable
ones. Poincare gave a first hint that stochastic behaviour may be generated in non-
linear systems. In fact, higher order resonances change the topology of the phase
space and lead to the formation of island chains on an increasingly fine scale.
Satisfactory insight to the fine structure of the phase space can only be gained with
numerical computation. Although the motion near resonances may be stochastic,
the trajectories are constrained by nearby KAM surfaces (at least in one degree of
freedom) and the motion remains confined.

3.8.4.2 Practical Implications

In numerical simulations where particles are tracked for millions of turns we would
like to determine the region of stability, i.e. dynamic aperture. Since we cannot
track ad infinitum, we have to specify criteria whether a particle is stable or not.
A straightforward method is to test the particle amplitudes against well defined
apertures and declare a particle lost when the aperture is reached. A sufficient
number of turns, usually determined by careful testing, is required with this method.

Usually this means to find the particle survival time as a function of the initial
amplitude. In general the survival time decreases as the amplitude increases and
should reach an asymptotic value at some amplitude. The latter can be identified as
the dynamic aperture.

Other methods rely on the assumption that a particle that is unstable in the long
term, exhibits features such as a certain amount of chaotic motion.

Typical methods to detect and quantify chaotic motion are:

• Frequency Map Analysis [24, 25].
• Lyapunov exponent [26].
• Chirikov criterion [27].



3 Non-linear Dynamics in Accelerators 103

In all cases care must be taken to avoid numerical problems due to the
computation techniques when a simulation over many turns is performed.
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Chapter 4
Impedance and Collective Effects

E. Metral, G. Rumolo, and W. Herr

As the beam intensity increases, the beam can no longer be considered as a
collection of non-interacting single particles: in addition to the “single-particle
phenomena”, “collective effects” become significant. At low intensity a beam of
charged particles moves around an accelerator under the Lorentz force produced
by the “external” electromagnetic fields (from the guiding and focusing magnets,
RF cavities, etc.). However, the charged particles also interact with themselves
(leading to space charge effects) and with their environment, inducing charges and
currents in the surrounding structures, which create electromagnetic fields called
wake fields. In the ultra-relativistic limit, causality dictates that there can be no
electromagnetic field in front of the beam, which explains the term “wake”. It is
often useful to examine the frequency content of the wake field (a time domain
quantity) by performing a Fourier transformation on it. This leads to the concept
of impedance (a frequency domain quantity), which is a complex function of
frequency. The charged particles can also interact with other charged particles
present in the accelerator (leading to two-stream effects, and in particular to electron
cloud effects in positron/hadron machines) and with the counter-rotating beam in
a collider (leading to beam–beam effects). As the beam intensity increases, all
these “perturbations” should be properly quantified and the motion of the charged
particles will eventually still be governed by the Lorentz force but using the total
electromagnetic fields, which are the sum of the external and perturbation fields.
Note that in some cases a perturbative treatment is not sufficient and the problem has
to be solved self consistently. These perturbations can lead to both incoherent (i.e. of
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a single particle) and coherent (i.e. of the centre of mass) effects, in the longitudinal
and in one or both transverse directions, leading to beam quality degradation or
even partial or total beam losses. Fortunately, stabilising mechanisms exist, such
as Landau damping, electronic feedback systems and linear coupling between the
transverse planes (as in the case of a transverse coherent instability, one plane is
usually more critical than the other).

Beam instabilities cover a wide range of effects in particle accelerators and they
have been the subjects of intense research for several decades. As the machines
performance was pushed new mechanisms were revealed and nowadays the chal-
lenge consists in studying the interplays between all these intricate phenomena, as it
is very often not possible to treat the different effects separately [1, 2]. This field is
still very active as can be revealed by the recent (and future) international workshops
devoted to this subject [3–5].

This chapter is structured as follows: space charge is discussed in Sect. 4.1, wake
fields (and related impedances) in Sect. 4.2, the induced coherent instabilities in
Sect. 4.3 and the Landau damping mechanism in Sect. 4.4. The two-stream effects
are analyzed in Sect. 4.5, concentrating mainly on electron cloud, while beam–beam
effects are reviewed in Sect. 4.6, before concluding in Sect. 4.7 by the numerical
modelling of collective effects.

4.1 Space Charge

E. Metral

4.1.1 Direct Space Charge

Two space charge effects are distinguished: the direct space charge and the indirect
(or image) one ([6–9], and references therein). The direct space charge comes from
the interaction between the particles of a single beam, without interaction with the
surrounding vacuum chamber. Consider two particles with the same charge (for
instance protons) in vacuum. They will feel two forces: the Coulomb repulsion
(as they have the same charge) and the magnetic attraction (as they represent
currents moving in the same direction, leading to an azimuthal magnetic field).
Let’s assume that particle 1 is moving with speed v1 = β1c with respect to the
laboratory frame, with β the relativistic velocity factor and c the speed of light. In its
rest frame, particle 1 produces only an electrostatic field, which can be computed,
and applying the relativistic transformation of the electromagnetic fields between
the rest and laboratory frames, the magnetic contribution can be obtained. Note
that there is no magnetic contribution in the longitudinal plane (Bs = 0), which
leads to the longitudinal Lorentz force Fs = eEs, where e is the elementary charge,
s the azimuthal coordinate and Es the longitudinal electric field. The transverse
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(horizontal and vertical) Lorentz force on particle 2, moving with speed v2 = β2c
with respect to the laboratory frame, is written

Fx,y = eEx,y

{
(1 − β1β2) , if 2 moves in same direction as 1
(1 + β1β2) , if 2 moves in opposite direction as 1

. (4.1)

The first case corresponds to the space charge case where both particles move
in the same direction, while the second corresponds to the beam–beam case (see
Sect. 4.6) where the particles move in opposite direction. In both cases, the first
term comes from the electric field while the second comes from the magnetic one.
The main difference between the two regimes is that for the space charge case there
is a partial compensation of the two forces, while for the beam–beam case the two
forces add. The space charge force is maximum at low energy and vanishes at high
energy, while the beam–beam force is maximum at high energy. Considering the
space charge regime and assuming the same speed for both beams, the Lorentz force
simplifies to

Fx,y = eEx,y

(
1 − β2

)
= e

Ex,y

γ 2
, Fs = eEs, (4.2)

where γ is the relativistic mass factor. Assuming a circular beam pipe with radius b
(which is important only for the computation of the longitudinal force) and applying
Gauss’s law, the electromagnetic fields can be computed for a bunch with Gaussian
radial density (with rms σ x = σ y = σ ) using the cylindrical coordinates (r, θ , s).
The associated Lorentz forces are given by

Fr = e

γ 2Er = eλ(z)

2πε0γ 2

⎛

⎝1−e−
r2

2σ2

r

⎞

⎠ , Fs = − e

2πε0γ 2

dλ(z)

dz

b∫

r ′=r

1 − e−
r′2
2σ2

r ′ dr ′,

(4.3)

where λ(z) is the longitudinal line density, z = s − vt with t being the time, and ε0
the vacuum permittivity. A first observation is that the space charge forces are highly
nonlinear. Another important observation is that the radial force is proportional to
the longitudinal density while the longitudinal one is proportional to the derivative
of the longitudinal density. Linearizing both forces (for very small amplitudes where
r << σ ) leads to

Fr ≈ eλ(z)

2πε0γ 2

r

2σ 2 , Fs ≈ − e

4πε0γ 2

dλ(z)

dz

[
1 + 2 ln

(
b√
2σ

)]
. (4.4)

This means that the transverse space charge force is linear for small amplitudes
and defocusing. Due to the additional space charge force, e.g. the horizontal betatron
tune will no longer be the unperturbed tune Qx0 but will be Qx = Qx0 +�Qx, where
�Qx is the horizontal incoherent betatron tune shift. Similarly, the new synchrotron
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tune will be Qs = Qs0 + �Qs, where �Qs is the incoherent synchrotron tune shift.
The betatron and synchrotron linearized incoherent space charge tune shifts are
given by

ΔQLin
x = − Nbrp

4πβγ 2εnorm
x,rmsB

, ΔQLin
s = + ηNbe

2R2

8π
√

2πε0Etotalβ2γ 2σ 3
z Qs0

[
1 + 2 ln

(
b√
2σ

)]
,

(4.5)

where Nb is the number of protons in the bunch, rp the classical proton radius,
εnorm
x,rms = βγ εx,rms the normalized rms horizontal emittance, with εx, rms = σ 2/βx at a

place of zero dispersion with βx the horizontal betatron function,B = √
2πσz/2πR

is the bunching factor (assuming a Gaussian longitudinal distribution with rms σ z)
with R the average machine radius, η = γ−2

tr −γ−2 the slip factor (where γ tr stands
for γ at transition energy) and Etotal is the total particles’ energy. It is shown from
Eq. (4.5) that the transverse betatron tune shift is always negative, revealing that the
space charge force is always defocusing. Note that for the case of an ion with mass
number A and charge state Z, the transverse tune shift has to be multiplied by Z2/A.

Contrary to the transverse case, the longitudinal space charge is defocusing below
transition (as η < 0) and focusing above (as η > 0). One can therefore already
anticipate some longitudinal mismatch issues when crossing transition with high-
intensity bunches, i.e. the bunch length will not be in equilibrium anymore and
will oscillate inside the RF buckets. Such a case is depicted in Fig. 4.1(left) for the
particular case of the high-intensity bunch in the CERN PS machine, which is sent
to the nTOF (neutron Time-Of-Flight) experiment [10]. The computed quadrupolar
oscillation is induced when transition is crossed and is a consequence of the
longitudinal mismatch: below transition space charge is defocusing which reduces
the bucket height and increases the bunch length, while above transition space
charge is focusing which increases the bucket height and decreases the bunch length.

Fig. 4.1 (Left) Computation of the evolution of the full bunch length vs. time for the case of the
nonadiabatic theory (the adiabatic theory is not valid anymore close to transition) with and without
space charge, applied to the PS nTOF bunch [10]. Tc is the nonadiabatic time, equal to ~2 ms in the
present case. (Right) Evolution of the angle of the tilted ellipse around transition (without space
charge)
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Therefore, there is an intensity-dependent step in the equilibrium bunch length
at transition, which leads to a longitudinal mismatch and subsequent quadrupolar
oscillations. If these bunch shape oscillations are not damped they will eventually
result in filamentation and longitudinal emittance blow-up. It’s worth mentioning
that in presence of significant space charge, the minimum of bunch length is not
reached right at transition anymore, but after about one nonadiabatic time Tc, i.e.
after ~2 ms in the present case [11, 12]. The same kind of mechanism appears
with the inductive part of the longitudinal machine impedance (see Sect. 4.2). The
only difference is that in this case, the equilibrium bunch length is shorter below
transition and longer above transition.

If transition crossing cannot be avoided, the γ t jump is the only (known) method
to overcome all the intensity limitations. It consists in an artificial increase of the
transition crossing speed by means of fast pulsed quadrupoles. The idea is that
quadrupoles at nonzero dispersion locations can be used to adjust the momentum
compaction factor. The change in momentum compaction (called γ t jump) depends
on the unperturbed and perturbed dispersion functions at the kick-quadrupole
locations. These schemes were pioneered by the CERN PS group [13–16]. Such a γ t
jump scheme makes it possible to keep the beam at a safe distance from transition,
except for the very short time during which the transition region is crossed at a speed
increased by one or two orders of magnitude. Looking at Fig. 4.1(left) clearly reveals
why an asymmetric jump was proposed in the past [14] to damp the longitudinal
quadrupolar oscillations arising from the space charge induced mismatch: the idea
is to jump rapidly from an equilibrium bunch length below transition to the same
value above. The amplitude of the jump is defined by the time needed to go to the
same equilibrium bunch length above transition. The minimum amplitude of the
jump corresponds to the case represented with the dashed blue line starting right at
transition. However, in this case the initial longitudinal phase space ellipse is tilted
(see Fig. 4.1(right)), while the final one is almost not, which is not ideal. One might
want therefore to start the jump earlier, when the longitudinal phase space is almost
not tilted, for instance at x ≈ −2, which requires a larger jump (see the dashed
orange line in Fig. 4.1(left)).

Coming back to the transverse space charge, in the case of an elliptical beam
(instead of a round one), one has to replace 2σ x

2 by σ x(σ x + σ y) and 2σ y
2 by

σ y(σ x + σ y). Furthermore, due to the nonlinear nature of the space charge, the
tune shifts of the different particles will not be the same, which will lead to a tune
spread: plotted in the tune diagram it is called a tune footprint. The latter has to
be accommodated in the tune diagram, without crossing harmful resonance lines,
which might lead to emittance growth and/or beam losses. The exact tune footprint
depends on the distribution and to illustrate this effect we consider in the following
a round beam with quasi-parabolic distribution function, whose particle density
extends up to ~3.2σ [17, 18]. The corresponding horizontal 2D (i.e. neglecting
the longitudinal distribution) space charge force is plotted in Fig. 4.2(left), and the
tune footprint in Fig. 4.2(right). The unperturbed (low-intensity) working point is
in the top right corner, the small-amplitude particles have the largest tune shifts
while the largest amplitude particles have the smallest tune shifts. If the longitudinal
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Fig. 4.2 Horizontal 2D (i.e. neglecting the longitudinal distribution) space charge force (left) and
tune footprint for the case of the CERN LHC at injection, assuming the tunes in collision (64.31,
59.32). The parameter n0 is the constant term in the particle density [18]

distribution is taken into account, the longitudinal variation (due to synchrotron
oscillations) of the transverse space-charge force fills the gap until the low-intensity
working point. However, it is interesting to plot it like this to clearly see the region
occupied by the large synchrotron amplitude particles, because the interaction with
a nonlinear resonance will depend on the overlapping position. Several possibilities
exist with core emittance blow-up, creation of tails and/or beam losses. In particular,
if the resonance interacts with the small amplitude particles, there could be a regime
of loss-free (core-)emittance blow-up, while if the resonance interacts with the
particles with large synchrotron amplitudes (i.e. if the resonance line is in the gap
between the 2D tune footprint and the low-intensity working point) there could
be a regime with continuous loss due to the trapping–detrapping mechanisms, as
observed both in the PS [19] and at SIS18 [20].

Finally, another space charge mechanism, which could be important in high-
intensity synchrotrons with unsplit transverse tunes (i.e. having the same integer)
is the Montague resonance which can lead to emittance transfer from one plane to
the other and might lead to losses if the beam fills the aperture [21, 22].

4.1.2 Indirect Space Charge

In the case of a beam off-axis in a perfectly conducting circular beam pipe (with
radius b), a coherent (or dipolar, i.e. of the centre of mass) force arises, which can
be found by using the method of the images (to satisfy the boundary condition on a
perfect conductor, i.e. of a vanishing tangential electrical field). The electric field is
always assumed to be non-penetrating. However, for the magnetic field, the situation
is more complicated as it may or may not penetrate the vacuum chamber: the high-
frequency components, called “ac” will not penetrate, while the low-frequency ones,
called “dc” will penetrate and form images on the magnet pole faces (if there are
some; otherwise they will go to infinity and will not act back on the beam). In the
case of a non-penetrating “ac” magnetic field, one finally obtains (keeping only the
linear terms, i.e. x � b and y � b, where x and y are the transverse displacements
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of the centre of mass):

Fx = Λcx, Fy = Λcy, Λc = λe

2πε0γ 2b2 . (4.6)

It can be seen that the transverse coherent space charge force of Eq. (4.6) is
similar to the transverse incoherent space charge force of Eq. (4.4, left): 2σ 2 has
been replaced by b2.

The same analysis can be performed in the case of two infinite (horizontal)
parallel plates spaced by 2h and the results are the following (assuming that the
transverse beam sizes are much smaller than h, assuming only the “ac” magnetic
part and keeping only the linear terms)

Fx = Λc

(
π2

24
x − π2

24
x

)
, Fy = Λc

(
π2

12
y + π2

24
y

)
. (4.7)

Therefore, compared to the circular case, the coherent force is smaller by
π2/24≈ 0.4 in the horizontal plane and π2/12≈ 0.8 in the vertical one. Furthermore,
there is a second incoherent (or quadrupolar, as it is linear with the particle
position) term with opposite sign in both planes. The coefficients are linked to
the Laslett coefficients usually used in the literature [23], and they are the same
as the ones obtained by Yokoya [24] in the case of a resistive beam pipe under
some assumptions (see Sect. 4.2). General formulae exist for the “real” tune shifts
of coasting or bunched beams in pipes with different geometries, considering both
the “ac” and “dc” magnetic parts and can be found for instance in Refs. [6, 7].

4.2 Wake Fields and Impedances

E. Metral

If the wall of the beam pipe is perfectly conducting and smooth, as it was the
case in the previous section, a ring of negative charges is formed on the walls of
the beam pipe where the electric field ends, and these induced charges travel at the
same pace with the particles, creating the so-called “image” (or induced) current,
which leads to real tune shifts. However, if the wall of the beam pipe is not perfectly
conducting or contains discontinuities, the movement of the induced charges will
be slowed down, thus leaving electromagnetic fields (which are proportional to the
beam intensity) mainly behind: this is why these electromagnetic fields are called
wake fields. The latter will create complex tune shifts leading to instabilities (see
Sect. 4.3). What needs to be computed are the wake fields at the distance z = s − vt
behind the source particle (which is at position ssource = vt; with this convention,
one has z < 0) and their effects on the test or witness particles that compose the
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beam. The computation of these wake fields is quite involved and two fundamental
approximations are introduced:

1. The rigid-beam approximation: The beam traverses a piece of equipment rigidly,
i.e. the wake field perturbation does not affect the motion of the beam during the
traversal of the impedance. The distance z of the test particle behind some source
particle does not change.

2. The impulse approximation: As the test particle moves at the fixed velocity v =
βc through a piece of equipment, the important quantity is the impulse (and not
the force) given by

Δp (x, y, z) =
+∞∫

−∞
dtF (x, y, s = z + βct, t) =

+∞∫

−∞
dte (E + v × B) , (4.8)

where vectors are designated by boldtype letters. Starting from the four Maxwell
equations for a particle in the beam, it can be shown that for a constant β (which
does not need to be 1) [9]

∇ ×Δp (x, y, z) = 0, (4.9)

which is known as Panofsky-Wenzel theorem. This relation is very general, as no
boundary conditions have been imposed. Only the two fundamental approximations
have been made. Another important relation can be obtained when β = 1, taking the
divergence of the impulse, which is

∇⊥·Δp⊥ = 0. (4.10)

Considering the case of a cylindrically symmetric chamber (using the cylindrical
coordinates r, θ , z), yields the following three equations from Panofsky-Wenzel
theorem

1

r

∂Δpz

∂θ
= ∂Δpθ

∂z
,

∂Δpr

∂z
= ∂Δpz

∂r
,

∂ (rΔpθ)

∂r
= ∂Δpr

∂θ
. (4.11)

The fourth relation when β = 1 writes

∂ (rΔpr)

∂r
= −∂Δpθ

∂θ
. (4.12)

Consider now as a source charge density a macro-particle of charge Q = Nbe
moving along the pipe (in the s-direction) with an offset r = a in the ϑ= 0 direction
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and with velocity v = βc

ρ (r, ϑ, s; t) = Q

a
δ (r − a) δp (ϑ) δ (s − vt)

=
∞∑

m=0

Qm cos (mϑ)

πam+1 (1 + δm0)
δ (r − a) δ (s − vt) =

∞∑

m=0

ρm,
(4.13)

with Jm = ρmv, where Qm = Qam and δ is the Dirac function. In this case the whole
solution can be written as, for m ≥ 0 and β = 1 (with q the charge of the test particle
and L the length of the structure)

vΔps (r, θ, z) =
∫ L

0Fsds = −qQamrm cosmθW ′
m(z)

vΔpr (r, θ, z) =
∫ L

0 Frds = −qQammrm−1 cosmθWm(z),

vΔpθ (r, θ, z) =
∫ L

0 Fθds = qQammrm−1 sinmθ Wm(z).

(4.14)

The function Wm(z) is called the transverse wake function (whose unit is
VC−1m−2m) and Wm

′(z) is called the longitudinal wake function (whose unit is
VC−1m−2m+1) of azimuthal mode m. They describe the shock response of the
vacuum chamber environment to a δ-function beam which carries a mth moment.
The integrals (on the left) are called wake potentials. The longitudinal wake function
for m = 0 and transverse wake function for m = 1 are therefore given by

W ′
0(z) = − 1

qQ

∫ L
0 Fsds = − 1

Q

∫ L
0 Esds,

W1(z) = − 1
qQa

∫ L
0 Fxds = − 1

Qa

∫ L
0

(
Ex − vBy

)
ds.

(4.15)

The Fourier transform of the wake function is called the impedance. The idea
of representing the accelerator environment by an impedance was introduced by
Vaccaro [25] and Sessler [26]. As the conductivity, permittivity and permeability of
a material depend in general on frequency, it is usually better (or easier) to treat the
problem in the frequency domain, i.e. compute the impedance instead of the wake
function. It is also easier to treat the case β �= 1. Then, an inverse Fourier transform
is applied to obtain the wake function in the time domain. The different relations
linking the wake functions and the impedances are given by (with k = ω/v, ω = 2πf
with f the frequency, and j the imaginary unit)

Z
‖
m (ω) =

∞∫
−∞

W ′
m(z)e

jkz dz
v
=

∞∫
−∞

W ′
m(t)e

jkse−jωt dt,

Z⊥m (ω) = −j
∞∫
−∞

Wm(z)ejkz dzv = −j
∞∫
−∞

Wm(t)ejkse−jωt dt.

W ′
m(z) = 1

2π

∞∫
−∞

Z
‖
m (ω) e−jkzdω = 1

2π

∞∫
−∞

Z
‖
m (ω) e−jksejωt dω,

Wm(z) = j
2π

∞∫
−∞

Z⊥m (ω) e−jkzdω = j
2π

∞∫
−∞

Z⊥m (ω) e−jksejωt dω.

(4.16)
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The unit of the longitudinal impedance Z‖m (ω) is �m−2m while the unit of the
transverse impedance Z⊥m (ω) is �m−2m+1. Furthermore, two important properties
of impedances can be derived. The first is a consequence of the fact that the wake
function is real, which leads to

[
Z‖m (ω)

]∗ = Z‖m (−ω) , −
[
Z⊥m (ω)

]∗ = Z⊥m (−ω) , (4.17)

where ∗ stands for the complex conjugate. The second is a consequence of Panofsky-
Wenzel theorem

Z‖m (ω) = kZ⊥m (ω) . (4.18)

Another interesting property of the impedances is the directional symmetry
(Lorentz reciprocity theorem): the same impedance is obtained from both sides if
the entrance and exit are the same.

A more general definition of the impedances (still for a cylindrically symmetric
structure) is the following

Z‖m (ω) = − 1

Q2
m

∫
dVE‖

mJ
∗
m, Z⊥m (ω) = − 1

kQ2
m

∫
dVE‖

mJ
∗
m, (4.19)

where dV = rdrdϑds. For the previous ring-shape source it yields

Z
‖
0 (ω) = − 1

Q0

∫ L
0 dsEs (r = a) ejks,

Z⊥1 (ω) = − L
kπaQ1

∫ 2π
0 dϑEs (r = a, ϑ, s) cosϑejks .

(4.20)

The situation is more involved in the case of non axi-symmetric structures (due
in particular to the presence of the quadrupolar wake field, already discussed in
Sect. 4.1) and for β �= 1, as in this case some electromagnetic fields also appear
in front of the source particle. In the case of axi-symmetric structures, a current
density with some azimuthal Fourier component creates electromagnetic fields with
the same azimuthal Fourier component. In the case of non axi-symmetric structures,
a generalized notion of impedances was introduced by Tsutsui [27], where a current
density with some azimuthal Fourier component may create an electromagnetic field
with various different azimuthal Fourier components. If the source particle 1 and test
particle 2 have the same charge q, and in the ultra-relativistic case, the transverse
wake potentials can be written (taking into account only the linear terms with respect
to the source and test particles and neglecting the constant, coupling and high order
terms) [28]

∫ L
0 Fxds = −q2

[
x1W

driving
x (z)− x2W

detuning(z)
]
,

∫ L
0 Fyds = −q2

[
y1W

driving
y (z)+ y2W

detuning(z)
]
,

(4.21)
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where the driving term is used here instead of dipolar and detuning instead of
quadrupolar (or incoherent). In the frequency domain, Eq. (4.21) leads to the
following generalized impedances

Zx [Ω] = x1Z
driving
x − x2Z

detuning,

Zy [Ω] = y1Z
driving
x + y2Z

detuning.
(4.22)

Note that in the case β �= 1, another quadrupolar term is found [29].
From Eqs. (4.21) and (4.22), the procedure to simulate or measure the driving and

detuning contributions can be deduced. In the time domain, using some time-domain
electromagnetic codes like for instance CST Particle Studio [30], the driving and
detuning contributions can be disentangled. A first simulation with x2 = 0 gives the
dipolar part while a second one with x1 = 0 provides the quadrupolar part. It should
be noted that if the simulation is done with x1 = x2, only the sum of the dipolar
and quadrupolar parts is obtained. The situation is more involved in the frequency
domain, which is used for instance for impedance measurements on a bench [31].
Two measurement techniques can be used to disentangle the transverse driving and
detuning impedances, which are both important for the beam dynamics (this can also
be simulated with codes like Ansoft-HFSS [32]). The first uses two wires excited in
opposite phase (to simulate a dipole), which yields the transverse driving impedance
only. The second consists in measuring the longitudinal impedance, as a function of
frequency, for different transverse offsets using a single displaced wire. The sum
of the transverse driving and detuning impedances is then deduced applying the
Panofsky-Wenzel theorem in the case of top/bottom and left/right symmetry [33].
Subtracting finally the transverse driving impedance from the sum of the transverse
driving and detuning impedances obtained from the one-wire measurement yields
the detuning impedance only. If there is no top/bottom or left/right symmetry the
situation is more involved [34].

Both longitudinal and transverse resistive-wall impedances were already calcu-
lated 40 years ago by Laslett, Neil and Sessler [35]. However, a new physical regime
was revealed by the CERN LHC collimators. A small aperture paired with a large
wall thickness asks for a different physical picture of the transverse resistive-wall
effect from the classical one. The first unstable betatron line in the LHC is around
8 kHz, where the skin depth for graphite (whose measured isotropic DC resistivity
is 10 μ�m) is 1.8 cm. It is smaller than the collimator thickness of 2.5 cm. Hence
one could think that the resistive thick-wall formula would be about right. In fact
it is not. The resistive impedance is about two orders of magnitude lower at this
frequency, as can be seen on Fig. 4.3. A number of papers have been published on
this subject using the field matching technique starting from the Maxwell equations
and assuming a circular geometry [36–40]. New results have been also obtained for
flat chambers, extending the (constant) Yokoya factors to frequency and material
dependent ones [41], as was already found with some simplified kicker impedance
models [42, 43]. Note that the material resistivity may vary with the magnetic field
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Fig. 4.3 Horizontal (driving) impedance of a cylindrical one-meter long LHC collimator (even
if in reality the LHC collimators are composed of two parallel plates), with b = 2 mm and
ρ = 10 μ�m. The real part is in red while the imaginary part is in green (note that in the classical
thick-wall regime, the real and imaginary parts are equal). The dashed curves correspond to the
case with a copper coating of 5 μm [1]

through the magneto-resistance and the surface impedance can also increase due to
the anomalous skin effect ([44] and references therein).

In the case of a cavity, an equivalent RLC circuit can be used with Rs the
longitudinal shunt impedance, C the capacity and L the inductance. In a real cavity,
these three parameters cannot be separated easily and some other related parameters
are used, which can be measured directly such as the resonance (angular) frequency
ωr = 1/

√
LC, the quality factor Q = Rs

√
C/L = Rs/ (Lωr ) = RsCωr and

the damping rate α = ωr/(2Q). When Q = 1, the resonator impedance is called
“broad-band”, and this model was extensively used in the past in many analytical
computations. The longitudinal and transverse impedances and wake functions
(with R⊥ the transverse shunt impedance) are given by [45] (see Fig. 4.4):

Z
‖
m (ω) = Rs

1+jQ
(
ω
ωr
−ωr

ω

) ,W
‖
m(t) = ωrRs

Q
e−αt
[
cos (ωr t)− α

ωr
sin (ωrt)

]

Z⊥m (ω) = ωr
ω

R⊥
1+jQ

(
ω
ωr
−ωr

ω

) ,W⊥
m (t) = ω2

r R⊥
Qωr

e−αt sin (ωr t) , ωr = ωr

√
1 − 1

4Q2 .

(4.23)

Finally, all the transverse impedances (dipolar or driving and quadrupolar or
detuning) should be weighted by the betatron function at the location of the
impedances, as this is what matters for the effect on the beam, i.e. for the beam
dynamics. Furthermore, all the weighted impedances can be summed and lumped
at a single location around the ring (as the betatron phase advance does not play a
role [46]) such that the transverse impedance-induced instabilities can be studied
by considering only one interaction per turn, as it was confirmed in the past
by performing macro-particle tracking simulations and comparing the cases of
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Fig. 4.4 Longitudinal and transverse impedances and wake functions, in the case of resonator
impedances (fr = 1 GHz, Q = 100, Rs = 20 �, and R⊥ = 20 M�/m)

distributed kickers in the CERN SPS with the corresponding lumped impedance:
exactly the same result was obtained [47].

4.3 Coherent Instabilities

E. Metral

The wake fields can influence the motion of trailing particles, in the longitudinal
and in one or both transverse directions, leading to energy loss, beam instabilities,
or producing undesirable secondary effects such as excessive heating of sensitive
components at or near the chamber wall. Therefore, in practice the elements of the
vacuum chamber should be designed to minimise the self-generated electromagnetic
fields. For example, chambers with different cross-sections should be connected
with tapered transitions; bellows need to be separated from the beam by shielding;
plates should be grounded or terminated to avoid reflections; high-resistivity
materials should be coated with a thin layer of very good conductor (such as copper)
when possible; etc.

Two approaches are usually used to deal with collective instabilities. One starts
from the single-particle equation while the other solves the Vlasov equation, which
is nothing else but an expression for the Liouville conservation of phase-space
density seen by a stationary observer. In the second approach, the motion of the
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beam is described by a superposition of modes, rather than a collection of individual
particles. The detailed methods of analysis in the two approaches are different,
the particle representation is usually conveniently treated in the time domain,
while in the mode representation the frequency domain is more convenient, but in
principle they necessarily give the same final results. The advantage of the mode
representation is that it offers a formalism that can be used systematically to treat
the instability problem.

The first formalism was used by Courant and Sessler to describe the transverse
coupled-bunch instabilities [48]. In most accelerators, the RF acceleration mecha-
nism generates an azimuthal non-uniformity of the particle density and consequently
the work of Laslett, Neil and Sessler for continuous beams [35] is not applicable in
the case of bunched beams. Courant and Sessler studied the case of rigid (point-like)
bunches, i.e. bunches oscillating as rigid units, and they showed that the transverse
electromagnetic coupling of bunches of particles with each other can lead (due to
the imperfectly conducting vacuum chamber walls) to a coherent instability. The
physical basis of the instability is that in a resistive vacuum tank, fields due to a
particle decay only very slowly in time after the particle has left (this leads to a long-
range interaction). The decay can be so slow that when a bunch returns after one
(or more) revolutions it is subject to its own residual wake field which, depending
upon its phase relative to the wake field, can lead to damped or anti-damped
transverse motion. For M equi-populated equi-spaced bunches, M coupled-bunch
mode numbers exist (n= 0, 1, . . . , M − 1), characterized by the integer number of
waves of the coherent motion around the ring. Therefore the coupled-bunch mode
number resembles the azimuthal mode number for coasting beams, except that for
coasting beams there is an infinite number of modes. The bunch-to-bunch phase
shift �φ is related to the coupled-bunch mode number n by �φ = 2πn/M.

Pellegrini [49] and, independently, Sands [50, 51] then showed that short-range
wake fields (i.e. fields that provide an interaction between the particles of a bunch
but have a negligible effect on subsequent passages of the bunch or of other bunches
in the beam) together with the internal circulation of the particles in a bunch can
cause internal coherent modes within the bunch to become unstable. The important
point here is that the betatron phase advance per unit of time (or betatron frequency)
of a particle depends on its instantaneous momentum deviation (from the ideal
momentum) in first order through the chromaticity and the slip factor. Considering
a non-zero chromaticity couples the betatron and synchrotron motions, since the
betatron frequency varies around a synchrotron orbit. The betatron phase varies
linearly along the bunch (from the head) and attains its maximum value at the tail.
The total betatron phase shift between head and tail is the physical origin of the
head tail instability. The head and the tail of the bunch oscillate therefore with a
phase difference, which reduces to rigid-bunch oscillations only in the limit of zero
chromaticity. A new (within-bunch) mode number m = . . . , −1, 0, 1, . . . , also
called head–tail (or azimuthal) mode number, was introduced. This mode describes
the number of betatron wavelengths (with sign) per synchrotron period.

The work of Courant and Sessler, or Pellegrini and Sands, was done for particular
impedances and oscillation modes. Using the Vlasov formalism, Sacherer unified
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Fig. 4.5 Signal at the pick-up electrode for three different modes shown for several superimposed
turns (the red line corresponds to one particular turn), for the case of the parabolic amplitude
distribution and a constant inductive impedance (exhibiting therefore no growing oscillations!)

the two previous approaches, introducing a third mode number q ≡ � m � + 2k
(with 0 ≤ k < +∞), called radial mode number, which comes from the distribution
of synchrotron oscillation amplitudes [52, 53]. It can be obtained by superimposing
several traces of the directly observable average displacement along the bunch at a
particular pick-up. The number of nodes is the mode number q (see Figs. 4.5 and
4.8). The advantage of this formalism is that it is valid for generic impedances and
any high order head–tail modes. This approach starts from a distribution of particles
(split into two different parts, a stationary distribution and a perturbation), on which
Liouville theorem is applied. After linearization of the Vlasov equation, one ends
up with Sacherer’s integral equation or Laclare’s eigenvalue problem to be solved
[53]. Because there are two degrees of freedom (phase and amplitude), the general
solution is a twofold infinity of coherent modes of oscillation (m, q). At sufficiently
low intensity, only the most coherent mode (largest value for the coherent tune
shift) is generally considered, leading to the classical Sacherer’s formulae in both
transverse and longitudinal planes. Note that contrary to the space charge case,
these tune shifts are now complex, the imaginary part being linked to the instability
growth rate. For protons a parabolic density distribution is generally assumed and
the corresponding oscillation modes are sinusoidal (or close to it). For electrons,
the distribution is usually Gaussian, and the oscillation modes are described in
this case by Hermite polynomials. In reality, the oscillation modes depend both on
the distribution function and the impedance, and can only be found numerically
by solving the (infinite) eigenvalue problem. However, the mode frequencies are
usually not very sensitive to the accuracy of the eigenfunctions. Similar results are
obtained for the longitudinal plane.

It is worth mentioning that the CERN ISR suffered from a beam instability
brought about by beams having different revolution frequencies. They could be
in the same vacuum chamber or coupled by the beam–beam effect. The name
of “overlap knock-out” [54] has been given to this phenomenon by which the
stack is subjected to transverse kicks from the bunches. This produces blow-up
of the stacked beam when the longitudinal frequency spectrum of the bunches
overlaps with the betatron frequency spectrum of the coasting stacked beam. Similar
problems limit the energy range of RHIC and proton lead in LHC [55].
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4.3.1 Longitudinal

The most fundamental longitudinal instability encountered in circular accelerators is
called the Robinson instability. The (Radio-Frequency) RF frequency accelerating
cavities in a circular accelerator are tuned so that the resonant frequency of the
fundamental mode is very close to an integral multiple of the revolution frequency
of the beam. This necessarily means that the wake field excited by the beam in the
cavities contains a major frequency component near a multiple of the revolution
frequency. The exact value of the resonant frequency relative to the multiple of the
revolution frequency is of critical importance for the stability of the beam. Above
the transition energy, the beam will be unstable if the resonant frequency is slightly
above it and stable if slightly below. This is the opposite below transition. This
instability mechanism was first analyzed by Robinson [56]. Physically, the Robinson
instability comes from the fact that the revolution frequency of an off-momentum
beam is not given by the on-momentum revolution frequency, but by a quantity
slightly different, depending on both the slip factor and the energy deviation.

Let’s assume in the following that the Robinson criterion is met. A bunch is
longitudinally stable if the longitudinal profile observed at a wall-current monitor is
constant turn after turn and it is unstable if the longitudinal profile is not constant
turn after turn. In the case of instability, the way the longitudinal profile oscillates
gives some information about the type of instabilities. This was studied in detail
by Laclare [53], who explained theoretically such pictures of “longitudinal (single-
bunch) instability” starting from the single-particle longitudinal signal at a pick-
up electrode (assuming infinite bandwidth). The current signal induced by the test
particle is a series of impulses delivered on each passage

sz (t, ϑ) = e

k=+∞∑

k=−∞
δ

(
t − τ − ϑ

Ω0
− 2kπ

Ω0

)
, (4.24)

where τ is the time interval between the passage of the synchronous particle
and the test particle, for a fixed observer at azimuthal position ϑ and �0 is the
angular revolution frequency. In the frequency domain, the single-particle spectrum
is therefore a line spectrum at (angular) frequencies ωpm = pΩ0 + mωs0, where
ωs0 is the small-amplitude synchrotron frequency. Around every harmonic of the
revolution frequency pΩ0, there is an infinite number of synchrotron satellites m
(it is different from the one used in Sect. 4.2!), whose spectral amplitude is given
by the Bessel function Jm

(
p�0τ̂

)
, where τ̂ is the synchrotron amplitude. The

spectrum is centred at the origin and because the argument of the Bessel functions is
proportional to τ̂ , the width of the spectrum behaves like τ̂−1. Applying the Vlasov
equation, linearizing it, and studying the effect of the impedance on the unperturbed
distribution leads to the potential-well effect: a new fixed point is reached, with
a new synchronous phase, a new effective voltage, a new synchrotron frequency,
a new bunch length and a new momentum spread, which all depend on intensity.
Studying a perturbation on top of the new stationary distribution, one ends up at low
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intensity, i.e. considering independently the modes m (which is valid up to a certain
intensity), with the following eigenvalue system

Δωcmqσmq(l) =
p=+∞∑

p=−∞
Km
lpσmq(p),with Δωcmq = ωcmq −mωs, (4.25)

where

Km
lp = − 2πIbmωs

�2
0V̂Th cosφs

j
Zl(p)

p

τ̂=+∞∫

τ̂=0

dg0

dτ̂
Jm
(
p�0τ̂

)
Jm
(
l�0τ̂
)
dτ̂ . (4.26)

Here, �ωcmq is the coherent complex synchrotron frequency shift to be deter-
mined, Ib = NbeΩ0/2π is the bunch current, ωs, V̂T and φs are the new synchrotron
frequency, total voltage and synchronous phase (taking into account the potential-
well distortion), Zl = Z

‖
0 is the longitudinal impedance, g0 is the longitudinal

amplitude density function and h the RF harmonic number. The procedure to
obtain first order exact solutions, with realistic modes and a general interaction,
thus consists of finding the eigenvalues and eigenvectors of the infinite complex
matrix whose elements are given by Eq. (4.26). The result is an infinite number
of modes mq of oscillation. To each mode, one can associate a coherent frequency
shift �ωcmq = ωcmq − mωs (which is the qth eigenvalue), a coherent spectrum
σmq(p) (which is the qth eigenvector) and a perturbation distribution gmq

(
τ̂
)
. For

numerical reasons, the matrix needs to be truncated, and thus only a finite frequency
domain is explored. For the case of the parabolic amplitude distribution and a
constant inductive impedance (which leads to real tune shifts only and therefore
no instability), the signal at the pick-up electrode shown for several superimposed
turns is depicted on Fig. 4.5. In the case of a complex impedance, the real part will
lead in addition to a growing amplitude with an associated instability rise-time. The
spectrum of mode mq is peaked at fq ≈ (q + 1)/(2τ b) and extends ∼ ±τ−1

b , where
τ b is the full bunch length (in second). It can be seen from Fig. 4.5 that there are
q nodes on these “standing-wave” patterns. The longitudinal signal at the pick-up
electrode is given by

Smq (t, ϑ) = Sz0 (t, ϑ)+ΔSzmq (t, ϑ) , (4.27)

Sz0 (t, ϑ) = 2πIb

p=+∞∑

p=−∞
σ0(p)e

jp�0te−jpϑ , σ0(p) =
τ̂=+∞∫

τ̂=0

J0
(
p�0τ̂

)
g0
(
τ̂
)
τ̂ dτ̂ ,

(4.28)

ΔSzmq (t, ϑ) = 2πIb

p=+∞∑

p=−∞
σmq(p)e

j(p�0+mωs+Δωcmq)te−jpϑ . (4.29)
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Finding the eigenvalues and eigenvectors of a complex matrix by computer can
be difficult in some cases, and a simple approximate formula for the eigenvalues is
useful in practice to have a rough estimate. This is known as Sacherer’s (longitu-
dinal) formula [52]. Sacherer’s formula is also valid for coupled-bunch instability
with M equally-populated equally-spaced bunches, assuming multi-bunch modes
with only one type of internal motion. In the case of gaps between bunch trains, a
time-domain approach is usually better suited.

As the bunch intensity increases, the different longitudinal modes can no longer
be treated separately and the situation is more involved. In the longitudinal plane, the
microwave instability for coasting beams is well understood. It leads to a stability
diagram, which is a graphical representation of the solution of the dispersion
relation (taking into account the momentum spread) depicting curves of constant
growth rates, and especially a threshold contour in the complex plane of the driving
impedance (see Sect. 4.4) [57]. When the real part of the driving impedance is
much greater than the modulus of the imaginary part, a simple approximation,
known as the Keil-Schnell (or circle) stability criterion, may be used to estimate
the threshold curve [58]. For bunched beams, it has been proposed by Boussard to
use the coasting-beam formalism with local values of bunch current and momentum
spread [59]. A first approach to explain this instability, without coasting-beam
approximations, has been suggested by Sacherer through Longitudinal Mode-
Coupling (LMC) [60]. The equivalence between LMC Instabilities (LMCI) and
microwave instabilities has been pointed out by Sacherer and Laclare [53] in the
case of broad-band driving resonator impedances, when the bunch length is much
greater than the inverse of twice the resonance frequency. Furthermore, due to the
potential well-distortion, a bunch is more stable below transition than above [53,
61, 62]. Typical pictures of LMCI are shown in Fig. 4.6 [63] and a comparison with
macroparticle tracking simulations, which revealed a good agreement, is discussed
in Ref. [64]. Experimentally, the most evident signature of the LMCI is the intensity-
dependent longitudinal beam emittance blow-up to remain just below the threshold
[65], as revealed also by macroparticle tracking simulations (see Fig. 4.7 [64]).

4.3.2 Transverse

A similar analysis as the one done for the longitudinal plane can be done in the
transverse plane [53, 63]. Following the same procedure, the horizontal coherent
oscillations (over several turns) of a “water-bag” bunch (i.e. with constant longitu-
dinal amplitude density) interacting with a constant inductive impedance are shown
in Fig. 4.8.

The main difference with the longitudinal plane is that there is no effect of the
stationary distribution and the bunch spectrum is now centered at the chromatic
frequency fξ = Qx0f0ξ /η, where f0 is the revolution frequency and ξ is the relative
chromaticity. The sign of the chromatic frequency is very important and to avoid
the head–tail instability (of mode 0) it should be slightly positive, meaning that
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Fig. 4.6 (Left) Comparison between GALACLIC Vlasov Solver [63] (in red) and Laclare’s
approach [53] (in black) of the normalised mode-frequency shifts vs. the normalised parameter
x (proportional to the bunch intensity [63]), in the case of a broad-band resonator impedance (with
a quality factor of 1 and a resonance frequency fr such that fr τ b = 2.8), above transition, without
taking into account the potential-well distortion (this is why the intensity-dependent synchrotron
tune Qs is used) and for a “Parabolic Amplitude Density” (PAD) longitudinal distribution [53].
(Right) Similar plot from GALACLIC only, taking into account the potential-well distortion (this
is why the low-intensity synchrotron tune Qs0 is used)

the chromaticity should be negative below transition and positive above. Sacherer’s
formula is also valid for coupled-bunch instability with M equally-populated
equally-spaced bunches, assuming multi-bunch modes with only one type of internal
motion (i.e. the same head–tail mode number). This analysis was extended in Ref.
[66] to include also the coupling between the modes (and the possibility to have
different head–tail modes in the different bunches). In the case of gaps between
bunch trains, a time-domain approach is usually better suited.

At low intensity (i.e. below a certain intensity threshold), the standing-wave
patterns (head–tail modes) are treated independently. This leads to instabilities
where the head and the tail of the bunch exchange their roles (due to synchrotron
oscillation) several times during the rise-time of the instability. The (approximate)
complex transverse coherent betatron frequency shift of bunched-beam modes is
given by Sacherer’s formula for round pipes [52]. For flat chambers a quadrupolar
effect (see Sect. 4.2) has to be added to obtain the real part of the coherent tune
shift, which explains why the horizontal coherent tune shift is zero in horizontally
flat chambers (of good conductors). As an example, a head–tail instability with
mode q = 10 is shown in Fig. 4.9(left). It is worth mentioning that there is also a
head–tail instability in the longitudinal plane. The longitudinal head–tail instability,
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Fig. 4.7 Simulation results from BLonD, SBSC and MuSIC codes [64] corresponding to the case
mentioned above: (upper) evolution of the normalised rms bunch length vs. bunch intensity for
the cases of broad-band resonator and constant inductive impedances; (lower) evolution of the
normalised rms bunch length, energy spread and longitudinal emittance vs. bunch intensity for the
case of the broad-band resonator impedance. Courtesy of M. Migliorati [64]

Fig. 4.8 Transverse signal at the pick-up electrode for four different modes shown for several
superimposed turns, for the case of the “water-bag” bunch (i.e. with constant longitudinal
amplitude density) and a constant inductive impedance. In the present example, the total phase
shift between the head and the tail is given χ = ωξ τ b = 10 (see below)

first suggested by Hereward [67] and possibly observed at the CERN SPS [68]
results from the fact that the slip factor is not strictly a constant: it depends on
the instantaneous energy error just as the betatron frequency does. The longitudinal
beam distribution then acquires a head–tail phase, and instability may arise as a
result.
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Fig. 4.9 (Left) Signal from a radial beam position monitor during 20 consecutive turns observed
in the CERN PS at 1.4 GeV kinetic energy in 1999. Time scale: 20 ns/div. (Right) Fast instability
observed in the CERN PS near transition (~6 GeV total energy) in 2000. Single-turn signals from
a wide-band pick-up. From top to bottom:

∑
, Δx, and Δy. Time scale: 10 ns/div. The head of the

bunch is stable and only the tail is unstable in the vertical plane. The particles lost at the tail of the
bunch can be seen from the hollow in the bunch profile

As the bunch intensity increases, the different head–tail modes can no longer
be treated separately. In this regime, the wake fields couple the modes together
and a wave pattern travelling along the bunch is created: this is the Transverse
Mode Coupling Instability (TMCI). The TMCI for circular accelerators has been
first described by Kohaupt [69] in terms of coupling of Sacherer’s head–tail modes.
This extended to the transverse motion, the theory proposed by Sacherer to explain
the longitudinal microwave instability through coupling of the longitudinal coherent
bunch modes. The TMCI is the manifestation in synchrotrons of the Beam Break-
Up (BBU) mechanism observed in linacs. The only difference comes from the
synchrotron oscillation, which stabilises the beam in synchrotrons below a threshold
intensity by swapping the head and the tail continuously. In fact, several analytical
formalisms exist for fast (compared to the synchrotron period) instabilities, but the
same formula is obtained (within a factor smaller than two) from five, seemingly
diverse, formalisms in the case of a broad-band resonator impedance in the “long-
bunch” regime [70], as recently confirmed in Ref. [71]: (i) Coasting-beam approach
with peak values, (ii) Fast blow-up, (iii) BBU (for 0 chromaticity), (iv) Post head–
tail, and (v) TMCI with 2 modes in the “long-bunch” regime (for 0 chromaticity).
Two regimes are indeed possible for the TMCI according to whether the total bunch
length is larger or smaller than the inverse of twice the resonance frequency of the
impedance. The simple (approximate) formula reveals the scaling with the different
parameters. In particular it can be seen that the instability does not disappear at
high energy but saturates like the slip factor (what is important is not the energy but
the distance from the transition energy) [72]. This means that the TMCI intensity
threshold can be raised by changing the transition energy, i.e. by modifying the
optics. Furthermore, the intensity threshold increases with the resonance frequency
(as high-order head–tail modes will couple), with longitudinal emittance and with
chromaticity. Note that the coherent synchrobetatron resonances, important in large
machines, are not discussed here. This was checked with the MOSES Vlasov solver
[73], which is a program computing the coherent bunched-beam modes. Below is
a comparison between the MOSES code and the HEADTAIL code [74], which is
a tracking code simulating single-bunch phenomena, in the case of a LHC-type
single bunch at SPS injection [75]. As can be seen from Fig. 4.10, a very good
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Fig. 4.10 Comparison between MOSES (in red) and HEADTAIL (in white) in the case of a
broad-band resonator (Courtesy of Benoit Salvant [75]). Evolution of the real (left) and imaginary
(right) parts of the shifts of the transverse modes (with respect to the unperturbed betatron tune),
normalized by the synchrotron tune, vs. bunch intensity

agreement between the two was found. For a general impedance (i.e. not a resonator
impedance) the situation is more involved and MOSES cannot be used: one should
rely on HEADTAIL simulations or on the recently developed Vlasov solvers such
as NHT [76] or DELPHI [77]. In the case of flat chambers, the intensity threshold
is higher in one plane than in the other and linear coupling can be used to raise
the TMCI intensity threshold [78]. Note finally that with many bunches the TMCI
intensity threshold can be considerably reduced [66].

It is worth mentioning also all the work done for the TMCI in LEP, as
Chin’s work (with MOSES) came later. It was proposed to cure the TMCI with
a reactive feedback that would prevent the zero mode frequency from changing
with increasing beam intensity [79]. In [80, 81] a theory of reactive feedback
has been developed in the two-particle approach and with the Vlasov equation.
Theory has revealed that the reactive feedback can really appreciably increase
the TMCI intensity threshold, which was confirmed by simulation [82, 83]. On
the contrary, the resistive feedback was found to be “completely” ineffective as a
cure for the TMCI [81]. An action of a feedback on the TMCI intensity threshold
was later examined experimentally at PEP [84]. It was confirmed that a reactive
feedback is indeed capable to increase the TMCI intensity threshold. But it turned
out unexpectedly that a resistive feedback can also increase the TMCI intensity
threshold and even more effectively [84]. In [85], an attempt was made to develop
an advanced transverse feedback theory capable to elucidate the conditions at which
the resistive or reactive or some intermediate feedback can cure the TMCI. Positive
chromaticity above transition helps, but depending on the coupling impedance,
beam stability may require a large value of the chromaticity either unattainable or
which reduces the beam lifetime. It was proposed to have a negative chromaticity
(what is usually avoided), where the zero mode is unstable (by head–tail instability)
and all the other modes are damped, and stabilise this mode by a resistive feedback,
keeping the higher order modes stable. In this case, the TMCI intensity threshold
could be increased by a factor 3–5 [85]. In the last few years, several Vlasov solvers
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Fig. 4.11 Required Landau octupole current to stabilise the 2018 CERN LHC beam vs. chro-
maticity: (left) with resistive transverse damper and (right) without resistive transverse damper.
Courtsey of N. Mounet [87]
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Fig. 4.12 Usual TMCI plots (for frτ b = 2.8, i.e. in the “long-bunch” regime) showing the real
and imaginary parts of the normalised complex tune shift vs. the normalised parameter x (which is
proportional to the bunch intensity [63]) without (in blue) and with (in red) a transverse damper:
(left) reactive and (right) resistive [86]

were developed to take into account the effect of a transverse damper, such as NHT
[76], DELPHI [77] and GALACTIC [86]. An example of DELPHI for the case of
the LHC in 2018 is shown in Fig. 4.11, where the beneficial effect of the transverse
resistive damper (on the required Landau octupole current needed to stabilise the
beam) can be clearly seen. A comparison between a reactive and a resistive damper
is shown in Figs. 4.12 and 4.13 using GALACTIC [86] (and a comparison between
GALACTIC and Laclare’s approach [53] is discussed in Ref. [63]).
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Fig. 4.13 Usual TMCI plots (for frτ b = 0.8, i.e. in the “short-bunch” regime) showing the real
and imaginary parts of the normalised complex tune shift vs. the normalised parameter x (which is
proportional to the bunch intensity [63]) without (in blue) and with (in red) a transverse damper:
(left) reactive and (right) resistive [86]

As can be seen from Fig. 4.13(right) the resistive transverse damper exhibits a
destabilising effect below the TMCI intensity threshold. This destabilising effect of
(perfect) resistive transverse dampers was analysed in detail for the case of a single
bunch with zero chromaticity [86]: in the presence of a resistive transverse damper
the instability mechanism is completely modified as can be seen from Fig. 4.14. Due
to the features, which are discussed in Ref. [86], the name “ISR (for Imaginary tune
Split and Repulsion) instability” was suggested for this new kind of single-bunch
instability with zero chromaticity.

It is also worth mentioning that in the case of hadrons (compared to leptons),
another ingredient which should be taken into account while studying the transverse
instabilities is space charge. This has been a subject of discussion for the last two
decades as space charge was believed initially to be mainly beneficial as e.g. for the
previous case of the CERN SPS TMCI predicted in the absence of space charge. It
was recently found that space charge is actually destabilising in such a case (“long-
bunch” regime) [88–90], while it is beneficial in the “short-bunch” regime [88, 89].
This is clearly revealed in Figs. 4.15 and 4.16, but still some work is needed to fully
understand what happens.
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Fig. 4.14 Usual TMCI plots
showing the real and
imaginary parts of the
normalised complex tune
shift vs. the normalised
parameter x (which is
proportional to the bunch
intensity [63]) without (in
blue) and with (in red) a
resistive transverse damper
[86]
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4.4 Landau Damping

E. Metral

Several stabilising mechanisms exist which can prevent the previous instabilities
from developing. One of them is Landau damping, which is a general process that
arises when one considers a whole collection of particles or other systems, which
have a spectrum of resonant frequencies, and interact in some way. In accelerators
we are usually concerned with an interaction of a kind that may make the beam
unstable (wake fields), and we want to find out whether or not (and how) the spread
of resonant frequencies will stabilise it. If the particles have a spread in their natural
frequencies, the motion of the particles can lose its coherency. In order to understand
the physical origin of this effect, let us first consider a simple harmonic oscillator,
which oscillates in the x-direction with its natural frequency [8]. Let this oscillator
be driven, starting at time t = 0, by a sinusoidal force. The equation of motion
is

ẍ + ω2
xx = f cos (ωct) , (4.30)
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Fig. 4.15 Simplified model/example of Ref. [86], describing the mode-coupling in the “short-
bunch” regime, i.e. the mode-coupling between modes 0 and−1, extended here to take into account
also space charge, using the parameters mentioned above: (dashed blue) with impedance only,
(green) with impedance and a reactive transverse damper, (red) with impedance and space charge
[88]. The normalised parameter x is proportional to the bunch intensity [63]

where a dot stands for derivative with respect to time and with x(0) = 0 and ẋ(0) =
0. The solution is

x (t > 0) = − f

ω2
c−ω2

x
[cos (ωct)− cos (ωxt)] = f

2ωx0
sin (ωx0t)

sin[(ωc−ωx)t/2]
(ωc−ωx)/2 .

(4.31)

Consider now an ensemble of oscillators (each oscillator represents a single
particle in the beam) which do not interact with each other and have a spectrum of
natural frequency ωx with a distribution ρx(ωx) normalised to unity. Let’s assume
first that the origin of the betatron frequency spread is not specified: an externally
given beam frequency spectrum is supposed. Now starting at time t = 0, subject this
ensemble of particles to the driving force f cos (ωct) with all particles starting with
initial conditions x(0) = 0 and ẋ(0) = 0. We are interested in the ensemble average
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Fig. 4.16 (Left) reduction factor from a simplified model with space charge of the TMCI intensity
threshold, as a function of the ratio between the space charge parameter qsc and the radial mode
number q, in the case of the “long-bunch” regime, as e.g. for the CERN SPS at injection [88].
(Right) simulated stable bunch without space charge (top) and unstable bunch with space charge
(bottom) for the case qsc/q = 13.5 with a bunch intensity a factor 3 lower than the TMCI intensity
threshold without space charge [91] (Courtesy of A. Oeftiger)

of the response, which is given by superposition by

x(t) = f

2ωx0

[
cos (ωct) P.V.

∫ +∞

−∞
ρx (ωx)

ωx − ωc
dωx + πρx (ωc) sin (ωct)

]
,

(4.32)

where P.V. stands for Principal Value. The sinus term has a definite sign relative
to the driving force, because ρx(ωc) is always positive. In particular, ẋ is always in
phase with the force, indicating that work is being done on the system, which always
reacts to the force “resistively”. The Landau damping effect is to be distinguished
from a “decoherence (also called phase-mixing, or filamentation) effect” that occurs
when the beam has nonzero initial conditions. Had we included an initial offset,
we would have introduced two additional terms into the ensemble response, which
do not participate in the dynamic interaction of the beam particles and are not
interesting for our purposes here. In this decoherence effect, individual particles
continue to execute oscillations of constant amplitude, but the total beam response
x decreases with time. As mentioned above, work is continuously being done on
the system. However, the amplitude of x, as given before, does not increase with
time. Where did the energy go? The system absorbs energy from the driving force
indefinitely while holding the ensemble beam response within bounds. The stored
energy is incoherent in the sense that the energy is contained in the individual
particles, but it is not to be regarded as heat in the system. This is because the
stored energy is not distributed more or less uniformly in all particles, but is
selectively stored in particles with continuously narrowing range of frequencies
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around the driving frequency. If one observes two particles, one with the exciting
frequency ωc and one with a frequency slightly different, at the beginning, they
oscillate “coherently” (same amplitude and same phase). However, after a while
the particle with the exciting frequency, being resonantly driven, continues to
increase in amplitude as time increases, whereas the other particle with a slightly
different frequency realizes that its frequency is not the same as the driving one
and the “beating” phenomenon is observed for this particle. If one considers the
phenomenon for a time t, the number of particles which still oscillate coherently
decreases with time as 1/t, while their amplitude increases as t, the net contribution
being constant with time.

The origins of the frequency spread that leads to Landau damping have not
been taken into account till now. The case where the frequency spread comes from
the longitudinal momentum spread of the beam is straightforward (for a coasting
beam), because the longitudinal momentum is a constant, which just affects the
coefficients in the equations of motion of the transverse oscillations, and hence their
frequencies. It can be dealt with the same method as in the previous sections, i.e. it
is the distribution function which is important. The same result applies also if one
considers a tune spread that is due to a non-linearity (e.g. from octupole lenses) in
the other plane. However, this result is no longer valid if the non-linearity is in the
plane of coherent motion. In this case, the steady-state is more involved because
the coherent motion is then a small addition to the large incoherent amplitudes that
make the frequency spread, and it is inconsistent to assume that it can be treated
as a linear superposition [92]. One needs to consider “second order” non-linear
terms and the final result is that in this case it is not the distribution function which
matters but its derivative. Using the Vlasov formalism, this result is recovered more
straightforwardly.

4.4.1 Transverse

Considering the case of a beam having the same normalized rms beam size σ =√
ε in both transverse planes, the Landau damping mechanism from octupoles of

coherent instabilities, e.g. in the horizontal plane, is discussed from the following
dispersion relation [17, 93]

1 = −ΔQx
coh

+∞∫

Jx=0

dJx

+∞∫

Jy=0

dJy
Jx

∂f (Jx,Jy)
∂Jx

Qc −Qx

(
Jx, Jy

)−mQs

, (4.33)

with

Qx

(
Jx, Jy

) = Q0 + a0Jx + b0Jy. (4.34)
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Here, Qc is the coherent betatron tune to be determined, Jx,y are the action vari-
ables in the horizontal and vertical plane respectively, with f (Jx, Jy) the distribution
function, ΔQx

coh is the horizontal coherent tune shift, Qx(Jx, Jy) is the horizontal
tune in the presence of octupoles, m is the head–tail mode number, and Qs is the
small-amplitude synchrotron tune (the longitudinal spread is neglected).

The nth order distribution function is assumed to be

f
(
Jx, Jy

) = a

(
1 − Jx + Jy

b

)n
, (4.35)

where a and b are constants to be determined by normalization, and which
corresponds to a profile extending up to

√
2 (n+ 3)σ . The dispersion relation of

Eq. (4.33) can be re-written as

ΔQx
coh = − a0

nab
I−1
n (c, q) , (4.36)

with

In (c, q) =
1∫

Jx=0

dJx

1−Jx∫

Jy=0

dJy
Jx
(
1 − Jx − Jy

)n−1

q + Jx + cJy
, (4.37)

q = Qc −Q0 −mQs

−ba0
, and c = b0

a0
. (4.38)

It is convenient to write Eq. (4.36) in this way, with the left-hand-side (l.h.s)
containing information about the beam intensity and the impedance and the right-
hand-side (r.h.s) containing information about the beam frequency spectrum only. In
the absence of frequency spread, the r.h.s. of Eq. (4.36) is equal to Qc − Q0 − mQs,
which is thus given by ΔQx

coh (i.e. the l.h.s). Calculation of the l.h.s is now straight-
forward (following Sect. 4.3): for a given impedance (and transverse damper), one
only needs to calculate the complex mode frequency shift, in the absence of Landau
damping. Without frequency spread, the condition for the beam to be stable is thus
simply Im

(
ΔQx

coh

) ≥ 0 (oscillations of the form ejωt are considered). Once its l.h.s
is obtained, Eq. (4.36) can be used to determine the coherent betatron tune Qc in
the presence of Landau damping when the beam is at the edge of instability (i.e. Qc

real). However, the exact value of Qc is not a very useful piece of information. The
more useful question to ask is under what conditions the beam becomes unstable
regardless of the exact value of Qc under these conditions, and Eq. (4.36) can be
used in a reversed manner to address this question. To do so, one considers the real
parameter Qc − Q0 − mQs (stability limit) and observes the locus traced out in the
complex plane by the r.h.s of Eq. (4.36), as Qc − Q0 − mQs is scanned form −∞
to +∞. This locus defines a “stability boundary diagram”. The l.h.s of Eq. (4.36), a
complex quantity, is then plotted in this plane as a single point. If this point lies on
the locus, it means the solution of Qc for Eq. (4.36) is real, and this Qc − Q0 − mQs
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Fig. 4.17 Stability diagrams (for both positive and negative detunings a0) for the LHC at top
energy (7 TeV) with maximum available octupole strength: (Left) for the 2nd order (dashed
curves), the 15th order (full curves), and the Gaussian (dotted curves) distribution; (Right) for the
Gaussian distribution (dotted curve) and a distribution with more populated tails than the Gaussian
(full curve)

is such that the beam is just at the edge of instability. If it lies on the inside of the
locus (the side which contains the origin), the beam is stable. If it lies on the outside
of the locus, the beam is unstable. The stability diagrams for the 2nd order, 15th
order and Gaussian distribution functions are plotted in Fig. 4.17 for the case of the
LHC at top energy (7 TeV) with maximum available octupole strength (ε = 0.5 nm,
|a0| = 270440 and c = −0.65).

The case of a distribution extending up to 6σ (as the 15th order distribution) but
with more populated tails than the Gaussian distribution has also been considered
and revealed a significant enhancement of the stable region compared to the
Gaussian case ([93], see also Fig. 4.17(right)). This may be the case in reality in
proton machines due to diffusive mechanisms.

It is worth reminding that Landau damping of coherent instabilities and maxi-
mization of the dynamic aperture are partly conflicting requirements. On the one
hand, a spread of the betatron frequencies is needed for the stability of the beam
coherent motion, which requires nonlinearities to be effective at small amplitude. On
the other hand, the nonlinearities of the lattice must be minimized at large amplitude
to guarantee the stability of the single-particle motion. A trade-off between Landau
damping and dynamic aperture is therefore usually necessary [87].

Despite the destabilising effect of a resistive transverse damper in the case of a
single bunch with zero chromaticity (as discussed in Sect. 4.3.2) below the TMCI
intensity threshold (in the case of the “short-bunch” regime) without transverse
damper, a transverse damper helps to reduce the amount of tune spread which would
be needed to stabilise the bunch above the TMCI intensity threshold, as it can be
seen in Fig. 4.18.

Note that linear coupling between the transverse planes can also influence the
Landau damping mechanism [95], leading to a sharing of the Landau damping
between the transverse planes, which can have a beneficial effect (i.e. stabilising the
other plane, as it was used in the CERN PS for many years [96]) or a detrimental
effect (i.e. destabilising one or two planes by loss of Landau damping, as it was
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Fig. 4.18 Required
normalised (to the
synchrotron tune Qs) tune
spread �q to stabilise the
bunch in both cases of
instabilities without and with
Transverse Damper (TD),
corresponding to the cases of
Fig. 4.14 [94]. The
normalised parameter x is
proportional to the bunch
intensity [63]
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Fig. 4.19 Reduction of the
tune footprint (and associated
projections on the transverse
tunes axes, responsible for
Landau damping) vs. linear
coupling (described here by
the “closest tune approach”
|C−|) [98]. Courtesy of L.R.
Carver

believed to be the case with the Batman instability of the HERA proton ring
[97]: due to the features discussed in Ref. [97], the name “coupled head–tail
instability” was suggested for this instability in the HERA proton ring). Recently,
linear coupling was also observed to be detrimental in the CERN LHC [98], as
revealed by both measurements and macroparticle simulations (see Fig. 4.19). This
required a careful measurement and correction of linear coupling all along the LHC
cycle to avoid to use much more Landau octupoles current than foreseen. One has
also to remember that linear coupling modifies also the transverse emittances [99,
100].

In the case of additional space-charge nonlinearities, the stability diagram will be
shifted and beam stability can be obtained or lost, depending on the coherent tune.
The influence of space-charge nonlinearities on the Landau damping mechanism of
transverse coherent instabilities has first been studied by Möhl and Schönauer for
coasting and rigid bunched beams [101, 102]. It was studied in detail in the past
years for higher-order head–tail modes from both theory [103–106] and numerical
simulations [107].
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The interplay between Landau octupoles and beam–beam long-range interactions
can be either beneficial or detrimental depending on the sign of the Landau
octupoles current (see Sect. 4.6) [108] and this effect has to be careful taken into
account in the CERN LHC to be able to push its performance.

Another destabilising effect currently under investigation at the CERN LHC (and
which could explain some long latencies observed in the past, of the order of few
minutes or even tens of minutes) is the effect of noise, whose detrimental effect was
predicted in 2012 [109] and confirmed experimentally in 2018 [110].

Some work is being done to try and use the nonlinear optics as a path to high
intensity, providing “infinite (transverse) Landau damping” [111], or electron lenses
[112] or Radio Frequency Quadrupoles (or similarly second order chromaticity)
[113–115]. The latter two methods are believed to be more efficient than Landau
octupoles at high energy due to the adiabatic damping and the associated significant
reduction of the transverse beam sizes.

4.4.2 Longitudinal

When the bunch is very small inside the RF bucket, the motion of the particles
is linear and all the particles have the same (unperturbed, maximum) synchrotron
frequencyωs0. By increasing the bunch length the incoherent synchrotron frequency
spread S is increased (the maximum synchrotron frequency spread is obtained when
the bunch length is equal to the RF bucket length as in this case the synchrotron
frequency of the particles with the largest amplitude is equal to 0: the synchrotron
frequency spread S is equal to ωs0 in this case). In the presence of an impedance,
the coherent synchrotron frequency of the dipole mode ωc11, which is equal to
the low-intensity synchrotron frequency ωs0 without synchrotron frequency spread
(due to the compensation between the incoherent and coherent tune shifts), moves
closer and closer to the incoherent band (stable region). The two possible cases are
represented in Fig. 4.20 (using the rigid-bunch approximation), which is similar to
what was obtained by Besnier (who considered a parabolic distribution function,
which introduces some pathologies in the stability diagram due to its sharp edge)
([116], and references therein): the case of a capacitive impedance below transition
or inductive impedance above transition corresponds to U > 0 (the coherent
synchrotron frequency shift of the dipole mode has been written Δωc11 = U − jV)
and the incoherent synchrotron frequency shift (due to the potential-well distortion)
is Δωs

i < 0 (and thus ωs < ωs0), and the case of a capacitive impedance above
transition or inductive impedance below transition corresponds toU < 0 andΔωs

i > 0
(and thus ωs > ωs0). Motions ∝ejωt are considered, which means that the beam
is unstable when V > 0 (V is called the instability growth rate). The usual case
where the resistive part of the impedance is small compared to the imaginary part
is assumed, i.e. V << |U|. Beam stability is obtained when ωc11 enters into the
incoherent band. In both cases, the stability limit is reached for k = 4, i.e. S = 4|U|,
which is Sacherer’s stability criterion for the dipole mode.
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Fig. 4.20 Evolution of the
coherent synchrotron
frequency for the dipole mode
with respect to the incoherent
frequency spread (using the
rigid-bunch approximation)

4.5 Two-Stream Effects (Electron Cloud and Ions)

G. Rumolo

4.5.1 Electron Cloud Build-Up in Positron/Hadron Machines

The term “electron cloud” is used for describing an accumulation of electrons
inside the beam chamber of a circular accelerator, in which bunched beams of
positively charged particles are accelerated or stored. The electron cloud can affect
the accelerator operation by causing beam tune shift, emittance growth and coherent
instabilities, as well as increase of the vacuum pressure and interference with
beam diagnostics devices. Most of these effects eventually lead to beam quality
degradation and loss. Electrons can be initially produced in the vacuum chamber
by a number of processes. These electrons are called primary because, although
some times their number can be sufficiently high to affect the circulating beam, they
are usually only the seed for an avalanche process (see Fig. 4.21). In general, the
primary electrons rapidly multiply via a beam-induced multipacting mechanism,
which involves acceleration of the electrons in the beam field and secondary
emission from their impact on the chamber wall. In the following, we first give
an overview on the electron cloud formation (or build-up) process. We therefore list
the main primary generation mechanisms and then discuss how the thus generated
electrons can multipact in the presence of a train of bunches. The other important
stages of the build-up of an electron cloud are its equilibrium and successive decay
in the gap behind a bunch train. In the second part, we briefly discuss dynamics and
consequences of the beam instabilities caused by the electron cloud that has formed
in a beam pipe. In conclusion, we will try to give an up-to-date list of the possible
techniques for electron cloud mitigation or suppression.

Primary electrons are the electrons generated during the passage of a bunch. They
can be photo-electrons from synchrotron radiation in bending regions (mainly for
positron beams) or secondary electrons desorbed from beam particles lost at the
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Fig. 4.21 Schematic of electron cloud build-up in the LHC beam pipe during multiple bunch
passages, via photo-emission (due to synchrotron radiation) and secondary emission (Courtesy of
F. Ruggiero). Note that the LHC is the 1st proton storage ring for which synchrotron radiation
becomes a noticeable effect

walls (especially for ion beams). In this case they are emitted from the chamber
wall. Primary electrons can also be created within the volume swept by the beam if
the production mechanism is ionization of the residual gas. The location where the
electrons are created can determine the energy gain of the primary electrons in the
beam potential. The number of electrons created per unit length by synchrotron
radiation or by beam loss during one bunch passage can be comparable to the
average line density of beam particles, in which case these processes can alone give
rise to amounts of electrons critical for the beam stability. The rate of photoemission
(number of photoelectrons created per unit length) can be estimated as the product
of the photo-electron yield Yγ by the photoemission rate dNγ /ds:

dNeγ

ds
= Yγ

dNγ

ds
= Yγ

5αγ

2
√

3ρ
, (4.39)

where α denotes the fine structure constant and ρ the curvature radius of the
beam in the dipole. For many materials, the photo-emission yield can be correctly
approximated as being about 0.1 over a fairly large photon energy range, e.g.
between a few eV and a few tens of keV. The azimuthal distribution of absorbed
photons around the chamber wall and, thus, the launch positions of the emitted
primary photo-electrons depend on the reflective properties of the chamber wall.
The first simulation of an electron cloud build-up for short bunches was written by
K. Ohmi. It served to explain coupled-bunch instabilities observed with positron
beams at the KEK photon factory [117]. Ohmi’s pioneering study considered only
photo-emission at the chamber wall as a source of electrons, though a little later his
initial code was extended to include secondary emission by electrons as well.

Ionization from scattering of individual charged beam particles against molecules
of the residual gas occurs with typical cross sections of 1–2 Mbarn for most of the
gas species that can be found in a beam chamber. However, a lower cross section
of about 0.2 Mbarn applies to the lighter species, like H2 [118]. These numbers
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refer to singly charged particles at ultrarelativistic energies. For fully ionized atoms,
the cross section scales roughly with the square of the atomic number, i.e. like
Z2. Additionally, it increases by several orders of magnitude towards lower beam
energies. If the beam density is sufficiently high, as it will be in certain sections of
the next generation of linear colliders, ionization by the collective electric field of
the bunch replaces single-particle scattering ionization as the dominant ionization
process [119]. When this happens, the beam completely and instantly ionizes the
residual gas in its neighbourhood.

Protons or ions impacting on the wall can be responsible for the generation of a
large number of electrons. The secondary-electron yield from ion impact is approx-
imately proportional to the projectile stopping power and inversely proportional
to the cosine of the angle of incidence [120]. Since the stopping power is in turn
proportional to the square of the charge number divided by the mass number, this
value, usually very high because of the shallow angles at which losses typically
occur, can be further amplified by one or two orders of magnitude for heavy ion
beams. Production of this type of electrons also occurs with a high rate at the
collimators, where significant beam loss routinely occurs by design.

The mechanism responsible for an exponential growth of the number of electrons
is beam induced multipacting. The primary electrons are accelerated by the electric
field of a passing bunch to such high energies that they produce, on average, more
than one secondary electron when they again hit the wall of the vacuum chamber.
The Secondary Emission Yield (SEY) of the chamber material is by definition the
number of secondary electrons produced on average by an electron impact. It is
obviously a function of the impinging electron energy, its angle of incidence, and the
chamber history. For a round chamber of radius h and a short bunch, the resonance
condition for beam-induced multipacting from electrons produced at the pipe walls
takes the simple form [121]

NbreLb = h2, (4.40)

where re denotes the classical electron radius and Lb the bunch spacing in units of
length. However, the condition of Eq. (4.40) is by far too stringent. Most secondary
electrons have low energy and tend to stay in the vacuum chamber for a long time
after a bunch passage. The survival of low energy electrons is made even more likely
by the fact that their probability of being elastically backscattered at the chamber
walls is almost one [122]. Moreover, a different multipacting regime, called “trailing
edge multipacting”, also exists in presence of long bunches. The electrons produced
on the falling edge of the bunch can gain energy as they cross the pipe section and
cause multipacting just during the passage of the second part of the bunch. This is a
special type of single-bunch multipacting, causing electron clouds that can be either
significantly cleared before the arrival of the next long bunch, or accumulate further
in a mixed single-bunch and multi-bunch process.

Many simulation codes have been developed over the years to study numerically
the process of electron cloud build-up and explore different beam/machine param-
eter ranges (e.g. [123–125]). Due to the variety of possible regimes and processes
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involved, simple considerations have usually turned out to be insufficient to predict
the build-up thresholds and the change in electron cloud caused by some specific
parameter change. It was a gratifying confirmation of the predictive power of the
early simulations that the expected electron clouds were indeed observed at both
B factories (PEP-II and KEKB), at the Large Hadron Collider injectors PS and
SPS when operated with LHC-type beams, and finally in the LHC itself when
operation with trains of closely spaced bunches started. In these rings, the electron
cloud was seen to cause tune shift and emittance growth along the bunches of a
train, both coupled and single-bunch instabilities and a degradation of certain beam
diagnostics signals [126–128]. In the SPS and PS, significant beam loss could be
observed at the end of a train if no countermeasures were put in place. As the
electron cloud is potentially one of the main bottlenecks of the SPS after the upgrade
of the LHC injector chain in the framework of the LHC Injectors Upgrade (LIU)
project [129], dedicated electron diagnostics devices are installed in the machine to
measure the electron flux and spatial electron distribution on surfaces with different
coatings, as well as its variation with the time of exposure, i.e. what we call “beam-
induced machine scrubbing” [129]. Since 2011, the electron cloud has been also
observed routinely in the LHC, causing beam instability and emittance growth at
the end of the multi-bunch trains but also additional heat load on the cold beam
screens of the arcs as well as of the matching and final focusing quadrupoles [130].
While the effects linked to electron cloud have quickly disappeared for beams with
50 ns bunch spacing thanks to a relatively rapid beam induced machine scrubbing,
running with 25 ns beams has proved to be rather challenging in this machine.
With this type of beams, even after extensive machine scrubbing, the undesired
effects of the electron cloud have remained visible on the beam and the machine
equipment. In particular, the 25 ns beam needs to be stabilised with high values of
chromaticity in both planes and large octupole settings. Besides, the large heat load
on the cold beam screens still remains very close to the capacity of the cryogenic
system in nominal operating conditions [131, 132]. While these effects have not
prevented running LHC close to the nominal conditions from 2015 to 2018, they
could still be a significant showstopper for future operation with double beam
current in the High Luminosity LHC era [133]. Concerning lepton machines, the
electron cloud is typically associated with a reduction of specific luminosity in e-
p colliders and is expected to be one of the main limiting factors for the damping
rings of future linear collider projects. The Cornell Electron Storage Ring (CESR)
was reconfigured in 2008 as a Test Accelerator (CesrTA) for a program of electron
cloud research with lepton beams. With its new local diagnostics for measurement
of cloud density and improved instrumentation for the characterization of the beam
dynamics of high intensity bunch trains interacting with the cloud, this test facility
provided for many years both a benchmark case for the existing simulation codes
and testing the effectiveness of several types of countermeasures [134]. Since the
processes of secondary electron emission and elastic reflection at the walls play a
fundamental role in causing beam induced multipacting, we now shortly describe
their key parameters. The true secondary yield for perpendicular incidence, δ, can
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be expressed by a universal function [135]

δ(x) = δmax
sx

s − 1 + x2 , (4.41)

where x = E/Emax, with E the energy of the incident electron and Emax the energy
at which the yield assumes the maximum value, and s is a fit parameter that was
measured to be about equal to 1.35 for LHC Cu samples [135]. The two variable
parameters in Eq. (4.41) are δmax, the maximum yield, which typically assumes
values between about 1.0 and 3.0 for conductive materials (but it can be higher
for dielectrics), and Emax. For non-normal incidence of the primary electron these
two parameters are usually both increased by a factor depending on the cosine of
the incidence angle [136]. Elastic reflection of electrons is mostly important at low
energies, i.e. below about 20 eV. The measured electron reflection probability [122]
can be parametrized as

δel(E) =
(√

E −√
E + E0√

E +√
E + E0

)2

, (4.42)

with only one fit parameter, E0. Equation (4.42) implies that the reflection prob-
ability approaches one in the limit of vanishing electron energy, even if presently
no general consensus has been reached around this point, which is still very
controversial, as it is extremely difficult to measure the secondary emission yield
at very low energy.

The electron cloud build-up saturates when the electron losses balance the
electron generation rate. This can happen either at low bunch charges, when
the average neutralization density is reached, or at high bunch currents, when
the electrons rapidly accumulate until the kinetic energy of the newly emitted
ones becomes too low to let them penetrate into the space charge field of the
cloud. Simulations have demonstrated a complex behaviour of the electron cloud
equilibrium, which strongly depends on the combination between bunch length,
charge, spacing and on the chamber radius. First of all, the saturation phase is
generally characterized by an oscillating behaviour of the electron cloud density
over the bunch spacing and the amplitude of this oscillation can be very large.
Furthermore, in some cases the steady-state value of the electron cloud density
has been found not to be monotonically increasing with the bunch intensity. For
instance, a beam with 50 ns spaced bunches in the SPS is predicted to hit its highest
electron cloud equilibrium density for bunch populations of about 1011 p, while this
value decreases both for lower and higher intensities.

The electron density decays after the passage of a bunch train (or in the gap
between bunch trains) and two different regimes can be distinguished during this
phase. In the first one, right after the train passage, the cloud decays quickly
due to the space charge effects and the reminiscent energy distribution from the
last bunch passage. In the second one, only low energy electrons will be left,
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which move slowly and exhibit a dissipation rate depending on their probability
of being elastically reflected at the chamber surface. Due to the second part of
the decay evolution, the electron clearing time between bunch trains can become
painfully long. Three effects are suspected to be responsible for the long memory
and lifetime of the electron cloud. First, nonuniform fields, such as quadrupoles or
sextupoles, may act as magnetic bottles and trap electrons for an indefinite time
period [125, 137]. Second, if the probability of elastic reflection really approaches
one in the limit of zero electron energy, as is suggested by measurements [122], low-
energetic electrons could survive nearly forever, bouncing back and forth between
the chamber walls, independently of the magnetic field. Third, slow ions produced
by residual gas ionization have been also suspected to be long lived in the beam
chamber and, therefore, possibly cause (or help) electron trapping and long survival
time.

4.5.2 The Electron Cloud Instability

When a positron/hadron beam interacts electromagnetically with the electron cloud
that has formed in the beam chamber, a coherent oscillation of both electrons and
beam particles can grow from any small initial perturbation of the beam distribution,
e.g. from the statistical fluctuations due to the finite number of beam particles. This
instability can be considered as a two-stream instability of the same type as studied
in plasma physics. Such instabilities can be very fast, since in the new generation
of high intensity rings operating with many closely spaced bunches, the density of
electrons can become quickly very large. Even machines operating with bunches
spaced by hundreds of ns can actually suffer from electron cloud, because of the
long survival time of low energy electrons in the beam pipe. Electron clouds can
cause single-bunch instabilities as well as multi-bunch dipole mode instabilities. The
multi-bunch instability appears when the electron cloud can carry a sufficiently long
memory as to couple subsequent bunches. The single-bunch phenomenon, instead,
is driven by a pinched electron cloud, which, over one single passage of the bunch
through it, is able to transfer information from an offset bunch head to the bunch
tail. Obviously, although this second type of instability is caused by a single-bunch
mechanism, it can only occur in multi-bunch operation, since the electron cloud
requires a train of several bunches to build up. For single-bunch instabilities caused
by multi-bunch built electron clouds, electrons usually only perform a low number
of oscillations while the bunch is passing (typically between fractions of unit and
few units), and the bunch effectively interacts with a pre-existing cloud produced
by the preceding bunches and filling almost uniformly the beam pipe prior to the
bunch arrival. The number of electrons does not change appreciably during one
bunch passage. In reality, another possible head tail effect resulting into a different
type of two-stream instability was observed in some machines operating with long
bunches. In this case, the instability is intimately related to an electron cloud
from “trailing-edge multipacting”, described in the previous section. The electrons
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multiplication happening over the falling edge of the bunch can reach levels as to
render the beam unstable. Even coasting beams are not immune from electron cloud
problems. The electrons produced from residual gas ionization remain trapped in the
transverse potential of the uniform beam and tend to accumulate to very high central
density values. The electrons created at the chamber walls (e.g. from beam loss) are
accelerated and decelerated in the beam field and eventually hit the chamber with the
same energy with which they were emitted. Multipacting can play here a role, since
electrons can gain energy and create secondaries when hitting the wall, if the beam
line density is perturbed. The interaction of the coasting beam with the electrons can
make noise evolve into an unstable coupled oscillation, called e–p instability, which
was widely studied already at the beginning of the 70s [138, 139]. While the single-
bunch instability described earlier in this section can be treated separately from the
build-up of the electron cloud that causes it, in all other cases the two processes are
coupled together and need to be solved with a joint model.

Electron cloud instabilities for short bunches have been observed in form of
emittance growth and beam loss at the KEKB LER, at the CERN PS, SPS and
LHC, and at the PEP-II LER. At the KEKB LER a blow-up of the vertical beam
size was already observed at the early commissioning time [140]. This blow-
up was not accompanied by any coherent beam motion, which could be easily
suppressed by transverse feedback and chromaticity, and the blow-up was only
seen in multi-bunch operation with a narrow bunch spacing. The single-bunch
two-stream instability provided a plausible explanation of the observed beam
blow-up [141]. This explanation has since been reinforced by the simultaneous
observation of a tune shift along the bunch train, which appears for the same bunches
exhibiting vertical size blow-up. Also the experimental evidence that the installation
of solenoids around the ring could increase the instability threshold in regular
operation shows the relation between electron cloud and the instability. At the
CERN SPS the electron cloud has been observed since the ring has been regularly
operated with LHC-type bunch trains [142] and it has been held responsible for
strong transverse instabilities. In the horizontal plane a low order coupled bunch
instability develops within a few tens of turns after injection. In the vertical plane,
a single-bunch head tail instability rises on a much shorter time. The reason of the
different behavior in the two transverse planes is ascribed to the confinement of the
electron cloud mostly in dipole regions, which can limit the intra-bunch electron
pinching in the horizontal plane and therefore inhibit the single-bunch mechanism
for instability. The horizontal (coupled-bunch) instability is cured by means of a
transverse feedback system. Similar to the situation at the KEKB LER, running the
SPS at high positive chromaticity can cure the vertical instability [143]. Upstream
from the SPS, when the nominal LHC beam was generated by the PS machine,
one of the standard signatures of the electron cloud was observed shortly before
extraction: a baseline drift in electrostatic devices. However, the beam resided too
shortly in the machine to become unstable, even if a dedicated experiment proved
the onset of an electron cloud instability on the short bunches, if they are kept in
the machine for a sufficiently long time. In the LHC, transverse beam instabilities
affecting the last bunches of long 25 ns trains in both transverse planes have been
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systematically observed at injection [144]. The reason why the instability appears in
both planes is that the integrated central density of electrons causing the instability
comes mainly from the electron cloud in quadrupole magnets and therefore affects
equally both planes. This instability is controlled by means of high chromaticity
and high octupole strength. Besides, electron cloud instabilities have been observed
also at high energy (6.5 TeV) but mainly in the vertical plane and for values of
bunch currents lower than nominal. This has been explained as due to the onset of a
central stripe in all the dipoles (appearing when the bunch intensity decays), which
leads to an integrated electron density capable of making a 6.5 TeV beam unstable
[145]. Concerning long bunches, a great deal of evidence indicates that the primary
instability limiting the performance of the LANL-PSR is an e-p instability [146].
Growth of the electron cloud results from multipacting of the electrons on the walls
of the vacuum chamber during passage of the trailing edge of the proton beam,
when the electrons can receive a net acceleration toward the wall. The instability
was controlled by various measures to enhance Landau damping and transverse
feedback. In coasting beams, an e-p instability was first observed in the LBNL-
Bevatron [147] and CERN-ISR [139]. While in the Bevatron this instability was
combated with active feedback and beam bunching, in the ISR additional pumping
was installed to improve the vacuum from 0.1 to 0.01 nTorr and the number of
clearing electrodes was increased to sweep away the electrons.

Several analytical approaches have been used to study the electron cloud
instability, including few-particles models and an attempt to apply the TMCI theory
to the electron cloud wake field, modeled as a broadband resonator. However
the most widespread and comprehensive approach makes use of particle tracking
simulations with localized electron cloud kicks. The numerical modeling of the
interaction between an electron cloud and a particle bunch is discussed in Sect. 4.7.
Simulation codes have had the merit to reveal interesting features of the electron
cloud instability, which distinguish it from other types of conventional instabilities.
For example, the electron cloud wake field is not only a function of the distance
between source and probe particles, but it depends on the locations of the two
separately. This translates into an impedance with a double frequency dependence
[148]. Another interesting finding was that, for constant beam emittances (transverse
and longitudinal) and constant bunch length, the electron cloud instability threshold
decreases with the beam energy [149]. The reason of this anomalous behaviour
is that, although the beam becomes stiffer at higher energies, its transverse sizes
become smaller and the pinching effect on the electron cloud is amplified.

Concerning the multi-bunch instability, the usual approach is to calculate the
bunch-to-bunch wake field with an electron cloud build-up code (which correctly
models the electron cloud dynamics in the space between two bunches) and then
apply the multi-bunch analytical formula to assess the threshold for the beam
stability. Simulation codes with bunches modeled as single macroparticles, valid
for machines operating with short bunches, have been also developed to study
numerically the multi-bunch instabilities due to electron cloud in a more self-
consistent manner.
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A number of simulation tools have been developed over the years in order to
study the electron cloud single-bunch instability for short bunches via direct particle
tracking. The simulations of electron cloud build-up are generally treated separately,
since they make use of a weak-strong approach, in which the beam is rigid
and is approximated by bunches with static transverse and longitudinal Gaussian
distributions, while the electrons are macroparticles. Build-up simulations need to
be run prior to the instability simulations, because they provide the necessary input
on the transverse distribution of the electron cloud density at saturation just before
the arrival of a bunch. A variety of simulation codes are presently available for this
purpose [150]. Fully self-consistent computations, in which the cloud generation
over a bunch train around the ring as well as the resulting bunch instabilities, are
treated by a single program are still under development. The existing simulation
programs to study the electron cloud instabilities model the interaction of a single
bunch with an electron cloud on successive turns. The cloud is always assumed to
be generated by the preceding bunches, and can be considered initially uniform or
the distribution is imported from a build-up code. The electrons give rise to a head-
to-tail wake field, which amplifies any initial small deformation in the bunch offset,
e.g. due to the finite number of macroparticles in the simulation. All simulation
tools that have been developed for this study are essentially of the strong–strong
type, since the purpose is to investigate how the bunch particles are affected by
the electron cloud via the continuous interaction. In particular, electrons are always
modeled as macroparticles either concentrated at one or several locations along
the ring or uniformly smeared along the axis of the machine. The bunch consists
of macroparticles or of microbunches with a fixed transverse size. The bunch is
then subdivided into slices, which interact in sequence with the electrons of the
cloud, creating the distortion of the initially uniform cloud distribution that can
affect the body and tail of the bunch. The electric fields of the electrons and of
the beam acting mutually on each other are calculated by means of a Particle-
In-Cell (PIC) algorithm. The transformation of the 6D phase-space vectors of the
beam particles between two kick points is achieved using the appropriate transport
matrices or nonlinear tracking. The field of the electron cloud acting on itself can
be optionally included, but in general does not seem to play a significant role in
this type of mechanisms and hence it is neglected. For the purpose of studying the
interplay of electron cloud instability with other mechanisms, the simulation codes
contain synchrotron motion, chromaticity and usually additional options to model
the action of an independent impedance source beside the electron cloud, as well as
space charge and detuning with amplitude.

4.5.3 Mitigation and Suppression

There are at least three possible actions to reduce, or even suppress, the electron
cloud: (i) reducing the production rate of primary electrons or confining their motion
to a region where they are not likely to do any harm; (ii) eliminating the possibility
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of multipacting by lowering the SEY via surface treatment; (iii) alleviating the
effect on the beam or on the diagnostics. In most cases a combined approach
is desirable, that’s why most machines affected by electron cloud problems have
usually chosen to implement more than one of these mitigating techniques. The
primary production of photoelectrons needs to be reduced, because it may be so
high that the electron cloud could reach saturation within a few bunch passages
even without any multipacting. This is the case at KEKB, the photon factory, if no
countermeasures were taken. The obvious solution is an antechamber to intercept
most of the synchrotron radiation, or also photon absorbers (as those designed for
the CLIC Damping Rings). For dipole fields, a saw-tooth pattern impressed on
the chamber wall, as was implemented for the LHC (actually on the beam screen
that forms the inner part of the chamber and serves to protect the cold bore of the
magnets from synchrotron radiation), is used for effectively reducing the photon
reflectivity thanks to the perpendicular impact. Weak solenoids of the order of 50
G are a possibility in field-free regions, which was successfully implemented in
the straight sections of KEKB and in RHIC. The solenoids do not really affect
the photoemission process, but they keep the photoelectrons close to the wall
and, thus, strongly mitigate the subsequent beam–electron interaction. Since the
gas ionization rate is linearly proportional to the vacuum pressure in the beam
chamber, the number of electrons created by gas ionization can only be reduced by
significant factors improving the vacuum. If field ionization is important, however,
a possible cure would be lengthening the bunches, though this will mainly be a
concern for future projects such as linear colliders or X-ray FELs operating with
positrons. Electrons generated by beam loss can be controlled if the localization of
the losses is known with good precision. For example, electrons produced by the
beam losses at a collimator can be controlled by solenoids or clearing electrodes.
A large number of electrons is also generated at the injection stripping foils, for
accelerators employing charge-exchange injection. At the SNS, a 10-kV clearing
voltage is applied to channel the electrons liberated at the stripping foil onto a
collector plate that is monitored by a TV camera, while solenoids are used along
the collimator straights.

The reduction of the SEY of the inner wall of the beam chamber can be achieved
in different manners. First of all, a serendipitous feature of the electron cloud build
up in an accelerator’s chamber is that, while the electrons hit the beam chamber with
high energy and multiply, they also ‘scrub’ the surface by first removing layers of
impurities responsible for high SEY values and eventually graphitising the surface
with a further reduction of the SEY from that of the pure metal [151]. This means
that, if a method is found to run an accelerator with electron cloud and stable beam,
e.g. by stabilising the beam against the electron cloud through appropriate machine
settings, it will be the electron cloud itself to gradually lower the SEY of the inner
wall of the chamber and eventually turn itself off. This obviously relies on that the
final SEY reachable through scrubbing is below the value that sets off the electron
cloud build up in the operational configuration. Besides, it may take a significant
amount of time to reach this condition, because the electron flux is decreasing while
scrubbing and the electron doses required to perform further SEY reduction steps are



4 Impedance and Collective Effects 147

also exponentially increasing when moving to SEYs below 1.3–1.4. The technique
described here is what we call ‘beam induced machine scrubbing’ and machine like
the SPS and LHC fully rely on it to run successfully with 25 ns spaced beams. While
beam induced scrubbing is an important option for already built machines, coatings
with intrinsically low SEY materials can be envisaged at the design stage to limit
the creation of an electron cloud in future machines. A well established method
to reduce multipacting is coating with TiN, a material whose secondary emission
yield becomes quickly low after some conditioning (through illumination under
synchrotron light). The thickness of the coating must be of the order of a μm, such
as not to alter the resistive impedance seen by the beam. A more favorable getter
material made from TiZrV, called Non-Evaporable Getter (NEG), was developed
at CERN. This getter material is characterized by its greater structural stability
than TiN, its pumping capability and its low activation temperature. The warm
sections of the LHC, about 10% of the circumference, have been coated with NEG.
The NEG coating was also tested at several light source insertion devices, where
circumstantial evidence suggests an increase in the effective impedance, presumably
due to a larger surface roughness and low conductivity. The additional contributions
to the ring impedance from the surface roughness and low conductivity impedance
of the coating layer is of no concern for the longer proton bunches in the LHC, but
could significantly affect the stability of the short positron beams in the Damping
Rings of a future linear collider. From 2007 on, new efforts have been put on the
search for coating materials that do not require high temperature activation and do
not suffer from aging. In particular, amorphous carbon (a-C) thin films, deposited
with d.c. magnetron sputtering, have shown to possess all these qualities. Besides,
their maximum secondary emission yields, measured in the lab, reach values even
below one and the films are also stable against mechanical stress. Testing of a-C
coating in accelerator environments (SPS and Cesr-TA) has demonstrated all these
features. Another method to reduce the secondary emission yield of a surface is
to use a naturally rough material. Here the SEY reduction is a geometrical effect
due to the high probability of quick re-absorption of the electrons emitted with low
energy.

Multipacting can also be suppressed by solenoids, though one should pay
attention to the possibility of exciting undesired cyclotron resonances. Electric
clearing fields are an efficient cure, as shown both in simulations and measurements
of electron cloud in the CERN PS. They were already used to cure electron-proton
instabilities for the coasting proton beams in the CERN ISR during the early 70s.
At the SNS operating with long proton bunches all BPMs can be biased with a
clearing voltage of 1 kV. To be effective for the multipacting experienced by short
bunches with close spacing, the clearing electrodes must be mounted all around the
ring, in distances of a few tens of cm and voltages of the order 1 kV are probably
required. The impedance introduced by many such devices could be prohibitive, as
it appeared to be the case in the DA�NE positron ring with the very first clearing
electrode design. Other options for a practical implementation of electric clearing
fields may be splitting the beam pipe into a top and bottom half, isolated from
each other and held at different potential. Biasing the two jaws of a collimator
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against each other is a similar idea. Recently, there is a growing interest towards
the suppression of multipacting by means of grooves on the chamber wall. This
technique, first tested in simulations, has proven to be efficient in KEKB and Cesr-
TA. Similarly to a rough surface, but in a controlled way and on a macroscopic
scale, these grooves essentially act as electron traps. Angle and depth of the grooves
are key parameters and specifications are different in dipole or field-free regions.
Proper tailoring of the bunch filling patterns (bunch spacing, bunch trains and bunch
charges) is yet another way of achieving an acceptable electron density. Examples
include the actual bunch spacing chosen for PEP-II and KEKB operation, which are
twice or three times the design spacing, and satellite bunches proposed for the LHC
[152]. Gaps within or between trains can lower the density and reset the cloud at
least to some extent. Extensive studies of the electron cloud formation as a function
of the bunch filling patterns were also carried out at RHIC, in which the optimization
could be found using the maps approach to quickly scan the build-up for different
configurations.

The electron cloud causes a large variety of undesired effects. Common
stabilising measures can be taken against the resulting instabilities, which include
transverse bunch-to-bunch feedback, increased chromaticity, Landau-damping
octupoles, intra-bunch head–tail feedback, and linear coupling. All these measures
are anyway necessary when a machine is operating in beam-induced scrubbing
mode. Degradation of diagnostics signals due to impacting electrons can be also
overcome with local solenoid windings.

4.6 Beam–Beam Effects

W. Herr

4.6.1 Introduction

The problem of the beam–beam interaction is the subject of many studies since
the introduction of the first particle colliders [153]. It has been and will be one of
the most important limits to the performance and therefore attracts the interest at
the design stage of a new colliding beams facility. A particle beam is a collection
of a large number of charges and represents an electromagnetic potential for other
charges. It will therefore exert forces on itself and other beams. The forces are most
important for high density beams, i.e. high intensity and small beam sizes, which
are the key to high luminosity.

The electromagnetic forces from particle beams are very non-linear and result
in a wide spectrum of consequences for the beam dynamics. Furthermore, as a
result of the interaction, the charge distribution creating the disturbing fields can
change as well. This has to be taken into account in the evaluation of beam–
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beam effects and in general a self-consistent treatment is required. Although
we now have a good qualitative understanding of the various phenomena, a
complete theory does not exist and exact predictions are still difficult. Numerical
techniques such as computer simulations have been used with great success to
improve the picture on some aspects of the beam–beam interaction while for other
problems the available models are not fully satisfactory in their predictive power
[154].

4.6.2 Beam–Beam Force

In the rest frame of a beam we have only electrostatic fields and to find the forces
on other moving charges, we have to transform the fields into the moving frame and
to calculate the Lorentz forces (see [153, 155–160] and references therein).

The fields are obtained by integrating over the charge distributions. The forces
can be defocusing or focusing since the test particle can have the same or opposite
charge with respect to the beam producing the forces.

The distribution of particles producing the fields can follow various functions,
leading to different fields and forces. It is not always possible to integrate the
distribution to arrive at an analytical expression for the forces in which case either
an approximation or numerical methods have to be used. This is in particular true
for hadron beams, which usually do not experience significant synchrotron radiation
and damping. For e− e+ colliders the distribution functions are most likely Gaussian
with truncated tails.

In the two-dimensional case of a beam with bi-Gaussian beam density distribu-
tions in the transverse planes, i.e. ρ(x, y) = ρx(x) ρy(y) with r.m.s. of σ x and σ y

ρu(u) = 1

σu
√

2π
exp

(
− u2

2σ 2
u

)
where u = x, y (4.43)

one can give the two-dimensional potential U(x, y,σ x, σ y) as a closed expression

U
(
x, y, σx, σy

) = ne

4πε0

∫ ∞

0
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(
− x2

2σ 2
x+q −

y2

2σ 2
y+q

)

√
(
2σ 2

x + q
) (

2σ 2
y + q

) dq (4.44)

where n is the line density of particles in the beam, e is the elementary charge and ε0
the permittivity of free space [159]. From the potential one can derive the transverse

fields
−→
E by taking the gradient

−→
E = −∇U (x, y, σx, σy

)
.
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4.6.2.1 Elliptical Beams

For the above case of bi-Gaussian distributions (i.e. elliptical beams with σ x �= σ y)
the fields can be derived and for the case of σ x > σ y we have [160]
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The function erf(t) is the complex error function

erf(t) = exp
(
−t2
) [

1 + 2i√
π

∫ t

0
exp
(
z2
)
dz

]
(4.47)

The magnetic field components follow from

By = −βEx

c
and Bx = β

Ey

c
(4.48)

The Lorentz force acting on a particle with charge q is finally

−→
F = q

(−→
E +−→v ×−→

B
)

(4.49)

4.6.2.2 Round Beams

With the simplifying assumption of round beams (σ x = σ y = σ ), one can re-write
(4.49) in cylindrical coordinates

−→
F = q

(
Er + βcBφ

)×−→r (4.50)
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From (4.44) and with r2 = x2 + y2 one can immediately write the fields from
(4.50) as

Er = − ne

4πε0

δ

δr

∫ ∞

0

exp
(
− r2

2σ 2+q
)

2σ 2 + q
dq (4.51)

and

Bφ = −neβcμ0

4π

δ

δr

∫ ∞

0

exp
(
− r2

2σ 2+q
)

2σ 2 + q
dq (4.52)

δ stands for derivative (Eqs. 4.51 and 4.52) and μ0 is the permeability of free
space (Eq. 4.52).

We find from (4.51) and (4.52) that the force (4.50) has only a radial component.
The expressions (4.51) and (4.52) can easily be evaluated when the derivative is
done first and 1/(2σ 2 + q) is used as integration variable. We can now express the
radial force in a closed form (using ε0μ0 = c−2)

Fr(r) = −ne2
(
1 + β2

)

2πε0

1

r

[
1 − exp

(
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)]
(4.53)

and for the Cartesian components in the two transverse planes we get

Fx(r) = −ne2
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and

Fy(r) = −ne2
(
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)
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1 − exp
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(4.55)

The forces (4.54) and (4.55) are computed when the charges of the test particle
and the opposing beam have opposite signs. For equally charged beams the forces
change signs. For small amplitudes the force is approximately linear and a particle
crossing a beam at small amplitudes will experience a linear field. This results in
a change of the tune like in a quadrupole. At larger amplitudes (i.e. above ~1σ )
the force deviates strongly from this linear behaviour. Particles at larger amplitudes
will also experience a tune change, however this tune change will depend on the
amplitude. Already from the analytical form (4.55) one can see that the beam–beam
force includes higher multipoles.
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4.6.3 Incoherent Effects: Single Particle Effects

The force we have derived is the force of a beam on a single test particle. It can
be used to study single particle or incoherent effects. For that we treat a particle
crossing a beam like it was moving through a static electromagnetic lens. We have
to expect all effects that are known from resonance and non-linear theory such as

• Unstable and/or irregular motion
• Beam blow up or bad lifetime

4.6.3.1 Beam–Beam Parameter

We can derive the linear tune shift of a small amplitude particle crossing a round
beam of a finite length. We use the force to calculate the kick it receives from the
opposing beam, i.e. the change of the slope of the particle trajectory. Starting from
the two-dimensional force and multiplying with the longitudinal distribution which
depends on both position s and time t, and assuming a Gaussian shape with a width
of σ s

Fr (r, s, t) = −Ne2
(
1 + β2

)

√
(2π)3ε0σs

1
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[
1− exp
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− (s + v t)2

2σ 2
s

]

Now N is the total number of particles. We make use of Newton’s law and
integrate over the collision to get the radial deflection

Δr ′ = 1

mcβγ

∫ ∞

−∞
Fr (r, s, t) dt

The radial kick Δr ′ a particle with a radial distance r from the opposing beam
centre receives is then

Δr ′ = −2Nr0

γ

1

r

[
1− exp

(
− r2

2σ 2

)]
(4.56)

where I have re-written the constants and use the classical particle radius

r0 = e2

4πε0mc2 (4.57)

where m is the mass of the particle. After the integration along the bunch length,N is
the total number of particles. For small amplitudes r one can derive the asymptotic
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limit

Δr ′
∣∣
r→0 = −Nr0r

γ σ 2 = −r f (4.58)

This limit is the slope of the force at r = 0 and the force becomes linear with a
focal length as the proportionality factor.

It is well known how the focal length relates to a tune change and one can derive
a quantity ξ which is known as the linear beam–beam parameter

ξ = Nr0β
∗

4πγσ 2 (4.59)

r0 is the classical particle radius, (e.g.: re, rp) and β∗ is the optical amplitude
function (β-function) at the interaction point.

For small values of ξ and a tune far enough away from linear resonances this
parameter is equal to the linear tune shift �Q.

The beam–beam parameter can be generalized for the case of non-round beams
and becomes

ξx,y =
Nr0β

∗
x,y

2πγσx,y
(
σx + σy

) (4.60)

The beam–beam parameter is often used to quantify the strength of the beam–
beam interaction, however it does not reflect the non-linear nature.

4.6.3.2 Non-linear Effects

Since the beam–beam forces are strongly non-linear, the study of beam–beam
effects encompasses the entire field of non-linear dynamics (see earlier chapter) as
well as collective effects. First, we briefly discuss the immediate effect of the non-
linearity of the beam–beam force on a single particle. It manifests as an amplitude
dependent tune shift and for a beam with many particles as a tune spread. The
instantaneous tune shift of a particle when it crosses the other beam is related
to the derivative of the force with respect to the amplitude δF/δx. For a particle
performing an oscillation with a given amplitude the tune shift is calculated by
averaging the slopes of the force over the range (i.e. the phases) of the particle’s
oscillation amplitudes. An elegant calculation can be done using the Hamiltonian
formalism [156] developed for non-linear dynamics and as demonstrated in the
chapter on non-linear dynamics using the Lie formalism. We get the formula for
the non-linear detuning with the amplitude J

ΔQ(J ) = ξ
2

J

[
1 − I0

(
J

2

)
e−

J
2

]
(4.61)
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Fig. 4.22 Tune shift (non-linear detuning) as a function of the amplitude (left) and 2-dimensional
tune footprint (right)

where I0(x) is the modified Bessel function and J = εβ/2σ 2 in the usual units. Here
ε is the particle “emittance” and not the beam emittance.

In the 2-dimensional case, the tune shifts (�Qx, �Qy) of a particle with
amplitudes x and y depend on both, horizontal and vertical amplitudes. The detuning
must be computed and presented in a 2-dimensional form, i.e. the amplitude (x, y)
is mapped into the tune space (Qx,Qy) or alternatively to the 2-dimensional tune
change (�Qx, �Qy). Such a presentation is usually called a “tune footprint” and
an example is shown in Fig. 4.22(right) and it maps the amplitudes into the tune
space and each “knot” of the mesh corresponds to a pair of amplitudes. Amplitudes
between 0 and 6σ in both planes are used. The cross indicates the original,
unperturbed tunes without the beam–beam interaction.

The maximum tune spread for a single head-on collision is equal to the tune shift
of a particle with small amplitudes and for small tune shifts equal to the beam–
beam parameter ξ . In the simple case of a single head-on collision the parameter ξ
is therefore a measure for the tune spread in the beam.

4.6.3.3 Beam Stability

When the beam–beam interaction becomes too strong, the beam can become
unstable or the beam dynamics is strongly distorted. One can distinguish different
types of distortions and a few examples are

• Non-linear motion can become stochastic and can result in a reduction of the
dynamic aperture and particle loss and bad lifetime.

• Distortion of beam optics: dynamic beta (LEP) [161].
• Vertical blow-up above the so-called beam–beam limit.

Since the beam–beam force is very non-linear, the motion can become “chaotic”.
This often leads to a reduction of the available dynamic aperture. The dynamic
aperture is the maximum amplitude where the beam remains stable. Particles outside
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the dynamic aperture are eventually lost. The dynamic aperture is usually evaluated
by tracking particles with a computer program through the machine where they
experience the fields from the machine elements and other effects such as wake
fields or the beam–beam interaction.

Since the beam–beam interaction is basically a very non-linear lens in the
machine, it distorts the optical properties and it may create a noticeable beating
of the β-function around the whole machine and at the location of the beam–
beam interaction itself. This can be approximated by inserting a quadrupole which
produces the same tune shift at the position of the beam–beam interaction. The
r.m.s. beam size at the collision point is now proportional to

√
β∗p, where β∗pis the

perturbed β-function which can be significantly different from the unperturbed β-
function β∗ . This in turn changes the strength of the beam–beam interaction and the
parameters have to be found in a self-consistent form. This is called the dynamic
beta effect. This is a first deviation from our assumption that the beams are static
non-linear lenses. A strong dynamic beta effect was found in LEP [161] due to its
very large tune shift parameters.

Another effect that can be observed in particular in e+ e− colliders is the blow
up of the emittance which naturally limits the reachable beam–beam tune shifts.

4.6.3.4 Beam–Beam Limit

In e+ e− colliders the beam sizes are usually an equilibrium between the damping
due to the synchrotron radiation and heating mechanisms such as quantum excita-
tion, intra-beam scattering and very importantly, the beam–beam effect. This leads
to a behaviour that is not observed in a hadron collider. When the luminosity is
plotted as a function of the beam intensity, it should increase approximately as the
current squared [162], in agreement with

L = N2kf

4πσxσy
(4.62)

Here k is the number of bunches per beam and f the revolution frequency [162].
At the same time the beam–beam parameter ξ should increase linearly with the
beam intensity according to (4.60)

ξy = Nreβy

2πγσy
(
σx + σy

) (4.63)

In all e+ e− colliders the observation can be made that above a certain current,
the luminosity increases approximately proportional to the current, or at least much
less than with the second power. Another observation is that at the same value
of the intensity the beam–beam parameter ξ saturates. This limiting value of ξ is
commonly known as the beam–beam limit.
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When we re-write the luminosity as

L = N2kf

4πσxσy
= Nkf

4πσx

N

σy
(4.64)

we get an idea of what is happening. In e+ e− colliders the horizontal beam size
σ x is usually much larger than the vertical beam size σ y and changes very little.
In order for the luminosity to increase proportionally to the intensity N, the factor
N/σ y must be constant. This implies that with increasing current the vertical beam
size increases in proportion above the beam–beam limit. This has been observed in
all e+ e− colliders and since the vertical beam size is usually small, this emittance
growth can be very substantial before the life time of the beam is affected or beam
losses are observed [163].

The dynamics of machines with high synchrotron radiation is dominated by the
damping properties and the beam–beam limit is not a universal constant nor can it
be predicted. Simulation of beams with many particles can provide an idea of the
order of magnitude [164, 165].

4.6.4 Studies of Head-on Collisions at the LHC

The layout of experimental regions in the LHC is shown in Fig. 4.23. The beams
travel in separate vacuum chambers and cross in the experimental areas where they
share a common beam pipe. In these common regions the beams experience head-
on collisions as well as a large number of long range beam–beam encounters [166].
This arrangement together with the bunch filling scheme of the LHC as shown in
Fig. 4.24 [166, 167] leads to very different collision pattern for different bunches,
often referred to as “PACMAN” bunches. The number of both, head-on as well
as long range encounters, can be very different for different bunches in the bunch
trains and lead to a different integrated beam–beam effect [167]. This was always
a worry in the LHC design and the effects have been observed in an early stage of
the commissioning. Strategies have been provided to minimize these effects, e.g.
different planes for the crossing angles [166, 167].

4.6.4.1 PACMAN Bunches

The bunches in the LHC do not form a continuous train of equidistant bunches
spaced by 25 ns, but some empty space must be provided to allow for the rise
time of kickers (Fig. 4.24). These gaps and the number of bunches per train are
determined by requirements from the LHC injectors. The whole LHC bunch pattern
is composed of 39 smaller trains (each with 72 bunches) separated by gaps of various
length followed by a large abort gap for the dump kicker. Due to the symmetry,
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Fig. 4.23 Layout of the experimental collision points in the LHC [166]

Fig. 4.24 Bunch filling scheme of the nominal LHC

bunches normally meet other bunches at the head-on collision point. For the long-
range interactions this is no longer the case. Bunches at the beginning and at the end
of a small train will encounter a hole and as a result experience fewer long-range
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interactions than bunches from the middle of a train [168]. Bunches with fewer long-
range interactions have a very different integrated beam–beam effect and a different
dynamics must be expected. In particular they will have a different tune and occupy
a different area in the working diagram, therefore may be susceptible to resonances
which can be avoided for nominal bunches. The overall space needed in the working
diagram is therefore largely increased [166, 168].

4.6.5 Head-on Beam–Beam Tune Shift

The nominal LHC parameters have been chosen to reach the design luminosity
of 1034 cm−2s−1 [166]. The main parameters relevant for beam–beam effects are
summarized in Table 4.1. At a very early stage of the LHC operation it was tested
whether the nominal beam–beam parameters can be achieved. After this has been
successfully demonstrated, we have performed a dedicated experiment to test the
achievable beam–beam tune shift. To that purpose we have filled the LHC with
single bunches per beam, colliding in IP1 and IP5 (see Fig. 4.23). We have used
bunch intensities of ~1.9× 1011 p/b, i.e. well above the nominal and the emittances
have been reduced below 1.20 μm in both planes. It was shown that such bunches
can be collided in both interaction points without significant losses or emittance
increase [169] and we have demonstrated that a beam–beam tune shift of 0.017
for a single interaction and an integrated tune shift of 0.034 for both collision was
possible. These tune shifts have been obtained in the absence of any long range
encounters and it should be expected that the operationally possible tune shifts are
lower.

4.6.6 Effect of Number of Head-on Collisions

Due to the filling pattern in the LHC, different bunches experience different
numbers of head-on as well as long range interactions. Details are given in another
contribution [170]. In Fig. 4.25 we show as illustration the losses of bunches with
very different (0–3) numbers of head-on collisions. The data was taken during a

Table 4.1 LHC nominal
parameters and achieved
during operation and
experiments in 2010/2011

Parameter Nominal Achieved

Intensity (p/bunch) 1.15 × 1011 2.3 × 1011

Emittance 3.75 μm ≤2.00 μm
β∗ 0.55 m 1.5 m
ξ /IP 0.0035 0.0170
Bunch spacing 25 ns 50 ns
Bunches/beam 2808 1380
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Fig. 4.25 Losses of bunches with different number of head-on collisions [170]. Numerology: blue
(3 collisions), red (2 collisions), green (1 collision), black (no collision)

regular operational fill of 10 h duration. The correlation between losses and number
of head-on collisions is apparent and a more detailed analysis is found in [170].
The transverse emittances during normal operation are larger (~2.5 μm) than in
the head-on test. In a second experiment we increased the bunch intensity further
to ~2.3 × 1011 p/b with emittances of ~1.80 μm. Although the tune shift was
slightly lower than in the previous experiment (0.015), the lifetime was worse. We
interprete these results as losses of particles at large amplitudes. This is supported
by the observation that the strongest losses occur at the very beginning of a fill (Fig.
4.25).

4.6.7 Crossing Angle and Long Range Interactions

To reach the highest luminosity, it is desirable to operate a collider with as many
bunches as possible since the luminosity is proportional to their number (4.62)
[162].

In a single ring collider such as the SPS, Tevatron or LEP, the operation with
k bunches leads to 2k collision points. When k is a large number, most of them
are unwanted and must be avoided to reduce the perturbation due to the beam–
beam effects. Various schemes have been used to avoid these unwanted “parasitic”
interactions. In the SPS, Tevatron and in LEP so-called Pretzel schemes were used.
When the bunches are equidistant, this is the most promising method. When two
beams of opposite charge travel in the same beam pipe, they can be moved onto
separate orbits using electrostatic separators. In a well-defined configuration the two
beams cross when the beams are separated. To avoid a separation around the whole
machine, the bunches can be arranged in so-called trains of bunches following each
other closely. In that case a separation with electrostatic separators is only needed
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around the interaction regions. Such a scheme was used in LEP in the second phase
[171].

Contrary to the majority of the colliders, the LHC collides particles of the same
type which therefore must travel in separate beam pipes. At the collision points of
the LHC the two beams are brought together and into collision. During that process
it is unavoidable that the beams travel in a common vacuum chamber for more than
120 m. In the LHC the distance between the bunches is only 25 ns and therefore
the bunches will meet in this region. In order to avoid the collisions, the bunches
collide at a small crossing angle of 285 μrad. While two bunches collide at a small
angle (quasi head-on) at the centre, the other bunches are kept separated by the
crossing angle. However, since they travel in a common beam pipe, the bunches
still feel the electromagnetic forces from the bunches of the opposite beam. When
the separation is large enough, these so-called long-range interactions should be
weak.

4.6.7.1 Long-Range Beam–Beam Effects

Although the long-range interactions distort the beams much less than a head-
on interaction, their large number and some particular properties require careful
studies:

• They break the symmetry between planes.
• While the effect of head-on collisions is strongest for small amplitude particles,

they mostly affect particles at large amplitudes.
• The tune shift caused by long-range interactions has opposite sign in the plane of

separation compared to the head-on tune shift.
• They cause changes of the closed orbit [153].
• They largely enhance so-called PACMAN effects [168].

4.6.7.2 Opposite Sign Tune Shift

The opposite sign of the tune shift can easily be understood when we average the
oscillation of a small amplitude particle as it samples the focusing force of the
beam–beam interaction. When the separation is larger than ~1.5σ , the focusing
(slope of the force as a function of the amplitude) changes the sign and the resulting
tune shift assumes the opposite sign.

To some extend this property could be used to partially compensate long-range
interactions when a configuration is used where the beams are separated in the
horizontal plane in one interaction region and in the vertical plane in another
one.
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4.6.7.3 Strength of Long-Range Interactions

Assuming a separation d in the horizontal plane, the kicks in the two planes can be
written as

Δx ′ = −2Nr0

γ

(x + d)

r2

(
1 − e−

r2

2σ2

)
(4.65)

with r2 = (x + d)2 + y2. The equivalent formula for the plane orthogonal to the
separation is

Δy ′ = −2Nr0

γ

y

r2

(
1 − e

− r2

2σ2

)
(4.66)

The effect of long-range interactions must strongly depend on the separation.
The calculation shows that the tune spread ΔQlr from long-range interactions alone
follows an approximate scaling (for large enough separation, i.e. above ~6σ )

ΔQlr ∝ −N

d2 (4.67)

where N is the bunch intensity and d the separation. Small changes in the separation
can therefore result in significant differences. Since the symmetry between the two
planes is broken, the resulting footprint shows no symmetry. In fact, the tune shifts
have different signs for x and y, as expected.

4.6.7.4 Footprint for Long-Range Interactions

Contrary to the head-on interaction where the small amplitude particles are mostly
affected, now the large amplitude particles experience the strongest long-range
beam–beam perturbations. This is rather intuitive since the large amplitude particles
are the ones which can come closest to the opposing beam as they perform their
oscillations. We must therefore expect a totally different tune footprint. Such a
footprint for only long-range interactions is shown in Fig. 4.26.

4.6.8 Studies of Long Range Interactions in the LHC

To study the effect of long range beam–beam interactions we have performed a
dedicated experiment [172]. The LHC was set up with single trains of 36 bunches
per beam, spaced by 50 ns. The bunch intensities were ~1.2 × 1011 p/b and the
normalized emittances around 2.5 μm. The trains collided in IP1 and IP5, leading to
a maximum of 16 long range encounters per interaction point for nominal bunches.
First, the crossing angle (vertical plane) in IP1 was decreased in small steps and the
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Fig. 4.26 Tune footprint for long-range interactions only. Vertical separation and amplitudes
between 0 and 20σ

10

Fig. 4.27 Integrated losses of all bunches as a function of time during scan of beam separation in
IP1. Numbers show percentage of full crossing angle

losses of each bunch recorded. The details of this procedure are described in [173]
and the results are shown in Fig. 4.27 where the integrated losses for the 36 bunches
in beam 1 are shown as a function of time and the relative change of the crossing
angle is given in percentage of the nominal (100%≡ 240 μrad). The nominal value
corresponds to a separation of approximately 12σ at the parasitic encounters. From
Fig. 4.27 we observe significantly increased losses for some bunches when the
separation is reduced to about 40%, i.e. around 5σ. Not all bunches are equally
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Fig. 4.28 Integrated losses of all bunches along a train of 36 bunches, after reducing the crossing
angle in IP1

affected. At a smaller separation of 30% all bunches experience significant losses
(~4σ). Returning to a separation of 40% reduces the losses significantly, suggesting
that mainly particles at large amplitudes have been lost during the scan due to
a reduced dynamic aperture. Such a behaviour is expected [174]. The different
behaviour is interpreted as a “PACMAN” effect and should depend on the number
of long range encounters, which varies along the train. This is demonstrated in Fig.
4.28 where we show the integrated losses for the 36 bunches in the train at the end of
the experiment. The maximum loss is clearly observed for the bunches in the centre
of the train with the maximum number of long range interactions (16) and the losses
decrease as the number of parasitic encounters decrease. The smallest loss is found
for bunches with the minimum number of interactions, i.e. bunches at the beginning
and end of the train [166, 167]. This is a very clear demonstration of the expected
different behaviour, depending on the number of interactions.

In the second part of the experiment we kept the separation at 40% in IP1 and
started to reduce the crossing angle in the collision point IP5, opposite in azimuth
to IP1. Due to this geometry, the same pairs of bunches meet at the interaction
points, but the long range separation is in the orthogonal plane. This alternating
crossing scheme was designed to compensate first order effects from long range
interactions [166]. The Fig. 4.29 shows the evolution of the luminosity in IP1 as
we performed the scan in IP5. The numbers indicate again the relative change of
separation, this time the horizontal crossing angle in IP5. The luminosity seems to
show that the lifetime is best when the separation and crossing angles are equal for
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Fig. 4.29 Luminosity in IP1 as a function of time during scan of beam separation in IP5

the two collision points. It is worse for smaller as well as for larger separation. This
is the expected behaviour for a passive compensation due to alternating crossing
planes, although further studies are required to conclude.

4.6.8.1 Dynamic Aperture Reduction Due to Long-Range Interactions

For too small separation, the tune spread induced by long-range interactions can
become very large and resonances cannot be avoided any more. The motion can
become irregular and as a result particles at large amplitudes may be lost.

To evaluate the dynamic aperture in the presence of beam–beam interactions,
a simulation of the complete machine is necessary and the interplay between the
beam–beam perturbation and possible machine imperfections is important [174].

For the present LHC parameters we consider the minimum crossing angle to be
285 μrad.

4.6.8.2 Beam–Beam Induced Orbit Effects

When two beams do not collide exactly head-on, the force has a constant contribu-
tion which can easily be seen when the kick Δx

′
from (4.65), for sufficiently large
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separation, is developed in a series

Δx ′ = const

d

[
1 − x

d
+O

(
x2

d2

)]
(4.68)

A constant contribution, i.e. more precisely an amplitude independent contribu-
tion, changes the orbit of the bunch as a whole. When the beam–beam effect is
strong enough, i.e. for high intensity and/or small separation, the orbit effects are
large enough to be observed.

When the orbit of a beam changes, the separation between the beams will change
as well, which in turn will lead to a slightly different beam–beam effect and so
on. The orbit effects must therefore be computed in a self-consistent way [175],
in particular when the effects are sizeable. The closed orbit of an accelerator can
usually be corrected, however an additional effect which is present in some form in
many colliders, sets a limit to the correction possibilities. A particularly important
example is the LHC and therefore it will be used to illustrate this feature.

We have to expect a slightly different orbit from bunch to bunch. The bunches
in the middle of a train have all interactions and therefore the same orbit while the
bunches at the beginning and end of a train show a structure which exhibits the
decreasing number of long-range interactions. The orbit spread is approximately
10–15% of the beam size. Since the orbits of the two beams are not the same, it
is impossible to make all bunches collide exactly head-on. A significant fraction
will collide with an offset. Although the immediate effect on the luminosity is
small [162], collisions at an offset can potentially affect the dynamics and are
undesirable. The LHC design should try to minimize these offsets [168, 176]. A
further consequence of the LHC filling and collision scheme is that not all bunches
experience all head-on collisions [176]. Some of the bunches will collide only in
2 instead of the 4 nominal interaction points, leading to further bunch-to-bunch
differences. In Fig. 4.30 we show a prediction for the vertical offsets in IP1 [166,
167]. The offsets should vary along the bunch train. Although the orbit measurement
in the LHC is not able to resolve these effects, the vertex centroid can be measured
bunch by bunch in the experiment (Fig. 4.31).

4.6.9 Coherent Beam–Beam Effects

So far, we have mainly studied how the beam–beam interaction affects the single
particle behaviour and treated the beam–beam interaction as a static lens. In the
literature, this is often called a “weak–strong” model: a “weak” beam (a single
particle) is perturbed by a “strong” beam (not affected by the weak beam). When
the beam–beam perturbation is important, the model of an unperturbed, strong beam
is not valid anymore since its parameters change under the influence of the other
beam and vice versa. When this is the case, we talk about so-called “strong–strong”
conditions. The first example of such a “strong–strong” situation was the orbit effect
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Fig. 4.30 Computed orbit offsets in IP1 along the bunch train [166, 167]

Fig. 4.31 Measured orbit offsets in IP1 along the bunch train [177, 178]

where the beams mutually changed their closed orbits. These closed orbits had to
be found in a self-consistent way. This represents a static strong–strong effect.

In the next step, we investigate dynamic effects under the strong–strong condition
[179].

When we consider the coherent motion of bunches, the collective behaviour of all
particles in a bunch is studied. A coherent motion requires an organized behaviour
of all particles in a bunch. A typical example are oscillations of the centre of mass
of the bunches, so-called dipole oscillations. Such oscillations can be driven by
external forces such as impedances and may be unstable. At the collision of two
counter-rotating bunches not only the individual particles receive a kick from the
opposing beam, but the bunch as an entity gets a coherent kick. This coherent kick
of separated beams can excite coherent dipole oscillations. Its strength depends on
the distance between the bunch centres at the collision point. It can be computed
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Fig. 4.32 Basic dipole modes of two bunches. Relative position of the bunches at the interaction
point at two consecutive turns

by adding the individual contributions of all particles. For small distances, it can
be shown [153, 180] that it is just one half of the incoherent kick a single particle
would receive at the same distance. For distances large enough the incoherent and
coherent kicks become the same.

4.6.9.1 Coherent Beam–Beam Modes

To understand the dynamics of dipole oscillations we first study the simplest case
with one bunch in each beam. When the bunches meet turn after turn at the collision
point, their oscillation can either be exactly in phase (0 degree phase difference)
or out of phase (180 degrees or π phase difference). Any other oscillation can be
constructed from these basic modes. The modes are sketched very schematically in
Fig. 4.32. The relative positions of the bunches as observed at the interaction point
are shown for two consecutive turns n and n + 1. The first mode is called the 0-
mode (or sometimes called σ -mode) and the second the π-mode. In the first mode,
the distance between the bunches does not change turn by turn and therefore there
is no net force driving an oscillation. This mode must oscillate with the unperturbed
frequency (tune) Q0. For the second mode, the net force difference between two
turns is a maximum and the tune becomes Q0 +ΔQcoh. The sign of ΔQcoh depends
whether the two beams have equal charge (defocusing case) or opposite charge
(focusing case). The calculation of ΔQcoh is non-trivial: when the bunches are
considered as rigid objects, the tune shift can be computed easily using the coherent
kick but is underestimated [181]. The correct calculation must allow for changes of
the density distribution during the collision and moreover, must allow a deviation
from a Gaussian function. The computation requires to solve the Vlasov-equation
of two coupled beams [182–185].
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Self-consistent multi-particle simulations form a complementary study, but
require large computing resources. Furthermore, the fields produced by the beams
must be computed in a self-consistent form before every collision [186].

The 0-mode is found at the unperturbed tune as expected. The π-mode is shifted
by 1.2–1.3ξ . The precise value depends on the ratio of the horizontal and vertical
beam sizes [183]. We have seen before the incoherent tune spread (footprint) the
individual particles occupy and we know that it spans the interval [0.0,1.0]ξ , starting
at the 0-mode.

Here one can make an important observation: under the strong–strong condition
the π-mode is a discrete mode outside the incoherent spectrum [184, 185]. This
has dramatic consequences for the stability of the beams. A coherent mode that is
outside an incoherent frequency spectrum cannot be stabilized by Landau damping.
Under these conditions the coherent beam–beam effect could drive the dipole
oscillation to large amplitudes and may result in the loss of the beam. Observations
of the coherent beam–beam effects have been made at PETRA [181]. Beam–beam
modes have been observed with high intensity coasting beams in the ISR [187], and
recently in a bunched hadron collider at RHIC [188].

Coherent beam–beam modes can be driven by head-on collisions with a small
offset or by long-range interactions. In the first case and for small oscillations,
the problem can be linearized and the theoretical treatment is simplified. The
forces from long-range interactions are very nonlinear but the numerical evaluation
is feasible. Since the coherent shift must have the opposite sign for long-range
interactions, the situation is very different. In particular the π-mode from long-range
interactions alone would appear on the opposite side of the 0-mode in the frequency
spectrum [185, 186]. Both, the incoherent and the coherent spectra include both
types of interactions.

4.6.10 Compensation of Beam–Beam Effects

For the case the beam–beam effects limit the performance of a collider, several
schemes have been proposed to compensate all or part of the detrimental effects.
The basic principle is to design correction devices which act as non-linear “lenses”
to counteract the distortions from the non-linear beam–beam “lens”. For both head-
on and long-range effects schemes have been proposed

• Head on effects:

– Electron lenses
– Linear lens to shift tunes
– Non-linear lens to decrease tune spread

• Long-range effects:

– At large distance: beam–beam force changes like 1/r
– Same force as a wire!
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4.6.10.1 Electron Lenses

The basic principle of a compensation of proton–proton (or antiproton) collisions
with an “electron lens” implies that the proton (antiproton) beam travels through
a counter-rotating high current electron beam (“electron lens”) [189, 190]. The
negative electron space charge can reduce the effect from the collision with the
other proton beam.

An electron beam with a size much larger than the proton beam can be used to
shift the tune of the proton beam (“linear lens”). When the current in the electron
bunches can be varied fast enough, the tune shift can be different for the different
proton bunches, thus correcting PACMAN tune shifts.

When the electron charge distribution is chosen to be the same as the counter-
rotating proton beam, the non-linear focusing of this proton beam can be compen-
sated (“non-linear lens”). When it is correctly applied, the tune spread in the beam
can be strongly reduced.

Such lenses have been constructed at the Tevatron at Fermilab [190] and
experiments are in progress.

4.6.10.2 Electrostatic Wire

To compensate the tune spread from long-range interactions, one needs a non-linear
lens that resembles a separated beam. At large enough separation, the long-range
force changes approximately with 1/r and this can be simulated by a wire parallel
to the beam [191].

In order to compensate PACMAN effects, the wires have to be pulsed according
to the bunch filling scheme. Tests are in progress at the SPS to study the feasibility
of such a compensation for the LHC.

4.6.10.3 Möbius Scheme

The beam profiles of e+ e− colliders are usually flat, i.e. the vertical beam size is
much smaller than the horizontal beam size. Some studies indicate that the collision
of round beams, even for e+ e− colliders, show more promise for higher luminosity
since larger beam–beam parameters can be achieved. Round beams can always be
produced by strong coupling between horizontal and vertical planes. A more elegant
way is the so-called Möbius lattice [192, 193]. In this lattice, the horizontal and
vertical betatron oscillations are exchanged by an insertion. A horizontal oscillation
in one turn becomes a vertical oscillation in the next turn and vice versa. Tests with
such a scheme have been done at CESR at Cornell [193].
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4.7 Numerical Modelling

G. Rumolo

Collective effects can be studied analytically, either through the perturbation
formalism applied to the Vlasov equation or by means of few (typically two
or three) particles models with the basic ingredients such as to reproduce the
essential features of the phenomenon under study. Both ways are usually based
on simplified approaches, in which some assumptions are necessary to make the
models analytically solvable and lead to limited sets of equations relatively easy to
interpret and handy to use.

The analytically solvable two or three particles models can be refined further to
more realistic models, in which more than just few particles are assumed to represent
the full particle beam. However, since the number of coupled differential equations
to be solved grows proportionally with the number of particles used in the model,
the resulting set of equations will rapidly become unmanageable as we increase the
number of macroparticles (which are used to approximate the beam with a reduced
number of particles), unless it is fed into a numerical simulation to be run on a
computer. By using computers, the number of macroparticles necessary to model
a beam can be pushed up to several millions, which is very useful to study the
details of all possible internal oscillation modes of a bunch (or train of bunches),
and also incoherent effects like emittance growth. Although ideally we would like
to develop simulation programs that take into account the highest possible number
of effects, in practice the existing codes narrow down their models to one or few
effects, whose consequences in the beam dynamics are interesting to single out.
For example, to study the effects of electron clouds, the beam will be made to
interact with a given electron cloud at some locations around the accelerator ring,
but in general other possible interactions with impedances, or the concurrent effects
of space charge, beam–beam, Intra Beam Scattering, will be neglected. Although
the study of two or more effects simultaneously is technically possible in most
cases, at the present state of art of the simulations, it is generally preferred to
limit the study of such interplays, because the combined models are difficult to
control and tend to break down. Pushing further on this line, not only different
effects can be decoupled in simulations, but also different regimes can be studied
separately in the beam dynamics. For instance, for some problems only a partial
description of the beam will be sufficient, so that transverse problems can be treated
separately from longitudinal problems as well as single-bunch/multi-turn effects can
be studied ignoring that these bunches are parts of long trains. In some cases, single-
bunch/single- or multi-turn effects can also be modelled to generate driving terms
to be used in reduced studies extending over longer time scales.

To perform a simulation, we will therefore have to define our beam as an
ensemble of macroparticles, identified through arrays containing the phase space
coordinates of each macro-particle (2–6-dimensional). This beam is first initialized
and then transported across selected points of the accelerator ring using the
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appropriate transformation matrices. At each of these points, the interaction with
the desired collective effect will be applied (e.g. the beam’s own space charge field,
an electron cloud, a wake field). It is clear, therefore, that a numerical simulation
requires in the first place the knowledge of the driving term to be applied at each
interaction point. That is why in the following we separate the general simulation
into the solution of an electromagnetic problem, in which the collective interaction
is modelled and the resulting excitation on the beam is calculated (at least, its non-
self-consistent part), and the beam tracking part, in which the evolution of a beam is
studied under the effect of this excitation. Note that most of numerical simulations
including collective effects are based on time domain models, as these are best suited
to describe the usually non-stationary beam evolution under the effect of collective
interactions.

4.7.1 The Electromagnetic Problem

The first step to set up a numerical simulation including a collective effect consists
of identifying the source of the self-induced perturbation acting on the beam and
modelling it in a way that can be subsequently used. We usually distinguish three
different types of collective interactions, which can take place with: (i) space charge
(see Sect. 4.1); (ii) wake fields from an accelerator component or part of the resistive
beam pipe (see Sect. 4.2); (iii) another “beam” of charged particles. This secondary
beam can be either a counter-rotating beam in a collider (see Sect. 4.6), or a static
cloud formed by the accumulation of particles, usually of opposite charge, around
the primary beam (see Sect. 4.5).

If the source of the perturbation is space charge, then two different approaches
are possible to compute its effect. Analytical formulae are available for the elec-
tromagnetic fields of coasting beams with ellipsoidal or Gaussian transverse sizes,
as well as of ellipsoidal or Gaussian bunches (in all dimensions). The additional
kicks given by these electromagnetic fields can be therefore calculated and applied
to the beam macroparticles in a finite number of locations along the ring (even if the
space charge interaction is in reality continuous). When doing that, self-consistency
requires that the sizes of the bunch are updated at every kick point. Another possible
approach consists of using the macroparticle distributions at each selected kick point
to calculate self-consistently the electric field with a Poisson solver and use it to
calculate the electromagnetic kicks on the macroparticles. It is worth noting that
the same approach can be used for beam–beam problems, because the shape of
the required electric field is the same, even if the coefficients need to be adapted
(electric and magnetic forces tend to cancel at ultra-relativistic energies for space
charge, while they add up for beam–beam).

If the source of the perturbation is a wake field from an accelerator component
or resistive wall, the shape of the relative wake function has to be calculated
beforehand. This is done analytically for some specific cases (e.g. resistive wall,
step or tapered transitions), but in general dedicated electromagnetic codes can be
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used for this purpose. Some of them work in time domain, and can provide the wake
potentials for given source bunches (usually chosen to be short enough as to simulate
ideal pulse excitations and thus provide directly the wake functions). Other work in
frequency domain and output impedances, which need then to be back-transformed
into time domain to obtain the wake functions.

If the source of the perturbation is for example an electron cloud, then the
electron distribution of the cloud is usually calculated beforehand by means of an
electron cloud build-up code, and then its interaction with a coming bunch is calcu-
lated. Programs tracking simultaneously electrons and beam particles are presently
under development or test, due to the massive memory and CPU requirements to
solve this type of problems. On the other hand, generation and tracking of the ions
can be included in multi-bunch beam tracking programs to calculate the effect of
ions on bunched electron beams in a fully self-consistent manner. This is due to
the fact that, while ions do not move significantly during the passage of an electron
beam and allow modelling the bunches as charged disks, electrons can even perform
several oscillations during the passage of a bunch, which requires a much more
detailed modelling of the bunch.

4.7.2 Beam Dynamics

Beam dynamics tracking codes simulate the motion of beam particles inside an
accelerator by transporting them across a number of discrete points by means of
transformation matrices. In each of these points, additional kicks can be added,
modelling either nonlinear components and errors of the external fields or the
collective interactions. In the previous subsection, we have outlined the procedure
to calculate the excitation to be applied to the beam to compute its evolution
when it feels one or more collective interactions. To model the effects of space
charge, wake fields and electron clouds, it is certainly necessary to describe the
beam as an ensemble of macroparticles but beside that, its longitudinal structure
needs also to be detailed. In particular, to model coupled bunch instabilities the
relative positions of the macroparticles across the different bunches are necessary
to determine the total effect of the wake acting on each of them. For single-bunch
effects, a possible technique is to subdivide the bunch into several slices, so that the
macroparticles of each slice can feel the integrated effect of the wakes left behind by
the preceding slices (or the space charge from its own and the neighbouring slices,
or the electron cloud as was deformed by the previous slices). A possible scheme of
numerical simulation of a single bunch under the effect of a longitudinal wake field
is illustrated in Fig. 4.33.

The bunch is first divided into N slices and a kick must be applied to each
macroparticle within a given slice at a certain kick point. The kick depends on
the longitudinal wake function and the charge distribution of the preceding slices.
In the longitudinal plane, particles within a slice feel also the effect of the same
slice to which they belong, because the bunch suffers a net energy loss. After all
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Fig. 4.33 Example of numerical simulation with collective effects: schematic view of the
interaction of a single bunch with a longitudinal wake field at several locations in an accelerator
ring

the particles in the bunch feel the effect of the wake at the kick point, they are
subsequently transported to the next kick point in the accelerator optical model.
Since synchrotron motion plays a key role in most of the effects under study, it is
essential that particles are made to execute their synchrotron oscillations and move
across slices from turn to turn. This means that collective effects dealing with single-
bunch problems need to have at least one model of synchrotron motion built in, and
that the bunch binning has to be regularly updated. Since the synchrotron motion
is slow enough, and in reality the RF cavities do really kick the beam particles
once or few times per turn, the longitudinal coordinates and the bunch slicing are
usually not updated more frequently than once per turn. However, the update of the
longitudinal coordinates from kick to kick point within one single turn, based on
the only drift from momentum spread, could become significant especially in space
charge simulations.

The simulation scheme with transverse wakes is basically the same as the one
displayed in Fig. 4.33, except that particles inside one slice do not feel the effect of
the same slice (as the transverse wakes are zero in the origin, for ultra-relativistic
particles) and dipolar and quadrupolar contributions can be separated, making the
wake kicks depending not only on the position of the source slice but also on the
position of the witness macroparticles. The simulation scheme with the electron
cloud is again similar to the one shown in Fig. 4.33, but the fundamental difference
is that there is a mutual action between beam and electron cloud, so that, while
macroparticles within a slice feel the effect of the electron cloud, the electron cloud
itself is also deformed by the action of the passing slice.
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The modelling described in the previous subsections has been frequently applied
to explain collective instabilities observed in running machines, as well as to predict
instability thresholds (both in existing and future machines) and develop strategies
to circumvent limitations from collective effects. For instance, a detailed impedance
model of the SPS comprises the contributions from several accelerator components
and is used for deriving single-bunch wake fields, which are the driving terms for
HEADTAIL simulations. The kicks given to the beam particles by the different
wake fields can be then either applied at the real locations in which the sources
are situated, or weighted by the beta functions, summed up and applied in a
single location using a one-kick approximation. These simulations can be used for
predicting at which intensity transverse mode coupling occurs and the effects of
chromaticity on this threshold value [194]. This is very important to extrapolate
the beam stability limits in different conditions of operation, e.g. with a different
optics or to the upgraded machine, which will be in principle enabled to receive
higher intensity bunches. The mode shift can be plotted as a function of the bunch
intensity, because the main modes are detectable from the Fourier analysis of the
centroid motion. A typical plot of mode shift provided by simulations is displayed
in Fig. 4.10.
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Chapter 5
Interactions of Beams with Surroundings

M. Brugger, H. Burkhardt, B. Goddard, F. Cerutti, and R. G. Alia

With the exceptions of Synchrotron Radiation sources, beams of accelerated
particles are generally designed to interact either with one another (in the case of
colliders) or with a specific target (for the operation of Fixed Target experiments,
the production of secondary beams and for medical applications). However, in
addition to the desired interactions there are unwanted interactions of the high
energy particles which can produce undesirable side effects. These interactions
can arise from the unavoidable presence of residual gas in the accelerator vacuum
chamber, or from the impact of particles lost from the beam on aperture limits
around the accelerator, as well as the final beam dump. The wanted collisions of the
beams in a collider to produce potentially interesting High Energy Physics events
also reduces the density of the circulating beam and can produce high fluxes of
secondary particles.

All of these unwanted interactions affect the performance of an accelerator, in
desorption of gas from the vacuum system, in reduced lifetime of the circulating
beam, in reduction of the collider luminosity and in background for the detectors.
In this chapter the basic physical phenomena of particle interactions with matter
are described, together with the techniques used to simulate the interaction with
matter. The different types of particle interactions with the surroundings are
elaborated in the context of their adverse effects on the accelerator performance
and the mitigation measures. A full description of the effects and mitigation
measures associated with the vacuum systems of accelerators is given separately
in Chap. 8.
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5.1 The Interactions of High Energy Particles with Matter

Modern accelerators use leptons or hadrons (including ions) and have beam energies
spanning the MeV to TeV range. Therefore, the capability of modelling particle
interactions and showers from these energy ranges down to thermal energies is
essential during all stages of the lifetime cycle of an accelerator, from the accelerator
design through operation to its final decommissioning.

Before briefly discussing general aspects of hadronic and electromagnetic show-
ers, a short overview is given of important ingredients for accelerator applications:

• energy deposition for the design of accelerator components and elements (e.g.,
collimators, magnets);

• particle fluences as a function of energy, angle and position (e.g., detector or
radiation damage and radiation to electronics studies);

• distribution of particle interactions, inelastic interaction density (e.g., for tracking
and loss pattern studies);

• residual nuclei production and generation of radioactive isotopes by beam
interactions (e.g., radiation protection aspects like air activation or equipment
handling).

To allow for calculations of related quantities, the underlying physical processes
must not only be well understood and described in models, but also included in
calculation codes able to yield allow reliable estimates within a reasonable time.

5.1.1 Basic Physical Processes in Radiation Transport
Through Matter

Hadron and electromagnetic showers are very complex phenomena, whose descrip-
tion in terms of basic physical interactions requires a detailed and complex
modelling.

As soon as the energy of a primary hadron beam exceeds a few tens of MeV,
inelastic interactions start playing a major role and generate secondary particles
that will have enough energy to trigger further interactions giving rise to hadronic
showers. Furthermore, whenever the beam energy is high enough that significant
pion production can occur, an increasing fraction of the energy will be transferred
from the hadronic to the electromagnetic part due to meson decay (e.g., π0 decaying
into a gamma pair). The pion production threshold for nucleons interacting with
stationary nucleons is around 290 MeV.

Therefore, energetic hadronic showers are always accompanied by significant
electromagnetic showers, where the latter ones tend to develop independently
without further hadronic particle production (with the exception of electro- and
photo-nuclear interactions of lower importance for hadron accelerators, which
however have to be considered for lepton accelerators).
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While electromagnetic interactions can be described in one coherent theory
(QED), the same does not apply to hadronic nuclear interactions.

The development of hadron initiated showers is determined both by atomic
processes (e.g. ionization, multiple Coulomb Scattering, etc.), which take place very
frequently, as well as relatively rare nuclear interactions (both elastic and nonelas-
tic). Electromagnetic showers are determined by the same atomic processes plus
additional ones (e.g., Bremsstrahlung, pair production, Compton scattering, etc.)
which are specific for electrons, positrons or photons. Nuclear interactions coming
from the electromagnetic component usually play a minor role, and whenever the
interest is not in the small fraction of hadrons produced by electromagnetic particles
they can be safely neglected.

Concerning particle production, energetic (shower) particles are concentrated
mainly around the primary beam axis, regardless of their identity. Their ionization
as well as the electromagnetic cascades define the core of the energy deposition
distribution. At the same time, neutrons (since these are the only neutral hadrons
with a long enough lifetime) will dominate at energies where charged particle
ranges become shorter than the respective interaction length. In this sense, the
energy deposition associated with low energy neutron interactions constitute the
peripheral tails of the energy deposition distribution. Most of the interactions are
due to particles (mainly neutrons) of moderate energy.

Pions can be only produced by shower particle interactions, so that they are often
considered as the real indicator of a high energy cascade. Neutrons, and to a lesser
extent protons, are copiously produced also in the final stages of nuclear interactions
(e.g., evaporation) down to projectile energies that are comparable to their nuclear
binding energy.

As previously mentioned, to focus on the relevant processes one usually distin-
guishes between continuous and discrete (or explicit) processes. This distinction
reflects a real physical distinction, between processes which occur very frequently
with mean free paths much shorter than particle ranges in matter, and others
that, however, are often the dominating ones in determining the shower develop-
ment.

The most important discrete processes are:

• inelastic nuclear interaction;
• decay;
• elastic nuclear interaction;
• delta-ray production;
• bremsstrahlung;
• annihilation;
• photoelectric effect;
• Compton scattering;
• pair production;
• coherent (Rayleigh) scattering.

In addition to these processes, nuclear interactions with a much lower rate can
occur also for photons (as well as with a reduced rate of about 1/137 for electrons
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and positrons). Bremsstrahlung radiation can also be produced by “heavy” charged
particles even though it is significantly suppressed. Furthermore, charged particles
(light and heavy ones) can produce electron-positron pairs.

5.1.2 Simulation Tools

In all life cycle stages of an accelerator the use of simulation, notably Monte-
Carlo codes, became fundamental. Thanks to the variety of such codes over
different particle physics applications and the associated extensive benchmarking
with experimental data, the modelling has reached an unprecedented accuracy.
Furthermore, most codes allow the user to simulate all aspects of a high energy
particle cascade in one and the same run: from the first interaction over the transport
and re-interactions (hadronic and electromagnetic) of the produced secondaries, to
detailed nuclear fragmentation, the calculation of radioactive decays and even of the
electromagnetic shower from such delayed decays.

In the following we give a brief overview of the most used multi-purpose codes
around accelerator applications.

5.1.2.1 FLUKA

FLUKA is a general-purpose particle interaction and transport code with roots in
radiation protection and respective design and detector studies for high energy
accelerators [1, 2]. It comprises all features needed in this area of application,
such as detailed nuclear interaction models, full coupling between hadronic and
electromagnetic processes and numerous variance reduction options.

The module for hadronic interactions is called PEANUT and consists of a
phenomenological description (Dual Parton Model-based Glauber Gribov cas-
cade) of high energy interactions, through a generalized intranuclear cascade,
pre-equilibrium emissions as well as evaporation, fragmentation, fission and de-
excitation by gamma emission. Interactions of ions are simulated through interfaces
with different codes depending on the energy range (DPMJET3 above 5 GeV/n and
rQMD-2.4 between 0.125 and 5 GeV/n, while the embedded Boltzmann Master
Equation model is applied below 0.125 GeV/n).

The transport of neutrons with energies below 20 MeV is performed by a multi-
group algorithm based on evaluated cross section data (ENDF/B, JEFF, JENDL etc.)
binned into 260 energy groups, 31 of which in the thermal region. For a few isotopes
point-wise cross sections can be optionally used. The detailed implementation of
electromagnetic processes in the energy range between 1 keV and 1 PeV is fully
coupled with the models for hadronic interactions.
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5.1.2.2 GEANT4

GEANT4 is an object-oriented toolkit originally designed to simulate detector
responses of modern particle and nuclear physics experiments [3, 4]. It consists of
a kernel which provides the framework for particle transport, including tracking,
geometry description, material specifications, management of events and interfaces
to external graphics systems.

The kernel also provides interfaces to physics processes. In this regard the
flexibility of GEANT4 is unique as it allows the user to select freely the physics
models which serve best the particular application needs. This freedom comes
with high responsibility as the user must ensure that the most adequate models
are used for a given problem. Implementations of interaction models exist over
an extended range of energies, from optical photons and thermal neutrons to high
energy interactions as required for the simulation of accelerator and cosmic ray
experiments. In many cases complementary or alternative modelling approaches are
offered from which the user can choose.

Descriptions of intranuclear cascades include implementations of the Binary
and the Bertini cascade models (the latter significantly reworked and not at all
linked to the original Bertini model). Both are valid for interactions of nucleons
and charged mesons, the former for energies below 3 GeV and the latter below
10 GeV. The Intranuclear Cascade of Liège (INCL) is also an usable option.
At higher energies (up to 10 TeV), three models are available: a high-energy
parameterized model (using fits to experimental data), a quark-gluon string model
and the Fritiof fragmentation model, both based on string excitations and decay into
hadrons. Nuclear de-excitation models include abrasion-ablation and Fermi-breakup
models. Furthermore, heavy ion interactions can also be simulated if the appropriate
packages are linked.

The package for electromagnetic physics comprises the standard physics pro-
cesses as well as extensions to energies below 1 keV, including emissions of X-rays,
optical photon transport, etc.

5.1.2.3 MARS15

The MARS15 code system [5, 6] is a set of Monte Carlo programs for the simulation
of hadronic and electromagnetic cascades which is used for shielding, accelerator
design and detector studies. Correspondingly, it covers a wide energy range:
100 keV–100 TeV for muons, charged hadrons and heavy ions, 1 keV–100 TeV for
electromagnetic showers and down to 0.00215 eV for neutrons.

Hadronic interactions above 5 GeV can be simulated with either an inclusive
or an exclusive event generator. While the former is CPU-efficient (especially at
high energy) and based on a wealth of experimental data on inclusive interaction
spectra, the latter provides final states on a single interaction level and preserves
correlations. In the exclusive mode, the cascade-exciton model code CEM03,
the Quark-Gluon String Model code LAQGSM03 and the DPMJET3 code are
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implemented, including models for a detailed calculation of nuclide production via
evaporation, fission and fragmentation processes.

Interfaced to MARS, the MCNP4C code handles all interactions of neutrons with
energies below 14 MeV. Produced secondaries other than neutrons are directed back
to the MARS15 modules for further transport.

5.1.2.4 MCNP

MCNP6 [7] originates from the Monte Carlo N-Particle transport (MCNP)-family
of neutron interaction and transport codes and, therefore, features one of the
most comprehensive and detailed description of the related physical processes.
The extension to other particle types, including ions and electromagnetic particles,
allowed an expansion of the areas of application from purely neutronics to, among
others, accelerator shielding design, medical physics and space radiation.

The neutron interaction and transport modules use standard evaluated data
libraries mixed with physics models where such libraries are not available. The
transport is continuous in energy and includes all features necessary for reactor
simulations, including burn-up, depletion and transmutation. Different generalized
intranuclear cascade codes can be linked to explore different physics implementa-
tions, such as CEM03, INCL4 and ISABEL. They either contain fission-evaporation
models or can be coupled to such models (i.e., ABLA) allowing detailed predictions
for radio-nuclide production. While the intranuclear cascade codes are limited to
interaction energies below a few GeV, a link to the Quark-Gluon String Model code
LAQGSM03 extends this energy range to about 800 GeV. The latter code also allows
the simulation of ion interactions.

5.1.2.5 PHITS

The Particle and Heavy-Ion Transport code System PHITS (see [8] and [9] and
references therein) was among the first general-purpose codes to simulate the trans-
port and interactions of heavy ions in a wide energy range, from 10 MeV/nucleon to
100 GeV/nucleon. It is based on the high-energy hadron transport code NMTC/JAM
which was extended to heavy ions by incorporating the JAERI Quantum Molecular
Dynamics code JQMD.

Below energies of a few GeV hadron-nucleus interactions in PHITS are described
through the production and decay of resonances while at higher energies (up to
200 GeV) inelastic hadron-nucleus collisions proceed via the formation and decay
of so-called strings which eventually hadronize through the creation of (di)quark-
anti(di)quark pairs. Both are embedded into an intranuclear cascade calculation.
Nucleus-nucleus interactions are simulated, within a molecular dynamics frame-
work, based on effective interactions between the two self-binding system of
nucleons.
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The generalized evaporation model GEM treats the fragmentation and de-
excitation of the spectator nuclei and includes 66 different ejectiles (up to Mg)
as well as fission processes. The production of radioactive nuclides, both from
projectile and target nuclei, thus follows directly from the microscopic interaction
models.

The transport of low energy neutrons employs cross sections from evaluated
nuclear data libraries such as JENDL below 20 MeV. Electromagnetic interactions
are simulated based on the EGS5 code in the energy range between 1 keV and 1 TeV.

Due to its capability to transport nuclei PHITS is frequently applied in ion-
therapy and space radiation studies. The code is also used for general radiation
transport simulations, such as in the design of spallation neutron sources.

5.1.2.6 Simulation Uncertainties

Depending on the complexity of Monte-Carlo simulations, the size of geometries
and the energy range involved, calculations can carry considerable uncertainties
of various sources which are in many cases difficult to evaluate. While statistical
uncertainties are generally below a few percent thanks to the available computing
power, systematic errors are in most cases very difficult, or even impossible, to
predict in an accurate way.

The main sources of error are:

• Error due to the physics modelling: e.g., in the uncertainty in cross sections,
especially at modern accelerators operating at very high energies or applications
sensitive to other uncertainties in the modelling used in the simulation code. One
can usually expect up to few 10% uncertainty on integral quantities, while for
multi differential quantities the uncertainty can be much worse.

• Further uncertainties due to the assumptions used in the description of the
geometry and of the materials under study. Usually it is difficult to quantify
this uncertainty and experience shows that a factor of 2 can be taken as a safe
limit for general calculations. For special cases, even in case of rather complex
geometries, but when the design is implemented to a very detailed level, the latter
can be reduced to about 10–20%, but rarely significantly below.

• Typical for accelerator applications, additional errors appear when having beams
grazing at small angles to surfaces, where either the surface roughness is not
taken into account, small misalignments can have large effects, or where one is
interested in scattering effects over large distances. Therefore, especially for the
latter, a safety factor of 2–3 has to be considered.

Only a detailed case-by-case analysis and careful evaluation with monitoring data
can reduce the above to very low levels. Such studies are continuously done by code
developers, as well as core code users and nicely show the possible high-accuracy
reached with modern Monte-Carlo codes (see for instance [10]).
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5.1.3 Practical Shielding Considerations

In most of the cases around high-energy hadron accelerator operation, the particle
cascades originate from beam interactions due to four basic source terms:

• beam–beam interactions (at and close to the experiments);
• beam–residual gas interactions (all along the accelerator);
• direct losses: beam cleaning at collimator locations or beam dump;
• spurious losses (random locations around the accelerator).

The emerging secondary particle cascade is then again defining a multi particle-
type and energy spectrum, interacting with the various materials around the
accelerator. Therefore, in order to reduce the radiation levels and the corresponding
fluences, shielding material can be employed to initiate and absorb showers. If
the shielding material is thick, the cascades continue until most of the charged
particles and photons have been absorbed, except for neutrons and secondary
photons.

The following aspects have to be considered in the shielding conceptual design:

5.1.3.1 Radiation Attenuation

The propagation of high-energy hadrons features an exponential decrease due to
nuclear reactions, while their energy loss, in case they are charged, is mostly due to
ionization. The latter accounts for the majority of the energy loss in electromagnetic
showers and for about 2/3 of the energy deposited in hadronic showers. Most of
the other 1/3 of the hadronic energy is carried away by neutrons. Being neutral
these are not affected by ionization losses, are decoupled from the rest of the
shower, are subject to elastic and inelastic collisions and are considerably more pen-
etrating than the charged component. Hadronic showers above 100 MeV progress
through a variety of hadronic and nuclear processes that result in secondaries
that are predominantly pions (π+, π−,π0), followed in importance by nucleons
(protons, neutrons), strange mesons/baryons and photons. The π0 component,
appearing whenever hadron energies are above the pion production threshold,
is particularly important, since it decays immediately to two photons producing
electromagnetic showers and shifting the shower energy from the hadronic to
the electromagnetic sector. Hadrons above few tens of MeV undergo nuclear
reactions that increase the neutron multiplicity. The spallation process breaks the
nucleus into a few large fragments. Additional neutrons may also be produced just
during this process, as well as by the subsequent evaporation from these excited
fragments.

Since the fragments have large mass (M) and total charge (Z) and ionize, they
will be stopped quickly in dense shield materials.
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5.1.3.2 Shielding of Electromagnetic Showers

As mentioned earlier, electromagnetic showers in the multi-GeV range develop
through successive bremsstrahlung and pair production. The particles involved
are photons, electrons and positrons that in dense materials have typical radiation
lengths in the centimeter range. As a result, high-energy electromagnetic showers
are halted by a typical concrete shielding wall having thickness of the order of 1 m or
by a tungsten layer of a few centimeters. It has to be noted that secondary neutrons
are also generated through photo-production, thus associated shielding issues have
to be correctly considered.

5.1.3.3 Shielding of Neutrons

The elastic scattering cross section of neutrons on nuclei is large at all energies and
has a role in attenuating them. The scattered neutron will lose energy on every elastic
collision, especially if the target nucleus is light and so carries away a larger fraction
of the energy as it recoils. Therefore, the presence of hydrogen is most effective in
reducing the neutron kinetic energy. Special care must be taken with respect to:

• neutrons streaming through ventilation channels or other penetrations, where
intermediate and low-energy neutrons readily scatter from the wall. Propagation
down the channel is thus possible via a series of ‘reflections’ even if the channel
is not in the original direction of the neutron;

• the thermalization of neutrons, in the presence of certain elements with high
capture cross-sections (e.g., Boron or Cobalt) that effectively clean the neutron
field but can induce relevant secondary effects (e.g., electronic damage or
activation issues).

Monte Carlo calculations aimed at shielding design optimization may require
dedicated biasing techniques to overcome the associated statistical convergence
challenges.

5.2 Lifetimes, Intensity and Luminosity

Particles which circulate on stable orbits in an accelerator within the geometrical
and energy acceptance can get lost as a result of collisions with other particles. This
leads to a decrease of the number of particles N circulating with time t .

The beam intensity lifetime τ is the inverse of the total loss rate dN/dt ,
normalized to the actual intensity N (at the time t)

1

τ
= − 1

N

dN

dt
. (5.1)
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Fig. 5.1 Schematic view of
beam collisions with the
nuclei (N) of the rest-gas

γ

N

beam

beam pipe

design path

A constant lifetime corresponds to an exponential decay of the intensity with
time t proportional to exp(−t/τ ).

The intensity and beam lifetime can be monitored by measuring the beam current
I which is directly proportional to the intensity, I = Nef , where e is the charge of
the particle and f the revolution frequency in a ring [11].

We can distinguish between several types of collision processes.

• Beam-gas scattering: collisions of beam particles with particles from the residual
gas in the evacuated beam pipe, sketched in Fig. 5.1.

• Thermal photon scattering: inverse Compton scattering of electrons or positrons
with photons from black-body radiation in the beam pipe; relevant for beam
energies> 10 GeV

• Intra-beam scattering: collisions or close encounters with other particles in the
same beam; most relevant at lower energies and for very dense beams

• Quantum lifetime: particles leaving the acceptance by quantum fluctuations in
synchrotron radiation

• Colliding beams: particle collisions or close encounters when beams cross in
colliders

Estimates for the first two types which involve collisions with particles outside the
beam will be given below.

The losses from the different loss mechanism have to be added. This implies, that
the corresponding lifetime contributions add reciprocally

1

τ
=
∑

i

1

τi

An example of observed lifetimes in LEP is listed in Table 5.1, where losses from
intrabeam scattering were negligible.

The single beam lifetime is observed before beams are brought into collisions.
In LEP this was dominated by the thermal photon scattering. LEP was generally
operated with sufficient aperture and over-voltage from the RF-acceleration system,
so that losses from the quantum lifetime were negligible. More details on lifetimes
observed in LEP with a discussion of quantum lifetime and small, but non-negligible
effects which made lifetimes longer than originally anticipated can be found in [12].
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Table 5.1 Example of the
beam lifetime in LEP, fill
4163 from 14-Sep-1997 at
Eb = 91.5 GeV

Component Lifetime τ in hours

Thermal Compton 50

Beam Gas, 0.3 nTorr CO 160

Combined, single beam 38

e+e− collisions, σ = 0.21 barn 8.6

Total 7

5.2.1 Beam-Gas

From ideal gas theory, the density ρm in terms of molecules or atoms per unit volume
is

ρm = p

kT
. (5.2)

Multiplying ρm with the cross section σ for beam-gas collisions, gives us the
collision probability per unit length

Pcoll = σ ρm .

Further multiplication with the velocity of the beam particles v = βc gives us the
collision rate per unit time

βc σ ρm = 1

τ
(5.3)

which corresponds to the inverse lifetime, if σ is the cross section for collisions
which lead to a loss of the beam particles. This will be the case for inelastic
scattering processes and for elastic scattering in which the scattering angle is larger
than the angular acceptance.

For numerical estimates in this section we take ρm = 3.26 × 1013 molecules/m3

which corresponds to a pressure of p = 1 Torr = 1.33 × 10−7 Pa at room
temperature (T = 296.15 K = 23 ◦C) and can be considered as typical number
for good vacuum conditions. At high energy we have β ≈ 1. For a cross section
of σ = 1 b (one barn, where 1b = 10−28 m2), we obtain a beam-gas lifetime
τ = 284 h.

The main beam-gas scattering processes are shown in Fig. 5.2.

eN Scattering Relevant for Electron Rings
The elastic cross section for eN scattering scales strongly with energy (with 1/γ 2)
and scattering angle 1/θ4. Elastic scattering is mostly relevant as a halo production
process for lower energy rings and becomes negligible for lifetime estimates for
high energy electron rings.
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Fig. 5.2 Beam-gas scattering processes; elastic and inelastic eN scattering relevant for e+, e−
machines is shown on the left and pN scattering relevant for proton machines on the right

At high energy, the dominating beam-gas process for electron rings is the
inelastic scattering or bremsstrahlung in which the incident electron interacts with
the field of the residual gas nucleus and radiates a photon.

The high energy cross section for eN scattering can be written in good approxi-
mation in dependently of the electron energy as [13]

σeN = 4α r2
e Z(Z + 1) log(287/

√
Z)

(

−4

3
log kmin − 5

6
+ 4

3
kmin − k2

min

2

)

,

(5.4)

where kmin is the fractional energy loss or minimum photon energy in units of the
electron energy, α the fine-structure constant (1/137) and Z the atomic number
(or number of protons). We can see that the cross section scales with Z(Z + 1).
Numerical values obtained from Eq. 5.4 for kmin = 0.01 are shown in Table 5.4.

pN Scattering Relevant for Electron Rings
At high energies (plab > 10 GeV), the pN cross section is mostly inelastic (> 80%).
It depends only weakly on the proton energy and scales approximately with the
atomic mass ∝ A2/3 [14], as can be expected for the cross-section of a sphere.
Numerical values are listed in Table 5.2. We can see that pN cross sections are
much smaller (∼10×) than eN cross sections. Good beam-gas lifetimes in proton
machines can be several 103 h compared to typically 102 h in high energy electron
machines.

5.2.2 Thermal Photons

Even a perfectly evacuated beam pipe remains “filled” with photons from black
body radiation which can be relevant as source of backgrounds and reduction of
beam lifetime as first pointed out by V. Telnov in 1987 [15]. The photon density
from black-body radiation is
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Table 5.2 Numerical values
for σeN for an energy loss of
at least 1% and for σpN, the
pN cross section at high
energy (plab = 0.01–10 TeV)

Gas σeN σpN

b b

H2 0.28 0.08

He 0.39 0.19

CH4 3.02 0.43

H2O 4.38 0.40

N2 6.47 0.56

CO 6.56 0.56

CO2 10.7 0.87

Ar 17.8 0.60

beam pipe

γ

e Compton

scattering

Fig. 5.3 Schematic view of the inverse Compton scattering with thermal photons. A high energy
beam particle collides and loses energy to a low energy photon radiated from the beam pipe by
black body radiation

ργ = 8π

(
kT

hc

)3 ∫ ∞

0

x2

ex − 1
dx

︸ ︷︷ ︸
= 2.404

(5.5)

where T is the absolute temperature, and k,h,c the Boltzmann, Planck constants and
the speed of light. For a beam pipe at room temperature (23 ◦C), we get a photon
density of ργ = 5.3 × 1014 m−3 which is an order of magnitude higher than the
typical residual gas molecular densities ρm, considered in this chapter for beam gas
estimates (Fig. 5.3).

The lifetime from thermal photon scattering is

τt = 1

ργ c σC︸ ︷︷ ︸
∼26 h

1

floss
(5.6)

where ργ is the photon density, σC the Compton cross section (at high energy ∼
0.665 barn) and floss the fraction of the e± lost after collision. Numerical values
calculated using the program described in [16] are given in Table 5.3. We can see that
thermal photon scattering at room temperature becomes only relevant for electron
beam energies above 10 GeV.
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Table 5.3 Thermal photon
scattering

Eb floss τt

(GeV) (%) (h)

10 0.3 9000

45.6 19 144

100 39 72

250 61 49

Fraction of beam parti-
cles lost and lifetime, for
various electron beam
energies Eb. At room
temperature and for an
energy acceptance of 2%

5.2.3 Luminosity Lifetime

In analogy to Eq. 5.1, the luminosity L lifetime is defined as

1

τL
= − 1

L

dL

dt
. (5.7)

The luminosity for colliding beams depends on the product of the colliding beam
intensities, or N2 in case of equal beam intensities. At constant beam sizes, the
luminosity decreases as dN2/dt = 2dN/dt , so that the luminosity lifetime is half
of the intensity lifetime τL = τ/2. For operation at the beam-beam limit as is typical
for high luminosity e+e− storage rings, beam sizes increase with intensity such that
the beam-beam parameter is constant, and L ∝ N and therefore τL = τ . In proton
machines, beam sizes tend to increase with time due to intrabeam scattering, noise
and vibrations, resulting in luminosity lifetimes τL < τ/2.

5.3 Experimental Conditions

The most important performance parameters for colliders for particle physics are

• the beam energy; higher beam energies allow to study smaller distances and to
produce new heavier particles;

• high luminosity to obtain sufficient collisions rates to observe new processes or
to improve the measurement precisions.

It is also essential to provide good experimental conditions for the particle detectors
installed around the collision regions. Criteria for good experimental conditions
are

• low backgrounds;
• good knowledge and stability of beam parameters;
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• minimize the risk of damage of the detectors by beam loss and irradiation;
• minimize the size of the beam pipe in the detector region to allow for the

installation of vertex detectors as close as possible to the interaction region;
• maximize the space available for the detector and the solid angle coverage down

to low angles close to the beam.

These are rather conflicting requirements. Minimizing the size of the beam pipe
for installation of sensitive vertex detectors close to the beam pipe will increase
the background rates hitting the detector region and increase the risk of damage by
beam loss. The requirements for maximum space and solid angle coverage for the
detectors are also in conflict with the requirements of the accelerator to maximize
luminosity by

• allowing for space close to the interaction point for final focus quadrupoles;
• reducing the β-function at the interaction point, which increases the beam size

in the final focus quadrupoles with the risk to create local aperture limits and
losses and which limits the space and low angle coverage available for particle
detection;

• installation of beam-separators close to the interaction region to allow to fill the
machine with many bunches.

It is essential to consider the accelerator and detector requirements together, both
during the design stage and also later in the optimization of the running parameters.

Experience shows that it typically takes several years to commission and
optimize the performance of a new accelerator. During these first years, it will often
be possible to increase the luminosity without compromising on the experimental
conditions for the detectors. Detailed simulation and continuous monitoring of
the background conditions are important to identify potential limitations, to guide
further optimization and to identify the potential for upgrades towards higher
luminosities or smaller beam pipes.

Different types of backgrounds and their mitigation with examples from LEP and
LHC are now discussed.

5.3.1 Sources of Detector Background and Detector
Performance

It is possible to distinguish between two main types of machine induced back-
grounds

• backgrounds induced by losses of beam particles;
• background from synchrotron radiation, relevant for high energy e+, e− beams.
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Table 5.4 Lifetimes τ and beam loss rates dN/dt in LEP2 and the (nominal) LHC, compared to
the bunch crossing rates fc

Ntot τ (h) −dN/dt (Hz) fc (Hz) − dN
dt
/fc (Hz)

LEP2 3.2e12 5 1.8 × 108 4.5 × 103 4 × 104

LHC 6.5e14 10 1.8 × 1010 3.2 × 107 6 × 102

Machine induced backgrounds by particle loss are relevant for all (circular and
linear) colliders. Even under good conditions, millions of particles will be lost
per second, exceeding by several orders of magnitude the beam crossing rates,
see Table 5.4. A minimum requirement is that only a very small fraction of these
particles gets lost close to the detector, such that the background rate in the
interaction region is small compared to the bunch crossing rates.

To achieve this one has to assure

• good vacuum conditions in the region around the detectors, in order to minimize
local losses by beam-gas scattering in the detector region;

• that there is no aperture limitation which would concentrate losses close to the
detectors.

the latter imposes limits on the minimum β in the interaction region and hence
the maximum luminosity. A standard method to reduce backgrounds from par-
ticle losses is to use aperture limiting collimators to remove high amplitude
halo particles. These should be placed far from the experiments, to minimize
the probability that secondary particles scattered off the collimators reach the
experiments.

For beam energies above about 50 GeV, the production of secondary muons in
electromagnetic showers has to be taken into account. High energy muons are hard
to shield. Muon production and shielding is taken into account in the design studies
for high energy linear colliders [17, 18].

The final focus quadrupoles placed around the interaction regions of colliders
generate a high local chromaticity which can lead to a concentration of losses of
off-momentum particles into the detectors. LEP2 was equipped with momentum
collimators in the dispersion suppressors around all experimental sections to reduce
the flux of off-momentum particle generated by e+e− collisions, bremsstrahlung in
the residual gas and thermal photon scattering.

5.3.2 Synchrotron Radiation Background

The energy spectrum of the synchrotron radiation photons radiated by a high
energy electron (or positron or proton) travelling on a circular orbit of radius ρ
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is characterised by the critical energy

Ec = 3

2
h̄c

γ 3

ρ
. (5.8)

The number of photons radiated in a bending magnet of lengthL and bending radius
ρ is (α = e2/ 4πε0h̄c is the fine-structure constant and γ the Lorentz factor of the
particle) and the energy loss U0 per beam particle and turn are

Nγ,L = 5αγL

2
√

3ρ
, U0 = 4παh̄c γ 4

3ρ
(5.9)

The photon energy increases with γ 3 and the energy loss in synchrotron radiation
over one turn as γ 4. A practical limit was reached with electrons at LEP at beam
energies around 100 GeV, corresponding to a Lorentz factor γ ≈ 2 × 105 when 3%
of the particle energy was lost on a single turn, while for the 1836 times heavier
protons synchrotron radiation only becomes noticeable at TeV energies. Numerical
values for the main synchrotron radiation parameters for several e+e− colliders, the
LHC with protons at 7 TeV and the proposed FCC colliders[23, 24] are shown in
Table 5.5.

The normalised quadrupole power spectrum (for flat beams as typical for e+, e−
colliders) is

sd (k) = 9
√

3

8π
k

∫ ∞

k

K5/3(s) ds , k = E

Ecr
.

Table 5.5 Synchrotron radiation parameters; p is the beam-momentum, ρ the bending radius of
the main dipole magnets

Machine p γ ρ Ec Nγ U0 Ntot Ptot

(GeV/c) (m)

Da�ne 0.51 998 97.7 457 eV 66 9.3 keV 2.1 × 1013 98 kW

PEP-II HER 9.0 17,613 163 9.9 keV 1166 3.57 MeV 4.5 × 1013 3.4 MW

PETRA 23.4 45,792 192 148 keV 3031 138 MeV 1.0 × 1012 3.0 MW

TRISTAN 32. 62,622 244 298 keV 4144 380 MeV 8.8 × 1011 5.3 MW

LEP1 45.6 89,237 3026 70 keV 5906 126 MeV 1.9 × 1012 0.4 MW

LEP2 94.5 184,932 3026 619 keV 12,239 2.3 GeV 3.2 × 1012 13 MW

FCC-ee,Z 45.6 89,237 10,190 22 keV 5973 36 MeV 2.8 × 1015 50 MW

FCC-ee,tt 182.5 357,144 10,190 1323 keV 23,636 9.19 GeV 1.1 × 1013 50 MW

LHC 7000 7460.5 2784 44.1 eV 494 6.7 keV 6.5 × 1014 7.8 kW

FCC-hh 50,000 53,289 10,572 4.24 keV 3733 4.6 MeV 1.1 × 1015 2.5 MW

Nγ ,U0 are the number of photons radiated and the energy loss per beam particle and turn.Ntot, Ptot
are the number of beam particles and the power radiated in the accelerator
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Half of the power is radiated below the critical photon energy.
Quadrupoles can be considered as bending magnets which increase in strength

with the distance from the magnet axis. The equations given above also hold for
quadrupoles for Gaussian beams if we take as ρ the bending radius of the quadrupole
at 1σ offset from the beam axis [19]. The normalised quadrupole power spectrum is

sq (k) = 9
√

3

8π
k

∫ ∞

0

(
1 − erf(k/

√
2s)
)
K5/3(s) ds , k = E

Ecr,1σ
,

and is shown in Fig. 5.4 together with the spectrum for a dipole.
Averaged over the ring, the synchrotron power radiated in the quadrupoles

remains usually very small compared to the power radiated in the main dipole mag-
nets. Due to the vicinity and strength of the quadrupoles around the experiments, it is
mandatory to include these in background estimates and also important to consider
the possibility of non-Gaussian tails which increase the synchrotron radiation from
quadrupoles.

Background estimates for synchrotron radiation depend critically on design
details: the magnet lattice, beam pipe geometry, materials and beam parame-
ters. Estimates were often done using dedicated “home-grown” programs with
ad-hoc interfaces between separated simulations of the accelerator components,
synchrotron radiation generation and simulation of the interactions in the detectors.
More recently it has become feasible with the programs BDSIM and MDISim, both
based on GEANT4, to perform more flexible integrated simulations which include
all relevant components and processes [21, 22].

We will now shortly look at LEP2 which had the strongest synchrotron radiation
of all colliders and still tolerable background levels for the detectors. The amount
of synchrotron radiation in LEP was huge, particularly at LEP2 energies: about
6×1020 photons were emitted per second and a power of 18 MW lost to synchrotron
radiation. The experiments had to be very well screened using a sophisticated
collimation system with about 100 movable collimators and in addition fixed masks
close the experiments [20]. The typical layout of the collimators in a straight section,

Fig. 5.4 Normalised power
spectra for synchrotron
radiation in a dipole and a
quadrupole
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Fig. 5.5 Schematic layout of a straight section at an interaction point (IP) of LEP in the horizontal
(top) and vertical (bottom) planes. Shown are the locations of the quadrupoles (QS), electrostatic
separators (ES) and collimators (COLH, COLV, COLZ). The solid lines mark the inner vacuum
chamber radii

where only scattered synchrotron light could reach the detectors, is shown in
Fig. 5.5. The synchrotron radiation spectrum is broad and photons down to about
20 keV can leave the beam pipe. The lower energy X-ray radiation can undergo
low angle (multiple) reflection. The strong radiation from the main dipoles of LEP
was intercepted close to the arcs, with collimators located between 100 and 220 m
away from the interaction point, before the photons could be scattered at low angle
towards the experiments. To reduce the radiation shining into the straight sections
further, the first dipoles in the arcs had only 10% of the field of the normal arc
dipoles.

Local masks were installed about 2.4 m from the interaction points to improve
the shielding of the experiments from the increased synchrotron radiation at LEP2.
The collimators and masks close to the interaction point were however also a source
of scattered background particles. The surface material and inclination of the masks
was optimized to minimize the scattering towards the experiment: the masks were
made of tungsten and the surface coated with silver and copper layers to reduce the
emission of fluorescence photons.

The background photons observed in the detectors originated mainly from syn-
chrotron radiation in the last quadrupoles and was backscattered into the experiment
from local collimators. The bunch crossing rate in LEP was about 45 kHz and
typically only a few background photons were recorded per bunch crossing in the
large wire chambers of the LEP detectors. There was no problem with detector
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occupancy, but the currents drawn in the gas-chambers were reported to be not too
far from the tolerable limit. The experience gained with LEP has been essential for
the design studies for a possible future circular lepton collider at CERN [23, 25].
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Chapter 6
Design and Principles of Synchrotrons
and Circular Colliders

B. J. Holzer, B. Goddard, Werner Herr, Bruno Muratori, L. Rivkin,
M. E. Biagini, J. M. Jowett, K. Hanke, W. Fischer, F. Caspers, and D. Möhl

6.1 Beam Optics and Lattice Design in High Energy Particle
Accelerators

B. J. Holzer

Lattice design in the context we will describe it here is the design and optimization
of the principle elements—the lattice cells—of a circular accelerator, and it includes
the dedicated variation of the accelerator elements (as for example position and
strength of the magnets in the machine) to obtain well defined and predictable
parameters of the stored particle beam. It is therefore closely related to the theory
of linear beam optics that has been described in Chap. 2 [1].
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6.1.1 Geometry of the Ring

For the bending force as well as for the focusing of a particle beam, magnetic fields
are applied in an accelerator. In principle, electrostatic fields would also be possible
but at high momenta (i.e. if the particle velocity is close to the speed of light) the
usage of magnetic fields is much more efficient. In its most general form, the force
acting on the particles is given by the Lorentz-force

F = q (E + v × B) (6.1)

In high energy accelerators, the velocity v is close to the speed of light and
so represents a nice amplification factor whenever we apply a magnetic field. As
a consequence, it is much more convenient to use magnetic fields for bending
and focusing the particles. Neglecting the E component therefore in Eq. (6.1), the
condition for a circular orbit is defined as the equality of the Lorentz force and the
centrifugal force:

qvB = mv2

�
(6.2)

In a constant transverse magnetic field B, the particle will see a constant
deflecting force and the trajectory will be a part of a circle, whose bending radius ρ
is determined by the particle momentum p = mv and the external B field.

ρ = p

qB
(6.3)

The term Bρ is called beam rigidity. Inside each dipole magnet in a storage
ring the bending angle—sketched out in Fig. 6.1—is given by the integrated field
strength via

α =
∫
Bds

Bρ
(6.4)

Requiring a bending angle of 2π for a full circle, we get the condition for the
magnetic dipole fields in the ring. In the case of the LHC e.g. for a momentum of
p = 7000 GeV/c a number of 1232 dipole magnets are needed each having a length
of ~15 m with a B-field of 8.3 T. As a general rule in high energy rings, about
66% (2/3) of the circumference of the machine should be foreseen to install dipole
magnets, as they define the maximum particle momentum that can be carried by
the machine. This basic dipole structure is completed with focusing elements, beam
diagnostic tools etc. and forms the arcs of the ring. They are connected by long
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Fig. 6.1 B-field in a storage ring dipole magnet and schematic particle orbit

straight sections, so-called insertions, where the optics are modified to establish
conditions needed e.g. for particle injection or extraction and the installation of the
radio-frequency resonators for the particle acceleration. In the case of collider rings
so-called mini-beta insertions are included, where the beam dimensions are reduced
considerably to increase the particle collision rate and where space is needed for the
installation of the particle detectors.

The lattice and correspondingly the beam optics therefore are split in different
characteristic parts: arc structures that are used to guide the particle beam and define
the geometry of the ring; they establish a regular pattern of focusing elements. And
the straight sections, that are optimised for the installation of a manifold of technical
devices, including the high-energy physics detectors.

6.1.2 Lattice Design

An example of such a high-energy lattice and the corresponding beam optics is
shown in Fig. 6.2. In the upper part of the figure the regular pattern of the beta
function is plotted in red and green for the two transverse planes. As a consequence
of the periodic structure of the lattice, the beta function—and so the beam size—
reaches a maximum value in the centre of the focusing, and a minimum in the centre
of the defocusing quadrupoles. The lower part of the figure shows the horizontal and
vertical dispersion function. The lattice of the complete machine is designed on the
basis of small periodic lattice structures—called cells—that repeat many times in
the ring. One of the most widespread lattice cells used in high-energy rings is the
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Fig. 6.3 Basic element of a high-energy storage ring: the FODO cell

so-called FODO cell: A magnet structure consisting of focusing and defocusing
quadrupole lenses in alternating order. In between the focusing elements the dipole
magnets are located and any other machine elements like orbit corrector dipoles,
multipole correction coils or diagnostic instruments can be installed.

In Fig. 6.3 the optical solution of such a FODO cell is plotted: The graph shows
the β-function in the two transverse planes (red curve for the horizontal, green curve
for the vertical plane). In the lower part of the plot the position of the magnet
lenses, the lattice, is indicated schematically. In first order the optical properties
of such a lattice are determined only by the parameters of the focusing (F) and
de-focusing (D) quadrupole lenses. In between these two quadrupole magnets only
lattice elements are installed that have zero (“O”) or negligible influence on the
transverse particle dynamics. Hence the acronym FODO for such a structure. Due
to the symmetry of the cell the solution for the β function is periodic (in general
such a FODO cell is the smallest periodic structure in a storage ring) and it reaches
its extreme values at the position of the quadrupole lenses. As a consequence, at
these locations in the arc, the beam will reach its maximum dimension σ = √

εβ,
and the aperture need will be highest.

Accordingly, the “Twiss” parameter α, which is the derivative of β is generally
zero in the middle of the FODO quadrupoles. Based on the thin lens approximation
a number of scaling laws and rules can be established to understand the properties
of such a FODO structure [2]: How do we arrange the strength and position of the
quadrupole lenses in the lattice to obtain a certain beta-function? How does the cell
length influence the phase advance of the particle trajectories? How do we guarantee
that, turn by turn, a stable particle oscillation is obtained?
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In the following we briefly summarise these rules.

• Stability of the motion: the strengths of the focusing (and defocusing) elements
in the lattice have to be such that the particle oscillation does not increase. This
condition—the stability criterion for a periodic structure in a lattice—is obtained
in a FODO if the focal length of the magnets is larger than a quarter of the cell
length:

f = 1

kl
= Lcell

4
. (6.5)

• The beta function—and so the beam size—is determined by the phase advance
of the cell and its length:

βmax,min = 1 ± sin (ϕcell/2)

sin ϕcell
Lcell . (6.6)

• A similar scaling law is obtained for the dispersion:

Dmax,min = L2
cell

4ρ

1 ± 1
2 sin (ϕcell/2)

sin2 (ϕcell/2)
. (6.7)

In general, small values for the β functions as well as for the dispersion are
desired. It will be the intention of the lattice designer to minimise the beam size, and
so to optimise the aperture need of the beam. In addition the β-function indicates
the sensitivity of the beam with respect to external fields and field errors. A change
in a quadrupole field e.g. will shift the tune of the beam by

�Q = 1

4π

∫
�k(s)β(s)ds. (6.8)

The effect is proportional to the size of the applied change in quadrupole field,
�k but also to the value of the beta function at this position. Therefore, the phase
advance of the FODO cell has to be chosen to obtain smallest values for β in both
transverse planes, which leads in the case of protons or heavy ions to an optimum
phase advance of 90◦ per cell. It will be no surprise that the focusing structure
of typical high energy proton rings like SPS, Tevatron, HERA-p and LHC were
optimised for this value.

In addition to the main building blocks, the dipoles and quadrupole magnets, the
FODO will be equipped with a number of correction magnets for orbit correction,
compensation of higher harmonic field errors of the main magnets, and sextupoles
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Fig. 6.4 FODO cell of LHC. In addition to the two main quadrupoles and six dipole magnets,
diagnostic instruments and multipole compensation coils are included in the arc lattice

for chromaticity compensation of the machine. The FODO cell of LHC, including
these corrector magnets is illustrated in Fig. 6.4.

Six dipoles and two main quadrupoles are forming the basic structure of the cell;
they are complemented by orbit correction dipoles, trim quadrupoles that are used
for fine tuning of the working point and multipole correction coils to compensate
higher order field distortions up to 12 pole [3].

Among the higher order correction coils mentioned above the sextupoles play
the most critical role in the arc structure, as they are indispensable to compensate
the chromatic errors in the lattice. Chromaticity is an optical error that describes the
distortion of the focusing properties in a lattice under the presence of momentum
spread of the particle beam. In general a sextupole magnet will be installed to
support each quadrupole in the arc. At least two sextupole families are required,
one for each transverse plane. In some cases several families per plane are installed
to improve the region of stability in the transverse plane (the so-called dynamic
aperture of the storage ring). They have to be strong enough to correct the
chromaticity created in the arc cells as well as in the insertion sections. The
mechanism of chromaticity correction is based on the combination of the dispersion
function that sorts the particles according to their momentum and the nonlinear field
of a sextupole magnet:

Bz = 1

2
∼
g
(
x2 − z2

)
, (6.9)

where

∼
g = d2Bz

dx2 (6.10)

describes the sextupole “gradient”.



212 B. J. Holzer et al.

Normalizing the sextupole field to the beam rigidity we write the contribution of
each sextupole to the chromaticity as

�Q = 1

4π

∫
ksextDβdl (6.11)

and it depends indeed on the value of both, beta function and dispersion. Therefore
the sextupole magnets that are needed to compensate the natural chromaticity in the
ring will be located in the lattice at places where at the same time the dispersion and
the beta function are large, i.e. close to the corresponding quadrupole lenses.

6.2 Lattice Insertions

B. J. Holzer

The arc structure of a storage ring is usually built out of regular patterns like FODO
cells that are repeated periodically and determine the geometry of the machine.
Straight sections are inserted to combine these arcs and provide the space required
for beam injection, extraction, or dispersion free lattice parts to install e.g. RF
systems. Finally space is needed to establish the conditions that are required for the
collisions of the two counter rotating beams. As an example of the general layout
of a storage ring we refer again to the LHC lattice. Eight straight sections connect
eight arcs: four of them are used for beam injection, extraction and collimation,
the remaining four are optimised to house the high-energy detectors (IR1, 5, 2, 8
in Fig. 6.5). Here the storage ring lattice has to provide the free space needed for
the installation of a large modern particle detector and the beam optics has to be
modified to provide the strong focusing needed at the collision point.

6.2.1 Low Beta Insertions

The most important “insertion” for a particle collider ring is the so-called mini beta
structure: The key issue of a collider is its luminosity [4] that defines the rate of
produced collision events (particles or particle reactions of interest) in the machine.
Its value is defined by the machine lattice and under the assumption of equal beam
properties in the two colliding beams it is given by the stored currents in the two
beams, Ip1, Ip2, the revolution frequency f0, the number of stored bunches, nb, and
most of all by the transverse size of the two beams, σ ∗x and σ ∗y . In the simplest case
we get:

L = 1

4πe2f0nb

Ip1Ip2

σ ∗x σ ∗y
. (6.12)
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Fig. 6.5 Lattice geometry of
the LHC

A more general formula that includes geometric and optical reduction factors
is presented in Sect. 6.4 [4]. At the interaction point “IP”, the intention of the
lattice designer will be to reduce the beta function as much as possible in order
to obtain the smallest possible beam. The main limiting factor comes from a
basic principle which is valid for any system of particles under the influence of
conservative forces (“Liouville’s Theorem”): Under conservative forces, the density
of the particle’s phase space volume is constant. Applying this law to a particle
beam in an accelerator it means that the beam dimension and divergence are not
independent of each other. Namely for the design of symmetric drift space in a
storage ring we can deduce a rule for the beta function: Starting from a waist (α∗ = 0
at the collision point) the beta function develops as

β(s) = β∗ + s2

β∗
. (6.13)

The star refers to the value at the waist (e.g. the interaction point “IP”). This
relation is a direct consequence of Liouville’s theorem and therefore of fundamental
nature. As a consequence the behaviour of β in a symmetric drift cannot be changed
and has a strong impact on the design of a storage ring: Small beta functions at
the collision point and a large distance to the first focusing element lead to high
values of the beta function and correspondingly to large beam dimensions at the
first focusing element in front and after the IP.

The preparation of the beam optics for the installation of modern high-energy
detectors therefore needs special treatment in the lattice design to provide the
large space needed for the detector hardware. An illustrative example is shown in
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Fig. 6.6 Layout of a mini beta insertion scheme. The example shows a low beta insertion based
on a quadrupole doublet. The vertical beta function (green line) starting with smaller values at
the IP shows a stronger increase than the beta in the horizontal plane. Accordingly the doublet
quadrupoles are powered in QD-QF polarity

Fig. 6.6: a long symmetric drift space that holds the experiment is centred around
the interaction point of the colliding beams. Depending on the respective value of
beta at the IP the beta functions increase in the horizontal (red) and vertical (green)
plane and are focused back using a couple of strong, large aperture and high quality
quadrupole lenses. Depending on the particular situation (namely the ratio of the
two β∗ values in the two planes a quadrupole doublet or triplet arrangement will
be the adequate choice for these mini beta quadrupoles. Additional independent
quadrupole magnets (i.e. individually powered magnets) will be needed to create a
smooth transition of the optics from the IP to the periodic solution of the FODO
cells in the arc. In general eight parameters have to be optimised: the β and α values
in the two planes, the dispersion and its derivative and the phase advance of the
complete mini beta system. As a consequence such a mini beta insertion will have
to be equipped with at least eight individually powered quadrupole magnets to fulfil
this requirement.

It has been pointed out in the previous chapter that the emittance of a particle
beam is not constant during acceleration but depends on the energy of the particle
beam. In the case of a proton or ion beam the adiabatic shrinking is the dominant
effect and the emittance follows the rule ε ∝ 1/βγ where β and γ are the relativistic
parameters. As a consequence the emittance in a proton storage ring is highest at
injection energy and the beam optics has to be optimised to limit the beta function at
any place in the machine to values that guarantee sufficient aperture. At high energy
(the so-called flat-top) the emittance is small enough that the mini beta concept can
be used to full extend and only here the β∗ can be reduced to the small values that
are required to deliver the design luminosity values. The lattice of the mini beta
insertion therefore has to be optimised in a way, that two quite different beam optics
can be established by corresponding adjustment of the quadrupole gradients: A low
energy optics for injection and the early steps of the acceleration and a true mini
beta optics that will be used for the collider run at high energy.

The procedure to pass from the injection optics to the luminosity case is often
called “beta squeeze” and is a critical situation as optics, orbits and global beam
parameters like tune and chromaticity have to be maintained constant and well
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Fig. 6.7 (Left) Beam optics for the LHC: 450 GeV injection optics optimised for small values
of beta to gain highest aperture in the machine. (Right) Low beta optics for the LHC luminosity
operation: due to the small values at the IP the beta function reaches large values in the low beta
quadrupole lenses. (Note the different scale of the vertical axis)

controlled during the changing quadrupole settings. Several intermediate steps
might be needed to guarantee a smooth transition between the two operation modes.
In the case of the LHC the 450 GeV injection case and the 7 TeV luminosity optics
are compared in Fig. 6.7.

6.2.2 Injection and Extraction Insertions

In addition to the mini beta insertions where the beams are optimised for highest
collision rates, additional insertions are needed in the storage ring for beam injection
and extraction. In these cases the same rules are valid as for the mini beta insertions
but in general the consequences are more relaxed. Additional hardware that has to
be installed for the injection process (fast kicker magnets and septum dipoles to
inject the new beam) is much smaller than the detectors at the collision points. Still,
however, some modifications of the lattice will be needed and the optics will have to
be re-matched to establish the required space. A special additional feature should be
mentioned here: the new beam that is being injected has to match perfectly in energy
and in phase space to the optical parameters of the storage ring or synchrotron. At
the end of the beam transfer line as well as in the storage ring the focusing fields
have to be optimised to obtain the same values of the Twiss functions α and β in both
transverse planes. As in the case of the mini beta insertions additional individually
powered quadrupole magnets are needed. As an example the beam optics of the SPS-
LHC transfer-line is plotted in Fig. 6.8. At the beginning and the end of the lattice
structure—indicated by red markers in the figure—the beta function is modified to
match the optics from the SPS to the FODO channel of the transfer line and from
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Fig. 6.8 Transfer line between the SPS and the LHC. Two matching sections have to be introduced
to adopt the beam optics from the SPS to the transfer line and to the LHC

the FODO to the LHC insertion at IR2 and IR8 where the injection elements are
located.

6.2.3 Dispersion Suppressors

The dispersion function D(s) has already been introduced in Sects. 2.4 and 6.1. It
describes the trajectory in the case of a momentum deviation of the particle and is
the consequence of the corresponding error in the bending strength of the dipole
magnets. In the arc structure with its regular pattern of dipole magnets, dispersive
effects cannot be avoided (but they should be minimised) and the additional
amplitude due to the dispersion has to be considered if we are talking about particle
trajectories or beam sizes. In linear approximation and for a small momentum spread
�p/p in the beam, the amplitude of a particle oscillation is obtained by

x(s) = xβ(s)+D(s)
Δp

p0
, (6.14)

where xβ describes the solution of the homogeneous differential equation (the usual
betatron oscillations of the particle) and the second term—the dispersion term—
corresponds to the additional oscillation amplitude for particles with a relative
momentum error �p/p0. At the interaction point where the smallest beam sizes are
required to obtain the highest luminosity, we intend to suppress the dispersion and
as the collision point is generally located in a straight section of the accelerator,
techniques have been developed to obtain dispersion free sections inside the lattice.
The insertions that are used to reduce the dispersion function from its periodic value
in the arc to zero are called dispersion suppressors [2, 5, 6].

http://dx.doi.org/10.1007/978-3-030-34245-6_2
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It has to be mentioned in this context that especially in the case of synchrotron
light sources a variety of lattice types has been developed with the goal to achieve
small or even zero dispersion in the ring or in parts of it. However, these lattices
are optimised for the purpose of high brilliant synchrotron radiation and are not
ideal for high-energy particle accelerators, where FODO cells are usually the most
appropriate choice.

Referring to high energy colliders we will concentrate therefore on the interaction
region, i.e. a straight section of a ring where two counter rotating beams collide
in a dispersion free part of the storage ring. A non-vanishing dispersion dilutes
the luminosity of the machine and leads to additional stop bands in the working
diagram of the accelerator (“synchro-betatron resonances”), that are driven by the
beam-beam interaction. Therefore sections are inserted in our magnet lattice that are
designed to reduce the functionD(s) to zero. Three main techniques are widely used:
the quadrupole based dispersion suppressor, the missing bend scheme and the half
bend scheme. We will not present all of them in detail but instead restrict ourselves
to the basic idea behind it.

6.2.3.1 The “Straightforward” Way: Dispersion Suppression Using
Quadrupole Magnets

Let us assume here that a periodic lattice is given in the arc (see Fig. 6.2) and that
this FODO structure simply is continued through the straight section—but with
vanishing dispersion. Given an optical solution in the arc cells, as for example
shown in Fig. 6.9, we have to guarantee that starting from the periodic solution

Fig. 6.9 Periodic FODO and horizontal dispersion function in a regular FODO structure
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of the optical parameters α(s), β(s) and D(s) we obtain a situation at the end of the
suppressor where we get D(s) = D’(s) = 0 and the values for α and β unchanged.

The boundary conditions after the suppressor section

D(s) = D′(s) = 0,

βx(s) = βx arc, αx(s) = αx arc, (6.15)

βy(s) = βy arc, αx(s) = αy arc,

can be fulfilled by introducing six additional quadrupole lenses whose strengths
have to be matched individually in an adequate way. This can be done by using one
of the beam optics codes that are available today in every accelerator laboratory. An
example is shown in Fig. 6.10, starting from a FODO structure with a phase advance
of ϕ ≈ 70

◦
per cell.

The advantages of this scheme are:

• it works for any phase advance of the arc structure;
• matching works also for different optical parameters α and β before and after the

dispersion suppressor as—within a certain range—the quadrupoles can be used
to match the Twiss functions to different values;

• the ring geometry is unchanged as the number and location of dipole magnets in
the ring is unchanged.

Fig. 6.10 Periodic FODO and horizontal dispersion function in a regular FODO structure
dispersion suppressor scheme based on individually powered quadrupole lenses
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On the other hand there are a number of disadvantages that have to be men-
tioned:

• as the strength of the additional quadrupole magnets have to be matched
individually the scheme needs additional power supplies and quadrupole magnet
types which can be an expensive requirement;

• the required quadrupole fields are in general stronger than in the arc;
• the β function reaches higher values (sometimes really high values) which leads

to higher beam sensitivity and larger aperture needs.

There are alternative ways to suppress the dispersion, which do not need
individually powered quadrupole lenses but instead change the strength of the dipole
magnets at the end of the arc structure.

6.2.3.2 The “Clever” Way: Half Bend Schemes

This dispersion suppressing scheme is made up of n additional FODO cells that are
added to the periodic arc structure but where the bending strength of the dipole
magnets is reduced. As before we split the lattice into three parts: the periodic
structure of the FODO cells in the arc, the lattice insertion where the dispersion
is suppressed, followed by a dispersion free section which can be another FODO
structure without bending magnets or a mini beta insertion.

Starting from the dispersion free straight section the basic idea of this scheme
is to create with a special arrangement of dipole magnets inside the dispersion
suppressor—exactly the dispersion that corresponds to the periodic solution of the
arc FODO cells. The solution will depend on the phase advance of the cells as well
as on the strength of the bending magnets inside the suppressor magnets.

As explained before in the beam optics chapter, the matrix for a periodic part of
the lattice (namely one single cell in our case) can be expressed as

Mcell =
⎛

⎝
C S D

C′ S′ D′
0 0 1

⎞

⎠ =
⎛

⎜
⎝

cosφc βC sinφc D
− 1

βc
sinφC cosφc D′

0 0 1

⎞

⎟
⎠ , (6.16)

where the index “c” reflects the solution of a cell, φc denotes the phase advance for
a single cell and the elements D and D’ correspond to its periodic dispersion.

As usual the dispersion elements are obtained by

D(l) = S(l)

l∫

0

C
(∼
s
)

�
(∼
s
) d

∼
s − C(l)

l∫

0

S
(∼
s
)

�
(∼
s
)d

∼
s . (6.17)
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The functions C(s) and S(s) are the cosine and sine like matrix elements of the
lattice element in the sense that e.g. C(s) =M[1,1], and the integral is executed over
one complete cell.

In the dispersion suppressor section, the dispersion D(s) starts with the value D0
the end of the arc cell and is reduced to zero. Or turning it around and thinking from
right to left: the dispersion has to be created inside the suppressor part by proper
arrangement of the dipole magnets, starting from D = D’= 0 in the straight section
to reach the values that correspond to the periodic dispersion of the arc cells. Solving
the equation above by integrating over a certain number of cells will determine the
bending strength 1/ρ and the number n of cells in the suppressor part that is needed
to fulfill the boundary condition and get the values of the dispersion in the following
periodic arc cell.

For a given phase advance ϕc per cell two conditions for the dispersion matching
are obtained that combine the number of suppressor cells, n, and the strength of the
suppressor dipoles, δsupr:

2δsuprsin2
(
nφc

2

)
= δarc

sin (nφc) = 0

}

δsupr = 1

2
δarc. (6.18)

If the phase advance per cell in the arc fulfills the condition sin(nφc) = 0, the
strength of the dipoles in the suppressor region is just half the strength of the arc
dipoles. In other words the phase advance has to fulfill the condition

nφc = kπ, k = 1, 3, . . . . (6.19)

There are a number of possible phase advances that fulfill that relation, but clearly
not every arbitrary phase is allowed. Possible constellations would be for example,
φc = 90

◦
, n = 2 cells, or, φc = 60

◦
, n = 3 cells in the suppressor.

Figure 6.11 shows such a half bend dispersion suppressor, starting from a FODO
structure with 60◦ phase advance per cell. The focusing strength of the FODO cells
before and after the suppressor are identical, with the exception that—clearly—the
FODO cells on the right are “empty”, i.e. they have no bending magnets.

It is evident that unlike to the suppressor scheme with quadrupole lenses now the
beta function is unchanged in the suppressor region.

Again this scheme has advantages:

• no additional quadrupole lenses are needed and no individual power supplies;
• in first order the β functions are unchanged; aperture needs and beam sensitivity

are not increased;

and disadvantages:

• it works only for certain values of the phase advance in the structure and therefore
restricts the free choice of the optics in the arc;

• special dipole magnets are needed (having half the strength of the arc types);
• the geometry of the ring is changed.
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Fig. 6.11 Dispersion suppressor based on the half bend scheme

It has to be mentioned here, that in theses equations the phase advance of the
suppressor part is equal to the one of the arc structure—which is not completely
true as the weak focusing term 1/�2 in the arc FODO differs from the term 1/(2ρ)2

in the half bend scheme. As, however, the impact of the weak focusing on the beam
optics can be neglected in many practical cases Eq. (6.18) is nearly correct.

The application of such a scheme is very elegant, but as it has a strong impact on
the beam optics and geometry it has to be embedded in the accelerator design at an
early stage.

6.2.3.3 The “Missing Bend” Dispersion Suppressor Scheme

A similar approach is used in the case of the missing bend dispersion suppressor: It
consists of a number of n cells without dipole magnets at the end of the arc, followed
by m cells that are identical to the arc cells. The matching condition for this missing
bend scheme with respect to the phase advance is

2n+m

2
φc = (2k + 1)

π

2
. (6.20)

For the number m of the required cells after the empty cells we get:

sin
mφc

2
= 1

2
, k = 0, 2, . . . , or sin

mφc

2
= −1

2
, k = 1, 3, . . . . (6.21)

The following example is based on φc = 60
◦
, where the conditions above are

fulfilled for m = n = 1, Fig. 6.12.
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Fig. 6.12 Dispersion suppressor based on the missing bend scheme. The FODO cell without
dipoles and the following standard cell are indicated by blue and green markers in the plot

There are more scenarios for a variety of phase relations in the arc and the
corresponding bending strength needed to reduce D(s), see [2, 3]. In general, one
will combine one of the two schemes (missing or half bend suppressor) with a
certain number of individual quadrupole lenses to guarantee the flexibility of the
system with respect to phases changes in the lattice and to keep the size of the beta-
function moderate.

6.3 Injection and Extraction Techniques

B. Goddard

Transfer of a beam between accelerators or onto external dumps, targets and
measurement devices is a specialized topic and requires dedicated systems for
injection and extraction [7], as well as beam transfer lines. Injection is the final
process of the transfer of beam between one accelerator and another, either from
a linear to a circular accelerator or between circular accelerators. Extraction is the
removal of beam from an accelerator, either for the transfer to another accelerator or
to deposit the beam on a target, dump or measurement system. Both injection and
extraction systems need to be designed to transfer beam with minimum beam loss,
to achieve the desired beam parameters and usually to minimize the dilution of the
beam emittance.

Single-turn injection and extraction methods are rather straightforward for both
lepton and hadron machines. They generally involve a kicker system to deflect the
beam onto or away from the closed orbit, a septum (or series of septa for higher
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energy beams) to deflect the beam into or out of the accelerator aperture, and
frequently also a closed orbit bump to approach the septum and reduce the required
kicker strength. For these single-turn methods, the beam losses can be very low,
and the emittance dilution associated with the injection or extraction can be very
small, defined by the delivery precision, the optics mismatch, the kicker flat top
ripple and septum stability. For both injection and extraction, the circulating beam
can be adversely affected by septum stray fields penetrating into the circulating
beam region and by the kicker field rise time which can overlap temporally with
circulating bunches. Injecting a bunched beam into another accelerator also requires
that the momentum spread and phase be matched to the RF bucket, and that the RF
system can accept the transient beam loading which arises from the sudden change
in beam intensity.

Multiple-turn injection is used to fill the circumference of a receiving accelerator
and to accumulate bunch intensity. A wide variety of multiple-turn injection and
extraction schemes exist, and these can be very different for lepton and hadron
machines. Lepton injection schemes can take advantage of synchrotron radiation
damping to achieve high beam brightness, while for hadron machines space charge
effects dominate, especially at low energy. High brightness proton injection can
make use of phase-space “painting” to precisely tailor the transverse and longitu-
dinal distributions, particularly with H− charge exchange injection or slip stacking;
while resonant multiple-turn extraction schemes have been developed to provide
quasi-continuous particle fluxes for periods which range from milliseconds to hours.
The additional hardware systems required for these more advanced injection and
extraction techniques include multiple RF systems, programmed fast closed-orbit
bumps, stripping foils and non-linear lattice elements.

Overall, injection and extraction techniques share many similarities and hardware
requirements [8]: one important difference between them is that extraction is usually
at higher beam rigidity, which implies less effect from space charge and also
stronger and hence longer deflecting systems, which can have a significant effect
on lattice and insertion design [9–11].

6.3.1 Fast Injection

Fast injection [12–14] is typically used to fill another machine with bunch-to-bucket
transfer, or to fill a collider over several injections with ‘boxcar’ stacking, where
bunches or trains of bunches are added sequentially like boxcars (wagons) to a
train. The system design depends critically on the aperture needed for the beam,
and the kicker rise time, fall time and flat top duration. Very fast kicker rise times
are often required to maximize the amount of beam which can be injected, especially
in machines with small circumferences, since the kicker rise and fall times must be
significantly shorter than the revolution time.
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6.3.2 Slip-Stacking Injection

In slip-stacking [15], two trains of bunches are merged to increase the bunch
intensity, using separate RF systems. A first train of bunches is injected on the closed
orbit and captured by the first RF system. This train of bunches is then decelerated,
and as a result circulates on a different orbit. A second batch is then injected on the
closed orbit and captured by the second RF system. The two trains of bunches have
slightly different energies and can be made to move relative to each other in phase.
When the phase difference reaches zero, both sets of bunches are captured together
and merged, by a rapid change of the RF frequency. The accelerator needs enough
momentum aperture to accept both beams, and sophisticated RF control to make
the manipulations. The final longitudinal emittance is the sum of the two individual
emittances multiplied by an unavoidable blowup factor, typically around 1.5.

6.3.3 H− Charge-Exchange Injection

High brightness, low energy proton machines frequently make use of H− charge
exchange injection [16]. In this technique, a linac accelerates H− ions which are
then merged with the circulating proton beam in a dipole magnet, Fig. 6.13, before
the two loosely-attached electrons are stripped away in a foil which is almost
transparent to the circulating beam.

This technique allows the accumulation of high brightness beams, since unlike
other methods it allows injection into the already occupied phase space area.
Transverse particle distributions can be controlled using phase space painting, to
ameliorate space charge effects, reduce beam losses and increase accumulated
intensity. The stripping is achieved with thin foils of carbon or diamond-like carbon,
with a thickness typically in the micron range, which is a compromise between
obtaining high stripping efficiency and minimizing the beam losses and emittance
growth from scattering.

Fast painting bumpers or kickers in both planes are used to displace the
circulating beam access with respect to the foil, and the waveform of the bumper

Fig. 6.13 Merging H− and
p+ beams in H− charge
exchange injection H-

p+ p+

Stripping foil

Merging 
dipole
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field can be varied to achieve the desired phase space density distribution. This is
the process of phase space painting, where the small emittance LINAC beam is the
brush and the large acceptance of the receiving machine is the canvas.

In addition to beam loss from scattering at the foil, another significant source of
beam loss can be the field-stripping in the third chicane magnet of excited H0. In
ISIS [17] the injection is made on the ramp, and the dispersion at the foil provides
some of the transverse phase space painting. For SNS [18], where the average beam
power is over 1 MW, the uncontrolled beam losses must be kept extremely low and
the accumulation is made over 1160 turns.

The use of stripping foils is disadvantageous for several reasons, in particular
the associated uncontrolled beam losses, but also due to the simple mechanical
and radiological difficulties in handling such fragile objects. A foil-free method
of H− stripping using a high-powered laser to resonantly excite neutral H0 before
field stripping in a dipole has been proposed and demonstrated in principle, and is
promising for very high energy H− injection systems [19].

6.3.4 Lepton Accumulation Injection

Injection of leptons can take advantage of the strong damping which is present
from synchrotron radiation to accumulate intensity. This is very commonly used
at Synchrotron Radiation rings, where top-up operation [20] consists of frequently
injecting small amounts of beam to replace beam losses and keep the beam and
synchrotron radiation intensities stable in a very small range.

In betatron injection, Fig. 6.14, the injected bunch or train is injected with an orbit
offset with respect to the circulating beam, which is moved towards the injection
septum with a fast closed-orbit bump. The offset between the injected beam and the
circulating beam must be large enough to accommodate the injection septum. The
particles of the newly-injected bunches then perform damped betatron oscillations

Fig. 6.14 Betatron injection.
The injected beam is
mismatched and performs
betatron oscillations until
damped by emission of
synchrotron radiation
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Fig. 6.15 Synchrotron injection. The injected beam has a momentum offset, and the injection
trajectory is matched to the local dispersion orbit. The beam then performs oscillations about the
closed orbit determined by the dispersion function, as the momentum changes with the synchrotron
oscillations

around the closed orbit, until they merge with the already circulating beam. This
technique has the disadvantage that the betatron amplitude may be large in regions
of the accelerator where the β-function is large. In the alternative synchrotron
injection [21], Fig. 6.15, the new particles are injected with a momentum offset δp
and a position offset X into a region with dispersion D, such that X = δp × D.
The particles are injected onto the matched betatron orbit for their momentum,
and thus only perform synchrotron oscillations around the stored particles, with
the transverse offsets following the dispersion function. For LEP a combination of
betatron and synchrotron injection was preferred [22], since the dispersion in the
long straight sections was very small and the background to the experiments could
be significantly improved.

6.3.5 Fast Extraction

Fast extraction is typically used to provide beam to a higher energy machine with
bunch-to-bucket transfer. As for fast injection, the system design depends critically
on the aperture needed for the beam, and the kicker rise time, fall time and flat
top duration. Achieving fast kicker rise time with sufficient deflection angle at high
beam rigidity is a common challenge, as is the design of the extraction insertion
where the septum strength must be sufficient to provide enough clearance at the next
downstream accelerator element. As beam energies increase, protection from mis-
steered beam of the extraction septum and of other accelerator components becomes
important; for the LHC beam extraction system at 7 TeV [23], the synchronization
of the kicker system and protection from asynchronous kicker firing is a critical
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Fig. 6.16 Schematic of fast
extraction system with kicker,
septum and orbit bumpers.
For higher energy machines,
protection devices to intercept
and dilute any mis-kicked
extracted beam are placed in
front of the septum and
downstream QF quadrupole

Extracted beam

Bumper
magnet
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system design feature. Closed orbit bumps can be used to move the beam closer to
the septum, to reduce the required kick strength, Fig. 6.16.

6.3.6 Resonant Extraction

Many rate-limited applications such as physics experiments, test beams or medical
treatment beams require a slow flux of particles with as uniform a time structure as
possible. Resonant extraction using the third integer is the most common method of
providing such uniform spills. In this ‘slow’ extraction [24], a triangular stable area
in phase space (usually horizontal) is defined by exciting sextupole elements, and
by moving the machine tune close to the third integer resonance. Before the start of
the extraction process, particles remain stable if their single-particle emittances are
smaller than the area of the stable triangle.

The beam is extracted by driving some particles unstable in a controlled way.
The unstable particle amplitudes increase rapidly, following the outward-going
separatrix every three turns, and the particles eventually move into the high-field
region of a very thin electrostatic septum and are extracted, Fig. 6.17. The rate of
extraction is controlled either by modulating the excitation process or by controlling
the stable area. Several techniques for driving the particles unstable are possible:

i) the stable area can be reduced by increasing the resonance (sextupole) strength
or by moving the tune closer to the third integer. Increasing the resonance
strength reduces the stable area, but the smallest amplitude particles cannot
be extracted, and changing the resonance affects the machine optics. Crossing
the resonant tune offers the advantage that all of the beam can be extracted;
however, the optics is still perturbed and in addition the position of the extracted
beam in phase space changes as particles are extracted;
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Fig. 6.17 Resonant
extraction in normalised
phased space. The amplitudes
of particles outside the stable
area grow rapidly, following
the outward-going separatrix
lines every three turns until
they reach the electrostatic
septum
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ii) the particle amplitudes can be increased by use of a transverse excitation.
The stable area is kept fixed and the particle amplitudes increased, as in
RF-knockout [25] where a high-frequency damper is used near the betatron
resonance frequency to excite the beam. The machine optics is not changed
and this method allows very fine control of the spill flux, suitable for medical
machines;

iii) the particles can be accelerated into the resonance where the chromaticity
couples the momentum and the tune. A betatron core can be used [26] to
accelerate the beam smoothly through the resonance. As the momentum of
the beam changes, this is coupled via the chromaticity into a tune change.
This method provides stability and insensitivity to power supply ripple. An
alternative method (Constant Optics Slow Extraction) is to change the strengths
of all machine elements to achieve the same effect, where the beam momentum
remains fixed but the accelerator momentum changes [27];

iv) RF noise can be applied to gradually diffuse particles longitudinally, which
through the chromaticity are brought into resonance. This stochastic extraction
[28] allows extremely long and uniform spills, and again has the advantage of
leaving the machine lattice functions unchanged.

It should be noted that extraction can also be made using the second order
resonance, where octupole fields are used to define a stable area in phase space.
The amplitude growth with time is much faster, and the beam can be extracted in
several hundred turns.

The use of a physical septum means that losses and activation are key perfor-
mance aspects for slow extraction. Several interesting techniques exist to reduce
beam losses at extraction [29], including the use of scatterers to reduce the particle
density at the septum, multipoles to manipulate the separatrix density and techniques
to reduce the angular spread of the beam and reduce the effective septum width.
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6.3.7 Continuous Transfer Extraction

A frequent requirement in an accelerator complex is to fill a large circumference
machine with the contents of a smaller machine. One way of doing this is boxcar
stacking; another technique is continuous transfer [30], where the beam in the first
machine is extracted over a number of turns, like peeling the skin from an orange
in a continuous strip. The machine tune is brought near to the appropriate integer n,
where the beam will be extracted in n+1 turns. A fast closed bump is then applied
to the circulating beam with kickers to move the beam partly across a septum,
such that a fraction of the beam is cut and extracted. The machine tune rotates the
beam in phase space such that subsequent slices are extracted—when the nth turn
is extracted, the bump amplitude is increased to extract the remaining central part.
This process is of use where the injector can service other machines or experiments
while the receiving machine is accelerating the beam, since it minimises the time
spent filling. The disadvantage of the technique is that large beam losses occur at
the septum, with the transfer efficiency typically 85%. The transfer can be made
with a bunched beam, leaving space for the kicker rise time, but this means that the
receiving machine will need to capture a beam with strong intensity modulation.
Another feature of this extraction is that the extracted slices all have different
emittances, as the slices in phase space are all different.

6.3.8 Resonant Continuous Transfer Extraction

To reduce the beam losses from continuous transfer, a hybrid technique has
been developed and deployed called Multi-Turn Extraction [31] where non-linear
resonances are excited which define stable areas in phase space. These are populated
by the controlled crossing of a resonance, and the islands are then separated by
varying the multipole strength to provide a physical separation at the septum, to
reduce or avoid transverse losses. The beam needs to be bunched with a gap to avoid
losses during the kicker rise time. In addition to the lower losses, another advantage
of this technique is that the extracted islands all have the same emittance.

6.3.9 Other Injection and Extraction Techniques

More exotic injection and extraction techniques also exist as working systems or
concepts. These include radio-frequency stacking [32], pion-decay injection into
muon storage rings [33] and combined cooling and stacking [34]. Charge exchange
extraction [35] is used in cyclotrons, with a stripping foil, to convert for example
H− to p+, or H+

2 to H 2+
2 so that the beam is then deflected out of the accelerator.

Finally, very high energy particle extraction can be envisaged with a bent crystal
replacing the septum [36].
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6.4 Concept of Luminosity

Werner Herr · Bernhard Holzer · Bruno Muratori

6.4.1 Introduction

In particle physics experiments the energy available for the production of new
effects is the most important parameter. Besides the energy the number of useful
interactions (events), is important. The quantity that measures the ability of a
particle accelerator to produce the required number of interactions is called the
luminosity (see Chap. 2) and is the proportionality factor between the number of
events per second dR/dt and the cross section σ p:

dR

dt
= L · σp (6.22)

The unit of the luminosity is therefore cm−2 s−1.
Here we will derive a general expression for the luminosity and give formulae for

basic cases. Additional complications such as crossing angle and offset collisions
are added to the calculation. Other effects such as the hourglass effect are estimated
from the generalized expression.

In the final section we will discuss the measurement and calibration of the
luminosity for both e+e− as well as hadron colliders.

6.4.2 Computation of Luminosity

In the case of two colliding bunches, both serve as “target” as well as “incoming”
beam at the same time. A schematic picture is shown in Fig. 6.18. The overlap
integral which is proportional to the luminosity L can be written as [37]:

L ∝ KN1N2 ·
∫ ∫ ∫ ∫ +∞

−∞
ρ1 (x, y, s,−s0) ρ2 (x, y, s, s0) dxdydsds0 (6.23)

Here ρ1(x, y, s, s0) and ρ2(x, y, s, s0) are the time dependent beam density distri-
bution functions and N1 and N2 the number of particles per bunch. We assume, that
the two bunches meet at s0 = 0 and s0 = c · t is used as the “time” variable. Because
the beams are moving against each other, we have to introduce the kinematic factor
[38]:

K =
√(−→ν 1 −−→ν 2

)2 − (−→ν 1 ×−→ν 2
)2
/c2 (6.24)

http://dx.doi.org/10.1007/978-3-030-34245-6_2
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Fig. 6.18 Schematic view of a colliding beam interaction

This factor is needed to make the luminosity and therefore the cross section
relativistically invariant.

For the calculation we assume Gaussian profiles in all dimensions of the form:

ρiz(z) = 1

σz
√

2π
exp

(
− z2

2σ 2
z

)
where i = 1, 2, z = x, y (6.25)

in the transverse planes and

ρs (s ± s0) = 1

σs
√

2π
exp

(

− (s ± s0)
2

2σ 2
s

)

(6.26)

in the longitudinal plane.
We further assume that the distributions are independent in the three coordinates

and can be factorized. The integral (6.23) can then be evaluated. For the general
case of: σ 1x �= σ 2x, σ 1y �= σ 2y, but assuming approximately equal bunch lengths
σ 1s ≈ σ 2s we get the formula:

L = N1N2fc

2π
√
σ 2

1x + σ 2
2x

√
σ 2

2y + σ 2
2y

(6.27)

Where N1 and N2 are the bunch intensities and fc the repetition rate. In the case
of a circular collider with Nb bunches and a revolution frequency of frev, we have
fc = frev · Nb.

6.4.3 Luminosity with Correction Factors

The Eq. (6.26) requires correction factors when the beam do not fully overlap
(crossing angle and offset), the beam size varies in the longitudinal plane (hour
glass effect) or in the case of non-Gaussian beams.
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6.4.3.1 Effect of Crossing Angle and Transverse Offset

Here we give the correction to the luminosity calculation in the case where two
bunches do not collide exactly head-on, but with a crossing angle and/or transverse
offset. In that case the luminosity is reduced and we must apply a correction factor
to compute the correct value. For simplicity we assume crossing angle and offset
in the horizontal (x) plane, but this is not a restriction. The integration (6.23) can
be carried out by rotating the coordinate systems of the two beams each by half the
crossing angle [37] and can be simplified introducing the factors:

A = sin2 φ
2

σ 2
x

+ cos2 φ
2

σ 2
s

, B = (d2−d1) sin(φ/2)
2σ 2

x
, W = e

− 1
4σ2
x
(d2−d1)

2

(6.28)

S = 1
√

1 +
(
σs
σx

tan φ
2

)2
≈ 1
√

1 +
(
σs
σx

φ
2

)2
(6.29)

where �/2 is half the crossing angle and d1 and d2 are the transverse offsets of the
two beams (Fig. 6.19).

We can re-write the luminosity with three correction factors:

L = N1N2fNb

4πσxσy

N1N2fNb

4πσxσy
·W · e B2

A · S (6.30)

This factorization enlightens the different contributions and allows straightfor-
ward calculations. The last factor S is the luminosity reduction factor for a crossing
angle. One factor W reduces the luminosity in the presence of beam offsets and the

factor e
B2
A is only present when we have a crossing angle and offsets simultaneously

in the same plane. The formulae for the luminosity under very general conditions
can be found in [39]. A popular interpretation of this result is to consider it a
correction to the beam size and to introduce an “effective beam size” like:

σeff = σ/

√

1 +
(
σs

σ

φ

2

)2

(6.31)

(x,y,s,s  )
2

ρ(x,y,s,−s  )1ρ 0 0

Φ

Fig. 6.19 Schematic view of a colliding beam interaction at a crossing angle
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Fig. 6.20 Scheme of crab crossing with transversely deflecting cavities

This equation is valid when σ z � σ . The effective beam size can then be used
in the standard formula for the beam size in the crossing plane. This concept of an
effective beam size is interesting because it also applies to the calculation of beam-
beam effects of bunched beams with a crossing angle [40, 41].

In the case of flat beams, (i.e. σ z � σ z) a more general expression has to be used,
(see e.g. [39]).

To avoid the loss of luminosity, the use of crab cavities is an option, where the
bunches are deflected transversely before and after the collision Fig. 6.20.

6.4.3.2 Hour Glass Effect

In a low-β region the β-function varies with the distance s to the minimum like:

β(s) = β∗
(

1 +
(
s

β∗

)2
)

(6.32)

For very small β∗ comparable to the bunch length, the β-function is not a constant
along the longitudinal dimension of the bunch. It cannot be considered a constant in
Eq. (6.23). It follows a parabola and rises very fast and can become very large for
small β∗ .

In our formulae we have to replace σ by σ (s) and get a more general expression
for the luminosity (assuming equal parameters in both beams, the most general
expression can be found in [39]):

L (σs)
L(0) =

∫ +∞

−∞
1√
π

e−u2

√[
1 +
(
u
ux

)2
]
·
[

1 +
(
u
uy

)2
]du (6.33)
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Using the expressions: ux = β∗x /σs and uy = β∗y /σs
For the case of round beams it can be simplified and the integral becomes:

L (σs)
L(0) =

∫ +∞

−∞
1√
π

e−u2

[
1 +
(
u
ux

)2
]du = √

π · ux · eu2
x · erfc (ux) (6.34)

Here erfc(u) is the complex error function. The hourglass effect depends strongly
on the relative value of β∗ and the bunch length σ s. For small β∗ the effect becomes
relevant since the beam size varies rapidly along the longitudinal bunch direction,
i.e. when s becomes comparable to the bunch length in Eq. (6.32). A loss of
luminosity according to Eq. (6.34) is the consequence.

6.4.3.3 Crabbed Waist Scheme

In the case of a large crossing angle, the collision point of particles is displaced.
Schematically this is shown in Figs. 6.21 and 6.22.

IP

CP

x

Fig. 6.21 Collision with large crossing angle and longitudinally displaced collison point

IP

x x
x

β
y

Fig. 6.22 Collision with large crossing angle and longitudinally displaced collison point. Shown
for three particles with different amplitudes
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Fig. 6.23 Collisions with different vertical β-functions
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x

Fig. 6.24 All collisions at a minimum of the vertical β-functions using a crabbed waist scheme

One possible consequence can be the coupling between the transverse and and
longitudinal plane. Such a coupling is particularly bad for flat beams since the
vertical beam size will increase significantly.

In Fig. 6.23 the vertical β-function is indicated and the result of this effect is that
the particles collide at positions with different vertical β-functions.

This can be mitigated [42] by making the vertical waist (βminy ) amplitude
dependent in the horizontal plane Fig. 6.24. All particle collide now at the minimum
of the vertical β-function.

It should be emphasized that the main purpose of such a scheme is not to reduce
a geometrical loss but to reduce the coupling. Therefore it is of interest only for flat
beams.

This scheme is established using two sextupoles.

6.4.4 Integrated Luminosity and Event Pile Up

The maximum luminosity, and therefore the instantaneous number of interactions
per second, is very important, but the final figure of merit is the so-called integrated
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luminosity:

Lint =
∫ T

0
L (t ′) dt ′ (6.35)

because it directly relates to the number of observed events:

Lint · σp = number of events of interest (6.36)

The integral is taken over the sensitive time, i.e. excluding possible dead time.
The unit of the integrated luminosity is cm−2 and often expressed in inverse barn
(1 barn−1 = 1024 cm−2).

Another important parameter for a beam with high luminosity and bunched
beams are the number of collisions per bunch crossing, the so-called pile up. In
particular for collisions with a large cross section this can become a problem. In
the case of the LHC, bunch crossings occur every 25 ns and the expected pile up is
more than 20 for proton-proton collisions. The challenge is to maximise the useful
luminosity while keeping the pile up to a level that can be handled by the particle
detectors.

6.4.5 Measurement and Calibration of Luminosity

To obtain the exact integrated luminosity, it has to be recorded continuously. It is
rather straightforward to obtain a counting rate directly proportional to the total
interaction rate dR/dt. This relative signal has to be calibrated to deliver the absolute
luminosity. We have already seen some effects that affect the absolute luminosity
and therefore to a large extent the luminosity measurement. In particular the
crossing angle and the luminous region are of importance since they have immediate
implications for the geometrical acceptance of the instruments.

In principle one can determine the absolute luminosity when all relevant beam
parameters are known, i.e. the bunch intensities, beam sizes (r.m.s. in case of
unknown beam profiles) and the exact geometry. However the precise measurement
of beam sizes is a challenge, in particular for hadron colliders when a non-
destructive measurement is required. When the energy spread in the beams is large
(e.g. some e+e− colliders), a residual dispersion at the interaction point increases
significantly the beam size and must be included.

There exist other methods which relate the counting rate to well known processes
which can be used for calibration. We shall discuss several methods for both, lepton
and hadron colliders.
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Fig. 6.25 Principle of luminosity measurement using Bhabha scattering for e+e− colliders

6.4.6 Absolute Luminosity: Lepton Colliders

Once the relative luminosity is known, a very precise method is to compare the
counting rate to well known and calculable processes. In case of e+e− colliders
these are electromagnetic processes such as elastic scattering (Bhabha scattering).
The principle is shown in Fig. 6.25. Particle detectors are used to measure the
trajectories at very small angles and with a coincidence of particles on both sides of
the interaction point. For a precise measurement one has to go to very small angles
since the elastic cross section σ el has a strong dependence on the scattering angle
(σ el ∝ �−3).

Furthermore, the cross section diminishes rapidly with increasing energy (σel ∝
1
E2 ) and the result may be small counting rates. At LEP energies with L = 1030

cm−2 s−1 one can expect only about 25 Hz for the counting rate. Background from
other processes can become problematic when the signal is small.

6.4.7 Absolute Luminosity: Hadron Colliders

For hadron colliders two types of calibration have become part of regular operation,
the measurement of the beam size by scanning the beam and the calibration with the
cross section for small angle scattering. The determination of the bunch intensities
is usually easier, although non-trivial in the case of a collider with several thousand
bunches.

6.4.7.1 Measurement by Profile Monitors and Beam Displacement

Typical profile measurement devices are wire scanners where a thin wire is moved
through the beam and the interaction of the beam with the wire gives the signal. For
high intensity hadron beams this has however limitations. Non-destructive devices
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Fig. 6.26 Principle of luminosity measurement using transverse beam displacement

such as synchrotron light monitors are available but the emitted light from hadrons
is often not sufficient for a precise measurement.

An alternative is to measure the beam size by displacing the two beams against
each other. The relative luminosity reduction due to this offset can be measured and
is described by the formula (6.28) developped earlier:

L(d)/L0 W = e
− d2

4σ2 (6.37)

where d is the separation between the beams and the measurement of the luminosity
ratio is a direct measurement of W. This method was already used in the CERN
Intersection Storage Rings (ISR) and known as “van der Meer scan”.

The expected counting rate of such a scan is shown in Fig. 6.26. A fit to the
above formula gives the beam size. A drawback of this method is the distortion of
the beam optics in case of very strong beam-beam interactions [40]. This effect has
to be evaluated carefully.

6.4.7.2 Absolute Measurement with Optical Theorem

This method is similar to the measurement of Bhabha scattering for e+e− colliders
but requires dedicated experiments and often special machine conditions.

The total elastic and inelastic counting rate is related to the luminosity and the
total cross section (elastic and inelastic) by the expression:

σtot · L = Ninel +Nel (Total counting rate) (6.38)
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The key to this method is that the total cross section is related to the elastic cross
section for small values of the momentum transfer t by the so-called optical theorem
[43]:

lim
t→0

dσel

dt
=
(

1 + ρ2
) σ 2

tot

16π
= 1

L
dNel

dt

∣∣∣∣
t=0

(6.39)

Therefore the luminosity can in principle be calculated directly from experimen-
tal rates through:

L =
(
1 + ρ2

)

16π

(Ninel + Nel)
2

(dNel/dt)t=0
(6.40)

All counting rates, the total number of events Ninel + Nel and the differential
elastic counting rate dNel/dt at small t have to be measured with high precision. This
requires a very good detector coverage of the whole space (4π) for the inelastic rate
and the possibility to measure to very small values of t.

A slightly modified version of the above uses the Coulomb scattering amplitude
which can be precisely calculated. The elastic scattering amplitude is a superposition
of the strong (fs) and Coulomb (fc) amplitudes, the latter dominates at small t. We
can re-write the differential elastic cross section dσel

dt
:

lim
t→0

dσel
dt

= 1
L
dNel
dt

∣∣∣∣
t=0

= π |fc + fs |2 � π | 2αem−t + σtot
4π (ρ + i) eB

t
2

∣∣∣∣
2 � 4πα2

em

t2

∣∣∣∣|t |→0
(6.41)

If the differential cross section is measured over a large enough range, the
unknown parameters σ tot, ρ, B and L can be determined by a fit. A measurement
[44–46] together with some crude fits is shown in Fig. 6.27 to demonstrate the
principle. The advantage of this method is that it can be performed measuring only
elastic scattering without the need of a full coverage to measure Ninel. It is therefore
a good way to measure the luminosity (and total cross section σ tot and interference
parameter ρ!) although the previous method is of more practical importance for
regular use.

The measurement of the Coulomb amplitude usually requires dedicated exper-
iments with detectors very close to the beam (e.g. with so-called Roman Pots)
and therefore special parameters such as reduced intensity and zero crossing angle.
Furthermore, in order to measure very small angle scattering, one has to reduce
the divergence in the beam itself (σ ′ = √

ε/β). For that purpose special running
conditions with a high β∗ at the collision point are often needed (β∗> 1000 m) [45].
The precision of such a measurement is however as good as a few percent.
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Fig. 6.27 Principle of
luminosity measurement
using optical theorem in
proton proton (antiproton)
collisions
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6.4.8 Luminosity in Linear Colliders

In linear colliders the beams collide only once and to get a high luminosity a very
small beam size and therefore small β at the collision point are required.

This implies additional effects such a beam disruption and an enhanced luminos-
ity due to the so-called pinch effect.

Due to very strong field of the quadrupoles of the final focusing, significant
synchrotron radiation is produced.

6.4.8.1 Disruption and Luminosity Enhancement Factor

The basic formula for the luminosity of a linear collider is shown in Eq. (6.42).

L = N2 frep nb

4πσx σy
→ L = HD · N2 frep nb

4πσx σy
(6.42)

The revolution frequency has to be reaplced by the repetition rate frep of the
colliding bunches.
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The luminosity is increased by the enhancement factor HD which takes into
account the reduction of the nominal beam size by the disruptive field (pinch
effects).

This enhancement foctor is related to the beam disruption parameter

Dx,y = 2reNσz
γ σx,y

(
σx + σy

) (6.43)

For weak disruption (D� 1) and round beams the enhancement factor can be
written as:

HD = 1 + 2

3
√
π
D +O

(
D2
)

(6.44)

When the disruption is strong or for flat beams, computer simulations are
necessary.

6.4.8.2 Beamstrahlung

The strong synchrotron radiation (beamstrahlung) has two main effects:

– Spread of the centre of mass energy.
– Pair creation and background in the detectors.

It is parametrized by the parameter Y which can be written as the mean field
strength in the rest frame, normalized to the critical field Bc:

Y = < E + B >

Bc
≈ 5

6

r2
e γN

ασz
(
σx + σy

) (6.45)

Bc = m2c3

e�
≈ 4.4 × 1013G (6.46)

6.5 Synchrotron Radiation and Damping

L. Rivkin

6.5.1 Basic Properties of Synchrotron Radiation

Charged particles radiate when they are deflected in the magnetic field [47]
(transverse acceleration) [see also Sect. 11.1 for a more detailed treatment]. In the

http://dx.doi.org/10.1007/978-3-030-34245-6_11
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ultra-relativistic case, when the particle speed is very close to the speed of light,
β ≈ c, most of the radiation is emitted in the forward direction [48] into a cone
centred on the tangent to the trajectory and with an opening angle of 1/γ , where γ
is the Lorentz factor (since for a few GeV electron or a few TeV proton, γ ≈ 1000,
the photon emission angles are within a milliradian of the tangent to the trajectory).

The power emitted by a particle is proportional to the square of its energy E and
to the square of the deflecting magnetic field B:

PSR ∝ E2B2, (6.47)

and in terms of Lorentz factor γ and the local bending radius ρ can be written as
follows:

PSR = 2

3
α �c2 γ 4

ρ2 , (6.48)

where α is the fine-structure constant and the Plank’s constant is given in a
convenient conversion constant:

α = 1

137
and �c = 197 MeV fm. (6.49)

The emitted power is a very steep function of both the particle energy and particle
mass, being proportional to the fourth power of γ .

Integrating the above expression around the machine we obtain the amount of
energy lost per turn:

U0 = 4π

3
α �c

γ 4

ρ
. (6.50)

The emitted radiation spectrum consists of harmonics of the revolution frequency
and peaks near the so-called critical frequency or critical photon energy. It is defined
such that exactly half of the radiated power is emitted below it:

εc = 2

3
�c

γ 3

ρ
. (6.51)

On the average a particle then emits nc ≈ 2παγ photons per turn.

6.5.2 Radiation Damping

In a storage ring the steady loss of energy to synchrotron radiation is compensated in
the RF cavities, where the particle receives each turn the average amount of energy
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lost. The energy lost per turn is normally a small fraction of the total particle energy,
typically of the order of one part per thousand.

Transverse Oscillations
Since the radiation is emitted along the tangent to the trajectory, only the amplitude
of the momentum changes. As the RF cavities increase the longitudinal component
of the momentum only, the transverse component is damped exponentially with the
damping rate of the order of U0 per revolution time. A typical transverse damping
time corresponds simply to the number of turns it would take to lose the amount of
energy equal to the particle energy. The damping times are very fast, in case of a
few GeV electron ring being on the order of a few milliseconds.

A⊥ = A0e
− t

τ ,where
1

τ
= U0

2ET0
. (6.52)

In a given storage ring the damping time is inversely proportional to the cube of
the particle energy.

Longitudinal or Synchrotron Oscillations
Synchrotron oscillations are damped because the energy loss per turn is a quadratic
function of the particle’s energy. The damping rate is typically twice the rate for
transverse oscillations.

Damping Partition Numbers and Robinson Theorem
For particles that emit synchrotron radiation the dynamics is characterized by
the damping of particle oscillations in all three degrees of freedom. In fact, the
total amount of damping (Robinson theorem [49]), i.e. the sum of the damping
decrements depends only on the particle energy and the emitted synchrotron
radiation power:

1

τx
+ 1

τy
+ 1

τε
= 2U0

ET0
= U0

2ET0

(
Jx + Jy + Jε

)
(6.53)

where we have introduced the usual notation of damping partition numbers that
show how the total amount of damping in the system is distributed among the three
degrees of freedom. A typical set of the damping partition numbers is (1,1,2) and
their sum is, according to the Robinson theorem, a constant.

Jx + Jy + Jε = 4. (6.54)

Adjustment of Damping Rates
The partition numbers can differ from the above values, while their sum remains
a constant. In fact, under certain circumstances, the motion can become “anti-
damped”, i.e. the damping time can become negative, leading to an exponential
growth of the oscillations amplitudes. From a more detailed analysis of damping
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rates [50] the damping time can be written as

1
τε
= U0

2ET0
(2 +D) , and 1

τx
= U0

2ET0
(1 −D) , where D ≡

∮
D
ρ

(
2k+ 1

ρ2

)
ds

∮
ds

ρ2
.

(6.55)

The constant introduced above is an integral of the dispersion function D and the
magnetic guide field functions, i.e. bending radius and gradient around the ring and
is independent of the particle energy. It deviates substantially from zero only when
a particle encounters combined function elements, i.e. where the product of the field
gradient and the curvature is non-zero. The damping partition numbers then are:

Jx = 1 −D, Jε = 2 +D, Jx + Jε = 3. (6.56)

The vertical damping partition number is usually unchanged as the vertical
dispersion is zero in storage rings that are built in one (horizontal) plane.

The amount of damping can be repartitioned between the horizontal and energy-
time oscillations by altering the value of the D constant [50]. This can be
achieved by either using combined function magnetic elements in the lattice, or
by introducing a special combined function wiggler magnet (so-called Robinson
wiggler). Values of horizontal partition number as high as 2.5 have been obtained
that way. Values of D > 1 lead to anti-damping of horizontal betatron oscillations,
while for D < −2 the synchrotron oscillations become unstable.

6.6 Computer Codes for Beam Dynamics

Werner Herr

6.6.1 Introduction

The design and operation of an accelerator today is unthinkable without the help
of computer codes, the reason being large, complex structures (like in the case of
big accelerators and colliders, e.g. LHC) or complications in the beam dynamics of
small or special purpose machines (e.g. FFAG). Their complexity does not allow
the computation with pencil and paper. Here we address only the codes for beam
dynamics, i.e. special codes for the design of accelerators components such as
magnets or RF equipment will not be treated but can be found in the literature.
The main fields where beam dynamics codes are essential are:

• Determination of parameters and the design of beam lines and accelerators
• Evaluation of performance
• Control, machine protection and operation
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Different classes of codes are used in these fields which also resemble the life
cycle of an accelerator.

Given the scope of this handbook and the rapid evolution of computer codes and
software techniques, we do not attempt to provide a list of existing codes, but rather
will describe the main features, techniques and applications of the different types of
codes. Details and access to existing codes can be found in computer code libraries
on the internet. A supported library is provided by the Los Alamos Accelerator Code
Group (LAACG) [51], another one supported by Astec (UK) [52]. It contains links
to popular and frequently used codes from many laboratories and institutions.

6.6.2 Classes of Beam Dynamics Codes

The different classes of codes can be divided according to their application:

• General purpose optics codes
• Beam dynamics of single particles
• Beam dynamics of multi particles

Optics codes are used mainly in the initial design phase of an accelerator, rings
as well as beam lines and linear accelerators. The evaluation of the performance
(stability etc.) is done using codes to simulate the beam dynamics of single particles
as well as ensembles of particles and their interaction with the environment or other
particles in the beam(s).

6.6.3 Optics Codes

A large group of computer codes for beam dynamics are used to design the lattice
of an accelerator or beam line and to compute and optimize the optical parameters.
The range of available codes extends from small codes for pedagogical purpose to
large general purpose programs. Such codes can have easily 100,000 lines of codes
or more. The accelerator physics is described in the existing literature [53] and in
this handbook. The main applications of general purpose optics codes are:

• Determination of main parameters and the computation of linear and non-linear
optics. This implies to find periodic solutions for the optical parameters and the
closed orbit.

• Parameter matching (optical/geometrical) and lattice optimization, i.e. the prop-
erties of elements are varied until the optical functions assume their desired
values.

• Simulation of imperfections and algorithms for their corrections.
• Simulation of synchrotron radiation and evaluation of radiation integrals to derive

estimates for parameters (e.g. equilibrium emittances) in lepton machines.
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The result should be a consistent set of parameters fulfilling the design require-
ments. They are the basis for the design of machine elements.

Depending on the complexity of the problem, different techniques are in use
for optics codes. The majority of these codes rely on the description of machine
elements using maps, which can be of higher order for non-linear elements. In
the simplest case for the description of linear machines the maps become matrices
and are therefore often referred to as “matrix codes” [54]). The concatenation of
the matrices provide a matrix for the entire ring and its analysis gives the optical
parameters, closed orbit etc.

Another technique is to follow the particles through the accelerator, i.e. integrat-
ing the equation of motion in the electromagnetic fields of the machine elements.
The analysis of the results of these “tracking programs” provides the required
parameters and information about the stability of the machine (for some details see
[54]).

Dealing with complex machines, other considerations may become important
such as e.g.:

• Definition of an input language which can be used by other programs. This input
language defines the sequence of elements, i.e. the ring or a beam line, as well
as the properties of the elements such as e.g. their types (dipole, quadrupole,..),
lengths and strengths.

• For large machines with a large number of elements the interface to a data base
may be required. Large machines such as the LHC or future colliders have several
thousand elements.

• An interface to the control system for on-line modelling is desirable

6.6.4 Single Particle Tracking Codes

To evaluate the performance of accelerators, in particular multi pass, i.e. circular
machines, one has to deal with complex iterative processes. The standard pertur-
bation theories can fail to correctly describe the behaviour beyond leading orders.
Single particle tracking codes are successfully used when analytical methods fail
to describe the effect of non-linear forces on the stability of the particles. Many
tracking codes have been developed together with the necessary tools to analyse
the results and from the simulation point of view the treatment of non-linear effects
is well established. Conceptually, in a tracking code the equation of motion of a
particle in an accelerator element is solved and the phase space coordinates of the
particle are followed through all elements of the accelerator or beam line. To obtain
the desired information, it may be necessary to repeat this process for up to 107 turns
which require appropriate algorithms and techniques to avoid numerical problems.
Similar problems exist and some of these techniques have been developped for
celestial mechanics. In order to draw conclusions from the tracking data it is
necessary to provide tools to allow a qualitative and quantitative understanding of
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the results [55]. The outcome of the analysis allows to answer the most important
questions for the design of a machine such as:

• Stability of particle motion
• Dynamic aperture
• Specifications for the properties of machine elements
• Optimization or the particle stability

In general the results of these studies are used in an iterative procedure to improve
and optimize the design of the machine.

6.6.4.1 Techniques

A requirement for all techniques employed for particle tracking is that the associated
maps must be symplectic. To solve the equation of motion, most programs use
explicit canonical integration techniques, e.g.:

• Thin lens tracking (most common since they are automatically symplectic and
fast)

• Ray tracing (accuracy by slicing into large number of steps, but time consuming)
• Symplectic integration (see [54] and references therein)

6.6.4.2 Analysis of Tracking Data

Some of the analysis techniques are discussed in the chapter on non-linear dynamics
in this handbook in more detail and some are mentioned here for completeness:

• Taylor maps using Truncated Power Series Algebra (TPSA, [54])
• Lie algebraic maps [54, 56]
• Normal form analysis

The results of the analysis include non-linear resonances and distortion, non-
linear tuneshift with amplitude and an evaluation of the long term stability. In all
cases the interpretation of the results requires a careful analysis of the range where
the data is meaningful to avoid wrong conclusions. Typical problems are numerical
effects which can lead to unphysical features.

6.6.5 Multi Particle Tracking Codes

Multi particle tracking codes are used when we are concerned with the behaviour of
an ensemble of particle. The calculations largely rely on techniques developped for
single particle dynamics. Typical applications are the simulation of:

• Space charge effects, mutual interaction of particles within the same beam.
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• Collective instabilities and interaction with environment (impedance)
• Beam-beam effects in case of particle colliders, i.e. the interactions with the fields

produced by the counter-rotating beam.
• Electron cloud effects, i.e. secondary electron production by synchrotron radia-

tion

A key issue for multi particle simulation codes is the evaluation of the electro-
magnetic fields produced by the beams or the environment. New techniques and the
availability of parallel computing facilities have allowed vast progress in this field
in the last 20 years.

6.6.6 Machine Protection

For large energy and high intensity machines the protection of the machine elements
becomes an important part of the design. Simulation codes have to include the
interaction of particles with matter.

6.7 Electron-Positron Circular Colliders

M. E. Biagini · J. M. Jowett

Electron-positron (e+e−) collider rings have been a mainstay of both discovery
and precision physics for half a century: discovery, since the simple initial state
can create any particle coupled to the electromagnetic field; precision, from the
combination of high luminosity and large cross-sections at a rich spectrum of
resonances up to

√
s � 200GeV. While the fundamentals of these machines have

remained in essence the same, the technology has matured to the point where
luminosities of the latest “factories” exceed what was thought possible in the 1970s
and early 1980s by 2–3 orders of magnitude.

These colliders are based on the principle of the synchrotron (Sect. 1.2.6)
although the name is barely appropriate for those which enjoy the advantage of
full-energy injection. Beams are necessarily bunched by an RF system, which must
provide sufficient voltage to compensate the energy lost by synchrotron radiation.

6.7.1 Physics of Electron-Positron Rings

Consider an ideal storage ring constructed with bending and focussing magnets
such that a particle of charge e and constant momentum p0 could circulate on a
stable closed orbit, Oxy, in transverse phase space (x, px, y, py), with local radius of

http://dx.doi.org/10.1007/978-3-030-34245-6_1


6 Design and Principles of Synchrotrons and Circular Colliders 249

curvature ρ(s). The orbits and optical functions (βx, y(s), dispersion Dx, y(s), etc.,
Chap. 2) of such hypothetical, non-radiating particles are a construct useful in the
description of e± dynamics. Real, radiating, e+ of energy E = √p2c2 +m2c4 �
pc � p0c can circulate in a phase-space neighbourhood of Oxy provided RF cavities
of a proper frequency and sufficient voltage are added to compensate the average
radiative energy loss and provide longitudinal phase stability (e− can circulate in
the opposite direction). In a semi-classical picture [49, 53, 57, 58], e± emit photons
at random times according to the classical synchrotron radiation spectrum [47,
48] and make stochastic transitions between betatron trajectories corresponding to
their instantaneous momenta. This picture can be understood [59] by recognising
that a storage ring differs from an atom in that changes, �n = n u/E, in orbital
quantum number, n, corresponding to typical photon emissions of energy u, satisfy
n� �n� 1.

There is no deterministic closed orbit but the full 6D central orbit,Oxyz of a bunch
of many electrons normally coincides with the attractive stable orbit calculated by
averaging over photon emissions to include only the classical deterministic part
of the synchrotron radiation (this includes the stable phase with respect to the RF
system). If the domain of attraction of this orbit is large enough, the beam can have
a good lifetime (Eq. 6.60 below). Because of the energy variation round the ring
(localised RF cavities giving “energy-sawtooth”), the transverse projection of Oxyz

does not coincide with Oxy. Figure 6.28 shows an example.
Neglecting intensity-dependent phenomena, the equilibrium dimensions of the

beam are macroscopic quantum effects determined by the balance between radiation
damping (the dependence of the classical radiation lost in magnetic fields on the
energy, [49, 57, 58] and Sect. 6.5), and the quantum fluctuations (discrete photon
nature) of the synchrotron radiation [57, 58]. Generally, the effects are linear enough
that the core of the distribution is gaussian in each normal mode coordinate.

The mean-square fractional energy spread in the beam is

σ 2
E

E2 =
55

32
√

3

�

mc

(
E0

mc2

)2 ∮ ∣∣G3
∣∣ ds

Jz
∮
G2ds

� 1

2
γ 2 λe

ρ0
, (6.57)

where G = eB/p0c = ρ−1 is the inverse of the local bending radius of Oxy,
∮ · · · ds

denotes an integral around Oxy, Jz is the longitudinal damping partition number
(Sect. 6.5), λe = �/mc is the reduced Compton wavelength of the electron and
the last equality holds to the extent that G(s) is zero or has a constant value 1/ρ0
(isomagnetic ring).

Economic arguments, balancing construction cost against power consumption,
are sometimes invoked to derive a scaling of radius with energy squared but this
only applies for the highest energy rings with a few bunches (see [60] for the scaling
of design parameters). More generally, the chromaticity correction and dynamic
aperture constraints (Sect. 3.4) in collider rings require 6σE/E � 1%, so imposing
a minimum radius ρ/m ≈ 0.26(E0/GeV)2. The spread in centre-of-mass energies of
collisions σ√s =

√
2σE (if Dx = 0 at the collision point) should also be kept small.

http://dx.doi.org/10.1007/978-3-030-34245-6_2
http://dx.doi.org/10.1007/978-3-030-34245-6_3
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Fig. 6.28 The cumulative RF voltage (black dashed line) around the ring and four components
of the ideal six-dimensional closed orbit of the e+ beam in CERN’s LEP collider, at a central
beam energy of 94 GeV in an optics used in 1998. The fractional deviation of the beam energy
on the closed orbit ptc (red) exhibits the “energy sawtooth” due to the energy lost by synchrotron
radiation in the eight arcs and its replenishment by RF systems located around the experimental
interaction points. The conjugate time-lag coordinate tc (green) reflects the corresponding path-
length changes. The horizontal closed orbit xc = Dxptc + xcB (blue) is a combination of the local
dispersion orbit and a forced betatron oscillation and its conjugate pxc. Without radiation, these
four orbit components would be zero. LEP was a single ring collider with e+ and e− beams of
similar intensity circulating in the same beam pipe. In normal operation, the average xc for the two
beams, which were approximately equal and opposite, x+c � −x−c , was measured and corrected to
the central trajectory. At higher energies, these orbits could be separated by a few cm near the RF
systems

The equilibrium horizontal emittance for flat rings without betatron coupling is

εx = 55

32
√

3

�

mc

(
E0

mc2

)2 ∮ ∣∣HG3
∣∣ ds

Jx
∮
G2ds

, (6.58)

where H = βxDx
2 + 2αxDxD

′
x + γxD

′2
x is a quadratic form constructed from the

dispersion and betatron matrix (Sect. 2.1). Together, Eqs. (6.57) and (6.58) give the
mean-square equilibrium beam size at any point in the ring

σ 2
x =
〈(
xβ +Dx (E − E0) /E0

)2〉 = βxεx +D2
x(σE/E)

2. (6.59)

The vertical emittance is usually smaller and due to some coupling of horizontal
betatron motion into the vertical and vertical dispersion from orbit errors or other
vertical bends. More general formalisms [53, 61] describe the radiation-generated
emittances for the eigenmodes of linear oscillations about general six-dimensional
central orbits.

A true equilibrium (strictly, stationary) state does not exist because the quantum
fluctuations lead to loss from the tails of the beam with lifetimes for the three modes

http://dx.doi.org/10.1007/978-3-030-34245-6_2
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given by

τq,u = 1

2
τu
eξu

ξu
, where ξu = A2

u

2σ 2
u

, for u = x, y, z, ξu � 20, (6.60)

where the τ u are the radiation damping times and Au are appropriate acceptances
[53, 57, 58]. For the synchrotron mode, Az is the RF bucket half-height

(
Az

E0

)2

= 2U0

π |η|hRFE0

[√
(eV RF/U0)

2 − 1− arccos (U0/eV RF)

]
. (6.61)

For adequate lifetime at small intensity, the mechanical and dynamic apertures
and RF voltage must be large enough.

The bunch length is given by σ z = c|η|σE/(ωsE0) where ωs is the angular
synchrotron frequency and η � αc the frequency slip factor ([53], Sects. 2.5.2 and
2.5.3).

6.7.2 Design of Colliders

Colliders are designed from the interaction point outwards. The classical design is
based on head-on collisions of flat beams. However a number of other configurations
have been explored and the most promising among them is described in the
following section. In the classical scheme, luminosity (Sect. 6.4) is maximised
by achieving very flat beams, κ = εy/εx � 1; we consider only beams of equal
energy, size and single bunch population, Nb, colliding head-on, with σ ∗y � β∗y ;
for generalisations see [53]. The beam-beam effect (Sect. 4.6.1) generally imposes
maximum attainable values on the horizontal and vertical beam-beam parameters

ξx,y =
reNbβ

∗
x,y

2π
(
E0/mc2

)
σ ∗x,y
(
σ ∗x + σ ∗y

) , (6.62)

where re is the electron classical radius, β∗x,y and σ ∗x,y,z are the optical functions and
beam sizes at the collision point. Typically, one finds maxξ y = 0.03 − 0.1 with the
highest values attained when the machine is very well corrected (favourable tunes,
central orbits close to design, minimised vertical dispersion) and when radiation
damping is strong. Then the luminosity (Sect. 6.4) can be expressed as

L = fcNb

2re

(
E0

mc2

)
(1 + κ) ξy

β∗y
, (6.63)

where fc is the frequency at which identical bunches collide; in the simplest case
fc = kbf0 where kb is the number of bunches per beam.

http://dx.doi.org/10.1007/978-3-030-34245-6_2
http://dx.doi.org/10.1007/978-3-030-34245-6_2
http://dx.doi.org/10.1007/978-3-030-34245-6_4
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The number of bunches in a single-ring collider is limited by the possibilities
for separating the opposing beams at unwanted encounters, e.g., by local or long-
range (“pretzel scheme”) electrostatic orbit bumps [53]. Collective effects limiting
the single-bunch intensity (bunch-lengthening, transverse mode-coupling, see Chap.
4) are a major concern. In recent double-ring colliders, many more bunches can be
stored. A crossing angle at the collision point separates the beams at encounters
in the adjacent common section of the beam pipe. In recent years, the highest
luminosity collider designs have adopted a new scheme described in the following
section.

Multi-bunch collective effects and other limits related to total beam current (e.g.,
component heating by wakefields or synchrotron radiation, beam-loading, electron-
cloud, ion-trapping [53]) tend to dominate. The impedance and surface properties
of the vacuum chamber are critical.

Integrated luminosity can be further maximised in moderate energy rings for
which a full-energy injector is available by topping up the intensity of the stored
beam rather than dumping and refilling. The static magnetic configuration (no ramp
and squeeze cycle) simplifies operation dramatically.

The arcs of collider rings are usually composed of FODO cells whose length and
phase advance determine the emittance through Eq. (6.58). To minimise radiation
power, the bending magnets are made as long as possible. In the highest energy
rings, the quadrupoles must also be lengthened.

Low-β insertions (Sect. 6.2.1) provide small values of β∗y at the interaction
point(s) of the experiment(s) in long straight sections. These can also accommodate
the accelerating cavities of the RF system, beam instrumentation and wiggler
magnets and are connected to the arcs via dispersion suppressors.

Wiggler magnets modify the radiation damping, bunch length and/or emittance
by contributing additional terms [53] with large |G| to the integrals in Eqs. (6.57) and
(6.58), so providing additional flexibility to maximise performance (e.g., at lower
energy).

Sextupoles incorporated in the arcs must correct the large chromatic aberrations
generated in the low-β quadrupoles while preserving adequate dynamic aperture
(Sect. 3.4.4).

Many variations on this classical e+e− collider design are possible with new
interaction region concepts showing promise (Sect. 6.4) in overcoming the need for
ever-increasing beam current and ever-shorter bunches.

At higher intensities, phenomena such as the Touschek effect and intra-beam
scattering [53], sometimes in combination with non-linear single particle dynamics
or beam-beam effects, can reduce the lifetime below the values implied by Eq.
(6.60); see Chap. 3 and Sect. 4.6.

http://dx.doi.org/10.1007/978-3-030-34245-6_4
http://dx.doi.org/10.1007/978-3-030-34245-6_6
http://dx.doi.org/10.1007/978-3-030-34245-6_3
http://dx.doi.org/10.1007/978-3-030-34245-6_3
http://dx.doi.org/10.1007/978-3-030-34245-6_4
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6.7.3 Large Piwinski Angle and Crab Waist Collision Scheme

The need for precision measurements of rare decay modes with small cross sections
at e+e− factories has driven requirements on peak luminosity to unprecedented
levels. Conventional collision schemes, see Eq. (6.63), are based on pushing up
the beam currents, lowering the β∗y , and increasing the beam emittance so as not to
exceed the beam-beam tune-shift limits. Passing from single to double ring colliders
allowed the number of bunches to be increased considerably. However in order
to avoid luminosity reduction due to parasitic (or long-range) bunch encounters
near the collision point, beams had to be collided with a small horizontal crossing
angle rather than head-on. However, this approach has come to a dead end since
high currents result in high power losses, beam instabilities and increased power
consumption.

Because of the parabolic variation of βy(s) = β∗y + s2/β∗y in the vicinity
of the interaction point (IP), the longitudinal region in which individual particle
collisions occur will include places where the effective βy(s)>>β∗y at the IP, and
will therefore contribute less to the luminosity. This so-called hour-glass effect
imposes a condition on the bunch-length: σ z � ßy(s). Unfortunately, shortening the
bunch length is costly since it requires high voltage in the RF cavities, can excite
collective instabilities, induce higher-order mode (HOM) heating in the beam pipe,
and lead to coherent synchrotron radiation emission, which in turn deteriorates the
bunch shape. On the other hand, increasing the bunch current leads to coupled bunch
instabilities, HOM heating of the beam pipe, and higher wall-plug power.

A solution to these problems came with the idea of a new collision scheme, called
“Large Piwinski Angle and Crab Waist Sextupoles” (LPA&CW), by P. Raimondi in
2006 [62]. This scheme has two main ingredients:

1. A large horizontal crossing angle at the IP, combined with very small horizontal
beam size, resulting in a large Piwinski angle;

2. a pair of sextupoles, each placed on one side of the IP at a specific betatron phase
from it.

The Piwinski angle is defined as:

� = σz tan (θ)

σx
≈ θ

σz

σx
. (6.64)

Consider two bunches with RMS beam size σ x and bunch length σ x, colliding
at a horizontal crossing angle 2θ . For flat beams colliding at a small crossing angle
θ � 1 and large Piwinski angle � � 1, the luminosity L and the tune-shifts scale
as [63]:

L ∝ Nξy

β∗y
(6.65)
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ξy ∝ N

2θσ z

√
β∗y /εy (6.66)

ξx ∝ N

(2θσz)2
(6.67)

In the LPA scheme the Piwinski angle is increased by decreasing σ x and
increasing θ . The most relevant consequence is that the overlap area of the two
colliding beams is now reduced, since it is proportional to σ x/θ . As a plus, as can be
seen from Eq. (6.67), the horizontal tune shift in this case drops like (2θσ z)2, so the
beam-beam interaction can be considered as one-dimensional and only the vertical
plane is relevant.

Now, the vertical β∗y function at the IP can be decreased, as much as the focussing
magnet technology allows, to be comparable to the overlap area size that, in this
case, is smaller than the bunch length. In this case that is much smaller the bunch
length, so relaxing the problems of HOM heating, coherent synchrotron radiation
and excessive power consumption:

β∗y ≈
σx

2θ
� σz (6.68)

This scheme has several advantages:

• a smaller spot size at the IP, leading to higher luminosity,
• a reduction of the vertical tune-shift parameter,
• the mitigation of synchro-betatron resonances.

Long range beam-beam interactions no longer limit the maximum achievable
luminosity when the distance between bunches is short. These parasitic crossings
become negligible because of the larger crossing angle and the smaller horizontal
beam size. The separation at each encounter is larger in terms of σ x.

However the large Piwinski angle itself may introduce new beam-beam reso-
nances which can limit the maximum achievable tune shifts. The second ingredient
of the LPA&CW scheme, the pair of Crab Waist sextupoles, is designed to solve
this problem. The CW transformation causes the horizontal oscillations to modulate
the vertical motion modulation and thereby suppresses the betatron and synchro-
betatron resonances. The CW scheme is realised by installing a couple of sextupole
magnets on the two sides of the IP, preferably in a high β and zero dispersion region.
To provide the exact compensation the sextupoles be at π horizontal and a π /2
vertical betatron phase advance from the IP.

The CW transformation can be described by the Hamiltonian:

H = H0 + 1

2θ
xp2

y (6.69)

where H0 is the Hamiltonian of the particle’s motion without the CW, x is the
horizontal particle coordinate and py the vertical momentum. The effect of the CW
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Fig. 6.29 Crab Waist collision scheme

transformation is a vertical betatron function twist according to:

βy = β∗y +
(s − x/2θ)2

β∗y
(6.70)

In this case, the βy waist of one beam is twisted to be oriented along the central
trajectory of the other beam. As a consequence, all particles, independently of
their x position, collide at the minimum βy spot of both beams, with an increase
of few percent in the geometric luminosity due to the βy redistribution along the
overlapping beams area. A sketch of this shown in Fig. 6.29.

However the main CW effect is to suppress the betatron and synchro-betatron
resonances which would arise due to the vertical motion modulation induced by
the horizontal oscillations. This increases the space for the working betatron tunes
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of the collider. Moreover beam-beam simulations showed that beam tails are very
much reduced and the beam-beam blow-up is also suppressed.

The CW sextupoles strength should satisfy the following condition:

K = 1

2θ

1

β∗yβy

√
β∗x
βy

(6.71)

where starred β values are those at the IP and the others are at the sextupole
location. The CW sextupoles can reduce the dynamic aperture if there are other
non-linearities between them. For this reason they should ideally be installed before
the chromaticity correction sextupoles.

The (LPA&CW) collision scheme was first tested at the DA�NE �-Factory in
Frascati (Italy) in 2008 [64], by modifying the interaction region to increase the
crossing angle, decrease both the β∗ and allocate space for the sextupoles. The result
was a boost in luminosity of about a factor of 4 and measurement of the beam
profile showed that the bunches kept their Gaussian shape. This scheme has since
then been adopted by all new collider designs worldwide (SuperKEKB, FCC-ee,
various τ -charm Factory proposals). The collider SuperKEKB in Japan, however,
has adopted the LPA scheme (which they called “nano-beams”) without the CW
sextupoles because of the lack of space in the IR.

6.8 Hadron Colliders and Electron-Proton Colliders

K. Hanke · B. J. Holzer

6.8.1 Principles of Hadron Colliders

Hadron colliders are discovery machines which provide high centre-of-mass energy
and cover a wide energy range. Contrary to electron-positron colliders, where the
energy and quantum state of the initial particles is precisely known, the input
conditions are less well defined in the case of proton-proton or proton-antiproton
collisions. In fact, such collisions are, unlike e+e− annihilation, collisions of quarks
and antiquarks the momenta of which are distributed according to the structure
function of the hadron and are hence not precisely defined. As far as the analysis
of the events is concerned, hadronic collisions result in a much larger number
of tracks in the detector than in the case of e+e− annihilation, providing an
additional challenge. From a machine physics point of view hadron machines have
the enormous advantage that the particle beam energy is not limited by synchrotron
radiation. This is because the proton mass is 2000 times higher than the one of the
electron, and the energy loss due to synchrotron radiation scales with m−4. What
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is limiting the achievable beam energy in a hadron collider is the magnetic field to
be provided by the dipole magnets in order to bend the particle beam on a circular
trajectory. The radius of curvature of a particle in a dipole field is given by

1

ρ

[
m−1
]
= eB

p
p = 0.2998

B [T ]

p [GeV/c]

where ρ is the radius of curvature, B is the magnetic field, e is the elementary
charge and p is the particle momentum. The quantity Bρ is called the rigidity
[65, 66]. The beam rigidity determines the B-field required to bend the beam on
a circular trajectory with given bending radius. The maximum achievable B-field
being limited to about 2 Tesla for normal conducting magnets, today’s high-energy
hadron colliders use superconducting bending magnets.

The quasi absence of synchrotron radiation leads to another feature of hadron
colliders, which is the fact that there is no synchrotron radiation damping and the
transverse emittance is hence determined and preserved throughout the injector
chain. Emittance blow up, e.g. via injection mismatch, is therefore critical.

6.8.2 Proton-Antiproton Colliders

A machine with one single vacuum chamber, e.g. the Super Proton Synchrotron SPS
(“SppbarS in this operation mode) in the 1980s or the Tevatron can accomplish the
acceleration of protons and antiprotons.

During the years 1981–1987, the CERN SPS was operated as a proton-antiproton
collider, providing high energy collisions for two major experiments located in
adjacent sextants of the accelerator. This operation was first with three dense
bunches of protons in collision with three rather weak bunches of antiprotons,
with no separation of the beams at the unused crossing points. After increasing
the antiproton production rate, six bunches per beam were used. The SPS has
normal conducting bending magnets and a circumference of 6.9 km. The beam
energy provided by the SPS as proton-antiproton collider was 315 GeV [67, 68].
The SppS was the first hadron collider operating with bunched beams. Before the
commissioning of the machine it was debated if it was possible to collide proton
and antiproton bunches, or if the beams would become unstable due to the presence
of the beam-beam interaction without damping as in e+e− colliders. Its success
demonstrated the feasibility of high energy hadron colliders [69].

Higher energy was achieved by the Tevatron, using superconducting magnets
with a maximum B field of 4.5 T. The circumference of the machine is 6.28 km;
comparable to that of the SPS. In the final stage of operations (“run II”), beams are
injected at 150 GeV and accelerated to 980 GeV. The bunches (36+36) circulate
in the same aperture, the protons clockwise and the antiprotons anticlockwise. The
machine has a lattice with four dipoles followed by a quadrupole, with a total of
772+2 dipoles and 90+90 quadrupoles, plus a number of corrector magnets.



258 B. J. Holzer et al.

6.8.3 Proton-Proton Colliders

Proton-proton colliders require a dedicated magnet design with two separate vac-
uum chambers for the two equally charged beams. The first proton-proton collider
was the ISR (Intersecting Storage Rings) at CERN. It consisted of two rings of
943 m length which were intersecting at eight points. Out of these eight intersection
points six were used for experiments. The ISR was operated between 1970 and
1984. The top energy achieved for protons was 31.4 GeV/c. The ISR allowed not
only proton-proton collisions, but stored and collided later also deuterons, alpha
particles and antiprotons. The ISR pioneered a number of techniques which were
beneficial which paved the path for future high energy colliders like the SPS.

The proton-proton collider with the highest energy ever built is the Large Hadron
Collider (LHC) at CERN [70]. It uses superconducting magnets with two separate
vacuum chambers for the two equally charged beams. The design field is 8.36 T,
and the machine circumference 26.659 km which yields a design beam energy of
7 TeV. Higher field levels are being studied in the frame of possible further energy
upgrades.

A machine with an even higher beam energy of up to 50 TeV is presently being
studied by an international collaboration. The Future Circular Collider (FCC) has
a hadron-hadron option (FCC-hh) with a beam energy of 50 TeV [71]. The latest
design features a machine circumference of 97.75 km with a maximum dipole field
of 15.7 T. The size of the machine is a compromise of civil engineering constraints
and dipole feasibility.

6.8.4 Electron-Proton Colliders

Collisions between electrons and protons are used to study the inner structure
of the proton e.g. the quark gluon distribution underneath the valence quarks.
The electrons are used as a point like probe to determine the inner structures in
the target. This deep inelastic scattering studies were performed in the beginning
using an accelerated electron beam colliding on a fixed target. Due to kinematic
considerations however a much higher resolution is obtained if two accelerated
beams are brought into collision.

Due to the different nature and beam dynamics of the two particles an electron-
proton collider cannot be built as a single ring machine: It consists of two storage
rings of equal circumference, one being optimised for the acceleration and storage
of electrons, the other for a high energy proton beam. The design of these two rings
looks quite different and completely different effects determine the performance
limitations of the rings. Figure 6.30 shows the two storage rings of the HERA
collider:

HERA was built as a 6.3 km long double ring collider with beam energy
of 27.5 GeV for the electron beam, and 920 GeV for the proton beam [72].
The fundamental layout was based on four arcs and four straight sections where
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Fig. 6.30 View of the two independent storage rings for electron and proton acceleration in
HERA. The super conducting proton lattice is placed on top of the conventional electron ring

the high-energy detectors were located. The proton machine was designed as a
superconducting magnet lattice in the arcs to achieve the highest possible beam
rigidity (or particle energy). The electron storage ring was built in conventional
magnet technology: here the limiting factor was the synchrotron radiation emitted by
the electrons which was too strong to justify super conducting magnet technology.
Basic limits for the achievable beam energy therefore were in the case of the protons
the magnetic field of the bending magnets (B = 5.1 T) and for the electron ring the
available RF power that was needed to compensate the synchrotron radiation losses.
Both rings had been built on top of each other to guarantee an equal revolution time
of the circulating particle bunches.

The interaction region of such a two ring collider deserves special attention:
While the two beams are brought into collision in a common vacuum system and
magnet lattice, they have to be separated after the IP and guided into their respective
magnet lattices. Especially in the case of the electron beams the separation has to
be performed fast enough, as the strong focusing fields of proton mini beta magnets
can only be applied after a full separation of the beams.

Two mini beta insertions therefore have to be installed and combined with an
effective beam separation scheme. In the case of HERA the separation has been
achieved by using the different momenta of the beams: The mini beta quadrupoles
of the electron beam have been placed offset with respect to their magnetic axis
and acted as combined function magnets. Consequently the electron beam was bent
due to its smaller beam rigidity to the inner side of the ring and at a distance
s∗ = 20 m the first proton magnet could be installed. A schematic view of this
nested interaction region is shown in Fig. 6.31.

The advantage of this scheme is its compactness as beam separation and focusing
are obtained at the same time. Special care however is needed as the electron
quadrupoles of the mini beat section will have an effect on the proton beam that
depends on the corresponding energy of the electron beam. This dynamic influence
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Fig. 6.31 Layout of the HERA interaction region: The inner triplet of the electron lattice is
combined with the beam separation scheme and embedded inside the doublet quadrupoles of the
proton mini beta insertion

on the optics and orbit of the protons therefore has to be compensated during the
acceleration of the electrons as well as during the beta squeeze.

The luminosity formula for such a double ring collider is given by

L = 1

2πe2f0
∗

∑

i

(
Ipi ∗ Iei

)

√
σ 2
xp + σ 2

xe ∗
√
σ 2
yp + σ 2

ye

It depends on the product of the single bunch currents Ipi and Iei and the sum of
this contribution over the overall number i of colliding bunches in the rings. As the
beams are guided in different magnet lattices the beam sizes σ are independent of
each other. Nevertheless the beams have to be matched, i.e. the beam sizes of the
two beams at the IP have to be equal in both planes: σxp = σxe and σyp = σye. This
condition deserves special attention as the beam emittances of protons and electrons
are quite different and independent beam optics have to be established to achieve
matched beam sizes.

Another special feature of an electron proton collider is the synchrotron radiation
that is emitted by the electron beam. Usually this effect is present in the arc structure
where the dipole fields bend the beam on the design orbit. Due to the separation
fields needed in the interaction region the synchrotron radiation is also emitted close
to the IP and special care is needed to shield the high energy detector from the
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Fig. 6.32 Synchrotron radiation emitted during beam separation in the HERA interaction region.
The plot shows schematically the interaction region lattice, the beam dimension and the direction
and density of the synchrotron light

emitted photons. For the HERA collider this problem has been studied in detail (see
Fig. 6.32) and a combination of absorbers and movable collimation masks have been
used to avoid hits from direct or back scattered photons into the detector parts.

The performance limitations of such an e-p-collider are given by the singe bunch
intensity of the protons (limited by the particle source), the overall current of the
electrons (limited by RF power or beam instabilities), the number of bunches that
can be stored in the machine (limited by technical reasons of the injection elements)
and the usual limits of the mini beta insertions that have been mentioned above.

The main parameters of HERA are summarised in Table 6.1:

Table 6.1 Summary of the
main parameters of HERA

Electrons Protons

Energy 27.5 GeV 920 GeV
Beam current 58 mA 140 mA
Particles per bunch 4 × 1010 1 × 1011

Number of bunches 189 180
Beta function at IP x/y 0.63 m/0.26 m 2.45 m/0.18 m
Hor. emittance 20 nm 5.1 nm
Emittance ratio εy/εx 0.18 1.0
Beam size (IP) σx/σy 112/30 μm 112/30 μm
Luminosity 7 × 1031 cm−2 s−1
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6.9 Ion Colliders1

W. Fischer · J. M. Jowett

Ion colliders are research tools for high-energy nuclear physics. The collisions of
fully stripped high-energy ions, that is, atomic nuclei, create matter of a temperature
and density that existed in the first microseconds after the Big Bang. The matter
created in these high-energy ion collisions is known as the Quark Gluon Plasma
(QGP), and interactions between the quarks and gluons is the subject of the
theory of quantum chromodynamics (QCD). The basic interactions are studied in
simpler collisions such as e+e− or pp but heavy-ion collisions allow the study of
more complex collective phenomena in QCD. The collisions in ion colliders can
create hadronic matter at much higher densities and temperatures than fixed target
experiments although at a much lower luminosity.

The collisions of heavy ions in RHIC and the LHC have yielded a number of
new results and revealed phenomena that were unexpected on the basis of previous
theoretical understanding. The QGP generated in the heavy ion collisions in RHIC
was expected to be weakly interacting, but found to be strongly interacting like an
almost perfect liquid [73, 74]. Hadronic jets created in the collisions have a rather
short mean free path in the QGP leading to a phenomenon termed “jet quenching”
[74], and the largest ever measured vorticity was seen in heavy ion collisions [75].
The collisions also created the heaviest artificially made antimatter nuclei, anti-
helium-4 [76, 77]. The higher energies in the LHC create many more hard probes
and heavy bound states such as charmonium (J/ψ) or bottomonium (ϒ) and, in
the highest-energy p-Pb collisions, toponium. Z and W bosons, particles that do not
interact with the QGP via the strong interaction, were never before seen in heavy ion
collisions. The ALICE experiment also reported the highest temperatures directly
measured in the laboratory [78].

The colliding nuclei also have high electric charges (Z ~ 80). Together with the
powerful Lorentz-compression at high energies, these generate enormous electro-
magnetic fields outside the nuclear radius. As first shown by Fermi, Weizsäcker
and Williams, these fields can be represented as a beam of high energy quasi-
real photons, leading to so-called ultraperipheral photonuclear and photon-photon
collisions. Besides their intrinsic interest, the high cross-sections for these processes
have consequences for the operation of the collider. The ATLAS experiment at the
LHC has published the first evidence for light-on-light elastic scattering, a long-
predicted fundamental process of nonlinear quantum electrodynamics, transcending
Maxwell’s equations.

1This section has been authored by Brookhaven Science Associates, LLC under Contract No. DE-
SC0012704 with the U.S. Department of Energy. The United States Government retains and the
publisher, by accepting the article for publication, acknowledges that the United States Government
retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the
published form of this manuscript, or allow others to do so, for United States Government purposes.
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The first ion collider was the CERN Intersecting Storage Rings (ISR), which
briefly collided light ions [79, 80] in the late 1970s. The BNL Relativistic Heavy
Ion Collider (RHIC) has been in operation since 2000 and collided a number of
species at numerous energies. The CERN Large Hadron Collider (LHC) started its
Run 1 heavy ion program in 2010 and has provided mainly p-p, p-Pb and Pb-Pb at
increasing luminosity with a substantial increase in energy in Run 2 (2015–2018).
Both RHIC and the LHC have an expected operating time exceeding 20 years.
Further upgrades to the LHC, its injector complex and its experiments, foreseen
in the shutdown after Run 2, should allow the integrated luminosity in Runs 3
and 4 (up to 2029) to exceed Runs 1 and 2 by an order of magnitude. Table 6.2
shows all species combinations and energy ranges demonstrated to date for the ISR,
RHIC and LHC. All three machines also collide protons. In RHIC the protons are
spin-polarized, making the machine the only collider of spin-polarized protons ever
built. The LHC is the highest energy proton-proton and heavy-ion collider ever built.
Critically, proton-proton collisions at the same energy per nucleon provide reference
data for heavy ion collisions. In the following, we will limit our comments to the
ion operation in RHIC and the LHC.

Ion colliders differ from proton or antiproton colliders in a number of ways:
the preparation of the ions in the source and the pre-injector chain is limited
by other effects than for protons; frequent changes in the collision energy and
particle species, including asymmetric species, are typical; and the interaction of

Table 6.2 Ion species and
energies achieved in ISR,
RHIC and LHC as of 2017

Machine Species Energies [GeV/nucleon]

ISR α–α

p–α

d–d

13.3–15.7
26.6–31.4 (p), 13.3–15.7 (α)
13.3–15.7

p–d 26.6–31.4 (p), 13.3–15.7 (d)
p–p 13.5–31.2

RHIC U–U
Au–Au

96.4
3.85–100

Cu–Au
Cu–Cu
h–Au
d–Au

100
11.2–100
103.5 (h)–100 (Au)
9.9–100

p↑–Au 103.9 (p)–98.6 (Au)
p↑–Al
p↑–p↑

103.9 (p)–98.7 (Al)
31.2–255

LHC Pb–Pb
Xe–Xe

1380–2511 (2563 briefly)
2721

p–Pb
p–p

4000–6500 (p), 1577–2563 (Pb)
3500–6500

p, d, h and α denote the nuclei of the hydrogen, deuterium,
helium-3 and helium-4 atoms respectively. All three machines
also collide proton beams, which are spin-polarized in RHIC.
The quoted energy is the sum of rest and kinetic energy per
nucleon
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Fig. 6.33 Achieved nucleon-pair luminosity LNN , averaged over a store, for all species combina-
tion and energies in RHIC

ions with each other and accelerator components is different from protons. This has
implications for collision products, collimation, the beam dump, and intercepting
instrumentation devices such as profile monitors. Thus, the performance limitations
of heavy-ion colliders are also different from proton-proton colliders.

Figure 6.33 shows the achieved nucleon-pair luminosities LNN , averaged over a
store, for all species combinations and energies in RHIC. The plot demonstrates the
flexibility of RHIC in colliding different species combinations (all of them at or near
the center of mass energy

√
sNN = 100 GeV), energy scans for a number of species

combinations (Au+Au, Cu+Cu, d+Au p↑+p↑), and a luminosity that is strongly
decreasing with the collision energy.

In the preparation for the collider use, the charge state Z of the ions is
successively increased. A high charge state Z increases the bending and acceleration
efficiency, but also increases the effects of space charge and intrabeam scattering
(IBS). The direct space charge tune shift ΔQ, typically limited to values of less than
0.5, is given by [81]

�Q = − λR

2εnβγ 2

r0Z
2

A
,

where λ is the particle line density, R the machine circumference, εn the normalized
emittance, β and γ the relativistic factors, r0 the classical proton radius, and A the
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Table 6.3 Preparation of the heavy ions for RHIC and LHC

RHIC (Au) LHC (Pb)

Charge state Z
Ion energy
[eV/nucleon] Charge state Z

Ion energy
[eV/nucleon]

LIONa 1+ 150 ECR 27+ 2.5 k
EBISb 32+ 0.9 M LINAC3 54+ 4.2 M
Booster 77+ 101 M LEIR 54+ 72.2 M
AGS 79+ 8.8 G PS 82+ 5.9 G
RHIC 79+ 99 G SPS 82+ 177 G

LHC 82+ 2.51 T

For each accelerator, the kinetic energy of the ions is given at extraction, and the charge state in
the following transfer line
aLaser Ion Source; bElectron Beam Ion Source

mass number. IBS growth rates 1/Tx,y,s scale like [81]

1

Tx,y,s
∝ Z4

A2

Nb

γ εxεyεs

where Nb is the bunch intensity, and εx,y,s are the normalized emittances. High
charge states also reduce the electron stripping probability, and electron stripping
at higher energies is generally more efficient.

Table 6.3 shows the charge states and energies in the RHIC and LHC injector
chains for the Au and Pb respectively, the heavy ion species most often used in these
machines. For RHIC singly charge ions are generated in a hollow cathode or laser
ion source (LION) [82], and transferred into an Electron Beam Ion Source (EBIS)
[83]. With EBIS, beams of almost any element can be prepared for RHIC including
uranium and spin-polarized 3He. After increasing the charge state to Z = +32 the
ions are accelerated through an RFQ and short linac, and injected into the Booster.
After acceleration in the Booster, all but two electrons are stripped before injection
into the AGS, and the ions are further accelerated. To increase the intensity of the ion
bunches, bunches are merged in both the Booster and AGS. The last two electrons
are stripped in the transfer line from the AGS to RHIC. In RHIC all ions except
protons have to cross the transition energy, when bunches become short and peak
currents high. In addition, the longitudinal motion is frozen for a short period, and
the short bunches can trigger the creation of an electron cloud [84]. This situation
makes the beams vulnerable to instabilities [85], which limited the bunch intensity
for a number of years [84].

At CERN an ECR ion source is used, followed by an RFQ and the heavy ion
LINAC3 [86, 87]. After passing a carbon foil that strips electrons, the ions are then
accumulated in Low Energy Ion Ring (LEIR) [88]. During the 71-turn injection and
before acceleration the ions are cooled with an electron beam, with a transverse
cooling time of 0.2 s. To minimize dynamic vacuum effects from charge-change
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processes the LEIR vacuum system is designed for a dynamic pressure of less than
10−12 mbar. From LEIR the ions are injected into the PS where the bunches are
split to obtain the bunch spacing needed for the LHC. After acceleration in the PS
the last remaining electrons are stripped before injection into the SPS. In the SPS
at injection space charge and intrabeam scattering were a concern, and an emittance
growth of about 20% is observed at injection. Acceleration in the SPS requires a
special fixed frequency acceleration scheme since the main 200 MHz RF system
does not have the frequency range required to accelerate heavy ions with a constant
harmonic number. The SPS acceleration scheme takes advantage of the fact than the
ion bunch train only fills a fraction of the circumference allowing for an adjustment
of the RF phase during the time without beam [89].

The luminosity is given by

L = (βγ )
frev

4π
kc
Nb1Nb2

εnβ∗
H

where frev is the revolution frequency, kc the number of bunch-bunch collisions
per turn, Nb1 and Nb2 the bunch intensities in the two beams respectively, and β∗

the lattice envelope function at the interaction point. The factor H accounts for
the hourglass effect and crossing angles, and is smaller than and of order 1. The
luminosity is limited by different effects in RHIC and the LHC.

In RHIC bunches of fully stripped heavy ions like Au79+ with the same number
of charges as proton bunches have IBS growth rates an order of magnitude larger.
In RHIC at injection IBS leads to bunch lengthening, and at store to particle loss
out of the RF buckets and an increase in the transverse emittance. Longitudinal
and transverse bunched beam stochastic cooling at store has been implemented [90]
to counteract IBS. This and an increase in the bunch intensity have significantly
increased the average store luminosity (Fig. 6.34). Table 6.4 shows the latest RHIC
parameters for Au–Au operation.

Fig. 6.34 RHIC
instantaneous Au+Au
luminosity in 2007 with
longitudinal stochastic
cooling in the Yellow ring
only, and in 2014 with 3D
cooing in both rings. The
increase in the initial
luminosity is due to an
increase in the bunch
intensity
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Table 6.4 Main operating parameters achieved for the most commonly heavy ions in RHIC and
LHC as of 2017

Parameter Unit RHIC LHC

Circumference C km 3.8 26.7
Ion species 197Au79+ 208Pb82+
Maximum energy GeV/nucleon 100 2511
Bunch intensity 109 2.0 0.20
Number of colliding bunches 111 492
Peak luminosity 1026 cm−2s−1 155 36
Average store luminosity 1026 cm−2s−1 87 17

Other effects that have limited the heavy ion performance in the past include:
the availability of high intensity bunches from the injector chain, instabilities at
transition [91] driven by the machine impedance and electron clouds (RHIC is
the only superconducting accelerator that crosses the transition energy), dynamic
pressure increases including pressure instabilities caused by electron clouds [84],
beam loading in the storage RF system (bunches are accelerated with h = 360 and
transferred into a h = 7×360 system at store), and chromatic lattice aberrations at
β∗ < 70 cm.

The LHC heavy ion operation started in 2010 and the luminosity is principally
limited by two effects [92, 93]. Firstly, secondary beams generated in collision and
having a Z/A ratio different from the primary beam will be lost in the dispersion
suppressor, a location with superconducting magnets with a limited ability to absorb
heat [94]. Secondly, the collimation efficiency for ions is lower than for protons
leading again to losses in uncontrolled regions [95]. Expected LHC ion parameters
are shown in Table 6.4. The two most important processes for the generation of
secondary beams in collisions are Bound-Free Pair Production (BFPP),

208Pb82+ + 208Pb82+ γ→ 208Pb82+ + 208Pb81+ + e+, (6.72)

with a cross section of 281 barn; and Electromagnetic Dissociation (EMD) with a
total cross section of 226 barn, about half of which is from the 1-neutron reaction

208Pb82+ + 208Pb82+ γ→ 208Pb82+ + 207Pb81+ + n. (6.73)

Beam losses due to BFPP were observed in RHIC with 63Cu29+ ions [96] and
effective mitigation measures have now been implemented at the LHC [97, 98].
These have allowed Pb-Pb luminosities far beyond the design value from 2015
onwards. Collimation of heavy ions is fundamentally different from protons. Protons
are scattered at a primary collimator and collected at a secondary collimator. Heavy
ions undergo nuclear fragmentation and electromagnetic dissociation in the primary
collimator. The fragments created have a wide range of Z/A ratios that are not
collected by the secondary collimators. Measurements of collimation efficiency
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were done in the CERN SPS and compared with detailed simulations to obtain
reliable estimates of the heavy ion collimation efficiency in the LHC [95].

The LHC also collided Xe nuclei in 2017 [98] and may collide other species in
future, generally with a view to increasing the nucleon-nucleon luminosity.

In the collision of asymmetric species the 2-in-1 magnet design of the LHC
requires that the magnetic fields in two rings are the same (the two RHIC rings are
independent and can have different fields). For p–Pb operation it is then necessary to
have different revolution frequencies at injection and during the energy ramp [99].
Lead beams in the LHC at design energy have noticeable synchrotron radiation
damping times (6 h and 13 h longitudinally and transversally) that are of the
same order as the IBS emittance growth times (8 h and 13 h longitudinally and
transversally) [92].

6.10 Beam Cooling

F. Caspers · D. Möhl

6.10.1 Introduction

Beam cooling aims at reducing the size and the energy spread of a particle beam
circulating in a storage ring or in an ion trap. This reduction of size should not
be accompanied by beam loss; the goal is to increase the particle density [100].
Since the beam size varies with the focusing properties of the storage ring, it is
useful to introduce normalized measures of size and density. Such quantities are
the (horizontal, vertical and longitudinal) emittances and the phase-space density.
For our present purpose they may be regarded as the (squares of the) horizontal
and vertical beam diameters, the energy spread, and the density, normalized by the
focusing strength and the size of the ring to make them independent of the storage
ring properties. Phase-space density is then a general figure of merit of a particle
beam, and cooling improves this figure of merit. The terms beam temperature
and beam cooling have been taken over from the kinetic theory of gases. For
visualization one may imagine a beam of particles going around in a storage ring.
Particles will oscillate around the beam centre in much the same way that particles
of a hot gas bounce back and forth between the walls of a container. The larger
the mean square of the velocity of these oscillations in a beam, the larger the beam
size. The mean square velocity spread is used to define the beam temperature in
analogy to the temperature of the gas which is determined by the kinetic energy of
the molecules.



6 Design and Principles of Synchrotrons and Circular Colliders 269

There are several basic motivations for the application and development of
different beam cooling techniques:

• Collection and accumulation of rare particles, e.g. antiprotons or short lived
particles such as muons.

• Improvement of interaction rate and resolution, e.g. collision experiments with
antiprotons or with ions; increase in luminosity. For fixed target experiments:
sharply collimated and/or highly mono-energetic beams for precision experi-
ments.

• Preservation of beam quality, mitigation and suppression of beam blow-up.
• Preparation of crystalline beams.

Several cooling techniques are operational or have been discussed:

• Radiation cooling (often referred to as radiation damping); linked to energy
loss of particles via synchrotron radiation (used in virtually all modern electron
synchrotrons).

• Stochastic cooling (works well for “hot” beams to get them “tempered).
• Electron cooling (most suitable for “tempered” beams to get them “cold”).
• Laser cooling (essentially for ions where two level transitions of electrons can be

excited).
• Ionization- and friction-cooling (mainly discussed in the context of muon

cooling).
• Resistive cooling; used to cool charged particles in a trap where the kinetic energy

of the particle is dissipated in the resistive losses of a resonant circuit.
• Coherent electron cooling, a kind of blend from stochastic cooling at very high

frequencies and electron cooling (under development at BNL theses days)

The use of the terms cooling and damping is not always well distinguished
and unambiguous in the literature. Even in the context of stochastic cooling the
authors were using the term damping in the early days. A similar observation can be
made for radiation damping and cooling. One may consider defining any action on
individual particles as “cooling” and any action on groups of particles as damping.
Examples are the feedback systems in circular machines which are commonly
referred to as dampers and which prevent emittance blow up, while a very similar
feedback system just having a much higher electronic gain can work as (stochastic)
cooler and reduce the emittance. However typically such damper systems have a
much smaller bandwidth and lower operation frequency as compared to stochastic
cooling hardware.

6.10.2 Beam Cooling Techniques

6.10.2.1 Radiation Cooling

Back in 1956, A.A. Kolomenski and A.N. Lebedev [101] pointed out that the
‘synchrotron light’ emitted by an electron moving on a curved orbit can have a
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Fig. 6.35 The principle of
transverse cooling by
synchrotron radiation
(transverse velocities
exaggerated)
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damping effect on the motion of the particle. This is because the radiation is sharply
peaked in the forward direction. The continuous emission of synchrotron radiation
leads to a friction force opposite to the direction of the motion. For a particle
moving on the design orbit, the energy loss is restored and the friction force is
on average compensated by the RF-system. For a real particle the residual friction
force tends to damp the deviation from the design orbit (Fig. 6.35). This cooling
force is counteracted by the ‘radiation excitation’: synchrotron light is really emitted
in discrete quanta and these many small kicks tend to heat the particle. The final
emittances result from the equilibrium of radiation damping and excitation. We will
see that a similar interplay between a specific cooling and heating mechanism is
characteristic also for the other cooling methods.

The theory of cooling by synchrotron radiation is in a mature state. Following up
on Sands’ classical treatment on “the physics of electron storage rings”, radiation
cooling has found its place in text books. The immense success of modern
electron–positron machines, both ‘synchrotron light facilities’ (e.g. ESRF, ALS,
APS, BESSY, SPRING8) and colliders (e.g. LEP, PEP II, KEKB) would not have
been possible without the full understanding of radiation effects. Virtually all these
machines depend critically on radiation cooling to attain the minute emittances
necessary in their application. Linear e+e−-collider schemes (like CLIC, TESLA,
NLC, JLC) too, have to rely on ‘damping rings’ in their injector chain to produce the
ultra-high phase-space density required. For historical reasons the reduction of beam
emittance due to the emission of synchrotron radiation (typically from leptons) is
usually referred to as radiation damping, although the term “cooling “might be more
consistent.

The cooling rates as well as the final beam size and momentum spread depend on
the lattice functions in regions where the orbit is curved. The art is then to ‘arrange’
these functions such that the desired beam property results. The strategy for ‘low
emittance lattices’ is well developed and ‘third-generation machines’ providing
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beams of extremely high brightness have come into operation. To enhance the
cooling, wiggler magnets are used, producing a succession of left and right bends.
This increases the radiation and thereby the damping rates. The heating can be kept
small by placing the wiggler at locations where the focusing functions of the ring
are appropriate to make the particle motion insensitive to kicks. More details for
cooling by synchrotron radiation are given in Sect. 6.5.

Radiation cooling and lattice properties of the storage ring are thus intimately
linked and by smart design, orders of magnitude in the equilibrium emittances have
been gained. This may serve as example for other cooling techniques for which the
art of ‘low emittance lattices’ is only now emerging.

6.10.2.2 Microwave Stochastic Cooling

For (anti-)protons and heavier ions, radiation damping is almost negligible at
the energies currently accessible in accelerators except for the LHC. One of the
‘artificial’ cooling methods devised for these heavy particles is stochastic cooling
by a broadband feedback system (Fig. 6.36). The name “stochastic damping” was
coined by Simon van der Meer who invented this method in 1968 (first published
in 1972) [102] to underline the statistical basis of the method. First successful
tests and observations were done at the CERN ISR (Intersecting Storage Rings)
[102] followed by a dedicated “Initial Cooling Experiment” ICE [103]. In 1984
Simon van der Meer shared the Nobel Prize [104] in physics with Carlo Rubbia
for his contribution to the observation of the intermediate vector boson. Microwave
stochastic cooling was considered a key ingredient for reaching sufficient phase
space density of the precious and rare antiprotons to produce a small number
of W- and Z-Bosons in the CERN Super Proton-Antiproton Synchrotron (SppS)
experiment in 1982. At the core of stochastic cooling is the observation, that the
phase-space density can be increased by a system that acts to reduce the deviation
of small sections, called samples, of the beam. By measuring and correcting the
statistical fluctuations (‘Schottky noise’) of the sample averages, the spreads in the
corresponding beam properties are gradually reduced. Stochastic cooling may thus
be viewed as a ‘sampling procedure’ where samples are continuously taken from the
beam and the average of each sample is corrected. The basic principle of (transverse)
stochastic cooling is sketched in Fig. 6.36.

A somewhat different picture is based on the behavior of a test particle. At each
passage it receives its own ’coherent’ kick plus the ‘incoherent’ random kicks due
to all other sample members. The sample length Ts (response-time) is given by the
bandwidth W of the system through Ts ≈ 1/2W and the number Ns of particles per
sample is proportional to Ts. Hence a large bandwidth is important to work with
small samples. Present day cooling rings have a revolution time between a fraction
of a μs (e.g. CERN AD) up to about 20 μs (Relativistic Heavy Ion Collider (RHIC),
Fermilab bunched beam cooling systems). The sample length Ts amounts usually to
less than 1 ns which corresponds to a cooling system bandwidth of 500 MHz in
this case assuming the generalized Nyquist criterion for band-limited signals under
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Fig. 6.36 The basic set up for (horizontal) stochastic cooling

ideal assumptions. Thus each sample contains only a small fraction of the total beam
population circulating in the machine. Another important ingredient is ‘mixing’, i.e.
the renewal of the sample population due to the spread of the particle revolution
frequencies.

Based on the ‘sampling’ and/or the ‘test particle picture’ one derives in a few
steps [105] a simplified relation for the cooling rate 1/τ of the transverse emittance
ε with (1/τ = (1/ε)dε/dt) or for longitudinal phase space the momentum deviation
(1/τ = (1/�p)d�p/dt):

1

τ
= W

N

[
2g
(

1 − M̃−2
)

<coherent effect>

− g2
(
M + U/Z2

)]

<incoherent effect>

. (6.74)

The parameters appearing in Eq. (6.74) have the following significance:

N number of particles in the coasting beam
W cooling system bandwidth
g gain parameter (fraction of sample error corrected per turn) (g < 1)
M desired mixing factor (mixing on the way kicker–pick-up = good mixing) (M > 1)
M̃ undesired mixing factor (slippage on the way pick-up–kicker = bad mixing) (M̃ > 1)
U noise to signal power ratio (for single charged particles) (U > 0)
Z charge number of beam particles (≤ atomic number of the ion!) (Z ≥ 1)
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There is an optimum value of g for which Eq. (6.74) has a maximum. As to the
other parameters, N and Z are properties of the beam, W is a property of the cooling
system and M, M̃ and U depend on the interplay of cooling system-, beam- and
storage ring characteristics. The term in the bracket can at best be 1 but is more like
1/10 to 1/100 in real systems, depending on how well the mixing and noise problems
are solved. The ideal cooling rate W/N can be interpreted as the maximum rate at
which information on single particles can be acquired. Note that the gain parameter
g (fractional sample error correction) should not be confounded with the electronic
gain of cooling system which is typically 120 db or 12 orders of magnitude in power.

Lattice parameters are especially important for the achievement of ‘good’ values
of M, M̃ and U, maximising the bracket in Eq. (6.74). In addition to the struggle for
large bandwidth, the advance in stochastic cooling is intimately linked to progress in
dealing with the noise and mixing factors. In summary it can be said that present-day
systems are working with a bandwidth of around 1 GHz for an individual cooling
system with the possibility of extensions up to nearly 10 GHz by using several
cooling bands in the same ring. Limitations on W are discussed in [106].

Turning to the mixing dilemma discussed at length in [107], we note that
stochastic cooling only works if after each correction the samples (at least partly) re-
randomise (desired mixing), and at the same time a particle on its way from pick-up
to kicker does not slip too much with respect to its own signal (undesired mixing).
The mixing rates 1/M and 1/M̃ are related to the fraction of the sample length
by which a particle with the typical momentum deviation slips with respect to the
nominal particle. Here M refers to the way from kicker to pick-up (‘K to P’), and M̃
to the way pick-up to kicker (‘P to K’). Both depend on the flight-time dispersion
which in turn is given by the local ‘off-momentum factors’,

ηkp =
(
dT

T
/
dp

p

)

kp
, (6.75)

and the similar quantity ηpk respectively. For a regular lattice the beam paths ‘K to
P’ and ‘P to K’ consist of a number of identical cells and one has

ηkp ≈ ηpk ≈ η =
∣∣∣γ−2

tr − γ−2
∣∣∣ , (6.76)

i.e. the local η-factors are close to the off-momentum factor for the whole ring. In
this situation the ratio M̃/M is simply given by the corresponding path lengths (Tpk
and Tkp). Then, e.g. in the case of the CERN AD (antiproton decelerator) where the
cooling loop cuts diagonally across the ring, one has M̃ ≈ M instead of the desired
M̃ � 1, M = 1. The usual compromise is to accept imperfect mixing, letting both
M̃ and M be in the range of 3–5, say. The price to pay is a slower cooling rate, for
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example 1/τ ≤ 0.28W/N in the case of M̃ = M instead of 1/τ ≤ W/N for perfect
mixing.

‘Optimum mixing lattices’ (also referred to as ‘split ring designs’) have been
proposed for the 10 GeV ‘SuperLEAR’ ring [108] (which was, however, never
built). The idea is to make the path P to K isochronous (ηpk = 0) and the path
K to P strongly flight-time dispersive (ηkp � 0). These lattice properties have
to be reconciled with the many other requirements of the storage ring. The next
generation of stochastic cooling rings will use such split rings lattices. They were
discussed for RIKEN in Japan [109] and are under construction for GSI and FAIR
in Germany [110, 111]. It should be mentioned that the condition ηpk = 0, ηkp � 0
can increase the cooling rate for transverse and for longitudinal ‘Palmer-Hereward’
cooling where the transverse displacement concurrent with the betatron amplitude
and the momentum error of the particles is used. For momentum cooling by the
filter (‘Thorndahl’) method, the split ring design brings less improvement since
here the time of flight over a full revolution is used as a measure of momentum. A
storage ring with ηpk = 0 and η ≈ 1–2% is under construction for GSI and FAIR in
Germany, meeting best conditions for both transverse cooling and filter momentum
cooling of antiprotons [112].

Regarding the situation at GSI it should be mentioned that a first successful
experiment was performed at the ESR to measure the nuclear radius of the
radioactive nucleus 56Ni. To this purpose stochastic precooling and subsequent
electron cooling were used in order to accumulate enough intensity for a sufficient
S/N in a scattering experiment with an internal hydrogen target [113].

This is not the end of the mixing dilemma: during momentum cooling, as �p/p
decreases, the M-factors increase (c.f. Eq. 6.75) and the mixing situation tends to
degrade. One can in principle stay close to the optimum by changing η (‘dynamic
transition tuning’) as cooling proceeds. Similar considerations hold for machines
with variable working energy where, through a change of η, good mixing can be
maintained. Again these improvements might be incorporated in the next generation
of cooling rings (e.g. at FAIR [112]).

As for the noise, from Eq. (6.74) it is clear that a balanced design aims at
U/Z2 �M. The noise to signal (power-)ratio depends on the technology of the pre-
amplifier and other ‘low level components’ on the one hand and on the sensitivity
of the pick-up device on the other hand. There has been great progress in the
design of the pick-up and kicker structures and the other components of the cooling
loop. These components developed in different labs (e.g. BNL [114], CERN [107],
Fermilab [115], Forschungszentrum Jülich (FZJ) [116], GSI [112, 117]) are in fact
formidable ‘high-fidelity (HiFi) systems’ with an unprecedented combination of
high sensitivity, low noise, great bandwidth, large amplification, very linear phase
response, and excellent compatibility with the ultra-high vacuum of the storage ring.

A more detailed discussion of stochastic cooling hardware progress over the last
30 years can be found in [118]. Regarding pick-up and kicker structures we have
seen printed versions arriving in the late 1980s of the classical λ/4 strip-line couplers
which are referred to as printed loop or printed slotline couplers which are normally
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used as “phased arrays” [119, 120]. As for travelling wave structures starting from
the TEM type slotted line version of Faltin [121] McGinnis developed a related
device [122] not based on a TEM line, but essentially a waveguide directional
coupler with slots masks for the coupling. Those waveguide type slot array couplers
have the advantage (in contrast to the Faltin version) that they can operate efficiently
also for highly relativistic beams and they exhibit a very high longitudinal and
transverse sensitivity over a bandwidth of several 100 MHz in the GHz region. As
a particular development the kicker structure for the BNL RHIC bunched beam
stochastic cooling system [123–125] is worth mentioning. It consists of an array
of cavities which are cut in length and can be opened by a mechanical plunging
mechanism in order to let the injected beam pass without aperture limitations.

Another travelling wave structure is the perforated structure which was originally
proposed in 2011 [126] and later developed for HIRFL-CSRe stochastic cooling. A
large number of small slots in the electrode provides distributed inductive loading,
slowing down the phase velocity of the travelling wave structure for the low beta
beams. This device is very broadband and operates from low frequencies onwards
as a forward coupler. Even for 2.76 m long electrodes used in HIFRL-CSRe, it can
be used from a few MHz to 1.2 GHz [127].

Another very promising recent development for pick-ups and kickers are “slot
ring” structures [128]. These structures were originally developed for the High
Energy Storage Ring (HESR) of the FAIR project at GSI, Germany and successfully
tested at the Nuclotron (JINR, Russia) for longitudinal cooling and at COSY (FZJ)
for longitudinal and transverse cooling. Slot ring couplers have a fixed aperture and
can be used for all three cooling planes simultaneously [128].

In CERN’s anti-proton decelerator AD stochastic cooling is employed at
3.57 GeV/c and 2 GeV/c in both transverse planes and for the longitudinal plane
(filter cooling) [129]. The current system uses a set of two kickers and pick-ups,
each combining one transverse plane and the longitudinal cooling, with a total of
4.8 kW installed power. It is undergoing a consolidation and upgrade [130] which
is including a notch filter with optical delay lines. Cooling times of 15–20 s reduce
transverse emittances to 3–4 π mm rad and Dp/p to ±0.3 × 10−3 at 3.57 GeV/c
and to ±0.08 × 10−3 at 2 GeV/c at intensities of 5 × 107 antiprotons. The system
uses a bandwidth of one octave between 850 MHz and 1.7 GHz. This is the actual
status in early 2019.

In parallel, CLASS A solid state amplifiers [131] (kicker driver) gradually took
over from TWT (travelling wave tube) units, although TWTs are still in operation for
stochastic cooling e.g. at Fermilab where they work reliably. Notch filters, required
for Thorndahl type longitudinal cooling (filter cooling) are implemented since about
1990 with good success in optical fibre technology [125, 132].

Optical signal transmission across the ring (Fermilab de-buncher) has been
realized with a laser beam in an evacuated metal pipe (no signal fluctuation from
temperature effects of air and humidity on the laser beam). The driving force to
select this method of signal transmission was the very tight requirement in terms of
transmission delay and delay stability. Anything slower than speed of light would
not have permitted timely arrival of the correction signal at the kicker. In 2017 very
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fast (around 99% speed of light) hollow optical fibres were applied successfully
for analog and wideband signal transmission across the ring at COSY (FZ-Jülich,
Germany) [133].

Front end amplifiers showed slow but steady progress and these days we can
easily get an uncooled 1–2 GHz or 2–4 GHz device with a noise temperature of
30 K.

Examples of remarkable recent progress in the field of microwave stochastic
cooling are

• bunched beam stochastic cooling at RHIC and Fermilab [134–137],
• the impressive improvements of the performance and the interplay of all stochas-

tic cooling and stacking systems at Fermilab together with elaborate beam
handling methods such as “slip stacking” [135, 136].

It should be noted that there have been unsuccessful attempts to get bunched
beam stochastic cooling operational in large machines despite the fact that one of
the first evidence on stochastic cooling at all, in ICE [137] already worked with a
bunched beam. However the bunch length was very large. Attempts which failed
were in the frame of the SPS p-pbar program at CERN [124] and later (around
1990) also in the Tevatron [138, 139]. Bunched beam cooling is of course hampered
by the higher particle density in the bunch. In fact in Eq. (6.74) the number N for
the coasting beam has to be replaced by Nb/Bf = Nb·1.4·2πR/lb (with R radius and
lb length of bunch) for a rough estimate [137, 140]. In addition to those expected
effects the direct (coherent) bunch signal (proportional to N at low frequencies)
tends to mask the very weak Schottky signals required for cooling [137, 140]. This
is one of the reasons to place the cooling bands towards high frequencies. In addition
a subtle but important difficulty is related to the presence of unexpected and rather
strong coherent signals in the bunched beam spectrum which lead to saturation of
the front end amplifiers via intermodulation [139, 140]. A theoretical treatment of
these persisting “turbulence islands” in the bunch was given by Blaskiewiecz [141].
Just in the recent years this problem became mastered at BNL (gold ions) [135]
and also in the Fermilab recycler [140]. However, bunched beam stochastic cooling
has always been working reasonably well in small machine like the CERN AC
[107], LEAR [142], Fermilab de-buncher and accumulator [143] and others since
the relative intensity of those coherent signals was less violent compared to large
machines. However for the small machines there was little interest in bunched beam
stochastic cooling.

New applications of stochastic cooling may include:

• fast cooling and stacking of low intensity radioactive ion beams with cooling
times of 100 ms or less as discussed for RIKEN [109] and under construction at
GSI [110],

• fast optical stochastic cooling [144–146] (e.g. of intense muon beams but also
for bunched beam cooling in large rings) for which a bandwidth of 1012–1013 Hz
and a new pick-up, kicker and amplifier technology, and new lattice designs have
been contemplated.
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Fig. 6.37 Sketch of cooling
time vs. intensity (for the
‘mixing limit’ τ = 10 N/W is
taken in the figure)

Let us have a quick look at these developments. The challenge of fast low-
intensity cooling can be discussed with reference to Fig. 6.37 [108], which illustrates
the optimum cooling time vs. intensity N. For large N the cooling time increases

linearly with N with the slope 1/W

[
M/
(

1 − M̃−2
)2
]

. This is the mixing and

bandwidth limit. For small N, cooling time levels off to a constant ‘noise limited’
value reached for U/Z2 �M (note that U ∝ 1/N).

The art is to shift the levelling off to small N by improving the signal to noise
ratio. Theoretically, short cooling times are then possible (e.g. 10 ms for N = 105

Sn50+ ions and a few 100 MHz bandwidth as discussed for RIKEN). However, other
difficulties like the broadband power needed for such a rapid emittance decrease,
and the residual RF-structure after debunching may pose new problems for fast
cooling and stacking.

Optical stochastic cooling (OSC) proposed by Mikhailchenko, Zholents and
Zolotorev [144, 145] in 1993 is an extension of certain basic concepts of microwave
stochastic cooling into the optical frequency range using different pickup and kicker
mechanism and structures. It is a potentially very promising technique but has not
been tested in practice so far. Challenges may be amongst other items the stability
and linearity of the optical signal transmission chain as well as of the circulating
hadron beam. Maybe we shall soon see important steps towards this technology at
BNL in a forthcoming “coherent electron cooling experiment”.

At BNL stochastic cooling has been implemented at top energy in the RHIC
[147]. The bunch cores have full length 5 ns and are spaced by 100 ns. The root
mean square Schottky voltage is typically 10% of the coherent voltage generated
by the average bunch shape and multi-kilovolt kicker voltages are required for
optimal longitudinal cooling. Several novel technologies were required to meet the
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challenges. The kicker voltage was obtained by periodically extending the pickup
signal, passing it through narrow band filters spaced by 200 MHz (1/5 ns) and driv-
ing individual cavities. Taming coherent lines while meeting timing requirements
was a serious challenge [148]. When all was said and done the cooling system
increased the integrated luminosity of uranium-uranium collisions by a factor of
five and typically doubled the gold-gold luminosity.

At Fermilab, OSC is being pursued at the IOTA facility [149]. In OSC a particle
emits electromagnetic radiation in the first (pickup) wiggler. Then, the radiation
amplified in an optical amplifier (OA) makes a longitudinal kick to the same particle
in the second (kicker). A magnetic chicane is used to make space for the OA and
to delay a particle so that to compensate for a delay of its radiation in the OA
resulting in simultaneous arrival of the particle and its amplified radiation to the
kicker wiggler. The chosen optical wavelength is 800 nm, resulting in bandwidths
approaching 1014 Hz. In the proposed test, the use of 100-MeV (γ = 200) electrons
instead of protons greatly reduces the cost of the experiment but does not limit its
generality and applicability to hadron colliders. Conceptual design of the system is
complete, with engineering design of the wiggler and optical hardware underway.

Already in late 1970s the need for “stochastic stacking” has been realized [150].
In the “old” CERN AA (antiproton accumulator) [151] early stacking methods were
tested and applied in routine operation. In the CERN AAC (antiproton accumulator
complex) [152] the antiprotons (pbar or p) coming from the AC (collector ring)
were transferred to the inner ring (AA = accumulator). There dedicated stack tail
and stack core systems took over the antiprotons after they have passed a pre-
cooling system in the AA and were transferred to another orbit by means of RF
manipulations. At Fermilab [138] stacking is done in the accumulator ring and later
also in the recycler. For the future stacking with stochastic cooling is planned in the
frame of the FAIR project [110]. Stochastic stacking of rare radioactive ions has
been considered during the planning phase of RIKEN [110] upgrades between 1900
and about 2000 and for FAIR [110].

At Fermilab huge progress has been made since the year 2000 [153], this
includes stacking with stochastic cooling was done in three separate machines.
The debuncher [154], which accepted ~1.5 × 108 antiprotons every 2.1 s, used the
McGinnis waveguide directional couplers in eight bands over the frequency range
4–8 GHz for a factor of 10 reduction in longitudinal and transverse size. A key
piece was the implementation of ramping the amplifier gain down during the cycle,
to counter act noise to signal for the momentum bands in the notch filters. A 6 dB
decrease in gain resulted in a 12% decrease in the 95% momentum width after 2 s
of cooling. The Accumulator [154] accepted the same ~1.5 × 108 antiprotons and
used the Palmer method to build a ‘stack’. Peak performance reached 2.6 × 1011

antiprotons in an hour, with regular transfers to the Recycler to mitigate the known
decrease in performance with larger stacks. The Recycler, using a combination of
stochastic and electron cooling [155], reached intensities of greater than 4 × 1012

regularly, with peak intensity of 6.1 × 1012 and delivering over 4 × 1013 per week
to the collider program.
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6.10.2.3 Electron Cooling

The concept of cooling a “hot” beam of ions by mixing it over a short distance in
a circular machine with a cold electron beam had been developed by Budker [156]
in 1966. It was first tested in 1974 with 68 MeV protons at the NAP-M storage
ring at in Novosibirsk. The notions of ‘beam temperature’ and ‘beam cooling’ were
introduced and become lucid in the context of electron cooling, which is readily
viewed as temperature relaxation in the mixture of a hot ion beam with a co-
moving cold electron ‘fluid’. The equilibrium emittances, obtainable when other
‘heating mechanisms’ are negligible, can easily be estimated from this analogy,
assuming equalisation of the temperatures ((M�v2)/ion → (m�v2)/electron). For a
simple estimate of the cooling time, another resemblance, namely the analogy with
slowing down of swift particles in matter, can be helpful. A nice presentation of
this subject is given in Jackson’s book [157]: the energy loss in matter is due to
the interaction with the shell electrons and in first approximation these electrons are
regarded as free rather than bound. Results for this case can be directly applied to the
‘stopping of the heavy particles in the co-moving electron plasma’. The calculations
are performed assuming ‘binary collisions’ involving only one ion and one electron
at a time.

Using this approximation the cooling time can be written as

1

τ
≈ 1

k

q2

A
ηcLCrerp

j

e

1

β4γ 5θ3
, (6.77)

where

k = 0.6: for a Gaussian distribution (not realistic),
k = 0.16: for a flattened distribution,
q: ion charge number,
A: ion mass number,
ηc: length of cooling section/circumference,
LC ≈ 10: Coulomb logarithm (log of max/min impact parameter),
re ≈ 2.8 × 10−13 cm: classical electron radius,
rp ≈ 1.5 × 10−16 cm: classical proton radius,
j (A/cm2): electron beam current density,
e ≈ 1.6 × 10−19 C: elementary charge

θ = (θ2
e + θ2

i

)1/2 =
(

Te
mec2 + Ti

mic2

)
: r.m.s. angle between electron and ion beams,

β, γ : relativistic factors.

The cooling rate (1/τ ) thus obtained exhibits the dependence on the main
beam and storage ring parameters [158]. Notable is the dependence on both the
electron and the ion (both longitudinal and transverse) velocity spreads: τ ∝ θ3 ∝(∣∣Δverms

∣∣3 + ∣∣Δvirms

∣∣3
)

. This indicates an ‘ion spread dominated regime’, where

cooling gets faster as the ions cool down until it saturates for
∣∣Δvirms

∣∣ <
∣∣Δverms

∣∣
(‘electron dominated regime’). Remarkable also is the strong energy dependence
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predicted in this model: τ ∝ β4γ 5, with all other parameters (including the electron
current density j) kept constant [159].

Neglected in the simple theory are the ‘flattened distribution’, the ‘magnetisation’
and the ‘electron space-charge’ effects, all three (also) discovered and explained
at Novosibirsk [159, 160]. In essence the flattened distribution effect takes into
account that (due to the acceleration) the electron velocity spread is not isotropic but
contracted (by [Ecathode/Efinal]1/2) in the longitudinal direction. The magnetisation
effect is due to the spiraling (Larmor-) motion of the electrons in the magnetic
field of the solenoid that is used to guide the electron beam. Then for electron-
ion encounters with long ‘collision times’ (impact parameter � Larmor radius),
the transverse electron velocity spread averages to zero. Finally the electron space-
charge induces a potential that leads to a parabolic velocity profile v(r) over the
beam whereas the ions exhibit a linear dependence v(x) and v(y) given by the storage
ring lattice. Hence the difficulty arises to match the ion and electron velocities.
Flattening and magnetisation can have a beneficial outcome, whereas space-charge
has a hampering influence on the cooling process. All three effects complicate the
theory, spoil the hope for simple analytical formulae and obscure the comparison
between measurements at different machines, and even different situations at the
same cooler. As an example the cooling assembly used in the low energy antiproton
ring (LEAR) is sketched in Fig. 6.38.

The electrons are produced in a gun and directed into the cooling region where
they overlap the ion beam over a length 1 m. At the end of the cooling section
the electrons are steered away from the ions into a collector where their energy is
recuperated. On their whole way from the cathode of the gun to the collector the
electrons are usually immersed in a longitudinal magnetic guiding field. This field
is constant over the full length or stronger in the gun region. In the latter case the
transverse electron temperature in the overlap region decreases (due to “magnetic
expansion”) at the expense of the longitudinal temperature. This can reduce the
cooling time in situations where the electron temperature dominates.

Fig. 6.38 An electron cooling assembly (LEAR electron cooler) from [158]
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An important technical problem is electron beam power consumption. To reduce
direct losses of the beam power the recuperation (recovering) method is used. It
assumes biasing of the collector to negative potential slightly above the cathode
potential. Then the power consumption is defined mainly by product of the beam
current by the difference of the collector and gun potentials.

In the two toroidal sections, adjacent to the overlap region, the solenoid to create
the longitudinal field is curved to guided the electron beam parallel to the ions at the
entrance and away from them at the exit. Also in the toroidal regions the solenoid
has a larger diameter to permit the penetration of the ion beam.

Many papers deal with the ‘exact and general theory’ [161] and computer
programs like BETACOOL [162] try to include all the subtle effects. Numerous
also are the experimental results from 11 (or so) present and past cooling rings. It
is not easy to compare the data from different experiments because the cooling in
each plane depends in a complicated way on the emittances in all three directions
both of the ion and the electron beam. Moreover different quantities are used to
measure/define ‘cooling strength’ (examples: cooling of a large injected beam,
response of a cold beam to a ‘kick’ or to a transverse or an energy displacement,
equilibrium with heating by noise).

In the context of the accumulation of lead ions for the future Large Hadron
Collider (LHC) [163], a program of experiments [164] was performed at the
LEAR ring to determine optimum lattice functions [165]. Results indicate rather
small optimum betatron functions (3–5 m instead of the expected 10 m) and
large dispersion (D = 2–3 m instead of the expected 0–1 m). The dependence on
dispersion is not fully reproduced by simple analytical formulae. There are other
old questions: e.g. the (dis)advantage of magnetic expansion, the dependence of
the cooling time on the charge of the ion, the (dis)advantage of neutralising the
electron beam, the enigma of the stability of the cooled beam [166], the puzzle of
the anomalously fast recombination of certain ions with cooling electrons [167], the
(dis)advantage of a hollow electron beam [168].

Considerations so far concern electron cooling at ‘low energies’ (Te = 2–
300 keV) where cooling rings have flourished since the 1980s. More recently
medium energy cooling (Te = 1–10 MeV) has re-gained a lot of interest [167–
169]. Clearly the higher energy requires new technology and extrapolation to a
new range of parameters. At Fermilab high energy e-cooling (with up to 5 MeV
electrons using electrostatic acceleration for cooling of 8 GeV bunched antiprotons
in the recycler) has been successfully developed and implemented. The generation
and recirculation of the 4.3 MeV and 0.5 Ampere electron beam and its adaptation
to the antiproton beam over a cooling length of 20 m are remarkable achievements.
Finally the idea of ‘very high energy electron cooling’ (Te ≥ 50 MeV) has been
revived as this might improve the luminosity of RHIC [168, 170]. At this energy the
electron beam could circulate in a small ‘low-emittance storage ring’ with strong
radiation damping. An attractive alternative is a scheme [170], in which the low-
emittance beam after acceleration is re-decelerated after the passage through the
cooling section to recuperate its energy.
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In summary: 45 years after its invention, the field of electron cooling continues
to expand with exciting old and new questions to be answered. Bunched beam
cooling is no longer a magic barrier and even a merger between electron cooling and
stochastic cooling i.e. the “coherent electron cooling” [171] appears at the horizon.
In the concept of coherent electron information of the particle distribution of the
hadron beam to be cooled is sampled by the electron beam, amplified and further
downstream fed back onto the hadron beam.

6.10.2.4 Laser Cooling

Due to the pioneering work of the Heidelberg (TSR) [172] and Aarhus (ASTRID)
[173] groups in the 1990s, laser cooling in storage rings has evolved into a very
powerful technique. Longitudinal cooling times as short as a few milliseconds
and momentum spreads as small as 10−6 are reported. These bright perspectives
are somewhat mitigated by two specific attributes [174]: laser cooling takes place
(mainly) in the longitudinal plane and it works (only) for special ions that have
a closed transition between a stable (or meta-stable) lower state and a short-lived
higher state. The transition is excited by laser light, and the return to the lower
state occurs through spontaneous re-emission (Fig. 6.39). ‘Unclosed’ transitions,
where the de-excitation to more than one level is possible, are not suited because
ions decaying to the ‘wrong’ states are lost for further cooling cycles. This limits
the number of ion candidates (although extended schemes with additional lasers
to ‘pump back’ from the unwanted states could enlarge the number of ion species
susceptible to cooling). Up to now, a few singly charged ions (like Li1+, Be1+ or
Mg1+) have been used with ‘normal’ transitions accessible to laser frequencies.
Transitions between fine structure, or even hyperfine levels of highly-charged heavy
ions have also been considered, but in that case the cooling force is less pronounced
and not so much superior to the electron cooling force which increases with charge
(like Q1.5 or even Q2).

The laser irradiates the circulating ions co-linearly over the length of a straight
section of the storage ring [174]. The absorption is very sharply resonant at the
transition frequency. Then the Doppler shift (ω = (1 ± v/c)γωlaser) seen by

Fig. 6.39 Sketch of Laser–ion interaction
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Fig. 6.40 Force F(v) due to a single laser and different schemes for cooling to a fixed velocity

the ion makes the interaction strongly dependent on its velocity. This leads to
a sharp resonance of the absorption as a function of the velocity (Fig. 6.40).
The corresponding recoil (friction) force accelerates/decelerates the ions with a
maximum rate at the resonant momentum. To obtain cooling to a fixed momentum, a
second force f(v) is necessary. It can be provided by a second (counter-propagating)
laser or by a betatron core or by an RF-cavity, which decelerate the ions ‘towards the
resonance of the first laser’ (Fig. 6.40). The interaction with the laser photons (and
hence the cooling) takes place in the direction of the laser beam (longitudinal plane
of the ions). De-excitation proceeds by re-emission of photons in all directions and
this leads to heating of the ions in all three planes.

Through transverse-to-longitudinal coupling, part of the cooling can be trans-
ferred to the horizontal and vertical planes. Intra-beam scattering [175], dispersion
[176] and special coupling cavities [177] have been considered for this purpose.
Transfer by scattering and by dispersion has been demonstrated at the cooling rings,
although the transverse cooling thus obtained was weak, a fact explainable by the
weakness of the coupling.

The main motivation for laser cooling has been the goal of achieving ultra-cold
crystalline beams [178] where the ions are held in place because the Coulomb
repulsion overrides the energy of their thermal motion. A second application,
cooling of low-charge states of heavy ions, was proposed [179] in order to prepare
high-density drive beams for inertial confinement fusion. Several years ago a study
[180] on the use of laser cooling of ions for the LHC was published. All these
applications for the moment meet with difficulties: crystallisation, in full three-
dimensional beauty, is hampered by the lattice properties of (present) storage rings
and by the relative weakness of transverse cooling. Cooling for fusion is not fast
enough [181] to ‘compress’ the high-intensity large-momentum-spread beam during
the few milliseconds lifetime given by intra-beam charge exchange between the
ions. And, finally laser cooling of highly charged ions for colliders meets with
the competition of electron cooling and also with the restrictions on the choice of
suitable ion species and states [180]. The investigations on laser cooling to obtain
crystalline beams continue [182] and a special storage ring (S-LSR) with lattice
properties apt to reach this goal [183, 184] has been built at Kyoto university.
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Fig. 6.41 Basic setup for (transverse) ionisation cooling (adapted from [186])

In conclusion: laser cooling in storage rings has led to very interesting and
important results concerning the physics of cooling and cooling rings and, also
atomic and laser physics. However, ‘accelerator applications’ like for electron or
stochastic cooling are not realistic for the near future. The goal to obtain crystalline
beams in special storage rings is under intense investigation.

6.10.2.5 Ionisation Cooling

Excellent reviews of ionisation cooling are given in papers by Skrinsky [185] and
Neuffer [186]. The basic setup (Fig. 6.41) consists of a block of material (absorber)
in which the particles lose energy, followed by an accelerating gap (RF-cavity)
where the energy loss is restored. Losses in the absorber reduce both the longitudinal
and the transverse momentum of the particle. The RF-cavity (ideally) only restores
the longitudinal component and the net result is transverse cooling (Fig. 6.41). There
is an obvious resemblance to radiation damping (Fig. 6.35), in which energy loss by
synchrotron radiation followed by RF-acceleration results in cooling. Longitudinal
ionisation cooling is also possible, especially in the range where the loss increases
with energy (i.e. above the energy where the minimum of dE/ds occurs). At the
expense of horizontal cooling, the longitudinal effect can be enhanced by using a
wedge-shaped absorber in a region where the orbits exhibit dispersion with energy.

The statistical fluctuations (‘straggling’) of the loss and the angular (multiple)
scattering introduce heating of the longitudinal and transverse emittances. The
ratio of ionisation loss due to angular scattering favours light absorber material.
Equilibrium emittances depend strongly on the lattice functions at the position of the
absorber and the cavity. As in the case of radiation damping, the sum of the cooling
rates (also in the case of a wedge absorber) is invariant with a value Jx + Jy +
JE ≈ 2 + JE ≈ 2 for the ‘damping partition numbers’, instead of Jx + Jy + JE = 4
for radiation damping. The quantity JE depends on the slope of the dE/ds vs. E
curve and is about constant and roughly equal to 0.12 for light materials above the
minimum of dE/ds, but is strongly negative below. In terms of the partition numbers,
the three emittance damping rates can be expressed by the energy loss �Eμ of the
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muons in the absorber and the length �s of the basic cell (Fig. 6.41) as:

1

εi

dεi

ds
= Ji

1

Eμ

ΔEμ

Δs
. (6.78)

A large number of cells or traversals through a cell is necessary to obtain
appreciable emittance reduction.

Almost by a miracle, the muon mass falls into a narrow ‘window’ where
ionisation cooling within the short life of the particle looks possible (although not
easy). For electrons as well as for protons and heavier particles, the method is not
practical, because the effect of bremsstrahlung (for e’s) and non-elastic processes in
the absorber (for p’s), leads to unacceptable loss.

With the revival of interest for muon colliders and, related to that, neutrino
factories [187], large collaborations (including more than 15 institutes, [188]) is
undertaking a demonstration experiment. The ISIS accelerator at the Rutherford
lab. is chosen for this task. Neutrino factory and muon collider proposals have to
rely critically on muon cooling: typically 50 m to several 100 m long channels with
solenoidal focussing (superconducting solenoids) are foreseen to reduce the phase-
space of the muons emerging from pion decay. Liquid hydrogen absorbers, each
0.5–1 m in length, alternate with high-field accelerating cavities.

The variant selected by MICE is a ‘single particle experiment’ where one muon
at a time is traced. Fast spectrometers, capable of resolving 1 muon per 25 ns,
record/compare the three position coordinates and the three velocity components
of the muon at the entrance and the exit of a short cooling section. Typically such
a test-section should lead to 10% emittance reduction. The emittance pattern is
‘painted’ by a scatterer or a steering magnets changing the entrance conditions of
the particle at random (scatterer) or in a programmed manner. A large number of
muons are necessary to establish the six-dimensional phase-space reduction with
sufficient statistics.

Apart from the spectrometers, other challenges can be identified: long term
mechanical stability, muon decay and birth, contamination with other particles and
non-linarites in focussing which deform the emittance pattern. In the coming years
we will see a large effort on muon cooling scenarios and tests.

6.10.2.6 Cooling of Particles in Traps

In many experiments utilizing ion traps, the ions must first be cooled in order to
perform high precision measurements. Cooling refers here to the reduction of kinetic
energy of confined particles. A detailed review of cooling traps is given in [189] and
the implementation of several cooling methods into a big project is described in
[190].

With adequate modifications, most of methods discussed above for storage rings
stochastic- [191], electron- [192], or laser cooling [193] can also be applied to traps.
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Some (like stochastic cooling) are more difficult others (e.g. laser cooling) are much
more powerful in the traps.

There are however several techniques which are especially adapted to or even
working only in the environment of particles confined in a trap which is frequently
cryogenically cooled. A gross classification is to divide them into lossy and lossless
methods in terms of conservation of number of particles. A lossy technique (which
in the strict definition of [100] would not be classified as “phase density cooling”)
is evaporative cooling. In this case, just as in the evaporation of water, the more
energetic molecules leave the trap and the temperature of the condensate is thereby
strongly reduced. Experiments at the forefront of physics making Bose-Einstein
condensates at a temperature of a tiny fraction of a degree have thus become possible
[194].

An example of a widely used lossless process is resistive cooling: the trap
electrodes are connected to an external circuit to dissipate energy from the ions
through induced currents [189, 195] (Fig. 6.42).

In other words the particle’s kinetic energy is dampened by I2R losses in a
resistive circuit [195, 196]. Idealistically speaking, the resistor or the losses in a
resonant circuit and absorb the particle’s energy to create a thermal equilibrium
when there is no other heating source involved. Since the resistor has a specific
physical temperature, it generates Johnson noise that in turn stochastically drives
the trapped particles. Resistive cooling was first applied by H. Dehmelt and
collaborators in 1975 [195].

To estimate the cooling time, a simple single particle model is used, where-by it
is harmonically bound between two capacitor plates [195]. Due to this model, the
energy is dampened with a time constant τ calculated by:

τ = 4mz0

q2R
. (6.79)

Here 2z0 is the separation of the capacitor plates (the electrodes of the trap) and
R stands for the real part of the impedance from the attached external circuit, q is the
charge and m the mass of the trapped particles. From Eq. (6.79) [189] one can easily
conclude that light, highly charged particles are efficiently cooled. The cooling rate
can be further improved by developing a high resistance in the external circuit.

Fig. 6.42 Principle of resistive cooling of a trapped ion
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In general, the external circuit which is often in vacuum and at cryo-temperature
includes a low-noise amplifier to couple the induced current signal to room
temperature, and thus enable plasma diagnostics. The input noise temperature of
the amplifier is, depending on its coupling to the resonant circuit, closely related to
the minimum achievable temperature of the particles in the trap. Most frequently, the
impedance Z (with the real part R) shown in Fig. 6.42 is implemented as inductance
L so that the circuit becomes resonant at the oscillation frequency of the ions. This
is to tune out (compensate at resonance) the parasitic capacitance of the electrodes.
This inductance may be implemented as discrete solenoid coil made of copper or
superconducting wire. The quality factor Q = R/ωL of the tuned circuit has to be
large to guarantee efficient resistive cooling A high Q in turn means to incorporate a
low loss network. As a caveat it should be mentioned that extremely high Q values
(above say 105) may be problematic if the bandwidth of the resonance becomes
smaller than the width of the particle spectrum. For further reading we refer to [197],
where Shockley presents the basic equations for trapped and charged particles in a
Penning trap.

There exist a large number of other cooling techniques used in traps, such as
collisional cooling, RF- and optical sideband cooling (resolved and unresolved
sideband methods) and sympathetic cooling. The list of examples given here is
certainly not exhaustive and a detailed description can be found in review articles
[189]. As for the term RF cooling (which may be confounded with RF-sideband
cooling) [189] it should be pointed out that this refers to a reduction of temperature
or vibration amplitude of a microscopic cantilevered bar in vacuum using an RF
resonant circuit which is fed externally with a few milli-Watt of RF power [198].
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Chapter 7
Design and Principles of Linear
Accelerators and Colliders

J. Seeman, D. Schulte, J. P. Delahaye, M. Ross, S. Stapnes, A. Grudiev,
A. Yamamoto, A. Latina, A. Seryi, R. Tomás García, S. Guiducci,
Y. Papaphilippou, S. A. Bogacz, and G. A. Krafft

7.1 General Introduction on Linear Accelerators

J. Seeman

Linear accelerators (linacs) use alternating radiofrequency (RF) electromagnetic
fields to accelerate charged particles in a straight line. Linacs were invented
about 95 years ago and have seen many significant technical innovations since. A
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wide range of particle beams have been accelerated with linacs including beams
of electrons, positrons, protons, antiprotons, and heavy ions. Linac parameter
possibilities include pulsed versus continuous wave, low and high beam powers, low
and high repetition rates, low transverse emittance beams, short bunches with small
energy spreads, and accelerated multiple bunches in a single pulse. The number of
linacs around the world has grown tremendously with thousands of linacs in present
use, many for medical therapy, in industry, and for research and development in
a broad spectrum of scientific fields. Researchers have developed accelerators for
scientific tools in their own right, being awarded several Nobel prizes. Moreover,
linacs and particle accelerators in general have enabled many discovery level science
experiments in related fields, resulting in many Nobel prizes as well.

In this chapter the various types, near term uses, and future directions of linacs
are discussed. There are many standard types of linac structures, several are shown
in Figs. 7.1 and in Figs. 7.6 and 7.7 in Sect. 7.4. A complete linac system includes
an RF power source, the microwave power waveguide distribution, the accelerating
structure itself, a power load, a control system, a vacuum system, survey-alignment,
a cooling system, and beam diagnostics such as beam position monitors and profile
monitors. Examples of present operating linacs from around the world, linacs under
construction, and proposed large scale linacs are shown in Table 7.1 [3–11]. There
are many constraints to design a successful linac [12, 13] with the basic being to

Fig. 7.1 Examples of linac structures: Cu linac 3-GHz (upper left), Cu cells 12-GHz (upper
centre), Drift Tube Linac 202-MHz (upper right), and Super-conducting 9-cell cavity 1.3-GHz
(lower centre)
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choose an RF structure such that electromagnetic fields and the beam particles are in
phase as the beam traverses each cell in the RF cavity. Much of the design work has
gone into maximizing the accelerating gradients, avoiding arcing, RF discharges,
and multipacting, to minimize the construction costs, and to make efficient use of
overall AC power. Proton and ion beams are often made in drift tube linacs (DTL)
with gradients of 2–8 MeV/m using RF frequencies of 30–400 MHz. Electron
linacs are typically made of either copper structures with 15–75 MeV/m at 3–
12 GHz or superconducting structures with 10–30 MeV/m near 1.3 GHz. Small
proton or ion linacs are used for medical therapy and patient diagnostics. Larger
proton linacs are injectors for large particle colliders or proton drivers for neutron
or neutrino production. Small electron linacs are used for electron or gamma ray
medical therapy and in industry. Large electron linacs are often injectors into GeV
energy storage rings for synchrotron radiation sources and e−/e+ colliders and as
injectors into FEL undulators.

An active area of present research is the conditioning of beams in linacs
to make them useful for high energy physics, basic energy sciences, nuclear
physics, material sciences, and technology security. These beam parameters include
the calculation and control of longitudinal and transverse wakefields (Sect. 7.5),
low emittance generation and preservation (Sect. 7.7), incoherent and coherent
synchrotron radiation effects, electron cloud effects, ion effects, energy recovery
through recirculation (Sect. 7.8), multibunch effects (Sect. 7.3), high luminosity
requirements (Sect. 7.2), final focus systems (Sect. 7.5), 2D and 3D emittance
exchanges, and beam-undulator interactions in x-ray FELs.

The use of linacs in energy frontier e+e− colliders is essential to avoid excessive
synchrotron radiation in ultrahigh energy beams. The first linear collider used the
SLAC linac called the SLC (Sect. 7.2) which provided frontier particle physics
results as well as establishing a basis to build upon for a future linear collider design.
Recent linear collider studies (Sect. 7.3) have concentrated on the ILC (1.3 GHz
Superconducting) [4] and CLIC (12 GHz normal conducting) [7]. Years of studies
and experiments have illustrated the approaching viability of these two collider
technologies.

Very attractive schemes like for example the energy recovery linacs [14] as
described in Sect. 7.8 are being developed. Recent avenues of study for far
future linacs are in the area of excited plasmas and dielectrics as structures [15,
16]. Examples are electron beam driven plasma, wakefield accelerator PWFA
that recently produced 40 GeV/m acceleration for electrons and 0.23 GeV/m for
positrons [17–20] and laser driven plasma wakefield accelerator demonstrating up
to 4.2 GeV in a 9 cm plasma [21, 22] as described in Chap. 12. Another active
research area is direct laser driven accelerating nanostructures in silicon [23, 24].
New ongoing studies in these technologies will illuminate possible future uses.

http://dx.doi.org/10.1007/978-3-030-34245-6_12
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7.2 High Luminosity Issues and Beam-Beam Effects

D. Schulte

In linear colliders, the colliding beams have extremely small transverse dimensions
σ x,y to reach high luminosity. Each beam exerts a strong electro-magnetic force
on the other beam, which is focusing in case of electron-positron collisions.
This disruption can shrink the beam size significantly during collision, the so-
called pinch effect [25–27]. This increases the luminosity but the bending of the
particles’ trajectories stimulates them to radiate so-called beamstrahlung photons,
a process similar to synchrotron radiation [28–32]. Consequently, not all collisions
take place at the nominal centre-of-mass energy. Hence, one needs to choose the
beam parameters in order to limit the beamstrahlung and to achieve an acceptable
luminosity spectrum for the experiment. High luminosity with low beamstrahlung
is usually achieved by using flat beams σ x � σ y) as shown below. Approximate
formulae are used, since full analytic treatment of the beam-beam interaction is
for most parameters not possible. Simulation codes are used for precise numerical
predictions, in particular CAIN and GUINEA-PIG [33–35].

It should be noted that one usually needs a horizontal crossing angle θ c between
the two beam lines at the interaction point. This separation of incoming and
outgoing beam allows to efficiently extract collision debris and hence to avoid
large beam losses after the collision. For short distances in-between bunches in
each beam pulse, the crossing angle also reduces the impact of parasitic crossings
of incoming and outgoing bunches. The luminosity reduction due to the crossing
angle is avoided by using a so-called crab-crossing scheme. Before the collision
a transverse deflecting cavity introduces a rotation around the vertical axis, such
that the beams are aligned to the longitudinal axis of the laboratory system at the
collision rather than the direction of motion. Hence the two bunches fully overlap
during the collision while moving together horizontally, like crabs. In this case the
crossing angle hardly affects the beam-beam interaction and can be neglected in the
further considerations.

In high energy linear colliders like ILC and CLIC developed in Sect. 7.3, the
luminosity is limited by beamstrahlung, the achievable vertical beam size and the
efficiency of the main linac RF. This is seen by expressing it as a function of the
number of particles per bunch N, the number of bunches per beam pulse nb, the
repetition rate of beam pulses fr and the luminosity enhancement factor HD, which
tends to be in the range of 1–2:

L = HD
N2

4πσxσy
nbfr . (7.1)

Ignoring the usually small variations of HD, one obtains the simple dependence:

L ∝ N

σx

1

σy
ηPwall. (7.2)
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The first factor N/σ x is a measure of the beamstrahlung, the second σ y depends
strongly on the beam quality and the efficiency η of transforming the wall plug
power Pwall into beam power is dominated by the RF to beam transfer efficiency of
the main linac.

The beamstrahlung can conveniently be described with the beamstrahlung
parameter Y, the ratio of the average critical energy �ωc to the beam energy E:

Y = 2

3

�ωc

E
= 5

6

Nr2
e γ

α
(
σx + σy

)
σz
. (7.3)

Here, α is the fine structure constant, re the classical electron radius and γ the
relativistic factor of the beam. In the classical limit Y � 1, which is applicable to the
ILC or CLIC at 500 GeV, the number of beamstrahlung photons emitted per beam
particle nγ and their average energy Eγ can be approximated as

nγ ≈ 2.1α
Nre

σx + σy

Eγ

E
≈ 0.385

Nr2
e γ

α
(
σx + σy

)
σz
. (7.4)

Hence, one uses σ x � σ y to maximise luminosity (∝N/(σ xσ y)) while limiting
the beamstrahlung (∝N/(σ x + σ y) ≈ N/σ x). Typically one aims for nγ ≤ 1 − 2 to
maximise luminosity while maintaining the degradation of the luminosity spectrum
due to beamstrahlung comparable to the degradation due to initial state radiation.
Hence, the machine is designed such that the optimum value ofN/σ x can be reached.

The vertical beam size depends on the vertical beta-function and emittance at
the interaction point σy = √βyεy/γ . Hence the vertical emittance is minimised
as much as possible, with limits arising from the lattices designs and dynamic and
static imperfections in the beam transport system. In addition one aims to minimise
the beta-function. However, a beta-function smaller than the bunch length leads to
a rapidly increasing beam size just before and after the collision point still during
the collision with the other bunch. Ignoring beam-beam forces, the optimum choice
is βy = σz/4 due to this so-called hourglass effect. The luminosity would only be
20% larger than for the more relaxed value of βy = σz. The beam-beam force
strongly modifies the collision and impacts the optimum choice of vertical beta-
function and the longitudinal position of beam waist [36]. Pinching of the beams is
more effective for larger vertical beta-functions, For ILC and CLIC parameters the
luminosity enhancement factor is strongly reduced if the beta-function is pushed
below the bunch length resulting in an optimum choice of about βy = σz. It is also
advantageous to focus the beams slightly before the collision point as this further
improves the luminosity enhancement.

A small value of σ y also has a strong impact on the beam-beam collision
dynamics and tolerances. The beam-beam jitter must be significantly smaller than
σ y, but the disruption can tighten the tolerance even more. The strength of the pinch
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effect can be described using the disruption parameters Dx and Dy:

Dx,y = 2Nreσz
γ σx,y

(
σx + σy

) . (7.5)

If Dx, y � 1 each beam acts as a thin lens on the other beam with a focal length
fx, y = σ z/Dx close to its centre. If Dx � 1 the beam particles oscillate in the field
of the other beam; ILC and CLIC have Dx < 1 and Dy � 1. For Dy ≥ 15 − 20
the beam-beam interaction becomes unstable. In this case very small beam-beam
offsets lead to a large loss of luminosity.

In order to increase the wall plug to beam power efficiency, η, two different
strategies exist. The first is to use superconducting structures to minimise the RF
losses in the structure itself. The second it to use normal conducting structures but
to increase the structure impedance and the beam current as much as possible to
maximise the power transfer to the beam. A limit arises from single and multi-bunch
beam instabilities, see Sect. 7.5.

At multi-TeV energies, the beamstrahlung parameter is much larger, Y � 1,
which slightly changes the functional dependence of the luminosity on the number
of beamstrahlung photons to

L ∝ n
3
2
γ

√
γ√
σz

1

σy
Pb. (7.6)

However, the fundamental considerations remain unchanged.
The beam-beam interaction is an important source of background. The disrupted

beam and the beamstrahlung photons need to be extracted from the detector without
large losses, this requires typically an exit hole of a few milliradian. In addition
secondary particles are produced.

The collision of beamstrahlung photons and beam particles produces low energy
electron-positron pairs, a process called incoherent pair production. The number
of these particles per bunch crossing can be of the order of 105–106. They are an
important source of background in the innermost layer of the vertex detector and
define a lower limit for its radius. Most of the particles go into the forward region
of the detector.

In a similar fashion, hadrons can also be produced in the collision, with a rate
ranging typically from one event every few bunch crossing to a few events per bunch
crossing. Most of the tracks of these events go into the forward region but they can
impact the jet reconstruction.

At high beam energies, if Y � 1, beamstrahlung photons and the virtual photons
accompanying the beam particles can turn into electron-positron pairs due to the
strong beam fields, a process referred to as coherent pair production [37]. The
number of pairs can be a significant fraction of the number of beam particles. These
particles can lead to background in the forward region, depending on the detector
design.
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7.3 CLIC & ILC

J. P. Delahaye · M. Ross · S. Stapnes

7.3.1 Introduction

The case for an e+e− collider to explore the physics opened up by the discovery
of the Higgs boson is widely accepted. More generally, with the completion of
the Standard Model the energy scales needed to explore it in great detail are
well established. Two alternative technologies for linear e+e− colliders are being
pursued, with different potential energy reach and performance considerations:

• The International Linear Collider (ILC) [38] being proposed in Japan with an
initial energy of 250 GeV has the potential to study the Higgs sector in great
detail. The ILC is based on beam acceleration by RF Super-Conducting cavities
and is prepared as an international project lead by Japan. The ILC Technical
Design Report (TDR) [39] was published in 2012 focusing on a 500 GeV
machine. Recently a 250 GeV initial stage has been defined [40].

• The Compact Linear Collider (CLIC) [41] study is exploring the possibility of
a Linear Collider with a Multi-TeV energy range through the development of
Two Beam Acceleration, a novel technology. Normal conducting 12 GHz X-
band accelerating structures are used. The study is carried out an international
collaboration hosted by CERN. The CLIC Conceptual Design Report (CDR) was
published in 2012 [42]. In 2014 an initial stage at 380 GeV was defined and is
currently the main focus of the study [43].

These two studies, with the basic parameters shown in Table 7.2, aim to devise
appropriate facilities to complement the LHC in the e+e− area. A collaboration
between CLIC and ILC that takes advantage of the overlapping portions of the two
schemes has proven to be extremely fruitful.

The main challenge for both concepts is reliable and power efficient acceleration,
hence the focus on RF technology developments. Secondly, the required luminosity
of about 1.5× 1034 cm−2 s−1 is a major challenge. It requires collisions of powerful
beams with extremely small beam dimensions (a few nm in the vertical plane). Cost
is another key factor, both ILC and CLIC aiming for project-costs comparable to
LHC [44].

7.3.2 ILC Design

The design of the International Linear Collider (ILC) is based on 1.3 GHz Super-
Conducting RF technology (SCRF). The configuration of the linac power and utility
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Table 7.2 Basic parameters for ILC and CLIC

ILC CLIC

Centre-of-mass energy 250 GeV (upgradable to 1 TeV) 380 GeV (upgradable to 3 TeV)
Total luminosity (cm−2 s−1) 1.4 × 1034 1.5 × 1034

Total site length (km) 20 11
Loaded accel. gradient
(MV/m)

31.5 (35) 72 (100)

Main linac technol. & RF
frequency

Super-conduct @ 1.3 GHz Normal-conduct @ 12 GHz

Beam power/beam (MW) 5 3
Bunch charge (109e+/−) 20 5.2
Bunch separation (ns) 554 0.5
Beam pulse duration (μs) 722 0.176
Repetition rate (Hz) 5 50
Hor./vert. norm. emitt
(10−6/10−9)

5/35 0.95/30

Hor./vert. IP beam size (nm) 520/8 150/3
Beamstrahlung
photon/electron

1.9 1.5

Total power consumption
(MW)

130 200

infrastructure is based on klystron sources and waveguide distribution. A train of
1312 bunches is accelerated during a ~1.6 ms macro-pulse, corresponding to the
beam-pulse duration plus cavity fill-time, at a repetition rate of 5 Hz. The average
gradient foreseen is 31.5 MV/m but on-going R&D opens for the possibility to
increase to 35 MV/m with higher Q cavities (see Sect. 7.3.4). The cryo-modules
that make up the main linacs are 12.65 m long. There are two types: a module with
nine 1.3 GHz nine-cell cavities and a module with eight nine-cell cavities and one
superconducting quadrupole package located at the centre of the module.

The RF power is provided by 10 MW multi-beam klystrons each driven by a
120 kV Marx modulator. The 10 MW klystrons has achieved the ILC specifications
and is now a well-established technology with several vendors worldwide.

The long time scale of the 722 μs macro-pulse, with 554 ns between bunches,
provides the time needed for effective intra-train trajectory, energy and interaction
region collision feedback resulting in very relaxed mechanical vibration tolerances.
Accelerating cavity positioning tolerances are also relaxed due to the large 70 mm
diameter clear aperture of the accelerating cavities.

The ILC overall layout is shown on Fig. 7.2. The figure shows two centrally-
positioned detectors and the electron and positron damping rings. It also shows the
mid-linac undulator-based positron source.



304 J. Seeman et al.

e- source

e+ main linac

e+ source

e- main linac

Detectors

Damping Ring

Fig. 7.2 ILC overall layout with the central region expanded

7.3.3 CLIC Design

The CLIC design is based on a novel Two Beam Acceleration (TBA) scheme where
a high intensity drive beam running all along the linacs accelerating the main beams.
The CLIC main linacs are made of normal-conducting structures resonating at RF
frequency of 12 GHz with average accelerating fields of 72/100 MV/m resulting
from an overall cost/performance optimisation at 380 GeV/3 TeV, respectively.
The accelerating field results from a cost optimisation primarily being a trade-off
between the linac extension and the required RF power. The X-band frequency of
12 GHz also results from a trade-off between the required RF power, scaling with
inverse square of RF frequency, and the corresponding wake-fields which limit the
charge per bunch, therefore the luminosity.

The RF power which is necessary to feed the main linac accelerating structures
with high field is efficiently generated by the TBA scheme where the energy of a
high intensity drive beam is converted into RF power by specially designed Power
Extraction and Transfer Structures (PETS). The 100 A drive beam is generated
from a 148 μs long train of bunches accelerated by 20 MW 1 GHz klystrons in
a 2.4 GeV normal conducting linac at low intensity and low frequency working in
fully loaded mode. For the initial stage of CLIC at 380 GeV one single drive beam
at 2 GeV is needed with shortened bunch train, while at 3 TeV two will be needed.
The drive-beam trains are compressed in a delay loop and two combiner rings thus
multiplying the beam intensity and frequency by a factor 24 and providing series of
trains with the required 100 A current and 12 GHz bunch repetition frequency. Each
train is used to power one 878 m long sector of the main linac. Upgrade in energy
by adding sectors powered by additional drive beam generated by the same drive
beam generation complex is particularly cost effective.

The overall layout is shown in the left part of Fig. 7.3 whereas the principle of
the two beam scheme is displayed on the right.
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Fig. 7.3 CLIC two-beam scheme (left) and overall layout (right). In the case of a 380 GeV initial
phase only one drive-beam is needed and the layout is simplified accordingly

Fig. 7.4 The E-XFEL linac (©European XFEL/Heiner Müller-Elsner)

7.3.4 On-Going or Recent R&D

7.3.4.1 ILC Specific

High quality ILC-style SCRF modules are built in all three regions, Americas, Asia
and Europe. Furthermore, linacs based on SCRF technology have been/are being
constructed, the largest being the 1.7 km European XFEL [45] now in operation
with more than 100 cryo-modules (Fig. 7.4). In the US the LCLS II with around 40
cryo-modules at SLAC [46] is being constructed aiming for first beam in 2020.
These large scale projects have firmly established the industrial capabilities for
SCRF module production.

For ILC slightly higher gradients are needed than for these projects and recent
R&D and results for high Q cavities provide promises of gradient and/or efficiency
gains [47].

Since 2012 when the Japanese particle physics community expressed the wish to
host the ILC [48] site specific studies have been pursued with high priority. These
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include civil engineering studies including surface installations, as well as studies
of local infrastructure and capabilities.

R&D is continuing on various non-linac related subsystem technologies, such
as the positron source, damping rings, and beam delivery/final focus. Many of
these R&D topics are common with the CLIC studies and are performed in close
collaboration with CLIC teams.

7.3.4.2 CLIC Specific

The feasibility of the novel two-beam scheme has been addressed in the CLIC
Test Facility (CTF3) which consists of a complex of accelerators for drive beam
generation and experimental studies [49]. The drive beam is used to test the Two
Beam Acceleration scheme accelerating a probe beam with a gradient well above
100 MV/m. The stability of the drive-beam itself has been another major verifi-
cation study in CTF3, as well as studies of prototype RF structures, quadrupoles,
instrumentation, vacuum, beam alignment and stabilisation (Fig. 7.5).

The accelerating gradient of 100 MV/m with the specified breakdown rate of
3 × 10−7/pulse/m has been demonstrated in test-stands where prototype test-
structures are conditioned to the required power, pulse-lengths and breakdown rate.
The requirement for the breakdown rate—these are discharges on the structure
surface with the potential of disturbing the beam—is set to cause less than 1%
luminosity loss in a 3 TeV machine.

Fig. 7.5 The CTF3 test
facility at CERN, which has
demonstrated CLIC’s novel
two-beam acceleration
technology (image credit:
Maximilien Brice – CERN)
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Technological developments are pursued for all critical elements of the machine.
Of particular relevance are novel methods of alignment in the micron range and
stabilisation in the nano-meter range. Power reductions studies with high efficiency
klystrons and permanent magnets are important R&D activities. Civil engineering
and infrastructure studies have been done to establish the cost and schedule of the
project implementation.

Also in the case of the normal conducting technology XFELs linacs provide
important industrial lessons, so far using S or C-band technology. X-band technol-
ogy is now widely considered for future compact linac installations [50].

7.3.5 Common Issues and Prospects

Apart from the linacs based on different RF-technologies, ILC and CLIC have
similar technology challenges for several sub-systems. This is especially so for the
beam delivery system, the machine detector interface and the civil engineering &
conventional facilities. To take advantage of the overlapping aspects of the two
studies, common working groups have been set-up and actively address common
issues for both studies including beam dynamics, low beam emittance generation,
positron generation, beam delivery system as well as cost and schedule. Issues of
low emittance beam generation, electron cloud collective instabilities, emittance
conservation studies, and beam optics for the interaction region are being tested
in test facilities supported by linear collider groups, notably in the CESR-Test
Accelerator at Cornell, FACET and SLAC, and the Accelerator Test Facility (ATF2)
at KEK [51–53].

The 250 GeV ILC project is currently being evaluated for implementation in
Japan. During 2018 one is expecting that Japan can conclude this evaluation which
will determine if the project will move forward towards realisation. Such a machine
could start operation in the early 2030s. The CLIC collaboration will submit a
Project Implementation Plan by the end of year, describing a project that could come
into operation after completion of the LHC programme in the mid 2030’ies.

7.4 Accelerating Structures Design and Efficiency

A. Grudiev · A. Yamamoto

In linear accelerators, beam is accelerated by accelerating structures made of a chain
of cavities (cells) fed with RF power establishing an electromagnetic field from
which part of the energy is transferred to the beam.

The efficiency of a cavity to produce an accelerating field with given RF power
is defined by the shunt impedance R. This is equivalent to Ohm’s law where the
resistance is the proportionality factor between the square of the voltage and the
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power loss as given by:

V 2
acc = RP, (7.7)

whereVacc is the accelerating voltage per cavity, R is the shunt impedance per cavity,
and P is the RF power loss per cavity [1].

At a given power loss P, the accelerating voltage can be maximised by optimum
shape of the cavity and through the use of low-loss cavity-surface material.
Therefore the shunt impedance can be divided into two factors, R/Q and Q, as
follows:

R = {R/Q}Q, (7.8)

where R/Q is the so-called “cavity shape factor”, only depending on the cavity
shape, and Q is so-called “quality factor of the cavity resonator”, mainly depending
on the conductivity of the cavity wall. This brings:

V 2
acc = {R/Q}QP. (7.9)

The R/Q value can be calculated using several available cavity codes or can be
measured, and compared with a simple cavity that can be evaluated analytically.
Superconducting cavities have a typical value of R/Q = 100 � per cell. The shunt
impedance R and the shape factor R/Q value with normal-conducting cavities must
be optimized to reduce the RF power.

The quality factor Q is proportional to the ratio of the stored energy and the RF
power loss,

Q = ωU/P, (7.10)

where ω = 2πf is the angular frequency, U is the stored energy, and P is the RF
power loss dissipated in the cavity wall. A typical value for Q is 1 × 1010 for
niobium superconducting cavities at 1.3 GHz and 1.8 K [1].

Assuming one cell length, l, is 0.5 wavelength, we can calculate the RF power
loss per meter:

P/l =
(
V 2

acc/l
)
/ {(R/Q)Q} = E2

accl/ {(R/Q)Q} . (7.11)

Historically, normal conducting structures have been in use since the very
beginning of RF acceleration covering the whole range of applications from very
low frequency drift tube linac structures up to very high frequency travelling
wave accelerating structures. Typically, normal conducting structures handle high
peak power to provide high gradient and/or to support high beam loading but the
pulse length is limited by the ohmic heating of the copper walls. To overcome
this limitation at least in some cases, superconducting accelerating structures are
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being developed for several decades, in the frequency range from few hundreds of
megahertz to a few gigahertz, with improving performances as described below in
Sect. 7.4.2.

7.4.1 Normal Conducting Accelerating Structures

In normal conducting (NC) linacs, acceleration of charged particles using RF power
is typically done in a chain of cavities (cells) which are strongly coupled and
where the electromagnetic wave propagates through the cells from the input to
the output of the structure. This allows a single RF source to feed many cells via
single input coupler thus minimizing the feeding waveguide network. The chain of
cells forms a periodic structure which, in the simplest case of a disk-loaded circular
waveguide, is shown in Fig. 7.6a where the input and output couplers allow to feed
the structure with RF power and extract the remaining RF power out. The property
of an electromagnetic wave propagating in an infinitely long periodic structure of
period d is described by dispersion curves ω(kz), so called the Brillouin diagram as
shown in Fig. 7.6b by the thick solid line. If the structure is excited at a frequency
f0 inside the passband (shown in gray in Fig. 7.6b), then the wave propagates along
the structure with an RF phase advance per cell: 0 < ϕ0 < π . A travelling-wave
accelerating structure is a structure where the wave is matched at both input and
output ends. Since most of the normal conducting lepton linacs are based on this
type of accelerating structures we will restrict ourselves to this case.

The following synchronism condition is fundamental for acceleration in periodic
structures and must be satisfied in order that all cells contribute in phase to beam
acceleration:

vph = vp, (7.12)

Fig. 7.6 Schematic geometry of a travelling wave accelerating structure with input and output
coupler cells is shown in (a). Brillouin diagram for a periodic structure of period d is shown in (b),
where ω0 = 2π f0 is the operating frequency, k0 = ϕ0/d is the propagation constant, and ω0 = ω(k0)
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where vph is the phase velocity of the wave excited at operating frequency and
vp corresponds to the velocity of the charged particle. Ultra-relativistic case with
vp = c, the speed of light, is considered below. In this case, the beam line with a
slope c (strait line in Fig. 7.6b as ω = vpkz) must intersect the dispersion curve
at the operating point: (f0; ϕ0) on the Brillouin diagram in order to satisfy the
synchronism condition (7.12). The slope of the dispersion curve provides another
important parameter of the wave propagating in the structure, the so called group
velocity:

vg = ∂ω

∂kz
, (7.13)

which can also be expressed using the cell stored energy U and power flow through
the cell iris aperture Pz:

vg = Pzd

U
. (7.14)

The stronger the coupling between the cells the higher the group velocity and the
faster energy propagates along the structure. Combining Eqs. (7.9, 7.10 and 7.14)
yields expression for the power flow along the travelling-wave structure which is
needed to maintain an accelerating gradient Eacc = Vacc/d:

Pz = vg
E2

acc

ωR′/Q
, (7.15)

where R
′ = R/d is the shunt impedance per meter length. For a given working

point (f0; ϕ0), the group velocity, the Q-factor and the R-upon-Q fully describe the
accelerating properties of the cell. In so-called constant impedance, the geometry
of all cells is identical and the three above parameters are identical in all cells.
In practice, the so-called constant gradient structures are used. In these structures,
the geometry of the cells is tapered in order to maintain Eacc(z) ≈ const. This
is achieved by reducing the group velocity along the structure to compensate the
reduction in power flow along the structure which is caused by two terms: ohmic
losses according to Eq. (7.15) and power gained by the beam of a current I = qfb,
where q is the bunch charge and fb is the bunch repetition frequency. In this case, the
energy conservation law yields an equation for the power flow along the structure:

dPz

dz
= −Pzω

vgQ
− EaccI. (7.16)
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The distribution of accelerating gradient Eacc(z) along the structure is obtained
by solving Eqs. (7.15 and 7.16) for a given input power Pin. Integrating it over the
structure length L gives the overall structure energy gain:

VAS =
L∫

0

Eacc(z)dz. (7.17)

Then the steady-state RF-to-beam efficiency is defined as following:

η0 = VASI

Pin
. (7.18)

For linacs operating in pulsed mode, the structure must be filled on each pulse
before beam is injected. Filling time of the structure is defined as

tf =
L∫

0

dz

vg(z)
. (7.19)

In this case, RF-to-beam efficiency, η, is reduced by the ratio of the bunch train
length tb = Nb/fb, where Nb is the number of bunches and the RF pulse length
tp = tb + tf :

η = η0
tb

tp
. (7.20)

A few examples of normal-conducting travelling wave cavity parameters are
provided in Table 7.3.

Table 7.3 Examples of normal-conducting travelling wave cavities

SLC [54] CTF3 [55] CLIC-ML [56]

Frequency (GHz) 2.9 3 12
Average gradient (MV/m) 17 7 100
Average Q 13,000 12,500 5640
Current (A) Two bunches e+e− 4 1
Repetition rate (Hz) 180 50 50
Pulse width (μs) 0.82 1.6 0.24
RF-to-beam efficiency (%) 2 90 28
# cell/cavity unit 85 + 2 32 + 2 26 + 2
Status In operation In operation R&D
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7.4.2 Superconducting Accelerating Structures

Linear accelerators have benefitted greatly through the use of superconducting
radio-frequency (SCRF) cavity technology [1, 57]. This technology, when applied
in standing-wave RF operation, provides the following important advantages:

• Small RF surface resistance and large quality factor, Q, resulting long pulse oper-
ation, with a range of 1 ms, and much higher duty factor in beam acceleration.

• Lower operational frequency with enlarged beam-apertures in the range of
~70 mm diameter, (1.3 GHz), resulting in large acceptance and providing
practical solutions for very intense beams.

Two salient characteristics of superconducting cavities are (1) the average
accelerating field gradient Eacc and (2) the intrinsic quality factor Q. Quality factor
Q is a universal figure of merit for resonators and is defined in the usual manner as
the ratio of the energy,U, stored in the cavity to the power, Pc, lost in one RF period.
Q depends on the microwave surface resistance of the metal. In general, one would
like to have as high accelerating field and as high Q as possible.

The strongest incentive to use superconducting cavities in an accelerator is that
continuous wave (CW) mode or high duty factor (>1%) operation is practical. For
CW operation power dissipation in the walls of a copper structure is substantial
and often not possible. Here superconductivity comes to the rescue. The microwave
surface resistance of a superconductor is typically five orders of magnitude lower
than that of copper, and therefore the Q value is five orders of magnitude higher [58].
The above advantages may be of benefit even though superconducting technology
requires low temperature (1.8 K) cryogenic system operation, resulting additional
power consumption, discussed below.

Figure 7.7a shows a schematic cavity shape of a normal-conducting multi-cell
cavity (top), which represents larger impedance to the beam due to the small beam

Fig. 7.7 (a) A comparison of cylindrical shaped normal-conducting RF cavity (top) and elliptical
shaped superconducting RF cavity (bottom), and (b) electric and magnetic field profile in the
elliptical cavity structure [1, 2]
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holes and nose cones, and a schematic shape of a superconducting multi-cell cavity
(bottom). The corresponding electromagnetic field profile inside an elliptical cavity
is shown in Fig. 7.7b [1, 2].

The RF loss is proportional to the square of the surface current and proportional
to the resistivity. For a superconducting cavity, the microwave surface resistivity is
several orders of magnitude smaller than that of Cu, although it is not zero. The
shape of a superconducting cavity is optimised for properties such as: (1) reduced
excitation of higher order harmonics by the beam, (2) reduced surface magnetic field
to enhance the critical limit of the resultant superconducting to normal-conducting
phase transition, (3) reduced surface electric field to suppress field emission, and (4)
reduced multipacting behaviour [59–61]. The large iris opening and elliptical shape
result from these considerations.

Following Eq. (7.11), an RF power loss per meter of ~0.1 W/m is generated in
an accelerating cavity gradient of 1 MV/m, and it is proportionally increased with
.square of the frequency.

The above RF power loss dissipated into the 1.8 K cryogenic fluid needs to be
converted to an AC power load at room temperature using a total cryogenic effi-
ciency estimate, ηcr, which includes the ‘Carnot efficiency’ and the ‘thermodynamic
efficiency as follows:

ηcr = ηcηd = (P1.8K/P300K−i) (P300K−i/P300K−r) , (7.21)

where ηc is the ‘Carnot efficiency’, ηd is the ‘thermodynamic efficiency’ for the
compressor work at 300 K [2]. Assuming ηc is ~1/(300/1.8) and ηd is ~0.2 (typical
for large scale refrigerators), the total cryogenics efficiency ηcr can be ~1/800.
Including this effect in the estimate of power loss, the relative RF power loss saving
factor of superconducting cavities, (surface resistance ~10−5 lower than normal-
conducting cavities), may be approximately two orders of magnitude better in AC
power consumption performance for a CW operation. Therefore, superconducting
cavity technology enables the nearly entire (>99%) RF power to be transmitted to
the beam from the power source,

However, in case of the pulsed operation, which is the usual mode of normal-
conducting cavity operation, general power loss should be evaluated including a
duty factor, and is given by

(ωU/Q)× (pulse length)× (repetition rate) = (ωU/Q)× (duty factor) .
(7.22)

The pulse duration is typically in the μsec range in case of normal conducting
cavity operation, and the duty factor is normally about three orders of magnitude
smaller for normal-conducting cavity operation, compared with the superconducting
cavity operation. It results in the general power balance between the normal-
conducting cavity and superconducting cavity operation become in similar level,
with including the total cryogenic efficiency for the superconducting cavity opera-
tion. On the other hand, it should be noted that a pulse duration in the level of msec,



314 J. Seeman et al.

Table 7.4 Summary of superconducting cavities in operation, and planned [65, 66]

FLASH European-XFEL ILC-ML

Gradient (MV/m) 18–35 23.8 31.5
Q 5 × 109 to 1 × 1010 1 × 1010 1 × 1010

Current (mA) 1–9 5 6
Repetition rate (Hz) 5 10 5
Pulse width (μs) 800 650 730
# cell/cavity unit 9 9 9
Status In operation In operation Planned

thus three order magnitude longer than that of the normal-conducting cavity, would
be much helpful in other linear collider sub-system such as detectors and feedback
system. A superconducting cavity system may be expected to operate with more
than two times better efficiency, in CW operation than that of the normal conducting
cavity system. However, the power consumption in pulsed operation is less different
in either case.

The superconducting cavity intended for use in high-energy accelerators was
designed for operation at 1.3 GHz with a cell length of 115.4 mm. The 9-cell
elliptical cavity was designed and developed for the FLASH/TESLA Test Facility
program at DESY [62], and has become a standard for further programs such as
the European XFEL program [63] and for the ILC project [64]. Table 7.4 gives
a summary of superconducting cavity operation in FLASH, planned operation at
European-XFEL, and planned for ILC [65, 66]. Superconducting cavity technology
is expected to advance substantially through further optimization of cavity materials,
shapes (TESLA, Low-Loss, Re-entrant), and cost-effective fabrication techniques
[57, 59–61, 65–68].

7.5 Wakefields and Emittance Preservation

A. Latina

Wakefields induced by particles in high impedance environment interact with the
following particles and can therefore affect the beam quality. They can be described
in either the time domain, using the wake-potential W, or in the frequency domain,
using the impedance Z. Analytical approximations to describe wakefields due to
resistive walls or geometry variations in periodic accelerating structures exist. In
case of complex geometries, however, the analytical computation of wake-potentials
and impedances must be performed numerically. In the following paragraphs, we
provide models for short- and long- range wakefields and describe their impact on
the beam. The symbols used in the following paragraphs are defined in Table 7.5.
The unit 1/m in the wakefield functions indicates that the effect is normalized to the
length of the generating element. The unit 1/mm (and its second power) relates to the
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transverse offset of the exciting charge. For example, the transverse and longitudinal
momentum kicks experienced by a charge q following at a distance z a charge Q,
due to the transverse dipole and the longitudinal monopole modes, are respectively
�
−→
p ⊥ = −qQLstructure−→r ⊥W⊥,1(z), and �−→p ‖ = −qQLstructureW‖,0(z), where

Lstructure is the length of the structure and −→r ⊥ is the (small) transverse offset of the
exciting charge.

7.5.1 Short-Range Wakefields

The wake-functions of a periodic accelerating structure have been parameterized by
a number of authors. Here we present a convenient formula for the longitudinal and
the transverse component of the wake-potential, W‖, provided by Bane et al. [69]:

W‖ = Zc

πa2 exp

(
−
√
s

s0

)
, and s0 ≈ 0.41

a1.8g1.6

d2.4 , (7.23)

W⊥,1 = 4
Zc

πa4
s0

(
1 −
(

1 +
√
s

s0

))
exp

(
−
√
s

s0

)
, and s0 ≈ 0.169

a1.79g0.38

d1.17
,

where s is the distance from the source charge, a is the radius of the iris aperture,
g is the interior cell width and d is the cell period (i.e. g = d − h where h is the
disc thickness); Z is the impedance of the medium, typically 377 � for an evacuated
accelerating structure.

7.5.2 Long-Range Wakefields

The long-range wakefields are usually characterized by a set of cavity modes,
obtained numerically. Three numbers (cm,Qm, km) are necessary to describe a mode.
Following Eq. 2.88, in [70], the wake-function for each mode m, is

W⊥,m(s) = cm
R

Qm

exp

(
kmz

2Qm

)
sin (kms) , (7.24)

where cm is the amplitude of the mode in V/C/m/mmm, Qm is the quality factor, km
is the wake number, and s is the distance from the source to the witness particle and
is negative for all particles affected by the wake. Note that W⊥, m(s) is a decaying
exponential as expected. The total wake-potential is the sum of all modes.
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7.5.3 Single-Bunch Wakefield-Induced Effects

7.5.3.1 Beam Loading

The electromagnetic interaction between the bunch tail and the wakes induced by
the bunch head, causes the tail to radiate and lose energy. This decelerating effect
is called beam loading. The energy loss experienced by each particle is estimated
by adding to the self-generated wake the decelerating voltage due to the upstream
generated wakefields:

ΔE = −eL
∑

i

⎡

⎣1

2
|qi |W‖(0)+

∑

∀j/zi<zj

{∣∣qj
∣∣W‖
(
zij
)}
⎤

⎦ , (7.25)

where zij = zj − zi is the distance between the ith and the jth macroparticles; the
inner summation runs over all particles preceding qi, i.e. with zi < zj. Notice that
the energy loss due to the self-generated wakefield, in z = 0, is half the energy
loss given by the upstream generated wakefield. This is the fundamental theorem of
beam loading [71].

7.5.3.2 Wake-Induced Energy Spread

Since the decelerating voltage in Eq. (7.2) varies along the bunch, an RMS energy
spread arises. An estimate of this wakefield-induced energy spread can be obtained
considering W‖ in Eq. (7.23) and a bunch modeled with two macro-particles located
at z = 0 and z = 2σ z respectively,1 each with charge q/2. The decelerating voltage
experienced by the two particles is

�V1 = 1
2
qL
2 W∥∥∥

(0),

�V2 = 1
2
qL
2 W∥∥∥

(0)+ qL
2 W∥∥∥

(2σz) = 1
2
qL
2 W∥∥∥

(0)
(
1 + 2e−�

)
,with � = √

2σz/s0.

(7.26)

The two particles experience two different energy losses: �E1 and �E2 (where
�E = −e�V), this introduces energy spread within the bunch:

δE = e
qL

2
W‖ (2σz) . (7.27)

1This gives the overall distribution an RMS length of σ z.
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7.5.3.3 Energy Spread Compensation

To compensate for the wake-induced energy spread, one can adjust the RF phase
offset φRF (at the cost of a slight reduction of the acceleration rate), so that
the change in energy gain equals the change in wakefield deceleration. In the
approximation V � qLW‖(0), σ z � s0, and σ z � λ the result is [71]

φRF = qLW‖(0)
8πV

λ

σz
, (7.28)

where λ is the wavelength of the accelerating mode and V its voltage. The residual
energy spread after compensation is found from the convolution of the bunch with
the longitudinal wakefield and the acceleration RF

ΔE

E
≈ 1

4

qW‖(0)
G

. (7.29)

7.5.3.4 Single-Bunch Beam Break-up

If the beam is traversing off-center an acceleration cavity, the bunch head can excite
a transverse dipole wakefield W⊥, 1 that causes transverse deflection of the tail. This
deflection affects the tails’ betatron motion and can lead to a transverse beam break-
up. Using a two-particle bunch model, the oscillation amplitude of the bunch tail
relative to the head, at the linac end, is characterized by the dimensionless growth
BBU parameter [71, 72]:

TBBU = −eqW⊥,1 (2σz)
4kβ

L0

L

2
√
EiEj

. (7.30)

Here we assume a lattice design where kβ ≈ const and β ≈ γ 2. Equation (7.6)
holds also in case of no acceleration, with 1/E replacing 2/

√
EiEj . The BBU

parameter can be interpreted as the following: if a beam is injected with a certain
betatron oscillation, the transverse wake-functions cause an oscillation of the tail
that increases by a factor TBBU long the linac. BBU instability can be mitigated by
using BNS damping.

7.5.3.5 Single-Bunch BNS Damping

The defocusing effect of W⊥, 1 can be compensated by increasing the focusing
strength of the tail particles, from kβ to kβ + Δkβ . To do this, RF quadrupoles
with rapidly varying field can be used, or the bunches can be offset with respect to
the crest of the RF wave so that the tail acquires less energy than the head. Using a
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two-particles model, the equation of the motion for the trailing particle is [71, 72]

x ′′2 (s)+
(
k2
β +Δk2

β

)
x2(s) = −eqW⊥,1 (2σz)

2E
x1(s). (7.31)

BNS damping is achieved if the “auto-phasing” condition is met,

(
1 + Δkβ

kβ

)2

= 1 + 2TBBU

kβL0
. (7.32)

BNS damping should be applied at low energies, where the instability is stronger.
In this regime, the energy reducing effect of the longitudinal wakefield actually helps
to maximize BNS damping.2

7.5.4 Multi-Bunch Wakefield-Induced Effects

7.5.4.1 Multi-Bunch Beam Break-Up

Multi-bunch BBU leads to an amplification of the incoming trajectory jitter to
cause trailing bunches to be strongly deflected transversely. Each bunch can be
assimilated to a point charge. For n equally-charged, equally-spaced bunches, each
bunch represented by a single macroparticle with a charge Ne, the equation of
motion is

x ′′n +
dE

ds

1

E
x ′n + k2

βxn = −eq

E

n−1∑

i=1

W⊥,1 ((n− 1) lB) xi. (7.33)

A difference from the single-bunch BBU is that W⊥ is now dominated by one or
few resonators having large shunt impedance Qm (see Eq. (7.1)).

7.5.4.2 Control of Multi-Bunch BBU

The multi-bunch BBU is mitigated by minimizing the long-range transverse wake-
field in the structure design. Assuming the Daisy chain model, the criterion for little
or no blow-up is

∣∣∣∣
eqW⊥,1 (lB)

ekβ

L0

L

∣∣∣∣
2

√
EiEj

< 1, (7.34)

where W⊥, 1(lB) is the wakefield at the following bunch (see Sect. 4.3 in [73]).

2Toward the end of the linac, at high beam energies, the beam break-up effect becomes small, and
the bunch should be moved ahead of the crest to reduce the energy spread in the beam.
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7.6 Focusing at Interaction Point

A. Seryi · R. Tomás García

7.6.1 Final Focus Design

The main task of a Final Focus (FF) system is to focus the beams to the small sizes
required at the interaction point (IP) of a Collider. To achieve this, the FF forms
a large and almost parallel beam at the entrance to the final doublet (FD), which
contains two or more strong quadrupole lenses. However, even for a beam with a
minor energy spread of a fraction of a percent, the focused beam size will be diluted
by the chromaticity of these strong lenses. The design of a FF is therefore driven
primarily by the necessity of compensating the chromaticity of the FD.

There are two primary approaches for chromaticity compensation—the non-local
scheme, implemented particularly at FFTB [74] and B-factories [75, 76] and the
local compensation Scheme [77] at ATF2 [78, 79]. Further developments in optics
with smaller vertical beam size and larger chromaticity are also being investigated
at ATF2 [80, 81] to explore the feasibility of the local compensation scheme at
different chromaticity levels.

In the non-local FF, the chromaticity is compensated in dedicated sections
by sextupole magnets placed at maxima of dispersion and beta-functions. The
geometric aberrations generated by the sextupoles are cancelled when used in pairs
with a minus identity transformation between them.

The non-local FF is built from separated optics blocks with strictly defined
functions, and its design and analysis is relatively simple. The major drawback of
the non-local FF rests in its required length for multi-TeV colliders. This can be
partly mitigated by allowing a smaller peak dispersion function and adding extra
sextupoles to the design [82, 83].

Local compensation of chromaticity is achieved by interleaving a pair of
sextupole magnets with the quadrupoles of the final doublet, see Fig. 7.8. The
dispersion throughout the FD is created by upstream bends, and is designed to
cancel at the IP. Geometric aberrations, generated by FD sextupoles, are cancelled
by two or more sextupoles located upstream. Sextupoles placed in FD generate
second order dispersion, which, however, can be compensated simultaneously with
x and y chromaticities provided that half of the total horizontal chromaticity of the
whole FF is generated upstream. The second order aberrations are cancelled when
the x and y pairs of sextupoles are separated by transfer matrices M with block-
diagonal structure {A 0; 0 B}where A= {f 0; c− 1/f}, provided the optics is flexible
enough to adjust the coefficients and provide compensation of third and fourth order
aberrations. The FF with local compensation requires fewer bends, and allows the
design of a 3 TeV CM FF system with about half a kilometre length. The recipe for
the design of such final focus is described in [84].
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Fig. 7.8 Optical layout of the final focus with local chromaticity correction. The final doublet
consists of two quadrupoles (represented by lenses) and two sextupoles (represented by hexagons)
to locally cancel the chromatic aberrations. A replica of the final doublet is placed upstream to
cancel the sextupolar geometrical aberrations

Synchrotron radiation in the FD sets a lower limit to the achievable IP rms spot
size [85, 86] that depends on the FFS optics parameters and the beam emittance.
This effect drives the length of the FD quadrupoles for high energy colliders.

7.6.2 Final Focus Optimization

The transfer map between the start of the FFS and the IP is given by xIP = Xjklmn
xj pxk yl pym δn, where Xjklm are the map coefficients that can be extracted from
MAD-X [87] and PTC [88] and the sum over repeated indexes applies. The standard
quadratic deviation of the particle distribution at the IP is expressed as a function of
the Xjklm coefficients and the entry beam sigmas as given in [89]. This allows for
a semi-analytical optimization of any lattice parameters (like the strength of non-
linear elements) so as to minimize the IP beam size.

7.6.3 Final Focus tuning

The unavoidable misalignments and field errors of the different components of the
FFS result in an emittance dilution at the IP. FFS tuning refers to the process of
bringing the machine to nominal performance and to maintain it in the presence of
dynamic errors. The initial set-up procedure involves steering the beam through
the centre of critical apertures and magnetic elements with known higher-order
fields. Pre-computed knobs use orbit bumps at the sextupoles to orthogonally control
all the different IP particle distribution correlations. These knobs are iteratively
scanned until the minimum IP beam size is reached. Finally either single magnets
strengths or higher order knobs [90, 91] can be scanned to minimize the higher-order
aberrations.
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7.7 Low Emittance Generation

S. Guiducci · Y. Papaphilippou

The high luminosity of a linear collider depends strongly on the generation of
ultra-low emittance high-intensity bunches, with remarkable stability. Conventional
electron sources and positron production schemes provide beams with several
orders of magnitude larger emittances, than the ones needed. The required cooling
mechanism is generated by the natural synchrotron radiation damping of the beam
when circulating in rings.

The requested performance of the damping rings (DRs) is driven by the collider’s
principal parameters, the upstream or downstream systems’ requirements, and
especially the main linac RF. The parameters driving the design of the ILC [92] and
CLIC are shown in Table 7.6. The technological choice of super-conducting over
copper main linac RF cavities, clearly diversifies the DR design, although a number
of approaches and challenges remain common. In the one flavour of DRs as CLIC,
the bunch trains are relatively short with even shorter bunch spacing and with a high
repetition rate. The ILC bunch train is ~220 km long and needs to be compressed and
stored in a 3.2 km-long ring. In order to achieve the high luminosity, the ILC is based
on bunches with high bunch charge and small emittances, whereas CLIC targets
small bunch charges with much lower emittances. Modern X-ray storage rings in
operation or construction phase are rapidly approaching these regimes, targeting
ultra-low transverse emittances. Especially for the vertical emittance, requiring
challenging alignment tolerances and stringent control of the optics and orbit, X-
ray rings in operation have approached the quantum limit of vertical emittance, i.e.
values below 1 pm [93].

For CLIC, the large input emittance for the positron beam and the high repetition
rate necessitates a two-stage beam damping, with a pre-damping ring [94]. For ILC,
there is no pre-damping stage and the DRs need a large acceptance for the injected
beams, especially for positrons.

Most of the design challenges of the DRs are driven by the extremely high bunch
density and the associated collective effects. In this respect, the DR parameters
(Table 7.7) are carefully chosen and optimised in order to mitigate these effects
[95, 96].

Table 7.6 CLIC versus ILC parameters driving the DRs design

Parameters ILC CLIC

Bunch population (109) 20 4.1
Bunch spacing (ns) 554 0.5
Number of bunches/train 1312 312
Number of trains 1 1
Repetition rate (Hz) 5 50
Ex. H/V/L norm. emittances (μm, nm, keV m) (5.5, 20, 33) (0.5, 5, 6)
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Table 7.7 ILC and CLIC
DRs design parameters

Damping ring parameters ILC CLIC

Energy (GeV) 5.0 2.86
Circumference (m) 3.238 359.4
Energy loss/turn (MeV) 4.5 5.8
RF voltage (MV) 14 6.5
Compaction factor (10−4) 3.3 1.2
Damping time x/s (ms) 24/12 1.2/0.6
Number of arc cells/wigglers 150/54 90/40
Dipole/wiggler field (T) 0.23/2.2 0.69–2.3/3.5

In the case of CLIC, the steady state emittance is dominated by Intra-Beam
Scattering (IBS). The ring energy [97] and lattice design [96], (racetrack shape
with TME arc cells with variable field dipoles [98] and long straight sections filled
with super-conducting wiggler [99] FODOs) is optimized for reducing IBS. The
larger emittance specification of ILC, allows for higher ring energy, thus relaxing
collective effects.

Due to the very small beam size especially in the vertical plane, IBS is large. In
order to mitigate its value within manageable limits, the ring is made as compact as
possible, and the longitudinal beam size has to be increased [10P2, 100].

The key systems to allow damping the beam to ultra-low horizontal emittance in
a compact ring during the short time between two machine pulses like in CLIC are
high-field super-conducting damping wigglers with short period. Prototypes have
been built and tested in a synchrotron light source, including novel cooling concepts
[101]. Higher field mock-ups based on Nb3Sn technology are under development
and tests [102].

The combination of high bunch density and short bunch spacing triggers two
stream instabilities for both ILC and CLIC DRs. In the e−-ring, the fast ion
instability can be avoided with low vacuum pressure, partial ring filling and bunch-
by-bunch transverse feedback [103]. In order to mitigate the electron cloud build up
and avoid the instability to occur in the e+-ring, the secondary electron yield (SEY)
of the vacuum chambers has to be limited to below 1.2–1.3 and the photo-emission
yield (PEY) has to be very low, from a few down to 0.1% [104]. The low SEY can
be achieved with chamber coatings, as TiN, NEG or amorphous carbon [105, 106],
whereas the low PEY necessitates an efficient photon absorption scheme.

The e-cloud mitigation, low emittance generation, fast kicker technology and
the associated diagnostics are studied in dedicated test facilities (CESR-TA, ATF),
synchrotron light sources as well as at various laboratories around the world.

The very high peak and average current of CLIC presents a big challenge due to
the transient beam loading, especially for a high frequency RF system. Concepts of
RF design including low-level RF feedback have been developed extrapolated from
the design of e+/e− ring colliders [107].
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As the beam stability requirement is quite stringent and typically 10% of the
beam size, tight jitter tolerances for the rings extraction kickers are imposed, down
to a few10−4. Especially for the bunch-by-bunch extraction scheme of ILC, the
kicker rise time of a few ns, is extremely challenging. An ILC extraction experiment
using a prototype strip-line kicker was carried out at KEK-ATF [108]. It achieved
multi-bunch beam extraction with 5.6 ns bunch spacing. The angle jitter of a single
bunch beam was reduced to 3.5 × 10−4, using a double kicker system. For CLIC,
a stripline with an ultra-stable inductive adder as power source is being currently
tested at ALBA synchrotron [109].

7.8 Recirculated Linacs and Energy Recovery

S. A. Bogacz · G. A. Krafft

Linear accelerators provide superb beam quality as defined by the sources, but they
are current-limited due to the high cost of their RF drive. Circular accelerators, by
contrast, offer high average beam current and exhibit high electrical efficiency (and
associated cost reductions) because of the limited required investment in RF power.
However, effects such as quantum excitation (incoherent synchrotron radiation)
or space charge limit their beam quality. On the other hand, rings typically only
come to equilibrium after many hundreds or thousands of turns, which significantly
degrades beam quality (emittance, momentum spread, etc.).

Recirculated Linear Accelerators (RLAs) have several advantages that support
electron beam parameters outside of the scope of the traditional ring accelerators or
linacs [110]. Synchrotron radiation effects, as in electron storage rings, do not limit
beam emittances and pulse lengths emerging from an RLA. The beam is circulated
only a modest number of times, so the impacts of the degrading effects are then
limited, and the beam quality may be much higher than the equilibrium beam quality
inherent for rings.

Going a step further, in the Energy-Recovered Linac (ERL), the full-energy
beam is returned to the accelerating structure out of phase with respect to the
accelerating field after being used (collides, produces synchrotron radiation, drives
a specific reaction, etc.). The beam is decelerated, returning the RF power in the
beam to the accelerating structure, making this RF power available to accelerate
a subsequent beam. The resulting system retains the excellent beam quality of
a conventional linac—and, because of the recovery of significant levels of RF
power—can provide high average beam current at excellent electrical efficiency
and lower associated cost. The ERL concept is quite attractive because it provides
linac-quality/brightness beam at storage ring beam powers. With the advent of
operational ERLs, it may be possible to push average currents to levels approaching
the best lepton storage rings in existence as of 2019. Furthermore, the production of
high beam power with reduced RF drive represents improved electrical efficiency,
introducing ‘green technology’ with significant cost reductions. Energy recovery
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also provides an additional environmental advantage, as the total stored energy
in the system is deposited at very low (injection) energy, providing mitigation of
serious environmental/safety issues. Finally, ERLs, like linacs, offer a flexible time
structure, allowing operation with single bunches, CW bunch trains, and virtually
every combination between these options. As in other linac-based systems, ERLs
can easily manipulate various portions of phase space independently of other
portions; they are fully six-dimensional systems, supporting transverse matching
to desired spot sizes, longitudinal matching to desired bunch length/energy spread
ratios (via transverse/longitudinal coupling), and any (or all) of horizontal/vertical
transverse/longitudinal phase space exchanges.

Next-generation light source or collider applications requiring the following
elements should generally be well-suited to deploying a recirculated and/or energy-
recovered linac: CW or other high duty factor operation, high beam average current,
low delivered beam energy spread, and low delivered beam emittance. CW beam
acceleration with high accelerating gradients (>10–20 MV/m) generally requires
deploying a multi-pass RLA consisting of superconducting accelerator structures.
GeV-scale RLAs at 100 mA average current would ordinarily require at least
100 MW of installed RF power merely to accelerate the beam load. Beam energy
recovery allows substantial reduction of the RF beam loading of the cavities.

In applying this idea with a back-to-front beam recirculation, as illustrated in Fig.
7.9, the beam recirculation path length is chosen to be an integral number of RF
wavelengths, plus approximately one-half of the RF wavelength. Because the beam
sees accelerating phase on the lower accelerating beam passes through the linac,
after a phase shift of 180 degrees, energy is delivered back to the (S)RF cavities
by higher beam passes, and transferred directly to the accelerating beams without
the need for additional power from other RF sources [111]. To the extent that the
average beam load from the accelerating passes completely cancels the beam load
from the decelerating beam passes, there is no limit to the average current that may
be accelerated due to RF source capacity. Because the beam transit time through the
recirculated linac is much smaller than the radiation-induced emittance growth times
in the bending arcs, the beam longitudinal and transverse emittances can be much
smaller in energy-recovered linacs than in storage ring accelerators that operate at
the same energy. It should be noted that energy recovery is also an important element
in the design of high average current electrostatic accelerators.

Beam energy recovery was first proposed as a way to construct high-luminosity
colliders for high energy physics [112]. Although never realized in this application,
energy-recovered accelerators have been built as electron cooling drivers and high-
power free-electron laser drivers [113–115].

Many proposed applications benefit from the advantages of energy-recovered
linacs. For example, Cornell University is investigating the energy-recovered linac
as an undulator driver yielding superior, high average brilliance X-ray sources as an
upgrade to their conventional synchrotron light facility [116]. Similar programs exist
at Argonne and Daresbury Laboratories [117], and in Japan [118, 119]. Brookhaven
National Laboratory and CERN are investigating the use of high average current
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Fig. 7.9 Evolution of accelerator architectures driven by cost/performance optimization—the
ERL architecture emerges as the final step—‘the best of both worlds’ (linacs, rings)

energy-recovery linacs as electron sources for high-luminosity electron-ion colliders
[120]. Advanced RF-coolers have been proposed based on energy-recovered linacs.

Several important design issues for recirculated linacs are the high average
current gun and injector, linac design, recirculating arc design, and beam stability.
Historically, DC guns have been applied at recirculated and energy-recovered linacs,
largely because they easily support CW beam. The desire to support higher beam
quality in the injector has led to efforts to develop CW RF-based electron guns.
Linac design philosophy has largely followed the example of the CEBAF accelerator
where ‘graded gradient’ first-pass optics are designed to yield constant phase
advance, and the higher beam passes are less focused because of the higher energy
of higher beam passes. For a variety of reasons, superconducting recirculated linacs
prior to 1990 used recirculation arcs that were isochronous, leading to FODO-type
systems as in the large recirculation arcs of CEBAF, or the large energy acceptance
design first deployed at Bates Laboratory [121, 122]. On the other hand, normal-
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conducting devices have operated with non-isochronous recirculation and microtron
phase stability [123] as an inherent design choice [124]. Recirculator optics based on
two-bend and three-bend achromatic optics have been deployed. With the advent of
beam energies where synchrotron radiation is an important part of the beam quality
from the recirculator, arcs are being suitably designed and implemented to minimize
emittance and energy spread growth, as at synchrotron radiation sources.

An additional multi-bunch beam instability potentially affects recirculated and
energy-recovered linacs: multi-pass beam breakup (BBU) [125, 126]. In this
instability, deflections of the beam generated by high order modes in the accelerating
cavities can drive unstable feedback if the deflections translate after recirculation
into position offsets that act to further excite the high order mode. This instability
was first observed in the first superconducting recirculator at Illinois, and restricted
the operating current in the early Stanford superconducting recirculator. When
the much-larger-scale CEBAF accelerator was built, the solution to the instability
problem was provided by building the linac from cavities that were known to have
good HOM damping. This approach has continued to the present, where cavities
have been designed and tested that are expected to support 100 mA to 1 A currents
in recirculating linac arrangements.

Successful operations of high-power FEL drivers stimulated community interest
in ERL technology, and there followed numerous proposals and a number of actual
systems. These included: FEL drivers: the JLab IR Upgrade FEL [127], ALICE
[128], and the JLab UV Demo FEL [129]; test facilities: CEBAF-ER [130], the KEK
cERL [131], bERLinPro [132], ER@CEBAF [133], and PERLE [134, 135]; and
systems associated with nuclear physics facilities: the BNL test ERL, an electron
cooler concept [136], MESA [137], and most recently, conversion of the Darmstadt
S-DALINAC to an ERL [138].

Having described the motivation for ERLs and how they operate, we briefly
survey the contemporary ERL landscape, review progress to date, and detail
challenges confronting upcoming generations of these machines. We also provide
an overview of applications (servicing FELs, high-energy electron cooling systems,
inverse Compton-driven gamma sources, internal-target experiments, accelerator
science/technology test platforms).

7.8.1 Novosibirsk ERL

The Novosibirsk ERL—developed, built and commissioned at BINP in 2003—was
the first multi-pass ERL operating in CW mode [139]. It initially reached a top
energy of 12 MeV, with high average current of 30 mA [140]. The ERL is fed
by a 300 kV electrostatic gun with a thermionic cathode (Q ∼ 1 nC, τ = 1 ns,
frep = 10 kHz–50 MHz), followed by one bunching and two accelerating cavities
for effective bunch compression. The facility uses a normal-conducting accelerating
system at 180 MHz, with average power up to 0.5 kW (peak power of about
1 MW). The ERL drives three separate FELs (NovoFEL facility) [141] operating
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in a spectral range of 90–240 microns. The ERL had recently (2015) been upgraded
to 42 MeV, based on four-pass energy recovery to drive a short wave FELs in a
spectral range of 8–15 microns [142].

7.8.2 S-DALINAC

The S-DALINAC energy-recovery linac is a superconducting electron accelerator
operated at Technical University Darmstadt since 1991. The ERL was recently
upgraded (2015–2016) and as of 2019 it is capable of operating as a one-pass, or
two-pass ERL with maximum energies of approximately 34 or 68 MeV, respectively
[143]. The ERL provides beam for Compton scattering of laser beams on intense
electron beams to generate quasi-monochromatic, energy-tunable, fully polarized
gamma-ray beams for photonuclear reactions [144]. The most recent upgrade [145]
started in 2017, and would enable an increase of the maximum achievable energy
close to its design value of 130 MeV. A newly-added beamline features a path-length
adjustment system capable of changing the phase of the beam by a full RF cycle.

7.8.3 MESA

MESA is a recirculating superconducting accelerator under construction at Johannes
Gutenberg-Universität Mainz. The facility [146] uses a superconducting acceler-
ating system based on the TESLA operation frequency of 1.3 GHz. The 2-pass
recirculating linac has been configured to operate in two different modes: the
external beam (EB) mode, where a 150 μA polarized electron beam at 155 MeV
is dumped after being used at the experiment, and in energy-recovery mode (ERL)
with an unpolarized beam of 1 mA at 105 MeV [147]. At an upcoming later
construction stage, MESA’s maximum achievable beam current (in the ERL-mode)
will be upgraded to 10 mA (unpolarized).

7.8.4 Compact ERL

The compact ERL (cERL) at KEK is a test accelerator to develop ERL technologies
for high average beam current operation with high-quality beam performance [148].
The cERL consists of a photoinjector, a main linac for energy recovery, a recir-
culation loop, and a beam dump. To achieve energy-recovery operation with high
average beam current, collimator tuning to reduce unwanted beam loss has been
very important. After fine beam tuning and collimator tuning, stable CW operation
with 0.9 mA average beam current was achieved. Upgrade efforts are under way
to increase CW beam current to 10 mA through improved instrumentation. The
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ERL transports a short electron bunch with a high repetition frequency of 1.3 GHz.
Coherent, high-intensity THz radiation from such short electron bunches has many
unique applications in material science.

7.8.5 bERLinPro

As of 2019, the Helmholtz-Zentrum Berlin is constructing the Energy-Recovery
Linac Prototype bERLinPro, an SRF-based demonstration facility for the science
and technology of ERLs for future high power, high brilliance electron beam
applications [149]. bERLinPro is designed to accelerate a high current (100 mA,
50 MeV), high brilliance (normalized emittances below 1 mm·mrad) CW electron
beam. The ERL as a prototype to demonstrate low normalized beam emittance of
1 mm·mrad at 100 mA and short pulses of about 2 ps. The high-brilliance beam
will originate from a gun configured with (1.4 λ)/2 cell SRF cavity with a normal-
conducting, high quantum efficiency. This injector is planned to support 6 mA beam
current and up to 3.5 MeV beam kinetic energy.

7.8.6 CBETA

Cornell-BNL-ERL-Test-Accelerator (CBETA) is a test ERL [150], featuring four
accelerating passes through the superconducting linac with a single Fixed Field
Alternating Linear Gradient (FFA-LG) return beamline built of the Halbach-type
permanent magnets. The CBETA ERL accelerates electrons from 42 to 150 MeV,
with a 6 MeV injector. The novelty is that four electron beams, with energies
of 42, 78, 114, and 150 MeV, are merged by spreader beamlines into single-
arc FFA-LG beamlines. The electron beams from the main linac cryomodule
pass through the FFA-LG arc and are adiabatically merged into a single straight
line. This is the first 4-pass superconducting ERL and the first single permanent
magnet return line. It promises to deliver unprecedentedly high beam current with
simultaneously small emittance. A collaboration between Cornell and Brookhaven
National Laboratory has constructed the CBETA facility on the Cornell campus
[151], and commissioning is ongoing as of the summer of 2019. A DC photo-
emitter electron source, a high-power SRF injector linac, a high-current SRF linac
for energy recovery, and a permanent-magnet return loop have been assembled to
the 4-turn SRF ERL. CBETA provides essential R&D for the EIC. Furthermore, the
high-brightness beam with 150 MeV and up to 40 mA will have applications beyond
EIC cooling and basic accelerator research, for industry, nuclear physics, and X-ray
science.
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7.8.7 PERLE

PERLE (Powerful ERL for Experiments) is a novel ERL test facility [152] which
has been designed to validate choices for a 60 GeV ERL foreseen in the design
of the LHeC [153] and the FCC-eh. Its main thrust is to probe high current, CW,
multi-pass operation with superconducting cavities at 802 MHz (and perhaps other
frequencies of interest). With very high transient beam power (~10 MW), PERLE
offers an opportunity for controllable studies of every beam dynamic effect of
interest in the next generation of ERL design; PERLE will become a ‘stepping stone’
between present state-of-the-art 1 MW ERLs and future 100 MW scale applications.
PERLE design features a flexible momentum compaction lattice architecture in six
vertically stacked return arcs, and a high-current, 5 MeV photo-injector. With only
one pair of four-cavity cryomodules, 400 MeV beam energy will be reached in three
recirculation passes, with beam currents of appoximately 20 mA. The beam will be
decelerated in three consecutive passes back to the injection energy. Work on the
engineering design of PERLE has just begun as of summer 2019.

In summary, the next-generation ERLs under study or in construction in 2019
take performance to the next (10 MW) level, and include bERLinPro, CBETA, and
PERLE. These systems will provide the experience and knowledge base for fourth-
generation objective systems such as electron-ion collider electron coolers, XFEL
drivers, and high-energy colliders.

A more detailed comparison of present and next-generation systems is given in
Table 7.8 [154]. Certain characteristics of the next generation are apparent: not
only do projected beam powers climb by an order of magnitude as noted, but the
number of passes, the power multiplier, and the dynamic range all increase, and
both accelerated and recovered beams are transported in shared beamlines. All of
these features are natural evolutionary consequences of system design optimization
in the pursuit of higher performance with a lower cost.
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8.1 Magnets, Normal and Superconducting
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8.1.1 Introduction

Magnets are at the core of both circular and linear accelerators. The main function
of a magnet is to guide the charged particle beam by virtue of the Lorentz force,
given by the following expression:

F = q v × B, (8.1)

where q is the electrical charge of the particle, v its velocity, and B the magnetic
field induction. The trajectory of a particle in the field depends hence on the particle
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velocity and on the space distribution of the field. The simplest case is that of a
uniform magnetic field with a single component and velocity v normal to it, in which
case the particle trajectory is a circle. A uniform field has thus a pure bending effect
on a charged particle, and the magnet that generates it is generally referred to as a
dipole.

By equating the Lorentz force to the centripetal force, we obtain the bending
radius ρ of the motion of a particle of charge q under the action of a magnetic field
B perpendicular to the motion:

1

ρ
= qB

pc
, (8.2)

By expressing the momentum p in practical units [GeV/c], we can write:

Bρ [Tm] = 109

c

p

Z
= 3.3356

p [GeV/c]

Z
, (8.3)

where Z is the charge number of the particle, with q = Ze.
The product Bρ is known as magnetic rigidity and provides the link between

dipole strength and length based on the momentum of a charged particle in a circular
accelerator. Note how the formula shows clearly the trade-off between the bending
magnetic field B and the size of the machine (related to ρ).

Besides bending magnets, a number of other field shapes are required to focus
and control the beam. Most important are magnets that generate a pure gradient
field, i.e. a field that is zero on the axis of the magnet and grows linearly with
distance. This type of magnet is referred to as a quadrupole and is used to focus the
particles on the central trajectory of the accelerator. The strength of a quadrupoles is
customarily quoted in terms of the field gradient G, in units of [T/m]. A normalised
quadrupole strength for a quadrupole of length l is defined as the ratio of the
integrated quadrupole gradient to the beam rigidity, or: K = Gl/(Bρ). The angular
deflection α (in radians) of a particle passing at a distance x from the centre of a
quadrupole can be computed using the normalised quadrupole strength as:

α [rad] = Kx, (8.4)

which shows that a particle on the quadrupole axis (x = 0) has a straight trajectory,
while a particle off-axis receives a kick proportional to its distance from the centre,
i.e. the expected focussing effect. Higher order gradient fields, such as sextupoles, or
octupoles, behave similarly and provide further non-linear means to control, correct
and stabilize the dynamics of the motion of the particles, as described elsewhere in
this handbook.

The accelerator magnets considered here have typically slender, long apertures
(the space available for the beam), where the magnetic field has components only
in the plane of the magnet cross section. In this plane, 2-D configuration, the
most compact representation of the magnetic field shape in the magnet aperture
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is provided by the complex formalism [1] and its multipole expansion. Defining
the complex variable z = x + iy, where the plane (x,y) is that of the magnet cross
section, the function By + iBx of the two non-zero components of the magnetic field
is expanded in series:

By + iBx =
∞∑

n=1

(Bn + iAn) z
n−1. (8.5)

The coefficients Bn and An of the series expansion are the multipoles of the field,
and determine the shape of the field lines. As an example, a magnet in which only
the term B1 is non-zero, corresponds to a magnetic field:

Bx = 0;By = B1,

i.e. a perfect dipole field (constant in amplitude and direction) oriented in y
direction. If the y direction is taken perpendicular to the plane of the accelerator
(e.g. vertical), this is usually called a normal dipole, which provides bending in the
plane of the accelerator (e.g. horizontal). A magnet in which only A1 is non-zero
results in a perfect skew dipole field:

Bx = A1;By = 0,

which is in the plane of the accelerator (e.g. horizontal) and provides bending
perpendicular to it (e.g. vertical). Multipoles B2 and A2 correspond to magnets
generating a pure normal and skew quadrupole field. Higher order gradients
(sextupole, octupole, etc.) are obtained by simple analogy in the continuation of
the series.

The explicit expressions of the field components corresponding to the first four
multipoles, and a sketch of the corresponding field lines are reported in Table 8.1. It
is useful to remark that the coefficients Bn and An appearing in Table 8.1 have units
of [T/mn− 1] and are hence the generalized normal and skew gradient of order n.
Specifically, B2 corresponds to the normal quadrupole gradient G discussed earlier.
To complete this short review of field configuration, we use the complex expansion
to evaluate the module of the field B in the case of a pure normal multipole (chosen
for convenience, the case of a pure skew multipole field yields identical results).
Simple algebra, writing that z = Reiθ where R is the module and θ is the argument
of z, gives the following result:

B = BnR
n−1, (8.6)

which shows that the field strength in a pure multipole field of order n is proportional
to the generalized gradient and grows with the power n−1 of the distance from
the magnet centre. This extends the case of the dipole (n = 1, constant field), and
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Table 8.1 Multipole coefficients, field components and field lines for pure multipole magnets

Magnet type n Normal (Bn �= 0) Skew (An �= 0)

Dipole 1 Bx = 0
By = B1

Bx = A1
By = 0

Quadrupole 2 Bx = B2y
By = B2x

Bx = A2x
By = − A2y

Sextupole 3 Bx = B32xy
By = B3(x2 − y2)

Bx = A3(x2 − y2)
By = − A32xy

Octupole 4 Bx = B4(3x2y − y3)
By = B4(x3 − 3xy2)

Bx = A4(x3 − 3xy2)
By = − A4(3x2y − y3)

quadrupole (n = 2, linear field), to higher order multipoles such as the sextupole
(n = 3, quadratic field profile), octupole (n = 4, cubic field profile), and so on.

Besides its compact form, the complex notation is useful because there is a direct
relation between multipoles (order and strength) and beam properties. This is why
accelerator magnets are often characterised using their harmonic content in terms of
the Bn and An coefficients of the field expansion. Indeed, the pure multipolar fields
discussed so far can only be approximated to a suitable degree in real magnets. The
field generated by a magnet contains then all multipoles, normal and skew, i.e. a
dense harmonic spectrum. Symmetries cause cancellation effects, resulting in low
(ideally zero) non-allowed multipoles when compared to the multipoles allowed by
the magnet symmetry. Selected multipoles can be further reduced by using design
features such as optimization of the coil and iron geometry, or corrections such as
passive and active magnetic shims.

We define the field quality of an accelerator magnet as the relative difference
between the field produced and the ideal field distribution, usually a pure multipole,
in the region of interest for the beam, which is generally referred to as the good field
region. Depending on the shape of the good field region, it may be convenient to
quote field quality as an overall homogeneity (i.e. �B/B, typically done for magnets
with a rectangular or elliptic aperture), or providing the spectrum of multipoles other
than the one corresponding to the main magnet function (ratio of An and Bn to the
main field strength, typically done for magnets with round bore). Whichever the
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form, the field quality of accelerator magnets is generally requested to be in the
range of few 10−4. To maintain practical orders of magnitude, field errors are then
quoted in relative units of 1 × 10−4 of the main field, or simply units.

Gradient magnets (i.e. quadrupole and higher order) are also characterised by
a magnetic axis, which is usually taken as the locus of the points in the magnet
aperture where the field is zero. Magnets are aligned with respect to their axis
(or an average of the locus when it deviates from a straight line) to the specified
beam trajectory to avoid unwanted feed-down effects. Typical alignment tolerances
in circular machines range from few tens of μm in synchrotron light sources
to fractions of mm in large colliders (e.g. the LHC). Linear colliders are more
demanding, with typical tolerances at the sub-μm level.

Dipoles and quadrupoles are the main elements of the linear optics in mod-
ern synchrotrons. Depending on the beam specifications, any residual field and
alignment imperfections, as well as drift in magnet properties, may require active
correction to ensure stable and efficient operation. This is done using corrector
magnets that are powered using information established from previous knowledge
on the main magnets, or parameters measured on the beam, or both. Corrector
magnets are often designed to generate a single multipole, so to act on the beam
as an orthogonal knob, thus making the correction easier to execute.

8.1.2 Normal Conducting Magnets

“Normal conducting”, and alternatively “resistive”, “warm” or “conventional”
magnets, are electro-magnets in which the magnetic field is generated by conductors
like copper or aluminium, which oppose an electrical resistance to the flow of
current. The magnetic field induction provided in the physical aperture of these
magnets rarely exceeds 1.7 to 2.0 T, such that the working point of the ferromagnetic
yoke remains below saturation. In these conditions, the yoke provides a closure
of the magnetic path with small use of magneto-motive force, and its pole profile
determines the magnetic field quality.

The integral form of the static part of the last Maxwell equation, the Ampere’s
law, provides a simple analytical expression for the relationship between magnetic
field and magneto-motive force in most of magnet configurations used in particle
accelerators.

As an example, we illustrate in Fig. 8.1 a non-saturated C-type dipole magnet,
made of two coils of N/2 turns each, connected in series and supplied by a current I.

NI =
∮
Hdl = Hironliron +Hairlair = B

μ0μr
liron + B

μ0
lair. (8.7)
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NI/2
+

NI/2
l air

l iron

Fig. 8.1 C-dipole magnetic circuit, of physical vertical aperture lair, supplied with a total
magnetomotive force NI

a b c

1.9 T

1.4 T

1.07 T 1.35 T 1.45 T

1.5 T 1.8 T 1.5 T
1.5 T

1.6 T

Fig. 8.2 C-dipole magnetic circuit of physical vertical aperture lair = 10 mm, supplied with
NtotI = 12,000 A

If μr � liron/lair we can neglect the magneto-motive force “used” in the iron and
obtain:

B ≈ μ0NI/lair. (8.8)

If part of the iron is saturated, its permeability will be lower and part of the
ampere-turns NI will be used to magnetize the iron as discussed later.

In case the magnetic field exceeds a value of typically about 1.5 T along the
path corresponding to liron the magneto-motive force used in the iron may become
no longer negligible with respect to that used in the air. As the iron yoke gathers
also the stray field, the field induction in the iron poles is always higher than the
one between poles. To reduce the iron portion working at fields above 1.5 T, the
iron pole can be tapered. This allows designing iron-dominated magnets capable of
producing magnetic fields intensities in their physical aperture rather close to the
saturation limit of the iron, i.e. up to about 1.7–2.0 T. A quantitative example of the
effect of saturated iron in dipole magnet is given in Fig. 8.2.
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8.1.2.1 Magnetic Design

Transfer function (the ratio of the magnetic field intensity in the magnet aperture
to the supply current) and inductance can be computed starting from the Ampere’s
law and considering the relationship between magnet inductance (L), current (I) and
energy (E) as E = ½·LI2.

In practical cases the theoretical transfer function of an ideal magnetic circuit
is reduced by an “efficiency” η, typically of the order of η = 0.95 . . .0.98, which
depends on the length, stacking factor and working conditions of the magnetic yoke.
The formulas in Table 8.2 provide an analytical formulation of the inductance values
for different magnet configurations.

The inductance depends on how the pole geometry is trimmed (shims, tapered
poles, chamfers) and on saturation. For quadrupole and sextupole magnets different
tapering of the poles can strongly modify the inductance. For such magnets these
simplified formulas can cover only standard designs.

The field homogeneity typically required by an accelerator magnet within its
good field region is of the order of few parts in 10−4. Transfer line and corrector
magnets may be specified with lower homogeneity.

Field quality in a given volume is determined by several factors:

• the size of the magnet aperture with respect to the good field region
• the shape of the iron poles
• manufacture and assembly tolerances
• the position of active conductors (coils), in particular in window-frame magnets
• the ferromagnetic properties at the working conditions of the steel used for the

yoke
• dynamic effects

Optimizing field quality is achieved considering all above aspects. In particular
magnets operating below 2 T, as the ones treated in this chapter, are also described
as iron dominated magnets because the shape of the magnetic field induction is
dominated by the shape of the ferromagnetic poles. At the interface between the
magnet aperture and the poles, i.e. between steel and air, the component of the
magnetic field induction B⊥ perpendicular to the interface surface is the same
on both media. The tangential component of the magnetic field Ht also remains
the same in case no surface currents are present: this corresponds to a change of
the tangential components Bt of the field induction by the ratio of the magnetic
permeability between the two media. As a result, in case of infinite permeability the
direction of the magnetic field induction in the air at the exit of a magnet pole is
always perpendicular to the pole surface.

An example of trimming field quality with pole shims in a dipole magnet is
shown in Fig. 8.3.
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Table 8.2 Basic magnets: approximate pole shape, transfer function and inductance

Magnet type Descriptions Pole shape Transfer function Inductance

C-type dipole
w: pole width
g: distance between
poles
NI: total ampereturns
l: yoke longitudinal
length

y = ± g/2 B = ημ0NI/g L = ημ0N2A/g
A~(w + 1.2g)
(l + g)

H-type dipole
w: pole width
g: distance between
poles
NI: total amperturns
l: yoke longitudinal
length

y = ± g/2 B = ημ0NI/g L = ημ0N2A/g
A~(w + 1.2g)
(l + g)

Window-frame
d: aperture between
coils
t: coil width
g: physical vertical
aperture
NI: total ampereturns
l: yoke longitudinal
length

y = ± g/2 B = ημ0NI/g L = ημ0N2A/g
A~(d + 2/3t)
(l + g)

Window-frame
d: aperture between
coils
t: coil width
g: physical vertical
aperture
NI: ampereturns on
one leg
l: yoke longitudinal
length

y = ± g/2 B = ημ0NI/g L = η2μ0N2

A/gA~(d+ 2/3t)
(l + g)

Quadrupole
R: radius at pole tip
d: distance
centre-inner coil
NI: ampere-turns per
pole
l: yoke longitudinal
length

2xy = R2 |B|(r) = Gr
G= η2μ0NI/R2

L = 8πμ0N
2

lm
√
d/R

lm = (l+ 2/3R)

Sextupole
R: radius at pole tip
d: distance
centre-inner coil
NI: ampere-turns per
pole
l: yoke longitudinal
length

3x2y− y3 = R3 |B|(r) = Sr2

S = B”/2
S= η3μ0NI/R3

L = 12πμ0N
2

lm
√
d/R

lm = (l+ 1/2R)
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magnetic field amplitude on the 
horizontal axis: no shims

magnetic field amplitude on the 
horizontal axis: with shims

Fig. 8.3 C-dipole with pole shims. The shims extend the good field region

8.1.2.2 Coils

The coils generate the magneto-motive force necessary to produce the required
magnetic field induction in the magnet physical aperture. Coils produce losses due
to their electrical resistance.

The power dissipated in a conductor of electrical resistivity ρ, volumeV, effective
current density Jrms, is:

P = ρV J 2
rms = ρ

l

S
I 2

rms = RI 2
rms, (8.9)

where S is the conductor section, l its length, Irms = SJrms the effective current, R the
electrical resistance. In case the current is not uniformly distributed in the conductor
section, in particular for fast transients where the penetration depth is smaller than
the conductor size, an effective section has to be considered.

We recall the resistivity of copper and aluminium as a function of the tempera-
ture T:

ρCu [Ωm] = 1.72 (1 + 0.0039 (T − 20)) · 10−8,

ρAl [Ωm] = 2.65 (1 + 0.0040 (T − 20)) · 10−8. (8.10)

The effective current density Jrms determines coil size, power consumption
and cooling: the designer shall consider the right balance between requirements,
technological limits, investment and operation cost.

Typical values of Jrms are around 5 A/mm2 for water cooled magnets, and around
1 A/mm2 for air cooled magnets. Air cooled coils with favourable configurations
(large heat exchange surface with respect to their section) can be operated at higher
current densities.
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Introducing lav as the average coil turn length, it is easy to show that the power
dissipated in a magnet is:

Pdipole = ρ
Brmsg
ημ0

Jrmslav;Pquadrupole = 2ρ GrmsR
2

ημ0
Jrmslav;Psextupole = ρ

B"rmsR
3

ημ0
Jrmslav.

(8.11)

In case of water-cooled magnets, heat is removed by water circulating in the coil
(hollow) conductors.

The choice of cooling parameters and number of circuits is based on a few main
principles: set the water flow corresponding to the allowed temperature drop for a
given power to be removed, having a moderate turbulent flow to provide an efficient
cooling, keeping the water velocity within reasonable limits to avoid erosion-
corrosion and impingement of the cooling pipes and of the junctions, keeping the
pressure drop across the circuit within reasonable limits (typically within 10–15
bars). Properties of water cooling circuits are provided in Table 8.3

Finally, we remark that coils are submitted to forces: their own weight and
the electromagnetic forces produced by the interaction between magnetic field and
current.

Table 8.3 Criteria and formula for the determination of water cooling circuits for circular
conduits

Parameter Fundament Formula (in practical units)

Cooling flow 1 kcal = 4186 J increases the temperature of
1 kg of water by 1 ◦C. Q is the cooling flow,
P the dissipated power, �T the allowed
temperature drop increase

Q
[

liter
min

]
∼ 14.3P [kW]

ΔT [K]

Water velocity Q = vA, where Q is the flow, v the water
velocity and A the section of the pipe. In this
and the next ones d is the diameter of the
conduit.

v
[m

s

] = 1000
15πd2 ·Q

[
l

min

]

Turbolent flow Reynolds number > 2000, where Re = dv/ν,
v the fluid velocity and ν the kinematic
viscosity

Re ∼ 1400 · d [mm] ·
v
[m

s

]
> 2000

valid for water at ~ 40 ◦C
Water velocity
limit

Limited by erosion-corrosion and
impingement that might start already at
v > 1.5 m/s in copper pipes, tee pieces and
elbow fittings.
Velocities up to 10 m/s can still be
considered in particular cases, depending on
water characteristics, temperature, sizing and
layout of pipes and junctions

v < 3 m
s

Pressure drop The pressure drop �P of a smooth pipe with
length L can be computed as a function of
the cooling flow Q from the Blasius law.

ΔP [bar] ∼
60 · L [m] · Q

[
liter
min

]1.75

d[mm]4.75
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The interaction between a moving charge and the magnetic field is described by
the so called Lorentz force, which in the macroscopic form for a wire carrying a
current I is referred as Laplace force:

F = I l × B, (8.12)

where the length l is oriented towards the direction of the current flow. For
example 1.5 m of straight coil immerged in an average magnetic field component
perpendicular to the coil of 0.5 T, carrying a total current of 60,000 ampere-turns, is
subjected to a force of F = 60,000 · 1.5 · 0.5 = 45 kN.

8.1.2.3 Yoke

The magnet yoke has the function of directing and shaping the magnetic field
generated by the coils. While magnets operated in persistent mode can be built
either with solid or with laminated steel, the yokes of cycled magnets are composed
of laminations electrically insulated from each other to reduce the eddy currents
generated by the change of magnetic field with time. This electrical insulation can
be inorganic (oxidation, phosphating, Carlite) or organic (epoxy). Epoxy coating in
a B-stage form can be used to glue laminations together, a technique widely used for
small to medium magnets, possibly reinforced by welded bars on the yoke periphery.

The magnetic properties of steel depend on the chemical composition and
on the temperature/mechanical history of the material. Important parameters for
accelerator magnets are the coercive field Hc and the saturation induction. The
coercive field has an impact on the reproducibility of the magnetic field at
low currents. A typical requirement for the steel used in accelerator magnets is
Hc < 80 A/m. Tighter constraints (Hc < 20 A/m) apply when the operation covers
a large field factor starting from low field inductions (few hundred gauss). The
saturation induction is highest with low carbon steel (carbon content in the final
state <0.006%). It is common to specify points along the normal magnetization
curve, with the condition that the magnetic induction B shall exceed specification
values at given field levels H.

To increase its electrical resistivity and at the same time narrow the hysteresis
cycle, laminated steel used in cycled magnets usually contains 2 . . . 3% of silicon.

With 3% of Si the electrical resistivity increases from ρ = 2 · 10−7 �m to
ρ = 5 · 10−7 �m.

The work performed during the hysteresis cycle and the eddy currents produce
losses in cycled magnets. An estimate of hysteresis losses can be obtained by the
Steinmetz law:

P

[
W

kg

]
= η · f · B1.6, (8.13)
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where f is the frequency and η = 0.01 . . .0.1, about 0.02 for silicon steel, and of
eddy current losses, for silicon steel, by:

P

[
W

kg

]
= 0.05 ·

(
dlam · f

10
· B
)2

, (8.14)

where dlam is the lamination thickness in mm.

8.1.2.4 Costs

We can distinguish

• fixed costs: design, coil tooling (winding, molding), yoke tooling (punching,
stacking), quality assurance (including tools for specific measurements/checks,
as magnetic measurements if requested);

• unitary costs: main materials (conductor, insulation, steel), manufacture of
parts (coil, laminations, yoke), final assembly, ancillaries (connectors, interlocks,
hoses), tests (mechanical, electrical, magnetic);

• other systems: cooling, power converters, controls and interlocks, electrical
distribution. These parameters have to be taken into account at the magnet design
phase: for example for cycled magnets a low inductance can minimize the voltage
levels, however the corresponding higher current would require larger supply
cables from the power converters to the magnets.

• running costs: electric power, maintenance over the life of the project.

A compromise between capital and operational cost is typically found with
magnets operating with:

• current densities of about 5 A/mm2: higher current densities correspond to
smaller coils and consequently smaller and cheaper yokes, lower current densities
correspond to lower power consumption (less electricity, smaller cooling plant)
but to larger magnets;

• field induction levels in the region between 1.2 T and 1.7 T: a given required
integrated strength can be provided by short magnet with high field induction,
long magnets with low field induction or a compromise between the two. Since,
below saturation, the pole width size depends essentially on the good field region
size and not on the field induction level, the highest possible field and the
corresponding lowest magnetic length represent in most cases a cost-optimized
yoke design.

8.1.2.5 Undulators, Wigglers, Permanent Magnets

Wigglers and undulators produce a periodic field variation along the beam trajectory
causing relativistic charged particles to wiggle emitting electromagnetic radiation
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with special properties, in particular with a small angle α = 1/γ where γ is the
relativistic factor.

To a first approximation, these magnets produce a series of dipole fields with
alternated directions, of period λ. This is typically obtained with conventional
electromagnets when the period is relatively large allowing sufficient space for the
coils, and with permanent magnets for shorter periods. Superconducting windings,
in general cryo-cooled, are used in case the required field exceeds 2 T and/or for
small periods where a high current density is needed.

The difference between wigglers and undulators is in the nature of the radiation
produced by the particle. When the amplitude of the beam excursion expressed
in meters is small with respect to the angle of the synchrotron radiation emission
expressed in radians, the device is called undulator: the emitted radiation is
concentrated in a small opening angle and the radiation produced by the different
periods interferes coherently producing sharp peaks at harmonics of a fundamental
wavelength. Wigglers on the contrary produce particle displacements of larger
amplitude: the emitted radiation is similar to the continuous spectrum generated
by bending magnets, with in addition the effect coming from the incoherent
superposition of radiation from individual poles.

It is useful to introduce the deflection parameter K = δ0/α as the ratio between the
maximum trajectory deflection δ0 (in meters) and the emission angle α (in radians).
For electrons:

K = eB0λ

2πmc
= 93.4 · B0 · λ. (8.15)

In case K < 1 the device is an undulator, in case K >> 1 the device is a wiggler.
As anticipated, these magnets are often built with the use of permanent magnets.
Two types of high performance permanent magnet materials, both composed of

rare earth elements, are available: Neodymium-Iron-Boron (NdFeB) and Samarium-
Cobalt (in the form SmCo5 or Sm2Co17, also referred as SmCo 1:5 and SmCo 2:17).

NdFeB materials show the highest remanent induction, up to Br~1.4T, and the
highest energy product up to BHmax~50 MGOe, they are ductile, but they require
coating to avoid corrosion and have a relatively low stability versus temperature.
Their relative change of remanent field induction with temperature (temperature
coefficient) is�Br/Br~− 0.11% per ◦C: field induction decreases when temperature
increases.

SmCo magnets show a lower remanent induction, up to Br~1.1 T, are brittle, but
they are corrosion and radiation resistant. Furthermore, their temperature coefficient
is about −0.03%, lower than that of NdFeB.

The use of permanent magnets in particle accelerators is not limited to wigglers
and undulators. For example, the 3.3 km long recycler ring at FNAL, commissioned
in May 1999, stands as a pioneer, as it is solely composed of permanent magnets
dipoles and quadrupoles [2]. More recently, permanent magnets are used in compact
quadrupoles for LINAC4 at CERN [3], in the main bending magnets of the ESRF-
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EBS light source [4], and even as spectrometers as for example in the nTOF
experiment at CERN [5].

8.1.2.6 Solenoids

Solenoids are made by electrical conductors wound in the form of a helix. The
magnetic field induction inside an ideal solenoid is parallel to the longitudinal axis
and its intensity is B = μ0NI/l where NI is the total number of ampere-turns and l
the solenoid length. By introducing the coil thickness t, the formula can be written
as B = μ0Jt, where J is the current density.

Solenoids can be built as ironless magnets or can have an external ferromagnetic
yoke, used for shielding and to increase the magnetic field uniformity particularly
at the solenoid extremities.

The design and construction of solenoids, thanks to their use in many electrical
and electro-mechanical devices, is well assessed since more than a century. A
comprehensive treatment of solenoid electromagnets was compiled by C. Underhill
already in 1910. The treatment issued by Montgomery in 1969 is still a reference [6]
nowadays, in spite of new materials now available in particular for wire dielectric
insulation and for the containment of stresses.

In solenoids the electromagnetic forces produced by the interaction between
the magnetic field and the currents in the coils can reach extremely high values
capable of breaking the wires or even, especially for pulsed magnets, leading to an
explosion of the device. Their design should consider conductor characteristics and
reinforcements, winding tension during manufacture and the containment structure.

8.1.3 Superconducting Magnets

Superconducting magnet technology has been instrumental to the realization of the
largest particle accelerators on Earth. Table 8.4 reports the main characteristics of
the four large scale hadron accelerators built and operated since the beginning of
superconducting magnet technology for accelerators. In parallel, superconductivity
has fostered the construction of high field and large volume detector magnets that
have become commonplace in high energy physics. The first such detector magnet
was installed at Argonne National Laboratory, and operated in the mid 1960s as an
instrument in the Zero Gradient Synchrotron (ZGS) [11]. Atlas [12] and CMS [13]
at the LHC are the latest and most impressive example of superconducting detector
magnets.

The prime difference between superconducting and normal conducting magnets
is in the way the magnetic field induction is generated. While in normal conducting
magnets the field is dominated by the magnetization of the iron yoke, in their
superconducting “siblings” the field is generated by a suitable distribution of
currents, properly arranged around the beam aperture. This is possible because a
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Table 8.4 Characteristics of the four major superconducting hadron accelerators

Tevatron [7] HERA [8] RHIC [9] LHC [10]

Maximum beam energy [GeV] 980 820a 250b100/nc 7000
Injection energy [GeV] 151 45 12 450
Ring length [km] 6.3 6.3 3.8 26.7
Dipole field induction [T] 4.3 4.7 3.5 8.3
Aperture [mm] 76 75 80 56
Configuration [mm] Single bore Single bore Single boreTwo rings Twin bore
Operating temperature [K] 4.2 4.5 4.3–4.6 1.9
First beam 7–1983 4–1991 6–2000 9–2008

aEnergy of the proton beam, colliding with the 27.5 GeV electron beam
bParticle energy for proton beams
cParticle energy per nucleon, for ion beams (Au)

superconducting material can carry large currents with no loss, and ampere-turns
become cheap, thus opening the way to magnetic fields much above saturation
of ferromagnetic materials. Very schematically, superconducting magnets for large
scale accelerators consist of a coil wound with highly compacted cables, tightly
packed around the bore that delimits a vacuum chamber hosting the beam. The
coil shape is optimized to maximize the bore field and achieve acceptable field
quality, as described later. The large forces that are experienced by the coil (several
tens to hundreds of tons/m) cannot be reacted on the winding alone, that has
the characteristic shape of a slender racetrack. The force is hence transferred to
a structure that guarantees mechanical stability and rigidity. The iron yoke that
surrounds this assembly closes the magnetic circuit, yields to a marginal gain of
magnetic field in the bore, and shields the surrounding from stray fields. Finally, the
magnet is enclosed in a cryostat that provides the thermal barrier features necessary
to cool the magnet to the operating temperature, which is in the cryogenic range
(1.9 to 4.5 K for accelerators built to date). Various implementations of this basic
concept can be seen in Fig. 8.4 that shows the cross sections of the superconducting
dipoles of the four large superconducting hadron accelerators listed in Table 8.4.

Tevatron
Bore: 76 mm
Field: 4.3 T

HERA
Bore: 75 mm
Field: 4.7 T

RHIC
Bore: 80 mm
Field: 3.5 T

LHC
Bore: 56 mm
Field: 8.3 T

Fig. 8.4 Cross section (to scale) of the dipoles of the four major superconducting hadron
accelerators built to date
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Superconducting magnet technology relies heavily on the ability to produce
technical superconducting materials in the form of high current cables. Beyond
considerations on the magnetic field that are specific to the arrangements described
above, the design of superconducting magnets must take into account issues related
to the superconductor, such as stability, quench protection, magnetization and AC
loss. The magnet powering requires warm-to-cold transitions capable to transport
the large currents in the range of few to few tens of kA with minimal thermal
loss. The construction of the magnet, and in particular the insulation, coil winding,
assembly in the mechanical structure and yoke, and the placement in a cryostat
necessary for thermal management, all have aspects specific to superconducting
magnet technology. Finally, cooling by helium is a science by itself. In the
following sections we will discuss some of the main principles, without entering
into detail, and provide extensive references on the above matters. The bibliography
in the references directs the reader to excellent books on superconducting magnet
engineering and science, especially [14–18].

8.1.3.1 Superconducting Materials

A superconductor is such only if it operates below the critical surface, a com-
bination of temperature T, magnetic field induction B and current density J that
delimits the boundary between the superconducting and normal-conducting phases.
This surface is best expressed using a function JC(B,T), the critical current density
which is the main engineering characteristic of a superconductor. A good example
is the critical current density for the highly optimised Nb-47%Ti alloy used for the
production of the LHC magnets, shown in Fig. 8.5. When cooled to 4.2 K, this
superconductor can carry a current density up to 3000 A/mm2 in a background field
of 5 T. Indeed, this is the order of magnitude of current density that is of interest to
make the design of a superconducting accelerator competitive. As we see from Fig.
8.5, higher fields or higher temperatures result in a reduction of the critical current
density, while a decrease of any yields an increase in JC.

Table 8.5 reports a summary of the critical temperature TC and critical field BC

for the technical superconducting materials that have found practical applications
over the past 50 years, as well as materials that are expected to come into use
in a few years. The materials are generally classified as low-temperature super-
conductors (LTS) and high-temperature superconductors (HTS). This classification
was originally based on the temperature of the superconducting transition TC, but
now it refers rather to the different mechanisms that explain the existence of a
superconducting phase. According to this classification, the alloy of Niobium and
Titanium (Nb-Ti), the inter-metallic compounds of Niobium and Tin or Aluminium
(Nb3Sn, Nb3Al) and of Magnesium and Boron (MgB2) are LTS materials. On the
other hand, the Perovskites formed by Bismuth, Strontium, Calcium and Copper
oxide (conventionally referred to as BSCCO) and a Rare Earth (e.g. Yttrium),
Barium and Copper oxide (referred to as REBCO) are HTS materials. The details
of the material composition and production route influence the values of TC and
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Fig. 8.5 Critical current
density of Nb-47%Ti
representative of the LHC
production. The
superconductor carries
3000 A/mm2 at a temperature
of 4.2 K and in a background
field of 5 T (marked point).
The LHC dipoles operate at
1.9 K, taking advantage of the
increase of JC at lower
temperature to reach a
nominal field of 8.33 T

Table 8.5 Material reference and typical values of critical parameters for technical superconduc-
tors

LTS HTS
Material Nb-Ti Nb3Sn Nb3Al MgB2 YBCO BSCCO

Discovery 1961 [19] 1954 [20] 1958 [21] 2001 [22] 1987 [23] 1988 [24]
TC [K] 9.2 18.2 19.1 39 ≈93 95a, 108b

BC [T] 14.5 ≈30 33 36 . . . 74 120c, 250d ≈200
aBSCCO-2212
bBSCCO-2223
cB parallel to c-axis
dB parallel to ab-axes

BC. For this reason the values quoted in the table should be regarded as indicative,
especially for developmental materials such as MgB2, BSCCO and REBCO.

Note for completeness that many other elements and compounds become super-
conducting when cooled to sufficiently low temperatures and, in some cases, when
submitted to large pressure. The family of superconductors is hence still developing.
The recent discovery of a new class of HTS, the iron based superconductors [25]
(also named IBS, FeSC, or ferropnictides), bears the promise of understanding the
theory of high-temperature superconductivity, as well as the potential development
of a new class of technical materials for high field applications. At the time of
writing, the search for the highest possible TC has reached the maximum verified
value of 203 K in a hydrogen sulphide under a pressure of the order of 155 GPa [26].
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Though exciting and promising, these recent developments are still far from
being ripe for applications. In the following sections we will focus on the main
characteristics of the technical superconductors of Table 8.5, which are at present
the only ones available in sufficient quantity and quality for magnet applications.

8.1.3.1.1 Nb-Ti

The alloy of Nb-47%Ti [19] is undoubtedly the most successful practical super-
conductor, and has been used in all superconducting particle accelerators built to
date. Nb-Ti is a ductile and tough material, easily available in long lengths (a few
km piece length) in the form of multi-filamentary wires where the superconductor
is dispersed in a copper matrix of high purity and low electrical resistivity. Nb-
Ti at 4.2 K has a critical current density of about 1500 A/mm2 at 7.5 T. Cooling
it to 1.9 K shifts this point up to 10.5 T. This field range represents the upper
(quench) limit for the use of Nb-Ti in accelerator magnets. Standard industrial
production yields filament size of a few μm (5 to 10), which is beneficial to
reduce the field perturbations induced by persistent currents (see later). Smaller
filaments (1 to 3 μm) have been produced to reduce magnetization and losses, but
this R&D products are not industrial standards. Homogeneity of the production is
at the level of few % for key parameters such as critical current, magnetization,
wire composition and geometry, which demonstrates the maturity of the technology.
Figure 8.6 shows multi-filamentary Nb-Ti strands used in the LHC.

8.1.3.1.2 Nb3Sn

The inter-metallic compound Nb3Sn [20] is the second LTS material that founds
its way from material research to large-scale applications. Nb3Sn is a brittle and
fragile compound, which is why after an initial success in high field solenoids of
the 1960’s, attaining record fields of 10 T, it was quickly replaced by the ductile
Nb-Ti for more modest field values. All manufacturing routes involve assembly of

Fig. 8.6 One of the
multi-filamentary Nb-Ti
strands used in the LHC. The
strand has a diameter of
approximately 1 mm, and
each Nb-Ti filament (shown
in the detail micrograph) has
a diameter of 7 μm. The
matrix is pure copper
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the precursor elements Nb and Sn into large size billets that are extruded and/or
drawn to the final diameter wire. The Nb3Sn is then formed by a chemical reaction
induced by a heat treatment to temperatures in the range of 650 ◦C for durations of
few tens to few hundreds hours. Various manufacturing routes have been established
industrially, resulting in wires with different properties of critical current density
and filament size. Most common fabrication methods are based on the so-called
“bronze-route”, or “internal-tin”, which distinguish themselves by the way that the
relatively mobile Sn is made available for reaction with Nb. The interest in Nb3Sn
comes from the improved TC and BC with respect to Nb-Ti, resulting in record
critical current density exceeding 1500 A/mm2 at 15 T and 4.2 K. This potential is
commonly exploited in commercial solenoids built for NMR spectroscopy or other
laboratory applications, but to date found no accelerator applications due to the
technical difficulties associated with the heat treatment and the handling of a fragile
magnet coil. In addition, high JC Nb3Sn has presently larger filament size than Nb-
Ti, in the range of 50 to 100 μm. This material is nonetheless very relevant to extend
the reach of present accelerators such as the LHC beyond the limit of Nb-Ti (e.g.
the High-Luminosity upgrade of the LHC and the R&D on magnet technology for a
Future Circular Collider), or to build compact accelerators that could be of interest
for industrial and medical applications (e.g. high-field compact cyclotrons for proton
therapy).

8.1.3.1.3 MgB2

The most recent of the technical superconductors [22], the inter-metallic compound
MgB2 is a relatively inexpensive material obtained from readily available precursor
elements. Superconducting MgB2 wire can be produced through the powder-in-tube
(PIT) process. Variants of this process exist, depending on whether the MgB2 is
formed at the end of the wire processing from Mg and B precursors (in-situ variant),
or rather powders of pre-reacted MgB2 are sintered in the finished wire (ex-situ
variant). In both cases, a heat treatment is required in the range of 600 ◦C to 1000 ◦C.
As for Nb3Sn, the wires and tapes of MgB2 are fragile and require careful handling
to limit deformation. In spite of a high critical field, which in thin films has reached
values above 70 T, the bulk material becomes irreversible at much smaller applied
fields. MgB2 is hence of interest in the range of low to medium field applications
(presently up to a maximum 5 T range), but for operating temperatures up to 20 K,
i.e. well above boiling helium conditions. The main technical realizations presently
based on MgB2 are open MRI systems at modest magnetic field (0.5 T), and cables
for power transmission planned for the High Luminosity upgrade of the LHC (the
so called SC links) or electric energy distribution. This material is to date still in the
developmental state, with specific interest in enlarging the field range for magnet
applications. While the main motivation remains helium-free MRI magnets, MgB2
could be an option for accelerator magnets subjected to radiation loads that require
high operating temperature and energy margin (see later).



356 F. Bordry et al.

8.1.3.1.4 Cuprate Superconductors

These are the two HTS materials that seem to bear the largest potential for future
use in accelerator magnets, mainly because of the high critical field at low operating
temperature that makes them the ideal candidates to break the 20 T barrier. Both
BSCCO and REBCO are ceramic compounds obtained respectively by chemical
synthesis of B, Sr, Ca, Cu and O, or Y, Ba, Cu and O. As for all other HTS
materials, their production is a complex process that may involve assisted crystal
growth, at high temperature, and under very well controlled chemical conditions.
BSCCO and REBCO still have unresolved engineering issues, they are fragile, and
have comparatively high material and production costs. One of the main limitations
to critical current in HTS materials comes from the effect of grain boundaries.
Mis-aligned grain boundaries are a barrier to the free flow of the super-currents.
In principle, this means that HTS conductors would require solving the tantalizing
task of growing single crystals of km length. Different ways have been found to
deal with this limitation in BSCCO and REBCO. BSCCO is manufactured using a
Powder in Tube (PIT) technique, filling Ag tubes with a precursor BSCCO oxide
powder. Two different techniques are used to produce the 2212 and 2223 variants
of the BSCCO compound. In the case of BSCCO-2212, the tubes are stacked and
drawn to wires that can be wound, cable and finally reacted, much like Nb3Sn, albeit
at higher temperature (900 ◦C) and under controlled oxygen atmosphere. BSCCO-
2212 undergoes a melt process, critical to produce the connected grain structure
required for high critical current. For BSCCO-2223 the common form is tape. An
initial liquid-mediated reaction of the precursor is used to form the 2223 compound.
In this case the required grain alignment cannot be obtained upon heat treatment,
but can be induced by mechanical deformation. This is why reacted BSCCO-2223
is mechanically deformed to the final tape dimension, and undergoes a final sintering
heat treatment. REBCO is also manufactured in the form of tape. A robust substrate
such as stainless steel or hastelloy, is polished and prepared with a series of buffer
layers that imprint a crystal texture to a thin layer of REBCO superconductor. This is
the crucial step to induce aligned crystal growth of the superconducting phase. The
superconductor growth can be achieved by various chemical or physical deposition
techniques. The tape is then capped with a sealing Ag layer, finally adding Cu as
a stabilizer. When cooled down to 4.2 K, REBCO and BSCCO attain exceptional
current densities at high-field, surpassing the performance of LTS materials at fields
of 10 to 15 T. In spite of the early phase of development, the HTS BSCCO-2223
already found a large-scale application in the current leads of the LHC, where the
gain in operating efficiency and margin has offset the additional investment.

8.1.3.2 Superconducting Cables

Wires and tapes manufactured with the LTS and HTS materials listed above carry
currents in the range of few hundreds of A, and are appropriate to wind small
magnets, where the magnet inductance and stored energy are not an issue (see later
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Fig. 8.7 The Rutherford cable for the inner layer of the LHC dipoles, showing the Nb-Ti filaments
in a few etched strands. The schematic in the inset shows the definition of the quantities reported
in Table 8.6

discussion on protection). On the other hand, the large-scale dipole and quadrupole
magnets of an accelerator are connected in km-long strings, and stored energy that
can reach hundreds of MJ. To decrease their inductance and limit the operating
voltage, it is mandatory to use cables made of several wires in parallel, able to
carry much larger currents, typically in the range of 10 kA. An additional benefit
of a cable is to provide parallel paths for the current in case of local wire defects.
Such cables must insure good current distribution through transposition, combined
with precisely controlled dimensions necessary to obtain coils of accurate geometry,
as well as good winding characteristics. These properties are the characteristic of
the flat cable invented at the Rutherford Laboratory in England [27]. A typical
Rutherford cable, shown in Fig. 8.7, is composed of fully transposed twisted wires
(Nb-Ti in Fig. 8.7). The transposition length, also referred to as twist pitch, is usually
kept short, a few cm. To improve winding properties the cable is slightly keystoned,
i.e. the cable width is not constant from side to side. The angle formed by the planes
of the cable upper and lower faces is called the keystone angle, usually in the range
of 1 to 2 degrees. A summary of cable characteristics for the major superconducting
accelerator projects is reported in Table 8.6.

The concept of Rutherford cables can be easily applied to LTS materials that
come in the form of round wires and has been recently extended to round BSCCO-
2212 HTS wires. The rectangular geometry of the cable provides high strand
packing and a flexible cable for winding magnet coils of various geometries. The
cabling process is invariably associated with large deformations at the edges of
the cable, where the wires are plastically deformed. This is necessary to achieve
mechanical stability of the cable, but can lead to a degradation of the critical
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Table 8.6 Main characteristics of the superconducting cables used to wind the dipoles for the four
superconducting colliders

Strand diameter Thickness Width Twist pitch Keystone angle

Name [mm] [mm] [mm] [mm] [deg]

Tevatron 0.68 1.257 7.75 66 2.06
Hera 0.90 1.471 9.97 95 2.22
RHIC 0.65 1.163 9.67 94 1.21
LHC inner 1.07 1.895 15.06 115 1.24
LHC outer 0.83 1.476 15.06 100 0.89

current of the superconductor. Optimization of this delicate balance between limited
wire deformation and desired cable compaction is done empirically, and the IC
degradation in an optimized cable is in the range of a few %.

The electro-dynamic and mechanical requirements for a cable are essentially
independent of the superconducting material, at least to first order, and apply both
to LTS and HTS. Cabling of HTS materials, however, and in particular those
only available in the form of tapes, is far by being standard practice. Several
configurations are under development, from compact stacks and Roebel bars, to
twisted assemblies of tapes, or wound tapes around cores. Indeed, the matter of
HTS cabling is an R&D that will need to be resolved before these materials can
become a viable superconductor for accelerator magnets.

8.1.3.3 Stability and Margins, Quench and Protection

We have already remarked that a superconductor is such only when it operates
below its critical surface. Once in normal conducting state, e.g. because of a sudden
temperature increase caused by internal mechanical energy release or a beam loss,
the superconductor generates resistive power, causing a thermal runaway, i.e. an
unstable behaviour. It is for this reason that the operating point of current density
Jop, field Bop and temperature Top are chosen by design well inside the allowable
envelope, i.e. with proper margins that ensure stability at the operating point. The
typical metrics used for operating margins are:

• Critical current margin i, expressed as the operating fraction of the critical current
density i= Jop/JC(Bop,Top), where the critical current is evaluated at the operating
field and temperature;

• Margin along the loadline f, expressed as the ratio of operating to critical current
f = Jop/JC(t/JC,Top) where the critical current is evaluated at the intersection
of the magnet loadline, i.e. the straight line with slope t = B/J and the critical
surface;

• Temperature margin �T, given by the difference in temperature from operating
conditions Top to current sharing conditions TCS, evaluated at the operating field
and current density �T = TCS(Jop,Bop) − Top. The current sharing temperature
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Fig. 8.8 Definition of the
operating margins discussed
in the text

is defined as the temperature at which the operating current density equals the
critical current, or Jop = JC(Bop,TCS).

The margins defined above are shown graphically in Fig. 8.8. Representative
values for the design of the large-scale Nb-Ti accelerator dipoles listed earlier are
i ≈ 0.5, f ≈ 0.8, and �T = 0.5 . . .1.5 K.

An additional quantity that measures the stability of the operating point is the
energy margin, i.e. the quantity of heat necessary to drive the superconductor
normal. The energy margin depends on the time and space structure of the heat
deposition. A lower bound of the energy margin is given by the enthalpy difference
between operating and current sharing conditions�H =H(TCS)−H(Top). A robust
magnet design is such that the energy margin is larger than the expected amplitude
of perturbation over the whole spectrum of operating conditions and characteristic
times, which is the basic idea behind all stabilization strategies adopted.

In spite of good design, an irreversible transition to the normal conducting
state is always possible, resulting in a thermal runaway process that is referred
to as a quench. Superconducting magnets in general, and more specifically the
highly compact accelerator magnets, tend to have large stored magnetic energy
density. Local dissipation of this energy has the potential to lead to material
damage and cause loss of electrical insulation. For this reason all superconducting
magnets must be protected against quench by detecting any irreversible resistive
transition (quench detection electronics) and discharging the magnet. The peak
temperature Thot reached during a quench can be estimated by equating the
Joule heat produced during the discharge to the enthalpy of the conductor, or
H(Thot)−H(Top)= ∫ ρJ2dt, where ρ is the specific resistance of the superconductor
composite in normal conducting state. We see from the above concept, borrowed
from electrical blow-fuses design, that it is always advantageous to reduce the
normal state resistance and the time of the discharge. The normal state resistance
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is decreased by backing the superconductor with a matrix of a material with good
conductivity properties (e.g. copper, aluminium or silver). The discharge can be
made faster by reducing the inductance of the magnet, which is the reason why
large scale magnets are wound using cables with large operating current in the place
of single wires. There are various possibilities to dump the magnetic energy, based
on one or more of the following standard strategies:

• Energy extraction, in which the magnetic energy is extracted from the magnet
and dissipated in an external circuit (e.g. a dump resistor or diode);

• Coupling to a secondary circuit, in which the magnet is coupled inductively to a
secondary that absorbs and dissipates a part of the magnetic energy;

• Subdivision, a partition of the magnet in sections, with each section shunted by
an alternative current path (resistance or diode) in case of quench;

• Active quench initiation, that relies most commonly on heater embedded in the
winding pack, fired at the moment a quench is detected to spread the normal zone
over the whole magnet mass and thus reduce the peak temperature. Alternative
means to actively initiate quench have been revisited, based on over-current or
fast field changes induced by capacitive discharge in the coil.

8.1.3.4 Magnetization, Coupling and AC Loss

An ideal superconductor (type-I) tends to exclude field variations from its bulk,
i.e. a perfect diamagnetic behaviour. In practice, in the superconducting materials
listed above (type-II) the magnetic field can penetrate the bulk, still resulting
in partial diamagnetism. Macroscopically seen, a field change induces shielding
currents, which, in a superconductor, do not decay. For this reason these currents
are referred to as persistent. The magnetic moment per unit volume M associated
with persistent currents is proportional to the current density JC of the shielding
currents, and the characteristic size D of the superconductor, i.e. M ≈ JCD. This
magnetic moment can attain large values, perturb the field generated by the magnet,
and lead to instabilities in case the magnetic energy inside the superconductor is
dissipated in a process referred to as flux-jump. For this reason, the superconductor
in wires and tapes is subdivided in fine filaments that have characteristic dimension
in the range of 10 to 100 μm. Persistent currents and the associated magnetization
produce a significant field perturbation in accelerator magnets, and must be subject
to optimization and tight control.

Similar to the bulk behaviour described above, field variations also induce
shielding currents between the superconducting filaments. These currents couple
the filaments electromagnetically by finding a return path crossing the wire matrix.
The amount of filament coupling depends on the resistivity of the matrix, which
has to be low for good protection, and the geometry of the current loop. In the
extreme case of wires and tapes with untwisted filaments, coupling currents could
travel along long lengths (e.g. the km length in a magnet) and find a low cross-
resistance. The net effect would be that the multi-filamentary matrix would respond
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Fig. 8.9 Magnetization loops
measured on an LHC Nb-Ti
strand for the inner layer of
the dipole magnets. The
Nb-Ti strand has filaments of
7 μm geometric diameter.
(Data by courtesy of S. Le
Naour, CERN, Geneva)

to field changes as a single bulk filament, losing the advantage of fine subdivision.
Decoupling of the filaments is achieved by shortening the current loop, twisting the
wire with typical pitch in the range of few mm. This procedure cannot be applied
in tapes that thus suffer from a higher degree of coupling. Similar reasoning applies
to the superconducting cable, which explains why the strands in the cable must be
transposed by twisting them. In addition, the cross resistance can be controlled in
cables by applying resistive coating to the strands, or inserting resistive barriers
(sheets, wraps) in the cable itself.

A typical value of magnetization due to persistent and coupling currents is shown
in Fig. 8.9 for an LHC Nb-Ti strand. The magnetic moment has a hysteresis,
and the area of the loop is proportional to the energy density dissipated during
a powering cycle. This means that in superconducting magnets a field ramp is
invariably associated with an energy loss, which is referred to as AC loss. When
compared to other heat loads on the magnet, AC losses become relevant only at high
ramp-rates, of the order of 1 T/s, which is of interest for fast cycled accelerators.

8.1.3.5 Magnetic Design of Superconducting Accelerator Magnets

Field calculations for superconducting magnets are very different from those
described earlier for iron dominated normal-conducting magnets. The task in
this case is to find the current distribution that generates the desired multipole
magnetic field. Among the many possible solutions, the cos(nθ ) and intercepting
ellipses of Beth [1] and Halbach [28] are most instructive examples and the reader
should familiarise with their theory. These ideal current distributions are, however,
not practical for winding coils with cables of the type described later. A good
approximation of a coil cross section is obtained considering sectors of current
shown in Fig. 8.10. The sectors have uniform current density J, a high degree of
symmetry, but produce only an approximate multipolar field. The configuration
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Fig. 8.10 Principle of sector coils that generate an approximate dipole field (a), and quadrupole
field (b)

depicted in Fig. 8.10a generates an approximate dipole B1, with higher order field
errors. Because of symmetry, the only field errors produced (allowed multipoles) are
normal multipoles of order (2n + 1), i.e. B3, B5, B7 . . . Similarly, the configuration
of Fig. 8.10b produces an approximate quadrupole B2 with normal higher order
multipoles of order 2(2n + 1), i.e. B6, B10, B14 . . . The strength of field and field
errors are reported in Table 8.7 that can be used as a starting point for an analytical
design of multipole coils.

Examining the equations in Table 8.7a for the field of a sector coil dipole, we see
that the strength of the field produced is directly proportional to the current density
J and the coil width (Rout-Rin). In order to keep the coil cross section as small
as practically feasible, it is always beneficial to maximise the coil current density,
compatibly with mechanical limits (stress) and quench protection (heating rate in
case of quench). A maximum current density results in the smallest possible coil,
which is associated with minimum overall magnet dimension and cost. This is the
simple and clear explanation for the push towards high current density in accelerator
magnets.

Similar considerations also hold for a quadrupole, as we see from the expression
of the field gradient in Table 8.7b. In this case, however, it is interesting to note
that while the quadrupole gradient is proportional to the current density, as for the
dipole, the dependence on the coil width is logarithmic. This limits the interest of
increasing the coil size in the case of a quadrupole, and makes the role of current
density even more prominent.

With respect to field quality, we note further that a choice of ϕ= 60◦ in the sector
dipole coil cancels the sextupole error b3. The first non-zero multipole error is then
the decapole b5. For typical coil dimensions, the b5 error is a few percent, i.e. much
larger (two orders of magnitude) than acceptable field quality specification in an
accelerator magnet. Better field quality can be obtained by segmenting the sectors
using insulating wedges, and using two (or more) nested layers. This adds degrees
of freedom in the coil geometry that can be used to improve the field homogeneity,
at the cost of an increased complexity of the winding. In Fig. 8.11 we show the
coil cross sections of the four large-scale superconducting world synchrotrons. It
is evident from this how the coils have evolved in complex structures to follow
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Table 8.7 Analytical formulae for the main field and field errors for the sector coil configurations
shown in Fig. 8.10
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Fig. 8.11 Coil cross section, to scale, for the dipole magnets of the Tevatron, HERA, RHIC and
LHC

the increased demand of field quality. Similar considerations, and optimization, are
valid in the case of a quadrupole magnet.

Considering further field quality, it is important to recall that the magnetic
moment associated with persistent and coupling currents produces field errors that
are typically in the range of 10−4 to 10−3. These field errors are not easy to predict
and control in production, can exhibit large non-linearity and time dependence, and
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Fig. 8.12 Force on a coil quadrant (see inset), at nominal operating conditions, for the dipole
magnets of the Tevatron, HERA, RHIC and LHC plotted vs. the magnetic energy

hence require due attention through direct measurement and appropriate corrections
in accelerator operation.

The forces reported in Table 8.7 are intended as resultants on a coil quadrant (for
a dipole) or octant (for a quadrupole). We see that the forces generally scale with
the square of the current density, and hence with the square of the field both in a
dipole and in a quadrupole (i.e. proportional to the magnetic pressure). The same
holds for the magnetic energy per unit length, scaling with the square of the field
in the bore. Practical values for the loads seen by the coils of accelerator dipoles
are compiled in Fig. 8.12, which reports the Lorentz forces in the plane of the coil
(referred to a coil quadrant) for the dipoles of the large scale accelerators discussed.
We clearly see in Fig. 8.12 the progression in the level of electromagnetic forces and
stored energy, from the modest field values of RHIC (3.5 T) to the state-of-the-art
of the LHC (8.3 T). Large forces and stored energy are indeed the main engineering
challenges of superconducting accelerator magnets, with increasing challenges in
the mechanics (supporting structures and internal stress) and quench protection
(quench detection and dump time) as the field is pushed to higher values.

Finally, the expressions of Table 8.7 do not take into account the presence of
magnetic iron, that surrounds the coil and produces an additional contribution to the
field and field errors. The magnitude of the iron contribution is usually small (in
the range of 10 to 20%, with the exception of super-ferric magnets, described later)
compared to the field generated by the coil current. When the iron is not saturated,
its contribution can be approximated analytically using the method of images, which
is simple in the case of a round iron cavity. A compact treatment of this method can
be found in [17]. For complex geometries, or in the presence of saturation, it is
mandatory to resort to computer codes to perform the appropriate calculations and
optimizations.
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8.1.3.6 Current Leads

The powering of superconducting magnets is done via current leads from room
temperature, where the warm power cables are connected, to the cold mass at
cryogenic temperature, where the magnets are operated. Current leads are often the
dominant source of heat leak into the cryogenic environment because of thermal
conduction under a large temperature gradient, as well as ohmic loss. The goal of
a current lead design is the minimization of these losses, aiming at the optimum
geometry which enables stable operation with a minimum heat in-leak.

Conventional current leads are made from metal, and are cooled either by
conduction or by heat exchange to the cryogen (commonly helium) boil-off.
The heat leak to cryogenic temperature for optimized conduction cooled leads
at operating current is about 47 W/kA, while leads cooled by helium boil-off
have a much more efficient value of 1.1 W/kA. These values are representative
of the minimum heat leak that can be achieved. They are independent of the
properties of the material chosen because of the proportionality relation between
electrical conductivity (which governs Joule dissipation) and thermal conductivity
(which rules heat in-leak) established by the Wiedemann-Franz law, to which
most metals and alloys obey. The geometry of the lead that corresponds to the
optimum performance (length and cross section) is however strongly dependent on
the materials chosen.

The loss of a conventional lead can be further decreased replacing the cold part
with High Temperature Superconducting (HTS) material, which is characterized
by low thermal conductivity and zero electrical resistivity. The use of HTS
leads was first pioneered on large scale at the LHC machine [29], where more
than 1000 HTS leads operate at currents ranging from 600 A to 13,000 A and
power the superconducting magnet circuits. The high temperature superconductor
incorporated in the LHC leads is the Bi-2223 tape with a gold-doped silver matrix
[30]. The HTS operates in a temperature range spanning from 50 K to 4.5 K, while a
resistive heat exchanger, cooled by helium gas, provides the link between 50 K and
the room temperature. In the LHC leads, the heat load into the helium bath is reduced
by a factor 10 with respect to conventional self-cooled leads [29]. An additional heat
load appears at intermediate temperature, which can however be removed with much
better thermodynamic efficiency. The typical gain on the overall heat balance that
can be achieved by proper use of high temperature superconductor in current leads
is then a factor of 3 with respect to the optimized values quoted earlier.

8.1.3.7 Mechanics, Insulation, Cooling and Manufacturing Aspects

The performance of a superconducting magnet is invariably determined by proper
consideration of the material physics and engineering aspects discussed earlier.
Good material and magnet design, however, are not sufficient, and success relies
heavily on a sound mechanical concept and the adapted manufacturing technology.
The main issue in the mechanics of a superconducting magnet is how to support
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the electromagnetic force in situations of both large forces and large force density,
at cryogenic conditions, maintaining the conductors in their nominal position, and
avoiding excessive stress on superconducting cables, insulating materials and the
structure itself. This simple task can be addressed using different strategies that
depend on the level of field and electromagnetic force, on space and other operation
constraints, on material selection, and, not last, on the specific choice of the magnet
designer.

A few general lessons have been learned in the past 40 years of development,
and are common practice in superconducting magnet engineering. It is important
to constrain the winding pack in all directions, with a force that is greater than
the Lorentz load, including an appropriate safety factor. This is done to reduce
the energy inputs of mechanical origins that can trigger instabilities. For simple
magnetic configurations (e.g. a solenoid) the coil itself can be the bearing structure.
In the more complex situations encountered in accelerator magnets, the winding
must always be in contact with a force-bearing surface. An initial load is applied
on this surface, sometimes just a few MPa sufficient to remove the fluff. Caution
must be used to avoid cracking or tearing at the interfaces, and in particular those
bonded or glued during an impregnation process. In some cases, it may be of
advantage to intentionally remove the bond between the windings and the surfaces
that are not supporting the Lorentz load, especially at the surfaces that tend to
separate. In this case the coil would be allowed to move as much as required, e.g.
by field quality considerations. These principles may be difficult to apply in cases
where the force distribution is complex, e.g. in high order field configurations such
as nested multipole corrector magnets of particle accelerators. These magnets are
then designed with larger operating margin to cope with the increased perturbation
energy spectrum.

Coils can be dry-wound, in which case the conductor has free surfaces and
can be permeated by the cryogen. Alternatively, they can be impregnated with a
polymer resin that fills the coil spaces and once cured provides mechanical strength
but prevents direct contact to the coolant. Common resins do not have sufficient
mechanical strength to withstand thermal and mechanical stresses, and are loaded
with fibers (e.g. glass). It is important to avoid volumes of unloaded resin, as these
tend to crack and release energy that can lead to magnet quenches. Nb-Ti based
conductors, ductile and strain tolerant, are well adapted to both techniques, while
impregnation is favoured in the case of Nb3Sn or HTS based conductors that are
strain sensitive and require stress homogenization in the winding. Coil support is
usually achieved using a stiff clamping system. For magnets working at moderate
fields (up to about 5 T) a simple structure acting on the coil (referred to as collars),
and locked by dowels or keys, may be adequate. This is the type of structure used for
the Tevatron dipole (see Fig. 8.4), in which the collared coil assembly is enclosed in
a cryostat (for thermal management) and centreed in the warm iron yoke by means
of spring-loaded bolts. Higher fields require additional force transfer structures, for
example the collared coil can be further clamped inside the magnetic yoke, thus
increasing rigidity, as in the case of the RHIC, HERA and LHC dipoles, also shown
in Fig. 8.4. In this case the collared coil assembly has a well defined outer surface
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that mates with the inner surface of the iron yoke. The iron yoke, assembled from
packs, is held by an outer shell that takes part of the mechanical load.

Force transfer from cold to warm parts is usually kept to a minimum, and possibly
reduced to the bare support of gravity loads. This is because any massive mechanical
component also acts as a thermal bridge, affecting heat loads and cooling efficiency.
Due to differential thermal contraction, any warm-to-cold transition is also subjected
to relative movements, which shall be accomodated by adjusted kinematics or
flexibility.

One of the recurrent issues in the manufacture of a superconducting magnet is
the choice of electrical insulation between coil turns and between coil and ground.
Most important is to include in the consideration of insulation all coil discontinuities
(e.g. terminations, contact surfaces, coil heaters) as well as the instrumentation. The
insulation of accelerator magnets is submitted to moderate dielectric stresses (in the
range of few hundred V to a kV), but extremely high mechanical stresses under
cryogenic temperatures (in the range of few ten to hundred MPa), and possibly
in a radiation environment. Good coil insulation must rely in materials capable
of retaining their dielectric and mechanical properties at cryogenic temperatures,
such as polyimide tapes, cryogenic-grade epoxy resins and relevant glass-fiber
composites. The dielectric strength of impregnated coils can be as good as for
resistive magnets. In the case of insulation porous to the coolant, such as obtained by
dry-winding the coil, the dielectric strength depends on the properties of the coolant
itself. Liquid helium has a high breakdown strength, about 30 kV/mm which is one
order of magnitude larger than that of dry air. Gaseous helium, on the contrary, has
a much lower breakdown voltage, typically one tenth than that of air at the same
pressure, while at sub-atmospheric pressures it decreases to a Paschen minimum
of about 150 V [31]. In this case it is important to consider all possible operating
conditions (e.g. the decrease of helium density during a magnet quench).

A further issue in the design of superconducting magnets is cooling. Any heat
load from internal or external origin (e.g. particle energy deposition, heating at
resistive splices, heat conduction and radiation to the cold mass, AC loss), of
both steady state and transient nature, must be removed to a suitable cryogenic
installation that provides the heat sink at the lowest temperature of the system.
Magnets subjected to small heat loads (in the range of few mW) can be indirectly
cooled by thermal conduction. This is the case of small-size magnets, operated
at low current, and well shielded. The recent advance in cryo-coolers has made
cryogen-free operation a convenient solution for this class of instrumentation
magnets. At the other extreme, large cold masses, and high current cables, subjected
to much larger heat load (few W to few tens of W) require the direct use of the
coolant as a thermal vector. The magnet can then be cooled by immersion in a bath of
liquid, either normal or superfluid helium, or by force-flow cooling. A further option
in case of force-flow is to either cool the magnet as a whole, or to distribute the
cooling channel within the coil using, as an example, internally cooled cables. An
important aspect of any cooling method, either direct or indirect, is the temperature
gradient that is established under the heat load between the superconductor and
the heat sink. This temperature gradient affects the temperature margin discussed
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earlier. With the exception of internally cooled cables, the temperature gradient is
directly proportional to the thermal resistance of the coil. Low thermal resistance
insulation schemes can be obtained by proper choice of insulation thickness and
overlap, as demonstrated by recent work [32] devoted to the upgrade of the
quadrupoles for the inner triplet of the LHC.

The fabrication of a superconducting magnet resorts on the standard techniques,
tools and instruments used in electrical and heavy industries, adapted to specificities
of the materials used. Particular attention is devoted to preserve the physical
properties of the conductor throughout the coil fabrication and handling, as these
can be degraded by excessive strain during the winding or by heat treatments
(e.g. curing of the resin). The case of Nb3Sn magnets fabricated by the wind-
and-react technique poses additional constraints on the structural and insulating
materials. These need to withstand the high temperature heat treatment required for
the formation of the superconducting phase (approximately 700 ◦C for a few hours
to a few days). When compared to standard electrical equipment, superconducting
coils have very tight manufacturing tolerances originating from demands of field
quality (recall that the field is dominated by the current distribution) and to avoid
movements during energization that could trigger quenches (recall the discussion
on stability). Indeed, the level of accuracy demanded is often beyond the standard
experience in electromechanical constructions. Which is why trained personnel and
field experience are often critical to the successful performance of a superconducting
magnet.

8.1.3.8 Super-Ferric Magnets

Super-ferric magnets are a special case of electromagnets, where the ferro-magnetic
yoke, producing the dominant portion of the magnetic field in the useful aperture, is
magnetized by superconducting coils. These electromagnets resemble the normal
conducting magnets described earlier, apart for their cryogenic features. The
prime interest of super-ferric magnets is to profit from the power advantage of
superconductors (no ohmic loss). Provided the design is well optimized, the cost of
cryogenic cooling is smaller than the cost of powering the resistive coils, resulting
in a net gain. Part of this optimization is the trade-off between a cold or warm
yoke, affecting the amount of required cooling power at cryogenic temperatures. In
addition, super-ferric magnets provide operational flexibility. In particular, steady
operation at nominal field is possible with no significant overhead. By contrast,
high field operation can be very power-intensive, and costly, in normal conducting
magnets. Finally, the high current density which can be achieved in superconducting
coils is more than one order of magnitude larger than in normal conducting coils.
This can bring additional benefits to the reduction of the overall magnet dimension,
also thanks to a reduced yoke reluctance.

The limitation of super-ferric magnets is similar to normal conducting electro-
magnets, namely that the field is limited by the saturation of the ferro-magnetic
material of the yoke. In fact, super-ferric magnets for accelerators, such as the
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Nuclotron [33] and FAIR [34] dipoles, achieve maximum field in the aperture of
the order of 2 T. Super-ferric correctors are a good niche application, because the
peak field at the pole tip remains modest. Recent examples of these magnets are
the super-ferric high-order correctors of the new interaction regions of the High-
Luminosity upgrade of the LHC [35].

8.2 RF Cavities

E. Jensen

The acceleration of charged particles is possible with electromagnetic fields
thanks to the Lorentz force F = q(E + v × B). Since the increase of particle energy
is given by

dW = F · v dt = q (E· v + (v × B) · v) dt,

neither the magnetic field nor the transverse components of the electric field
contribute to energy exchange with the particle. Only the longitudinal electric field
component can be used to accelerate particles to higher energies; RF cavities for
acceleration thus must provide a longitudinal electric field.

In addition to the necessity that the electric field must have a longitudinal
component, a second condition is that the net electric field (or force) integrated
through the RF cavity on the path of the particle trajectory (taking its finite speed
into account) must not vanish. For substantial acceleration, this latter condition
naturally leads to the need for a time-varying field, as can be concluded from the
following line of thought: For field quantities constant in time, it follows from
Maxwell’s equations that the electric field is the gradient of a potential; to increase
the kinetic energy of a charged particle, it will thus have to pass through a potential
difference, which for technical (and safety) reasons will be limited to a few MV at
best, which in turn will limit the possible energy gain to a few MeV just once, i.e.
without the possibility to add stages. To reach larger energy gains, time-varying
fields are necessary. RF cavities provide time-varying fields at high frequencies
(radio frequency= RF, typically ranging from a few kHz to some 10 GHz).

However, when averaging over one period of the RF, the fields at any one location
inside an RF cavity average out to zero; so if a particle travels a large distance
through the time-varying fields in an RF cavity, it may experience both accelerating
and decelerating fields, which will lead to a reduction of the net acceleration. For
this reason, RF cavities are designed to concentrate the accelerating field over a
relatively short distance (the accelerating gap). Cavities may have more than one
gap, but in this case the distance between gaps must be adjusted to the particle
velocity (see Sect. 8.2.6 below).

Since the particle beam is normally travelling in a vacuum pipe, the RF cavity
must be compatible with this requirement as well. This can be done either by using
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Fig. 8.13 Example of an
accelerating gap with glass
insulation. It is chosen for
illustration; modern
insulating gaps use opaque
ceramics typically from SiO2

an insulating, vacuum-tight tube inserted into the beam pipe at the location of the
accelerating gap; this insulating tube is often itself referred to as the gap. Gaps are
typically made of ceramic or glass (Fig. 8.13). Another possibility to make the cavity
compatible with the vacuum requirements is to use the cavity itself as a vacuum
vessel. In this case, the RF power has to be coupled into the cavity through vacuum
tight feed-through. The design of high power RF couplers is a complex task and has
almost become a discipline of its own.

Since RF electromagnetic fields radiate, RF cavities must be entirely closed
on their outside with a well-conducting shield to prevent both power loss and
electromagnetic interference. For this reason, cavities are normally fabricated from
metal. This RF shield continues around the power coupler, the feeder cable and the
RF amplifier. The beam pipe does not break this RF shield since due to its diameter
it presents a hollow waveguide well below cut-off, through which electromagnetic
field cannot propagate at the cavity operational frequency. A generic RF cavity (see
Fig. 8.14) thus forms almost naturally an enclosed volume around the accelerating
gap—the name “cavity” derives of course from this very property.

8.2.1 Parameters of a Cavity

If the metallic enclosure that forms the RF cavity were a perfect conductor and the
cavity volume would not contain any lossy material, there would exist solutions
to Maxwell’s equations with non-vanishing fields even without any excitation.
These so-called eigensolutions are also known as the cavity (oscillation) modes.
Each mode is characterized by its (eigen-)frequency and its characteristic field
distribution inside the cavity. If the cavity walls are made of a good rather than a
perfect conductor, modes still exist and are useful to characterize the cavity, but their
eigenfrequencies will become complex, describing damped oscillations, so each
mode will be characterized by its frequency and its decay rate. If the field amplitudes
of a mode decay as ∝e−αt, the stored energy decays as ∝e−2αt. The quality factor
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Fig. 8.14 A generic RF
cavity. The arrow indicates
the particle trajectory

Q is defined as

Q = ωnW

− d
dt
W

= ωn

2α
. (8.16)

Here ωn denotes the eigenfrequency and W the stored energy. The expression—
dW/dt in the denominator of Eq. (8.15) describes the power that is lost into the
cavity walls (or any other loss mechanism); it is equally the power that will have to
be fed into the cavity in order to keep the stored energy at a constant value W. It is
clear that the larger Q, the smaller will become the power necessary to compensate
for cavity losses. In other words, one can design the cavity to be operated at or near
one of its eigenfrequencies (often the lowest order mode, which is the one with the
lowest eigenfrequency) and thus make use of the high Q by using the resonance
phenomenon that will lead to large fields.

We define the “accelerating voltage” of a cavity (or more precisely of one cavity
oscillation mode) as the integrated change of the kinetic energy of a traversing
particle divided by its charge:

Vacc = 1

q

∞∫

−∞
q (E + v ×B) · ds, (8.17)
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where ds denotes integration along the particle trajectory, taking the fields at the
actual position of the particle at the time of passage. With the fields varying at a
single frequency ω and particles moving with the speed of light in the direction z,
this expression simplifies to

Vacc =
∞∫

−∞
E(z)ej

ω
c zdz. (8.18)

The underscore denotes now that we understand the field as the complex
amplitude of the field of the cavity oscillation mode, with the real fields oscillating

as Re

{
E (x, y, z) ejωt

}
in time. The exponential accounts for the movement of the

particle with speed c through the cavity while the fields continue to oscillate. It is
clear that the expression (8.17) is generally complex; the phase angle accounts for
the phase difference between the RF field and the bunches of the passing beam; the
complex amplitude is generally referred to as accelerating voltage. Since the energy
W stored in the cavity is proportional to the square of the field (and thus the square of
the accelerating voltage), it can be used to conveniently normalize the accelerating
voltage; this leads to the definition of the quantity R-upon-Q:

R

Q
= |Vacc|

2ω0W
. (8.19)

The R-upon-Q thus simply quantifies how effectively the cavity converts stored
energy into acceleration. Note that R-upon-Q is uniquely determined by the geome-
try of the cavity and not by the loss mechanism that leads to a finite Q. Multiplying
the R-upon-Q with the quality factor Q, one obtains the shunt impedance R, which
describes how effectively the cavity converts input power into acceleration voltage,
as long as beam loading can be neglected:

R =
(
R

Q

)
Q = |Vacc|2

2P
. (8.20)

Following this line of thought, the R-upon-Q may be considered a fundamental
quantity and the shunt impedance R a derived quantity, in spite of the names that
suggest otherwise. Note that there are a number of different definitions for these
quantities in the technical literature. The definition given here is often used for
synchrotrons, while in the definition used for linacs (Eq. 7.7), the factor 2 on the
right hand side of Eqs. (8.18) and (8.19) is missing (“Linac-Ohms”).

A cavity oscillation mode is conveniently described in an equivalent circuit as
depicted in Fig. 8.15; driven by a current from the power source (or by the beam),
the accelerating voltage develops across a parallel resonance circuit with resonance
frequencyω0 and quality factor Q. Losses appear in its resistive element R; the name
“shunt impedance” now becomes obvious—it is “shunting” the gap.

http://dx.doi.org/10.1007/978-3-030-34245-6_7
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Fig. 8.15 Equivalent circuit
of an RF cavity

Fig. 8.16 Resonant
behaviour of a cavity

When plotting the accelerating voltage versus frequency for different values of Q
(Fig. 8.16), the resonance phenomenon becomes apparent that allows developing
large voltages with modest powers. Consequently one trend in RF technology
development has been to optimize the Q of cavities by design. Superconducting
(SC) RF cavities are pushing this trend to the extreme; Q’s in the order of 1010 are
typical of SC cavities (Sect. 7.5.2). Also normal conducting cavities use high Q’s
to minimize the power losses; the technically obtained values depend on frequency
and size and are typically in the range of some 104.

But high Q’s also have disadvantages. As can be seen in Fig. 8.16, a high Q
leads to a very sharp resonance or a very narrow bandwidth resonator, which has
to be tuned very precisely and may become very delicate and sensitive to error
(machining tolerances, temperature, pressure, vibrations . . . ). A large stored energy
will not allow for rapid changes of the field amplitude, frequency or phase. For a
small ion synchrotron for example, one may wish to apply RF with non-sinusoidal
form and/or with rapidly varying frequency to the beam; these requirements call for
cavities which either have a large instantaneous bandwidth (i.e. a low Q) or cavities

http://dx.doi.org/10.1007/978-3-030-34245-6_7
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that can be rapidly tuned. In these cases moderate or even extremely small Q’s can
become optimum.

In addition to the fundamental mode, the field distribution of which is normally
optimized for acceleration, other modes exist in the cavity, which can (and will)
also interact with the particle beam. Even if not actively driven by an amplifier,
these so-called higher order modes (HOM’s) still present their impedance to the
beam and may lead to instabilities and consequently have to be considered in the
design. They are normally selectively coupled out and damped using external loads
(HOM damper), thus reducing their Q.

8.2.2 The RF Cavity as Part of the System

The RF cavity is only one part of an RF system for a particle accelerator; the
complete RF system typically consists of the following elements: (1) a master RF
signal generator, controlled to have the correct frequency, phase and amplitude for
acceleration, (2) the RF amplifier chain amplifies this signal to often very large
power, (3) this power is then fed through the power coupler into the RF cavity, in
which it leads to the desired large electromagnetic RF field, designed to optimally
interact with the particle beam. As explained above, the cavity often uses resonance
to build up large fields with relatively modest powers. In modern RF systems, the
behaviour of the beam is constantly monitored and a multitude of feedback and
feed-forward loops is constantly correcting the phase and amplitude of the RF; this
latter is generally referred to as (4) low-level RF system (LLRF). Ancillary systems
assure the correct tune of the resonance frequency (see below), correct vacuum and
temperature conditions and interlocks for safety and protection.

8.2.3 Ferrite Cavities

In relatively small synchrotrons for protons and heavier ions, the speed of the parti-
cles is still changing substantially during acceleration. This requires the frequency to
be swept over a large range during the acceleration cycles. For the CERN PS Booster
e.g., which accelerates protons from to 50 MeV to 1.4 GeV, the proton velocity and
consequently the revolution frequency varies by roughly a factor 3 in about 500 ms.
In order to still take advantage of a resonance phenomenon, the resonance frequency
must be varied simultaneously with the ramping of the magnetic field and the
acceleration of the particles; in the PS Booster the corresponding frequency swing
for the h= 1 system (where h denotes the harmonic number) is 0.6 MHz to 1.8 MHz,
which was implemented as a ferrite cavity system with magnetic tuning [36].

A typical ferrite cavity is a double coaxial resonator with the accelerating gap in
the middle, half of which is conceptually sketched in Fig. 8.17. The inner conductors
of the coaxial are the beam pipes—the outer conductor is the cavity housing. Ferrite
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Fig. 8.17 Schematic of a
ferrite cavity. The bias current
allows magnetization of the
ferrite rings which influences
the resonant frequency

 

Fig. 8.18 The CERN PSB
ferrite cavity with the top
cover removed

rings between the two will present their magnetic permeability to the azimuthal
RF magnetic field. A DC bias current allows controlling the magnetization of
the magnetically soft ferrite material, which effectively changes the effective RF
permeability and thus the resonance frequency of the cavity—a large bias current
will magnetize the ferrites up to their saturation, which results in a small RF
permeability and consequently a smaller inductivity in the equivalent circuit and
thus a larger resonance frequency. The bias current windings form a figure of eight
around the two separate blocks of ferrite rings, which ensures the DC circuit to be
decoupled from the RF circuit.

Figure 8.18 shows the practical implementation at the example of one of the four
CERN PS Booster cavities with the top cover removed. Air cooling ducts are visible
on the left; the power amplifier is connected on the right.
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8.2.4 Wide-Band Cavities

Instead of rapidly tuning the resonance frequency, a relatively new idea is to use a
very low Q instead, which allows to operate in a large frequency range without any
tuning at all. Cavities with this feature can for example be built using amorphous,
nanocrystalline magnetic alloys like Finemet® or Metglas®. The price to pay in
operation is a higher power necessary to obtain the same voltage, but this may be
well worth it since there is no need for a tuning circuit or a tuning power supply. This
technique has been pioneered by KEK in the nineties for the J-PARC facility [37].
An example for a wide-band cavity is that of LEIR (Low Energy Ion Ring) at CERN
[38]. LEIR accelerates Pb ions from 4.2 to 72 MeV/n—the corresponding revolution
frequency varies from 360 kHz to 1.42 MHz (2 octaves). The RF system is designed
to have an instantaneous bandwidth of almost 4 octaves (350 kHz to 5 MHz),
which allows operation with Pb ions at harmonics 1 and 2 simultaneously with
the necessary large frequency swing and still could allow acceleration of other ion
species if required. Due to the extremely low Q, the relatively modest accelerating
voltage of 2 kV required a 60 kW amplifier for each of the two LEIR systems.

Figure 8.19 shows the longitudinal section of a LEIR cavity with 3 Finemet®

cores on either side of the central ceramic gap. Figure 8.20 shows the large
instantaneous bandwidth in excess of a decade measured for the complete system
(blue curve). Comparison with Fig. 8.16 above indicates an effective Q in the order
of 0.5.

Fig. 8.19 The LEIR
wide-band cavity. 3
water-cooled Finemet® cores
are placed symmetrically on
each side of the central gap
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Fig. 8.20 The LEIR cavity
gap impedance (blue curve).
In the frequency range from
350 kHz to 5 MHz it varies
from 275 � to 560 �

8.2.5 Single-Gap Vacuum Cavities

Once the particles are travelling close enough to the speed of light, their acceleration
will not significantly change their speed anymore; electrons have reached 99.9%
of the speed of light with a kinetic energy of 11 MeV, protons with 20 GeV—at
larger energies their speed and thus the frequency varies less than 1%�, At larger
energies, the operation frequency lies inside the natural bandwidth of the cavity,
which makes rapid tuning of the resonance frequency unnecessary. In this case,
vacuum cavities can be used, which do not require a ceramic gap and thus can
potentially reach much larger accelerating voltages. Fixed frequency cavities are
used in the CERN PS to form the bunch pattern for the LHC, which requires very
short bunches (<4 ns) spaced at integer multiples of 25 ns. This bunching process
requires not only relatively large RF voltages (hundreds of kV) at both 40 MHz and
80 MHz, but also fast switching of these voltages (20 μs).

As example of a single-gap fixed frequency cavity, a longitudinal section of the
CERN PS 80 MHz cavity is sketched in Fig. 8.21. The gap on the left can be opened
and closed by a pneumatically operated mechanical short-circuit, which allows to
make the cavity “invisible” to the beam. Piston tuners entering from the left allow
to set the fundamental mode resonance frequency to the operation frequency. The
cavity is fabricated from stainless steel, galvanically copper plated on the inside,
leading to a Q of 22,600. The R/Q of this cavity is 56 �. Figure 8.22 shows the
cavity in the RF power test-stand. The final amplifier (visible in the foreground) is
strongly coupled to the cavity, which allows the rapid filling of the cavity [39].

It is also part of a fast feed-back loop, which allows making the cavity almost
invisible to the beam if the gap is mechanically open. This works as follows: the
voltage present in the cavity is constantly monitored by a pick-up, the signal of
which is fed into the amplifier chain with the proper phase. If the set-point value
of the accelerating voltage is zero but the beam induces a voltage in the cavity
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Fig. 8.21 CERN PS 80 MHz cavity, assembly drawing

(current source on the right in Fig. 8.15), the pick-up will detect this induced voltage
and the feedback loop creates an equal voltage with opposite phase, such that the
beam induced voltage is exactly compensated. The fast RF feedback loops in the PS
40 MHz and 80 MHz systems have a loop gain in excess of 40 dB, thus reducing
the beam induced voltage by more than a factor 100. The loop also stabilizes the
voltage precisely around any other set-point value.

8.2.6 Multi-Gap Cavities

In a normal-conducting, single-gap vacuum cavity, there exists a maximum value
for the shunt impedance that can be obtained after full optimisation of the cavity.
This value is in the order of a few M�, the exact value will depend on the frequency
range. Limited by the available RF power and the cavity, this sets a upper limit to
the accelerating voltage; for larger voltages one has to increase the number of RF
systems and the power accordingly.
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Fig. 8.22 CERN PS 80 MHz
cavity in the RF test bunker.
The final amplifier is visible
in the foreground

Fig. 8.23 Distributing a
given power P to n cavities

To introduce multi-gap cavities let us see what happens if one just increases the
number of gaps, keeping the total power constant: consider n single-gap cavities
with a shunt impedance R, as sketched in Fig. 8.23. The available power is split
in equal parts and evenly distributed to the n cavities. According to Eq. (8.19),
each cavity will produce an accelerating voltage of

√
2R (P/n), so with the correct

phasing of the RF the total voltage will be just the sum, Vacc = √
2(nR)P . If we now

consider the assembly consisting of the n original cavities and the power splitter as
a single cavity with n gaps, we notice that this new cavity has the shunt impedance
nR; this is a significant increase. Consequently by just multiplying the number of
gaps one can make much more efficient use of the available RF power to generate
very large accelerating voltages.

Instead of using n individual power couplers and a large power splitter, much
more elegant ways of distributing the available RF power to many gaps have been
invented—one can combine the individual gaps in one vacuum vessel and one can
in fact use this vacuum vessel itself as a distributed power splitter, which leads
to standing wave or travelling wave cavities. In a travelling wave structure (Sect.
7.5.1), the RF power is fed via a power coupler into one end of the cavity, flowing

http://dx.doi.org/10.1007/978-3-030-34245-6_7
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Fig. 8.24 A view inside the CERN SPS 200 MHz travelling wave cavity

(travelling) through the cavity, typically in the same direction as the beam, creating
an accelerating voltage at every gap. An output coupler at the far end of the cavity is
connected to a matched power load. By design it is assured that the phase velocity
of the travelling wave is equal to the speed of the particles, i.e. the phase advance
over a cell of length d is equal to 2πd/λ for particles travelling with the speed of
light. If this condition is satisfied, one can imagine the particles “surfing” on this
forward travelling wave.

As an example for a travelling wave structure, Fig. 8.24 shows a view inside
one of the 4 SPS 200 MHz travelling wave cavities [40] with the end covers
removed. The phase advance per cell is π /2, corresponding to a regular gap distances
of 375 mm. The presently operating 4 SPS travelling wave cavities produce an
unloaded accelerating voltage of 12 MV with a total power of about 4 MW at
200 MHz, but in the framework of the LHC injector upgrade project, the cavities will
be shortened to allow for higher beam current and their number will be increased
from 4 to 6.

Vacuum cavities can reach significantly higher voltages than cavities with a
ceramic gap, which has a maximum hold-off voltage smaller than vacuum. Multi-
gap accelerating structures, both travelling wave and standing wave, allow in
addition to effectively convert available RF power to acceleration. For these reasons,
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multi-gap vacuum cavities are used where very large accelerating gradients are
required, like in a future linear collider projects. Section 7.5 above is dedicated to
the design of high gradient accelerating cavities for linear colliders.

8.2.7 Superconducting Cavities

Superconductivity denotes the effect of vanishing electrical resistivity in some
materials at cryogenic temperatures. Superconductivity is applied in many present
day high energy accelerators in coils to create very large (DC) magnetic fields (Sect.
8.1.3). If also the RF resistance were zero, one would be able to establish RF fields
as cavity mode in a superconducting cavity without feeding any RF power, i.e. the
shunt impedance would become infinite. The RF surface resistance is not exactly
zero though, but it still can be made small enough to reach Q values in the order of
1010, which makes RF superconductivity still extremely attractive.

It should be noted that even if the power lost in a superconducting cavity is much
smaller than in normal-conducting cavities, this power has to be cooled at cryogenic
temperatures, which is much less efficient. As a rule of thumb, an AC power for the
refrigerator plant of about 1 kW is necessary to cool a lost RF power of 1 W lost at
2 K (Sect. 8.3.5).

The more serious limitation for superconducting RF cavities is however the
maximum possible accelerating field: the RF magnetic field at the cavity surface
of the accelerating mode is equal to a surface current density, which must stay
below a critical value. For niobium, the best RF superconductor known today, this
effect limits the accelerating gradient to below 50 MV/m. But already accelerating
gradients above of 5 MV/m require extraordinary care, since also other effects like
field emissions from impurities on the surface or multipactor induced quenches
have to be dealt with. In order to obtain very large accelerating fields, a very
complex technology has been developed over the last decades, primarily driven by
the TESLA collaboration (and later the ILC Global Design Effort) with the aim to
develop cavities for a linear collider. This R&D allowed pushing the practical values
for reliably obtained accelerating gradients from a few MV/m to levels close to the
above mentioned limit; the accelerating gradient considered practical for the ILC is
31.5 MV/m. Also the European XFEL, now under construction near Hamburg, uses
this technology. The developed technology includes the forming and welding of
niobium sheets, different abrasive and non-abrasive, chemical and electrochemical
cleaning processes, a special technique with ultra-pure water applied under high
pressure, and the strict application of clean-room methods.

Since Sect. 7.5.2 above is dedicated to superconducting accelerating structures
for linacs, we will here give an example of a superconducting cavity using a different
technology, which has been initially developed for LEP at CERN and is now also
used for LHC. The cavities are fabricated from sheet metal copper—a process well
understood—and eventually sputtered from the inside with a thin layer of Nb. The
advantage of this technique is that the good thermal conductivity of copper will

http://dx.doi.org/10.1007/978-3-030-34245-6_7
http://dx.doi.org/10.1007/978-3-030-34245-6_7
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Fig. 8.25 Longitudinal section of LHC 400 MHz cryostat containing 4 single-cell cavities

rapidly equalize the temperature distribution if local heating occurs caused by a
surface defect or an impurity; this retards the onset of a quench significantly and
thus reduces the sensitivity to impurities. Due to the significant cost of niobium, this
technique can also be very cost effective. The maximum accelerating fields however
are still in the order of 10 MV/m today, well below what has been obtained with
bulk Niobium cavities, which makes this technology less attractive for linacs, but
very attractive for large synchrotrons.

The LHC 400 MHz cavities [41], sketched in Fig. 8.25 in a longitudinal section,
are fabricated using this technique. One cryostat contains 4 individual cavities, each
equipped with its helium tank, tuner, HOM dampers and variable power coupler. A
total of 16 cavities (4 cryostats) are installed in LHC, 8 for each beam. They are
operated at the relatively modest accelerating gradient of 5.5 MV/m resulting in a
total accelerating voltage of 2 MV per cavity or 16 MV per beam.

8.2.8 RF Cavities for Special Applications

The use of RF cavities is not limited to particle acceleration in the direction of their
motion. Cavities with longitudinal fields are also used for bunching, de-bunching
and deceleration. Radio frequency quadrupoles (RFQ’s), for example, serve at the
same time transverse focussing, bunching and acceleration in a very effective way;
most modern ion injectors make use of RFQ’s.

Three examples for deceleration shall be mentioned here: antiprotons are decel-
erated for example in the CERN AD facility to enable studies of antiprotons at rest
or for the creation of antimatter. Decelerating cavities knows as PETS (for Power
Extraction and Transfer Structure) are used to slow down the CLIC drive beam in
order to extract its kinetic energy as high frequency electromagnetic energy (12 GHz
in the case of CLIC), which allows to use the drive beam as a high efficiency, high
power microwave source [42]. And finally in energy recovery linacs (ERLs), one
and the same cavity is used for both acceleration and deceleration to recover the
beam energy (Sect. 7.9).

http://dx.doi.org/10.1007/978-3-030-34245-6_7
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8.2.9 Deflecting Cavities: Crab Cavities

Another class of RF cavities employ the transverse, not the longitudinal component
of the force to kick particles sideways. If a beam bunched at a frequency f travels
through a deflecting cavity oscillating at a frequency f /2, every even bunch will
be kicked in one direction, every odd bunched in the other. This can be used to
separate the beam in two beams bunched at half the frequency. It can equally be
used to combine two beams, interleaving the bunches and thus creating one beam
with twice the current and bunched at double the frequency. This scheme is a basic
building block of the drive beam recombination scheme in CLIC (see Sect. 7.4.3
above) and has been thoroughly tested in the CTF3 facility.

Probably the most important application of deflecting cavities is their use as so-
called crab cavities. In a high energy collider like the LHC, very small bunches
of counter-running beams are colliding in the interaction points. The beams are
normally not colliding exactly head on, but with a small crossing angle in order to
minimize long-range beam-beam effects. Due to this non-vanishing crossing angle,
only some particles of one bunch will collide with some particles of the oncoming
bunch (see Fig. 8.26, top). If the head and the tail of the bunches are kicked sideways
in opposite directions in the plane of the collision, the bunches become tilted after
some drift—they start to move sideways like crabs. If this tilt is equal to half the
crossing angle at the interaction point, the bunches are again oriented exactly as in a
head-on collision and the geometrical loss of luminosity is compensated (Fig. 8.26,
bottom).

The plan to upgrade the LHC to reach larger luminosity contains a number of
important elements: In addition to increasing the bunch intensity by an upgrade of
the LHC injector chain, stronger final focus magnets (the inner triplet) are planned
with larger apertures. These will allow working with smaller beam sizes at collision
and larger crossing angles. In order to take full advantage of this upgrade, crab
cavities are essential [43]. An important additional feature of the operation with
crab cavities is the possibility to change the crab cavity voltage during the coast to
compensate for the loss of particles (luminosity levelling).

Fig. 8.26 With a finite
crossing angle, only part of
the colliding bunches interact
without crab crossing (top).
Crab cavities allow aligning
the bunches such as to
maximize interaction

http://dx.doi.org/10.1007/978-3-030-34245-6_7
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For the construction of crab cavities for the LHC, RF engineers were confronted
with an additional difficulty resulting from the proximity of the two beam pipes,
which in most of the machine are spaced by only 194 mm. Conventional, elliptically
shaped RF cavities have a radius of roughly half a wavelength, which in the case of
LHC is not consistent at a frequency of 400 MHz. A special straight section near
point 4 is provided for the 400 MHz accelerating cavities described in Sect. 8.2.7
above, but it is desirable that the crab cavities are located upstream and downstream
of the high luminosity collision points.

In a rigorous R&D program over recent years, a collaboration between CERN,
FNAL, JLAB, BNL, LBNL and ODU in the US, the STFC in the UK, KEK in
Japan and industry has successfully designed, prototyped, fabricated and tested crab
cavities compact enough to meet the demanding LHC constraints and specifications.
The “Double Quarter-Wave” (DQW) cavity was optimized for vertical crossing;
its inside geometry is sketched in Fig. 8.27a, indicating also the location of the
second beam pipe. The “RF Dipole” (RFD) cavity with similar topology but
different coupling for both fundamental and higher-order modes, was optimized for
horizontal crossing and is sketched in Fig. 8.27b. Both designs are needed since
the LHC high-luminosity interaction points IP1 (ATLAS) and IP5 (CMS) utilize
different crossing planes. Each cavity produces a transverse kick voltage in the order
of 4 MV; two cavities will be assembled in one cryomodule. A total of 16 cavities
(8 cryomodules) will initially be installed in the LHC, two per beam per side and
per IP.

Figure 8.27c shows a cut-open view of a 2-cavity cryomodule (illustrated by
means of the DQW cavities). The cavities are located in individual helium vessels
and equipped with tuners, power couplers and HOM couplers. The cryomodules are
equipped equally with thermal and magnetic shields. A large cryogenic line (2 K)
connected to a cryogenic service box can be seen on the left. The fundamental mode
couplers are connected to two 400 MHz waveguides on the top. The beam tube for
the second LHC beam passes through the cryomodule. The cryomodule shown was

Fig. 8.27 Conceptual cross section of the DQW crab cavity, indicating the crossing plane and the
second beam tube (a). Conceptual cross section of the RFD crab cavity indicating the crossing
plane and the HOM couplers (b). Cut-open view of the 2-cavity cryomodule equipped with DQW
cavities (c)
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built for the test of the LHC crab cavities in the SPS for full validation in 2018, but
it is conceptually compatible with the LHC requirements.

8.3 Cryogenics

Ph. Lebrun · L. Tavian

8.3.1 Introduction

Cryogenics has become a key technology for particle accelerators, primarily as
ancillary to the developing use of superconducting magnets and RF cavities [44,
45]. In this class of applications, the superconductor must operate at a fraction
of its critical temperature in order to preserve current-carrying capability at high
field (magnets) or to limit a.c. losses (RF cavities), thus imposing the use of helium
in the case of low-temperature superconductors. Additional important benefits of
operating the accelerator beam pipes at low temperature are the achievement of
high vacuum through cryo-pumping of all residual gas species except helium, and
the reduction of wall resistance which controls image-current losses and trans-
verse impedance. Following pioneering work at the TeVatron and first large-scale
applications (HERA, LEP2), accelerators at the energy frontier (RHIC, LHC) use
superconducting magnets, while high-intensity proton accelerators (SNS, ESS) and
high-energy electron linacs (European X-FEL, ILC) are based on superconducting
RF cavities, all requiring large helium cryogenic systems. A recent example of such
a system is sorely described in [46]. On a smaller scale, cryogenics is also at work
cooling compact superconducting cyclotrons for radionuclide production or particle
therapy, as well as compact synchrotron sources for X-ray lithography.

8.3.2 Cryogenic Fluids

8.3.2.1 Thermophysical Properties

The simplest way of cooling equipment with a cryogenic fluid is to make use of
its latent heat of vaporization, e.g. by immersion in a bath of boiling liquid. As
a consequence, the useful temperature range of cryogenic fluids [47–49] is that
in which there exists latent heat of vaporization, i.e. between the triple point and
the critical point, with a particular interest in the normal boiling point, i.e. the
saturation temperature at atmospheric pressure. This data are given in Table 8.8. In
the following, we will concentrate on two cryogens: helium which is the only liquid
at very low temperature and thus the coolant of low-temperature superconducting
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Table 8.8 Characteristic temperature [K] of cryogenic fluids

Cryogen Triple point Normal boiling point Critical point

Methane 90.7 111.6 190.5
Oxygen 54.4 90.2 154.6
Argon 83.8 87.3 150.9
Nitrogen 63.1 77.3 126.2
Neon 24.6 27.1 44.4
Hydrogen 13.8 20.4 33.2
Helium 2.2a 4.2 5.2

aλ point

Table 8.9 Properties of
helium and nitrogen
compared to water

Property Helium Nitrogen Water

Normal boiling point [K] 4.2 77 373
Critical temperature [K] 5.2 126 647
Critical pressure [bar] 2.3 34 221
Liquid densitya [kg/m3] 125 808 960
Liquid/vapour density ratio 7.4 175 1600
Heat of vaporizationa [kJ/kg] 20.4 199 2260
Liquid viscositya [μPl] 3.3 152 278

aAt normal boiling point

devices [50, 51], and nitrogen for its wide availability and ease of use for pre-cooling
equipment and for thermal shielding.

To develop a feeling about properties of these cryogenic fluids, it is instructive to
compare them with those of water (Table 8.9). In both cases, but particularly with
helium, applications operate much closer to the critical point, i.e. in a domain where
the difference between the liquid and vapour phases is much less marked: the ratio of
liquid to vapour densities and the latent heat associated with the change of phase are
much smaller. Due to the low values of its critical pressure and temperature, helium
can also be used as a cryogenic coolant beyond the critical point, in the supercritical
state. It is also interesting to note that, while liquid nitrogen resembles water as
concerns density and viscosity, liquid helium is much lighter and less viscous. This
latter property makes it a medium of choice for permeating small channels inside
magnet windings and thus stabilizing the superconductor.

8.3.2.2 Liquid Boil-off

The factor of ten in latent heat of vaporization between helium and nitrogen,
combined with the lower density of the former, induces a large difference in
vaporization rates under the same applied heat load (Table 8.10). This illustrates the
need for implementing much better insulation techniques in liquid helium vessels to
achieve comparable holding times. Vaporization flow measurements during steady-
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Table 8.10 Vaporization of
cryogen at normal boiling
point under 1 W applied heat
load

Cryogen [mg/s] [l/h liquid] [l/min gas NTP]

Helium 48 1.38 16.4
Nitrogen 5 0.02 0.24

state boil-off constitute a practical method for assessing the heat load of a cryostat
holding a saturated cryogen bath.

8.3.2.3 Cryogen Usage for Equipment Cooldown

For both fluids, the specific heat of the vapour over the temperature range from liquid
saturation to ambient is comparable to or larger than the latent heat of vaporization.
This provides a valuable cooling potential at intermediate temperature, which can be
used for thermal shielding or for pre-cooling of equipment from room temperature.
The heat balance equation for cooling a mass of, say iron mFe of specific heat
CFe(T) at temperature T by vaporizing a mass dm of cryogenic liquid at saturation
temperature Tv, latent heat of vaporization Lv and vapour specific heat Cp (taken as
constant), is assuming perfect heat exchange with the liquid and the vapour:

mFeCFe(T )dT = [Lv + Cp (T − Tv)
]

dm. (8.21)

Hence the specific liquid cryogen requirement for cool-down from temperature
T0:

m

mFe
=
∫ T

T0

CFe(T )dT

Lv + Cp (T − Tv)
. (8.22)

Calculated values of specific liquid cryogen requirements for iron are given in
Table 8.11, clearly demonstrating the interest of making use of the specific heat of
helium vapour, as well as that of pre-cooling equipment with liquid nitrogen.

8.3.2.4 Phase Domain

Typical operating domains with cryogenic helium and nitrogen are shown in
Figs. 8.28 and 8.29, superimposed on the phase diagrams of the substances. While

Table 8.11 Volume [l] of liquid cryogens required to cool down 1 kg of iron

Using Latent heat only Latent heat and specific heat of vapour

Liquid helium from 290 K to 4.2 K 29.5 0.75
Liquid helium from 77 K to 4.2 K 1.46 0.12
Liquid nitrogen from 290 K to 77 K 0.45 0.29
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Fig. 8.28 Phase diagram of
helium, showing typical
operating domains
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Fig. 8.29 Phase diagram of
nitrogen, showing typical
operating domains
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nitrogen shows a classical phase diagram, that of helium shows several peculiarities.
The solid phase of helium only exists under pressure and the normal liquid He
I undergoes below 2.2 K a transition to another liquid phase, He II, instead of
solidifying. There is no latent heat associated with this phase transition, but a peak in
the specific heat, the shape of which gave the name “λ-line” to the phase boundary.
He II exhibits superfluidity, a macroscopic quantum behaviour entailing very high
thermal conductivity and very low viscosity which make it a coolant of choice for
advanced superconducting devices [52, 53]. Besides the thermodynamic penalty of
lower temperature, the use of He II imposes that at least part of the cryogenic circuits
operate at sub-atmospheric pressure, thus requiring efficient compression of low-
pressure vapour and creating risks of dielectric breakdown and contamination by air
in-leaks.

While saturated He I provides fixed (saturation) temperature and high boiling
heat transfer at moderate heat flux, it may develop instabilities in two-phase flow
and is prone to boiling crisis above the peak nucleate boiling flux (about 1 W/cm2).
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The use of mono-phase supercritical helium in forced-flow systems avoids the
problems of two-phase flow. However, the strongly varying properties of the fluid
in the vicinity of the critical point may create other issues, such as density wave
oscillations. More fundamentally, supercritical helium exhibits no latent heat, so
that applied heat loads result in temperature increases which must be contained by
high flow-rate or periodic re-cooling in extended systems.

8.3.3 Materials at Low Temperatures

Designing and building cryogenic apparatus require good knowledge of material
properties at low temperatures [54–56], some of which may vary by orders of
magnitude between ambient and cryogenic conditions, or even exhibit discontinu-
ous behaviour. Of particular concern is the ductile-to-brittle transition undergone
by metals and alloys of body-centered cubic and to a lesser extent, hexagonal
close-packed structures: these materials should always be used above their ductile-
to-brittle transition temperature.

Thermal contraction, shown in Fig. 8.30 for selected materials, range from very
low to a few per mille (metals and alloys) up to a few percent (polymers). For
practical purposes, it is important to note that most of the contraction occurs between
ambient and 80 K.

Fig. 8.30 Thermal
contraction of selected
materials at low temperature
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Fig. 8.31 Specific heat of
selected materials at low
temperature

Specific heat of materials always shows a marked drop at low temperatures,
asymptotic to zero as one approaches absolute zero (Fig. 8.31). Solid state physics
describes specific heat as the sum of several terms due to the contributions from:

• the crystal lattice, with a T3-dependence (Debye law),
• the free electrons, with a T-dependence (Fermi gas model), and
• the phase transition undergone by the material, e.g. magnetic ordering or

superconductivity.

Specific heat of compounds can be approximately predicted by the Kopp-
Neumann additivity principle: the molar heat capacity of a compound is equal to
the sum of the atomic heat capacities of its constituents. To be noted that, at liquid
helium temperature, the specific heat of the fluid is several orders of magnitude
higher than that of solid materials.

The thermal conductivity of technical materials spans across several orders of
magnitude, from high-purity metals down to insulators (Fig. 8.32). The bulk thermal
conductivity results from two basic mechanisms, namely:

• thermal conduction by electrons, scattered by lattice phonons and imperfections;
this process dominates in metals and alloys,

• thermal conduction by lattice phonons, scattered by lattice imperfection or other
phonons; this process, far less efficient than electronic conduction, dominates in
non-metals.

It must be noted that, for pure metals, low temperature thermal conductivity is
strongly influenced by the impurity level and microstructure (e.g. cold work).



8 Accelerator Engineering and Technology: Accelerator Technology 391

Fig. 8.32 Thermal
conductivity of selected
materials at low temperature

Electrical resistivity at low temperatures is a most interesting property both for
engineering applications, assessment of material purity and microstructure, and
understanding of its solid-state physics. Low temperature resistivity spans across
several orders of magnitude, depending upon the type of material, degree of alloying
and purity (Fig. 8.33). In all cases, the decrease of electrical resistivity upon
cooldown shows a plateau, corresponding to a residual value ρ0. Matthiessen’s rule
expresses total resistivity ρ(T) as the sum of two terms,

ρ(T ) = ρ0 + ρi(T ), (8.23)

where ρ0 is the residual resistivity due to electron scattering by impurities and
lattice imperfections, and ρi(T) is the intrinsic resistivity due to electron scattering
by phonons, strongly temperature dependent.

A convenient way to characterize a pure metal or dilute alloy is to measure its
residual resistivity ratio RRR:

RRR = ρ (273 K) /ρ (4 K) . (8.24)
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Fig. 8.33 Electrical
resistivity of selected
materials at low temperature

8.3.4 Heat Transfer and Thermal Design

With the exception of superfluid helium, the heat transfer processes at work in cryo-
genics are basically the same as for any engineering temperature range. The strong
variation of thermal properties of materials and fluids at low temperature however
has two consequences: the relative and absolute magnitudes of the processes may
be very different from those at room temperature, and the equations become non-
linear, thus requiring numerical integration. Cryogenic thermal design is the art of
using these processes adequately, either for achieving thermal insulation (cryostats,
transfer lines) or for improving thermal coupling between equipment and coolant
(cool-down & warm-up, thermal stabilization, thermometry) [57, 58]. The diversity
and complexity of convection processes cannot be treated here. Fortunately, in the
majority of cases, the correlations established for fluids at higher temperature are
fully applicable to the cryogenic domain [59], and reference is made to the abundant
technical literature on the subject.
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8.3.4.1 Solid Conduction

Heat conduction in solids is represented by Fourier’s law, expressing proportionality
of heat flux with thermal gradient

Q = k(T )SdT/dx. (8.25)

This equation also defines the thermal conductivity k(T) of the material, which
varies with temperature. Conduction along a solid rod of length L, cross section S
spanning a temperature range [T1, T2], e.g. the support strut of a cryogenic vessel,
is then given by the integral form

Q = S

L

∫ T2

T1

k(T )dT , (8.26)

where
∫ T2
T1
k(T )dT is called the thermal conductivity integral.

Thermal conductivity integrals of standard materials are tabulated in the literature
[54]. A few examples are given in Table 8.12, showing the large differences between
good and bad thermal conducting materials, the strong decrease of conductivity
at low temperatures, particularly for pure metals, and the interest of thermal
interception to reduce conductive heat in-leak in supports. As an example, the
thermal conductivity integral of austenitic stainless steel from 80 K to vanishingly
low temperature is nine times smaller than from 290 K, hence the benefit of
providing a liquid nitrogen cooled heat sink on the supports of a liquid helium
vessel.

8.3.4.2 Radiation

Blackbody radiation strongly and only depends on the temperature of the emitting
body, with the maximum of the power spectrum given by Wien’s law

λmaxT = 2898 [μm·K] , (8.27)

Table 8.12 Thermal conductivity integrals [W/m] of selected materials

From vanishingly low temperature up to 20 K 80 K 290 K

OFHC copper 11,000 60,600 152,000
DHP copper 395 5890 46,100
Aluminium 1100 2740 23,300 72,100
2024 aluminium alloy 160 2420 22,900
AISI 304 stainless steel 16.3 349 3060
G-10 glass-epoxy composite 2 18 153
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and the total power radiated by an surface area A given by Stefan-Boltzmann’s
law

Q = σ A T 4, (8.28)

with Stefan-Boltzmann’s constant σ � 5.67 10−8 W m−2 K−4. The dependence
of the radiative heat flux on the fourth power of temperature makes a strong plea for
radiation shielding of low-temperature vessels with one or several shields cooled
by liquid nitrogen or cold helium vapour. Technical radiating surfaces are usually
described as “gray” bodies, characterized by an emissivity ε smaller than 1:

Q = ε σ A T 4 . (8.29)

The emissivity ε strictly depends on the material, surface finish, radiation
wavelength and angle of incidence. For materials of technical interest, measured
average values are found in the literature [60], a subset of which is given in Table
8.13. As a general rule, emissivity decreases at low temperature, for good electrical
conductors and for polished surfaces. As Table 8.13 shows, a simple way to obtain
this combination of properties is to wrap cold equipment with aluminium foil.
Conversely, radiative thermal coupling requires emissivity as close as possible to
that of a blackbody, which can be achieved in practice by special paint or adequate
surface treatment, e.g. anodizing of aluminium.

The net heat flux between two “gray” surfaces at temperature T1 and T2 is
similarly given by

Q = E σ A
(
T2

4 − T1
4
)
, (8.30)

with the emissivity factor E being a function of the emissivities ε1 and ε2 of the
surfaces, of the geometrical configuration and of the type of reflection (specular or

Table 8.13 Emissivity of some technical materials at low temperature

Radiation from 290 K,
surface at 77 K

Radiation from 77 K,
surface at 4.2 K

Stainless steel, as found 0.34 0.12
Stainless steel, mechanically polished 0.12 0.07
Stainless steel, electro-polished 0.10 0.07
Stainless steel + aluminium foil 0.05 0.01
Aluminium, black anodized 0.95 0.75
Aluminium, as found 0.12 0.07
Aluminium, mechanically polished 0.10 0.06
Aluminium, electro-polished 0.08 0.04
Copper, as found 0.12 0.06
Copper, mechanically polished 0.06 0.02



8 Accelerator Engineering and Technology: Accelerator Technology 395

diffuse) between the surfaces. Its precise determination can be quite tedious, apart
from the few simple geometrical cases of flat plates, nested cylinders and nested
spheres.

8.3.4.3 Gas Conduction

Since J. Dewar’s invention (1898) of the cryogenic vessel which bears his name,
evacuated envelopes provide the best insulation against heat transport in gaseous
media. At low pressure, convection becomes negligible and only residual gas
conduction is at work. This process operates in two distinct regimes, depending
upon the value of the mean free path of gas molecules � relative to the typical
distance d between the cold and warm surfaces.

The mean free path of gas molecules, as predicted by kinetic theory, scales with
the square root of temperature and inversely with pressure and the square root of
molar mass. It therefore becomes large at low pressure, high temperature and for
light gas species.

When � is much less than d corresponding to higher pressure, the probability
of interaction of a given molecule with others before it travels distance d is high
(viscous regime), and heat diffuses as in any continuous medium:

Q = k(T )AdT/dx. (8.31)

Note that the thermal conductivity k(T) of the gas is independent of pressure.
When � is much greater than d at low pressure, the molecular regime prevails

and the heat transfer between two surfaces at temperatures T1 and T2 is given by
Kennard’s law:

Q = A α(T ) � P (T2 − T1) , (8.32)

where Ω is a parameter depending upon the gas species, and α is the “accom-
modation coefficient” representing the thermalization of molecules on the surfaces;
its value depends on T1, T2, the gas species and the geometry of the facing surfaces.
Note that the conductive heat flux in molecular regime is proportional to pressure P
and independent of the spacing between the surfaces (and therefore not amenable to
the concept of thermal conductivity). Typical values of heat flux by gas conduction
at cryogenic temperature are given in Table 8.14.

8.3.4.4 Multilayer Insulation

Multi-layer insulation (MLI) is based on n multiple reflecting shields wrapped
around the cryogenic piece of equipment to be insulated, with the aim of benefiting
from the n + 1 reduction factor in radiative heat in-leak. In practice, this is
implemented in the form of aluminium or aluminized polymer films, with low



396 F. Bordry et al.

Table 8.14 Typical values of
heat flux [Wm−2] to
vanishingly low temperature
between flat plates

Black-body radiation from 290 K 401

Black-body radiation from 80 K 2.3
Gas conduction (100 mPa helium) from 290 K 19
Gas conduction (1 mPa helium) from 290 K 0.19
Gas conduction (100 mPa helium) from 80 K 6.8
Gas conduction (1 mPa helium) from 80 K 0.07
MLI (30 layers) from 290 K, pressure <1 mPa 1 . . . 1.5
MLI (10 layers) from 80 K, pressure <1 mPa 0.05
MLI (10 layers) from 80 K, pressure 100 mPa 1 . . . 2

packing density achieved by crinkling or by insertion of a net-type spacer between
layers. The wrapping can be made by winding the layers and spacer in situ, or by
pre-fabricated blankets installed and held in place by insulating fasteners.

In all cases, MLI is a complex thermal system, involving the combination of radi-
ation, solid-contact conduction, and residual-gas conduction between layers. As a
result, increasing the number of layers, while beneficial for cutting radiation, usually
results in increased packing with more contacts and trapped residual gas between
layers, two effects which increase heat transfer. In view of the nonlinearity of these
elementary processes, thermal optimization requires layer-to-layer modelling and
efficient control of the critical parameters. In practice, performance is measured on
test samples and measured data is available from an abundant literature. Typical
values for some practical MLI systems are given in Table 8.14.

Of particular interest is the case of operation in degraded vacuum, where the heat
in-leak by molecular conduction is directly proportional to the residual pressure.
The presence of a multilayer system which segments the insulation space into many
cells thermally in series, significantly contains the increase in heat in-leak to the low-
temperature surface (Table 8.14). In this respect, the multilayer system is no longer
used for its radiative properties, but for the reduction of molecular gas conduction.
In the extreme case of complete loss of vacuum in a liquid helium vessel, MLI
also efficiently limits the heat flux which would otherwise become very high due to
condensation of air on the cold wall, thus alleviating the requirements for emergency
discharge systems.

8.3.4.5 Vapour-Cooling of Necks and Supports

The enthalpy of cryogen vapour escaping from a liquid bath can be used to
continuously intercept conduction heat along solid supports and necks connecting
the cryogenic bath with the room temperature environment (Fig. 8.34).

Assuming perfect heat exchange between the escaping vapour and the solid, the
energy balance equation reads

k(T )SdT/dx = Qv + ṁ Cp(T ) (T − Tv) , (8.33)
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Fig. 8.34 Vapour cooling of
necks and supports with
perfect heat exchange

where Qv is the heat reaching the liquid bath and ṁ is the vapour mass flow-rate.
In the particular case of self-sustained vapour cooling, i.e. when the vapour mass
flow-rate ṁ precisely equals the boil-off from the liquid bath,

Qv = Lv ṁ (8.34)

Combining Eqs. (8.32) and (8.33) and integrating yields the value of Qv

Qv = S

L

∫ T0

Tv

k(T )

1 + (T − Tv)
Cp
Lv

dT (8.35)

The denominator of the integrand clearly acts as an attenuation term for the
conduction integral. Numerical results for helium and a few materials of technical
interest appear in Table 8.15. If properly used, the cooling power of the vapour
brings an attenuation of one to two orders of magnitude in the conductive heat in-
leak.

Vapour cooling can also be used for continuous interception of other heat loads
than solid conduction. In cryogenic storage and transport vessels with vapour-cooled
shields, it lowers shield temperature and thus reduces radiative heat in-leak to the



398 F. Bordry et al.

Table 8.15 Heat conduction attenuation between 290 K and 4 K by self-sustained helium cooling

Material
Purely conductive
regime [W/m]

Self-sustained vapour
cooling [W/m] Attenuation factor

ETP copper 1620 128 13
OFHC copper 1520 110 14
Aluminium 1100 728 39.9 18
Nickel 99% pure 213 8.65 25
Constantan 51.6 1.94 27
AISI 300 stainless steel 30.6 0.92 33

liquid bath. In vapour-cooled current leads, a large fraction of the resistive power
dissipation by Joule heating is taken by the vapour flow, in order to minimize the
residual heat reaching the liquid bath [61, 62].

Worked-out example of how these diverse thermal insulation techniques are
implemented in real designs are given in [63–65].

8.3.5 Refrigeration and Liquefaction

Refrigeration and liquefaction of gases are historically at the root of cryogenics, as
they constitute the enabling technology which gave access to the low-temperature
domain. They have developed over the years along several lines, to become a
specialized subject which would deserve a thorough presentation. In the following,
we shall briefly describe the basic thermodynamics, the cooling processes at work
and the corresponding equipment in the case of helium. For more complete reviews,
see [66, 67].

8.3.5.1 Thermodynamics of Refrigeration

A refrigerator is a machine raising heat Qi from a low-temperature source Ti to a
higher-temperature sink (usually room temperature) T0, by absorbing mechanical
work Wi; doing so, it rejects heat Q0 (see Fig. 8.35). These quantities are related
through the application of the first (Joule) and second (Clausius) principles of
thermodynamics:

Q0 = Qi +Wi, (8.36)

Q0/T0 ≥ Qi/Ti. (8.37)
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Fig. 8.35 Thermodynamic
scheme of a refrigerator

In Eq. (8.36), the equality applies to the case of a reversible process. From the
above

Wi ≥ T0Qi/Ti −Qi. (8.38)

This expression can be written in three different ways. Introducing the reversible
entropy variation ΔSi = Qi/Ti:

Wi ≥ T0ΔSi −Qi. (8.39)

Another form isolates the group Qi(T0/Ti − 1) as the proportionality factor
between Qi and Wi, i.e. the minimum specific refrigeration work,

Wi ≥ Qi (T0/Ti − 1) . (8.40)

As Carnot has shown in 1824 [68], the minimum work can only be achieved
through a cycle constituted of two isothermal and two adiabatic transforms (Carnot
cycle). All other thermodynamic cycles entail higher refrigeration work for the same
refrigeration duty.

A third form of Eq. (8.37) is

Wi ≥ ΔEi. (8.41)

This introduces the variation of “exergy”ΔEi = Qi(T0/Ti − 1), a thermodynamic
function representing the maximum mechanical work content (Gouy’s “énergie
utilisable”) of a heat quantity Qi at temperature Ti, given an environment at
temperature T0 [69].

Equation (8.39) enables to calculate the minimum mechanical power needed to
extract 1 W at 4.5 K (saturated liquid helium temperature at 1.3 bar pressure, i.e.
slightly above atmospheric) and reject it at 300 K (room temperature), yielding
a value of 65.7 W. This is the power that would be absorbed by a refrigerator
operating on a Carnot cycle between 4.5 K and 300 K. In practice, the best practical
cryogenic helium refrigerators have an efficiency of about 30% with respect to a
Carnot refrigerator, hence a specific refrigeration work of about 220 W/W.
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Cryogenic refrigerators are often required to provide cooling duties at several
temperatures or in several temperature ranges, e.g. for thermal shields or continuous
heat interception. Equation (8.39) can then be applied to the cooling duty at every
temperature and every elementary mechanical power Wi summed or integrated in
the case of continuous cooling. This also allows comparison of different cooling
duties in terms of required mechanical work.

8.3.5.2 Helium Refrigerators vs. Liquefiers

A 4.5 K helium refrigerator absorbs heat isothermally at this temperature, by re-
condensing the cold helium vaporized at saturation (saturation pressure 1.3 bar).
A liquefier also eventually condenses cold helium vapour at saturation, but starting
from gaseous helium at 300 K which it must first pre-cool to 4.5 K (Fig. 8.36). From
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Fig. 8.36 A helium refrigerator (a) performs the duty by condensing cold helium vapour (red
area). A helium liquefier (b) additionally needs to precool helium gas from room temperature
(green area)
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Eq. (8.38), the minimum mechanical power Wliq for helium liquefaction is:

Wliq = Wcondens +Wprecool, (8.42)

Wliq = T0ΔScondens −Qcondens + T0ΔSprecool −Qprecool. (8.43)

The heat quantities Qcondens and Qprecool exchanged at constant pressure are—
by definition—equal to the enthalpy variations �Hcondens and �Hprecool. With
T0 = 300 K and the entropy and enthalpy differences taken from thermodynamic
tables, one finds Wliq = 6628 W per g/s of helium liquefied. Given the minimum
specific mechanical work of 65.7 at 4.5 K, this yields an approximate equivalence
of about 100 W at 4.5 K for 1 g/s liquefaction. More precisely, a liquefier producing
1 g/s liquid helium at 4.5 K will absorb the same power (and thus have similar size)
as a refrigerator extracting about 100 W at 4.5 K, provided they both have the same
efficiency with respect to the Carnot cycle. For machines with mixed refrigeration
and liquefaction duties, this equivalence can be approximately verified by trading
some liquefaction against refrigeration around the design point and vice versa. An
example is given in reference [70].

8.3.5.3 Real Cycles and Refrigeration Equipment

So far we have only addressed cryogenic refrigeration and liquefaction through ther-
modynamics, i.e. through the exchanges of mass, heat and work at the boundaries
of machines seen as “black boxes”. We will now consider cycles, cooling methods
and equipment of real refrigerators.

In order to minimize the specific mechanical work requirement (and hence the
size and power consumption), an efficient refrigerator should try to approximate
the Carnot cycle, which is represented by a rectangle on the temperature-entropy
diagram: the two isotherms are horizontal lines, while the two isentropic transforms
are vertical lines. To liquefy helium, the base of the rectangle should intercept the
liquid-vapour dome (Fig. 8.37).

Fig. 8.37 A hypothetical
Carnot cycle for helium
liquefaction
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However, superimposing this cycle on the temperature-entropy diagram of
helium shows that one should operate at a high pressure of about 613 kbar (!),
with a first isentropic compression from 1.3 bar to 82 kbar (!), followed by an
isothermal compression. This is clearly impractical, and real helium cycles are
elongated along isobar (or isochoric) lines, thus involving transforms which require
heat exchange between the high- and low-pressure streams. This heat exchange
can be performed in recuperative or regenerative heat exchangers, respectively for
continuous or alternating flows. In the following, we focus on the continuous-flow
cycles using recuperative heat exchangers which constitute the operating principles
of large-capacity helium refrigerators and liquefiers.

Practical elementary cooling processes are shown on the temperature-entropy
diagram in Fig. 8.38. Apart from the quasi-isobar cooling of the gas stream in a
heat exchanger (segment AB1), refrigeration can be produced by adiabatic (para-
isentropic) expansion with extraction of mechanical work, usually in a gas turbine
(segment AB2

′), and isenthalpic Joule-Thomson expansion in a valve or restriction
(segment AB3).

This latter process does not produce any cooling for ideal gases, the enthalpy of
which is a sole function of temperature. For real gases, however, enthalpy depends
both on temperature and pressure, so that isenthalpic expansion can produce
warming or cooling, depending upon the slope of the isenthalps on the diagram
in the region of interest. In order to cool the gas stream, Joule-Thomson expansion
must start below a limit called the inversion temperature. The values of inversion
temperature for cryogenic fluids (Table 8.16) show that while air can be cooled from
room temperature by Joule-Thomson expansion (the risk of freezing the pressure
reducer on the air bottle is well known to scuba divers), helium must first be pre-
cooled down to below its inversion temperature of 43 K. The moderate downward
slope of isenthalps on the temperature-entropy diagram indicates that in any case,
Joule-Thomson expansion generates substantial entropy. Its relative inefficiency
with respect to adiabatic expansion is however accepted in view of the simplicity
of its implementation, particularly when it results in partial condensation of the

Fig. 8.38 Elementary
cooling processes shown on
temperature-entropy diagram
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Table 8.16 Maximum
values of Joule-Thomson
inversion temperature

Cryogen Maximum inversion temperature [K]

Helium 43
Hydrogen 202
Neon 260
Air 603
Nitrogen 623
Oxygen 761
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Fig. 8.39 Schematic example of two-pressure, two-stage Claude cycle: flow scheme (left) and T-S
diagram (right)

stream entailing two-phase flow conditions which would be difficult to handle in an
expansion turbine.

These elementary cooling processes are combined in practical cycles, a common
example for helium refrigeration is provided by the Claude cycle and its refinements.
A schematic two-pressure, two-stage Claude cycle is shown in Fig. 8.39: gaseous
helium, compressed to high pressure (HP) in a lubricated screw compressor, is re-
cooled to room temperature in water-coolers, dried and purified from oil aerosols
down to the ppm level, before being sent to the HP side of the heat exchange line
(HX1 to HX5) where it is refrigerated by heat exchange with the counter-flow of
cold gas returning on the low pressure (LP) side. Part of the flow is tapped from the
HP line and expanded in the turbines before escaping to the LP line. At the bottom
of the heat exchange line, the remaining HP flow is expanded in a Joule-Thomson
valve and partially liquefied.
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Large-capacity helium refrigerators and liquefiers operate under this principle,
however with many refinements aiming at meeting specific cooling duties and
improving efficiency and flexibility of operation, such as three- and sometimes
four-pressure cycles, liquid nitrogen pre-cooling of the helium stream, numerous
heat exchangers, many turbines in series or parallel arrangements, Joule-Thomson
expansion replaced by adiabatic expansion in a “wet” turbine, cold compressors to
lower the refrigeration temperature below 4.5 K.

The capital cost of these complex machines is high, but scales less than linearly
with refrigeration power, which favours large units. Operating costs are dominated
by that of electrical energy, typically amounting to about ten percent of the capital
cost per year in case of quasi-continuous operation. For overall economy, it is
therefore very important to seek high efficiency, which is also easier to achieve on
large units. For a review of these aspects, see [70].

8.4 High Precision Power Converters for Particle
Accelerators

F. Bordry · J. P. Burnet · M. Cerqueira Bastos

8.4.1 Introduction to Magnet Power Converters

The trend in power electronics is evolving rapidly, mainly due to progress in
power semiconductors. Since the nineties, the IGBT (Insulated Gate Bipolar
Transistor) took the leadership in medium and large power, with the development
of new converter topologies called switch-mode power converters [71, 72]. With
the progress of electronics (analogue and digital) and measurement systems, the
performance of the power converters made a step forward in precision and stability.
This chapter will give an overview of the state of the art for high precision power
converters for particle accelerators (conventional and superconducting magnet, RF
klystrons, solenoids, . . . ).

8.4.2 Main Parameters of Magnet Power Converters

The powering of particle accelerator magnets are mainly DC power converters and
in most cases, the feedback control system regulates the magnet current. The choice
of the power converter topology and thus the technology will be defined by the
required performance, translated into a precise specification. First of all, the peak
and the rms ratings of the current and voltage to power the magnet should be
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Fig. 8.40 Definition of the
4-quadrant operation
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defined. Then, the operation in different quadrants has to be identified: shall the
power converter be bipolar in current and/or in voltage? Shall the power converter
operate as a generator and/or as a receptor? Figure 8.40 defines the 4-quadrants of
operation of a power converter.

In quadrant 1 and 3, the power converter operates as a generator. In quadrant
2 and 4, the power converter operates as a receptor. In this mode, the magnet is
giving back its stored energy during the ramping down of the current. The power
converter can dissipate this energy, give it back to the mains, or store it locally
making it available for the next cycle. The power converters can be classified in
3 categories: one-quadrant power converter; unipolar in current and voltage, two-
quadrant power converter; unipolar in current but bipolar in voltage, and 4-quadrant
power converter; bipolar in current and voltage.

The power converter can be controlled with different strategies: steady DC
current control, variable current reference, or pulsed current.

Another important parameter for the design of the power converters is the voltage
and current ripple. The power converter topology and the performance of the
inner control loops define the voltage ripple. The current ripple is defined by the
load transfer function (cables, magnet inductance . . . ). To get good current ripple
estimation, a good identification of the converter load is required.

To identify the optimal topology of the power converter, a complete list of
parameters has to be reviewed between the accelerator physicists, the magnet
designers and the power converter designers.

8.4.3 Power Converter Topologies

Three main families of power converters are used for particle accelerators:
Thyristor-controlled rectifier, switch-mode power converter and discharged power
converter. Each type will be described in the following paragraphs.
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8.4.3.1 Thyristor Controlled Rectifier

The thyristor-controlled rectifier was the main topology used from the seventies
up to the nineties. Many different topologies can be implemented with thyristor
devices, but only the three main types will be described here. First, the simplest one
is the 6-pulse thyristor rectifier with freewheeling diode, see Fig. 8.41.

The topology includes a transformer, a 6-pulse thyristor bridge with a free-
wheeling diode and an output filter. The output voltage is controlled by the firing
angle of the thyristor bridge. Due to the free-wheeling diode, the output voltage
can only be positive, as well as the current. This topology is a one quadrant power
converter. Second, the most used is the 12-pulse rectifier. This topology includes a
transformer with two secondaries with a phase shift of ±15◦, two 6-pulse thyristor
bridges connected in series, and an output filter, see Fig. 8.42.

This topology allows positive and negative output voltages, but imposes a
minimum current to control the thyristors. The first harmonic of the output voltage is
600 Hz which helps to reduce the current ripple compared to the previous topology.
When the voltage is negative, the energy is given back to the grid. It is a two-
quadrant power converter.

Last, a back to back thyristor rectifier is shown as an example of 4-quadrant
power converter. In this case, two 6-pulse rectifiers are connected back to back, see
Fig. 8.43.

Fig. 8.41 6-pulse thyristor
rectifier

YΔ

Fig. 8.42 12-pulses thyristor
rectifier

V

V
Δ
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Fig. 8.43 Back-to-back thyristor rectifier with circulating current

This topology requires placing inductors between the rectifiers to limit the
circulating current which is necessary to control the thyristor rectifiers. In this case,
the current can be positive and negative in the load as well as the voltage.

Thyristor devices are known to be robust, with low losses, and easy to drive.
The main drawbacks of this type of power converters are their high susceptibility to
perturbations from the grid, they generate reactive power on the grid, and they have
a slow dynamic response. It also requires 50Hz transformers which can be bulky.
Nevertheless, this type of power converter is widely used for particle accelerators. It
was for example, the main type for the LEP accelerator. Nowadays, the thyristor
controlled rectifiers are mainly used for high power converters (above 500 kW)
which requires very often a reactive power compensator on the grid.

8.4.3.2 Switch-Mode Power Converter

Switch-mode power converters incorporate power semiconductors which switch
quickly between full-on and full-off states. The voltage regulation is provided by
varying the ratio of on, off time, which is called duty cycle. Pulse-Width Modulation
is the most familiar technique used to control the duty cycle. The main advantages
are a better efficiency and a smaller size due to the reduction of the magnetics
component size, at the cost of a greater complexity. Many types of switch-mode
power converters exist and are too numerous to be listed in this chapter. Two main
types will be presented, first, a topology with a 50Hz transformer and second, a
topology with a high frequency transformer.

8.4.3.2.1 Switch-Mode Power Converter With 50 Hz Transformer

A transformer is always required to isolate the magnet from the grid. If the volume
of the power converter is not an issue, 50 Hz transformers can be used as they
are produced by industry for other applications at affordable prices. The most
classical topology used for particle accelerators can be seen in Fig. 8.44. The 50 Hz
transformer adapts the voltage for the rectifier, then an H-bridge comprising of
IGBTs, control the voltage applied to the magnet. The switching frequency of the
IGBT depends on the DC-link voltage and on the current to control. For power
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Fig. 8.44 Switch-mode power converter with 50 Hz transformer, connected to the grid at the left
and connected to the magnet at the right

Fig. 8.45 Switch-mode power converter with high frequency transformer

converters above 10 kW, the classical switching frequency is in the range of 1 kHz
to 20 kHz.

The H-bridge topology allows 4-quadrant operation. When the magnet gives back
its energy, the return energy can be dissipated in a brake chopper or stored in the
capacitor bank of the DC-link. Another possibility is to replace the diode rectifier by
an active front end provided by IGBTs. In this case, the energy is returned to the grid.
The main advantage of this topology is the use of the IGBT semiconductors which
are widely used and produced at reasonable cost. They can be easily controlled with
PWM (pulse-width modulation) technique at a switching frequency above few kHz;
this helps to reduce the current ripple and improve the feedback loop performance.
The IGBT rating ranges from 600 V to 6.5 kV and from 50 A to 3 kA, allowing a
large scale of the requirements to be met.

8.4.3.2.2 Switch-Mode Power Converter with High Frequency Transformer

One of the main interests of using a high frequency transformer is to reduce the
volume of the power converters. Ferrite cores are widely produced which allow the
use of high frequency transformers at a competitive price. A classical topology is
shown in Fig. 8.45.

The diode bridge is directly connected to the grid. An inverter drives a high
frequency transformer. A diode bridge is connected at the output of the secondaries
of the transformer to obtain a DC voltage to apply to the magnet. This type of power
converter operates only in one-quadrant mode. 4-quadrant operation can be obtained
by adding another stage but the return energy has to be dissipated at this level (Fig.
8.46) [73].

Energy recovery to the grid can be achieved, but with a much more sophisticated
topology which will not be described here [71]. The switching frequency of the
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Fig. 8.46 4-quadrant
switch-mode power converter
with high frequency
transformer

Fig. 8.47 Switch-mode
power converter with 2 high
frequency transformers

inverter is usually from 10 kHz to several 100 kHz. Due to the high frequency
spectrum of the semiconductor’s commutation, an important design constraint for
the power converters is the EMC (Electro Magnetic compatibility) immunity and
emission. Soft commutation of the inverter semiconductors is an elegant solution
to reduce the switching losses and to improve the EMC. In the case of the CERN
LHC, where power converters have to be installed underground with limited space,
the switch-mode power converter was chosen for power converter up to 200 kW. In
this case, many sub-converters have to be placed in parallel to reach this power
level. The superconducting magnets require a high current (many kA) but few
volts (less than 20 V); for this application, the solution was to drive many high-
frequency transformers in series with one inverter. All the transformer secondaries
are connected in parallel after the output filter, see Fig. 8.47.

To improve reliability by increasing redundancy, N+1 sub-converters are placed
in parallel, where a sub-converter comprises one inverter with 8 transformers. In
case of failure of one sub-converter, the other sub-converters compensate without
any disturbance to the load. A modulator construction of the power converter can be
done due to the high number of converters in parallel which eases the operation and
maintenance of it.

For power converter below 1 kW, the preferred semiconductor is the MOSFET
which has lower losses than the IGBT thereby allowing a higher switching
frequency. Nevertheless, its voltage range is limited from 5 V to 500 V.

8.4.3.3 Fast Pulsed Power Converter

When the presence of the magnetic field in the magnet is required for a very short
duration, discharged power converters are a very interesting technique to reduce
power consumption. This is the case for example for beam transfer lines where



410 F. Bordry et al.

Fig. 8.48 Klystron
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the beam can be present for few μs every second or minute. It is also the case for
the Klystron Modulators in a Linac. An example of a discharged power converter
topology is shown in Fig. 8.48.

In this case, a capacitor bank is charged to a nominal value (less than 15 kV)
which can be low compared to the need of the load (from 60 kV to 140 kV). A main
switch discharges the capacitor bank via a pulse transformer.

The voltage is applied to the load while the switch stays ON but generally for a
short time (2.4 ms for LINAC4 at CERN), as the capacitor bank voltage decreases
(few %), the droop voltage has to be compensated by a bouncer which is a passive
resonant circuit. The main challenges are the design of the pulse transformer and
of the main switch. In case of an arc in the Klystron, the energy deposit has to be
limited to few joules (~20 J). This needs a fast turn OFF of the main switch. A
redundancy policy has to be implemented to be sure to be able to open the circuit.
For LINAC4, 4 IGCT (Integrated Gate-Commutated thyristor) are placed in series
where only 3 are required.

8.4.3.4 High Power System with Local Energy Storage

For high power system (above 1 MW), Thyristor rectifiers are the preferred
technology. The principal drawbacks are:

• the reactive power generated on the grid which needs to be compensated to
stabilize the network voltage,

• the pulsed active power on the grid which requires a strong electrical network. To
avoid the flow of pulsed power on the grid, local energy storage can be used.

One example is the new POPS system [74] designed for the CERN PS accelera-
tor, see Fig. 8.49.

The principle is to store energy in capacitor banks and to exchange this energy
with the magnets during the cycles. As the rating power is very high (60 MW
peak), many switch-mode power converters are associated in series and in parallel.
Only the losses of the system (magnets and converters) are taken from the electrical
network (5 MW peak). 20 MJ are stored in the capacitor banks where 14 MJ can be
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Fig. 8.49 Power system with capacitive energy storage

exchanged during each cycle with the magnets. A redundancy is also implemented;
the system can operate without one capacitor bank or one DC/DC converter or one
transformer. In this case, no reactive power is generated on the grid and the active
power taken from the grid is reduced to the minimum. This new type of power
system helps reduce the energy consumption of particle accelerators.

8.4.4 High Accuracy in Power Converters for Particle
Accelerators

Magnets in particle accelerators are powered by electrical power converters. These
can be seen as controlled current sources in which a feedback loop ensures that the
output current follows the reference to the best possible accuracy. The accuracy that
can be achieved is greatly determined by the current measurement transducer and,
in the case of digitally controlled power converters, the control algorithm and the
ADC employed in the feedback loop.

As energies reached by particle accelerators become greater, accuracy require-
ments for the magnet current increase proportionally. Accuracy requirements
depend also on the powering strategy chosen for the accelerator. In a synchrotron,
the main dipole and quadrupole circuits are normally powered in series to ensure
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synchronism and homogeneity in the magnetic field around the circumference.
However this is not always true: in the case of the LHC the main circuits are divided
into eight sectors due to the very high stored magnetic energy and constraints in
the protection of the superconducting magnets. As a consequence, individual sector
currents must be controlled with very high absolute accuracy in amplitude and time
[75] to ensure tracking between all sectors. Requirements for accuracy in current
control are also determined by the type of magnet and its function: the need for
accuracy in the current control for corrector magnets is much less stringent than for
the main quadrupole and dipole magnets.

8.4.4.1 Power Converter Control

In the past, power converter control in accelerators was usually based on analogue
feedback loops using PID (Proportional/Integral/Derivative) control. In such sys-
tems, the reference value at the input of the loop is often given by a DAC (Digital to
Analogue Converter) and the output current of the power converter measured by a
precision current transducer which provides the feedback signal for the control loop
[76]. The accuracy achieved with such techniques is limited by errors due to drift,
linearity and temperature dependency. Moreover, adjustment of control parameters
can be cumbersome, as it might require trimming of potentiometers or replacement
of components.

Developments in digital electronics and in particular DSPs, PLDs and Micro-
controllers, as well as the need for increased performance in power converter
applications fuelled significant progress in digital control during the last decades.
The first applications using digital control in power converters for accelerators
were implemented in the late 1980s [77]. Amongst the advantages of using digital
control are increased stability and reproducibility, less susceptibility to noise and
thermal effects, easy implementation of different control methods (state-space,
robust, fuzzy) as well as easy loop parameterization. On the other hand, the use of
digital control increases system complexity and introduces new sources of error such
as the ones resulting from ADC measurement uncertainty and limited resolution on
arithmetic calculations, which might lead to arithmetic errors.

When high accuracy is required, one effective power converter control strategy
is to have an external current loop controlling a power supply that works as a
voltage source. In a digitally controlled system, the output current of the converter
is measured by a current transducer connected to an ADC and then compared with
a digital reference. The error is fed into a digital regulator and the result sent to a
DAC that provides an analogue signal to control the voltage source [77].

This solution is implemented in the control of the LHC power converters at
CERN. In this case, the control challenge is even more demanding due to the 8-
sector powering strategy used for the main dipole and quadrupole circuits. This
powering strategy requires not only an accurate control of the current of each
power converter but also an accurate generation and synchronization of the current
references sent to the converters along the 27 km circumference of the LHC. For this
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purpose each power converter in the LHC has a dedicated controls electronics which
is actually an embedded microcontroller-based computer capable of performing
full local state control, reference function generation and measurement acquisition
as well as running a digital current regulation loop. Reference functions are
synchronized using a timing network. Each digital controller is connected to a field
bus (WorldFIP) and the timing network is used to synchronise the cycles of all
segments of the field bus. The digital controller disciplines a phase-locked loop to
align its clock to the start of each WorldFIP cycle guaranteeing synchronism of the
references along the machine.

The digital control strategy implemented in the LHC power converters is based
on an R-S-T algorithm. The canonical structure of an RST controller is presented in
Fig. 8.50 [78].

This structure has two degrees of freedom, i.e. the digital filters R and S are
designed in order to achieve the desired regulation performance and the digital
filter T is designed to achive the desired tracking performance. The structure can
be described by the following discrete equation [79]:

S
(
z−1
)
u(t)+ R

(
z−1
)
y(t) = T

(
z−1
)
r(t), (8.44)

where u(t) and y(t) are the input and output of the plant, r(t) the desired tracking
trajectory, R, S and T are z−1 polynomials and t is the normalized discrete time.

The corresponding time domain expression is given by:

u(t) = −
∑nS

i=1
Siu (t − i)−

∑nR

i=0
Riy (t − i)+

∑nT

i=0
Tir (t − i) [84] .

(8.45)

The RST controller makes it possible to obtain the desired tracking behaviour
(following the reference) independent of the desired regulation behaviour (rejection
of a disturbance) [80].

The application of this control strategy to the LHC power converter control
resulted in excellent performance. Recent results proved that the tracking error on
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Fig. 8.50 Canonical structure of a digital RST controller



414 F. Bordry et al.

the LHC main power converters is in the order of one ppm and that tracking between
different sectors is within a couple of ppm [78].

8.4.4.2 Current Measurement in Particle Accelerators

Traditionally, accurate current measurement devices for particle accelerators are
associated with beam current measurement. Magnetic transducers and in particular
current transformers have been for a long time the preferred transducers to measure
beam currents. The requirements for beam current measurement have driven
progress in transducer technology, culminating with the introduction of the DCCT
(Direct-Current Current Transformer) for beam current measurement at CERN
in late 1960s. The idea was to build a magnetic beam current transformer with
frequency response extended down to DC to measure beam current in the ISR
accelerator. The new transducer combined the zero flux detection principle used
in flux-gate magnetometers since the 1930s, with the active transformer circuit as
originally proposed by H.G. Hereward (and already used to measure the circulating
beam in the CERN PS accelerator) [81]. Although the new transducer was not
initially intended for power supply regulation applications, its advantages compared
with previous DC instrument transformers (e.g. Kramer and Hingorani [82]) soon
became obvious. The concept got picked up by industry and the new transducer was
soon being used at accelerators such as DESY in Hamburg. In late 1970s, DCCTs
were used for the first time in large quantities in the SPS project at CERN [83].

The use of DCCTs spread to other applications but it continued to be widely
used in particle accelerators. In particular, the beginning of the twenty-first century
saw important progress in DCCT technology with the development and deployment
of the DCCTs for the main dipole and quadrupole power supplies of the LHC, at
CERN [84]. Short term stability in the order of two part-per-million (ppm), yearly
drifts better than fifteen ppm and linearity better than two ppm have been achieved.

8.4.4.2.1 Current Measurement Technologies

The most common current measurement technologies used in electrical power
converters include resistive shunts and current sense resistors, Hall-Effect current
transducers (based on the polarization of charges in an electrical conductor in the
presence of an external magnetic field), Current Transformers, Rogowsky Coils
(high current, high bandwidth applications), Active CTs and DCCTs (both based
on the zero flux detection principle).

The choice of a current measuring device for a specific application depends on
factors such as current range, bandwidth, required accuracy, required output signal,
need for isolation, reliability, installation constraints, availability and cost. DCCTs
provide isolated measurements for different current ranges and can reach very high
accuracy, albeit with a higher cost.
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8.4.4.2.2 DCCTs (Direct-Current Current Transformers)

A DCCT is a magnetic current transducer of the zero-flux type where a second
harmonic or a peak detector is used in a feedback loop to generate a compensation
current which is a fractional image of the current being measured, keeping zero
flux in the magnetic cores. The working principle of a DCCT is illustrated in more
detail in Fig. 8.51: two DC flux sensing cores are modulated by an oscillator. The
resulting current peaks are unequal if there is a DC flux in the cores (originated by
the DC current being measured). A balanced peak detector circuit will detect any
unbalance and give a non zero output when a DC flux is present. The output of the
peak detector is combined with the AC component measured by a third core which
works as a normal transformer. A control loop is set up to generate the secondary
current that will bring the total DC flux back to zero [84].

The secondary current is therefore a fractional image of the primary current, and
it can be fed into a precision burden resistor to get a measurable voltage signal. This
signal is amplified by an output amplifier to produce a 0 . . .10 V output.

DCCTs have the potential of reaching short term stability and repeatability in
the order of a few part-per-million. This requires not only a careful design of
the magnetic part (magnetic “head”) as well as the use of high quality burden
resistors and very stable precision amplifiers, usually in a temperature controlled
environment.

A DCCT “head” used in the LHC is shown in Fig. 8.52.
The head design and in particular the magnetic shielding are important to

increase the sensitivity to the primary magnetic field while minimising the sen-
sitivity to external magnetic fields, head centring and return bus-bar fields. Soft
magnetic materials and in particular amorphous and nanocrystalline alloys are the

Fig. 8.51 The DCCT working principle



416 F. Bordry et al.

Fig. 8.52 A 13 kA DCCT
“head”, used in the LHC

most commonly used in the DCCT core and inner shielding design because of
their magnetic properties such as high initial permeability and low coercivity. As
for the outer layer of the shielding, a doughnut-shaped shell containing the cores
and the inner shielding, ferromagnetic materials of lower permeability and high
saturation are normally used. During the last couple of decades, improvements in
the manufacturing process of amorphous alloys contributed to their widespread use
and to the development of new materials hence making for a greater availability
of candidate materials for magnetic sensors. More recent developments include
progress in reducing coercivity and increasing saturation induction of amorphous
and nanocrystalline materials [85]. These new breakthroughs have still to find their
application in DCCT head design.

The current output of the DCCT is usually connected to a burden resistor, a 2-
terminal or 4-terminal resistor depending on the required accuracy. The performance
of this component is one of the dominant factors in the overall accuracy of the
transducer. Well known effects that can cause resistance change and therefore can
affect the performance of DCCTs are temperature coefficient, self heating and
thermal settling as well as ageing. Less well know effects include power coefficient,
humidity absorption and hysteresis under power cycling. The highest accuracy
available in DCCT burden resistors known at the moment is offered by a proprietary
Zeranin wire design from PM special measuring systems, which is used in the LHC
main dipole and quadrupole DCCTs, but its price limits its use only to the most
critical DCCTs. Otherwise there is only one resistor type on the market offering
the performance needed: Bulk Metal Foil or “foil”. This technique, pioneered by
Vishay, but now widely spread, tightly bonds a rolled metal foil to a substrate and
seeks to compensate the resulting consistent stress effects as part of the overall
resistor performance [86].

The voltage across the burden resistor normally needs to be amplified to produce
a voltage output adequate for subsequent ADC conversion. This task is done by
a precision amplifier, usually a difference amplifier circuit making use of high
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precision network ratio resistors to establish the gain. Presently, the consumer
electronics market offers a range of choice in precision amplifiers, including low
offset, low drift amplifiers that can be used as the output amplifiers in the DCCT.
However, this does not exempt the designer from careful design and implementation
of the output circuit. Parameters such as offset and gain stability, noise, common
mode rejection and output impedance depend strongly on circuit design and
implementation.

8.4.4.2.3 ADCs (Analogue to Digital Converters)

With the advent of digital control, Analogue to Digital Converters have become
essential components for ensuring the accuracy of the current measuring chain
in the control loop of power converters. If in the past, most of the control was
implemented using analogue electronics, in the last couple of decades digital control
has almost completely taken over. The advantages of having a digital representation
of the signal are numerous and not limited to power converter control: calibration,
traditionally done by adjusting gain and offset potentiometers, is now performed
using calibration constants which can be memorised and used to correct the output
of the measuring device. If these constants are also kept in a database and updated
whenever a calibration takes place, the task of following the behaviour of high
precision devices becomes much simpler and less error prone. Another advantage
is the possibility of using correction algorithms. A typical example is the use of
a temperature sensor and a correction algorithm to correct for the temperature
dependency of a measurement device.

ADC technology has significantly evolved in the last couple of decades fuelled
mainly by the telecommunications industry. As a consequence, a wide range of
solutions in AD conversion are available on the market with tradeoffs in resolution,
speed and accuracy. In power converter control for accelerators, ADC speeds
above the MHz are seldom required. As for resolution, requirements often range
from 16 bits to 24 bits with accuracy following along. In this context Successive
Approximation Register ADCs (SAR) have recently become of the most interesting
technologies to follow as they are now competing with Delta Sigma ADCs and multi
slope integrating ADCs in the high resolution, high accuracy segment. However, to
reach effective resolution figures beyond 20 bits, they must operate in oversampling
mode. Some ICs have built-in provisions for it, while for others it has to be
implemented in external logic [87]. Therefore, Delta Sigma ADCs still remain
the most commonly used solution in the segment. They do not require external
components, their oversampled nature simplifies circuit design by relaxing the
requirements of the analogue anti-aliasing filter and they are often simpler to
drive than SARs. However, higher accuracy also requires more complex digital
decimation filters which, for linear phase FIR filters, corresponds to increased
latency. Filter latency limits the maximum loop bandwidth which means that high
accuracy is normally associated with lower speed. The use of minimum phase FIR
filters can substantially decrease latency.
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Fig. 8.53 The architecture of the Delta-Sigma Analogue to Digital converter used in the LHC
main power converters

ADC accuracy depends greatly on the voltage reference employed. Precision
external voltage references are preferred in applications demanding high accuracy
as they have lower temperature coefficient, thermal hysteresis and long term drift
than an on-chip voltage reference. High end Zener based high precision references
usually use buried Zener technology. They can include internal temperature control
or temperature compensation. However, for higher accuracy, they might need to be
stabilised inside a temperature controlled oven. Reference annealing can also be
used to accelerate the ageing process and reduce initial drift.

The main dipole and quadrupole power converters on the LHC use a Delta Sigma
converter with a resolution of about 22 bits. The voltage reference is a buried
zener type, previously submitted to a burn-in process for minimum drift. Sub-ppm
accuracy is achieved albeit at very low sampling speeds (1 kHz) and in a temperature
controlled environment.

Figure 8.53 shows the architecture of the Delta-Sigma Analogue to Digital
converter used in the LHC [88].

8.4.4.2.4 Calibration

There can be different motivations for calibration of measurement devices in
accelerator applications. The first is the requirement to keep long term drift within
specified limits. Another motivation is to minimise the impact of replacements.
When an operational equipment is replaced by a spare, the impact on the accuracy
of the power converter depends on the difference between the measurement errors
of the two devices. This difference can be kept within specified limits by means
of periodic calibration. Finally, calibration might be necessary to guarantee good
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tracking between different transducers. Such is the case in the LHC at CERN,
where the main dipole and quadrupole circuits are divided into eight sectors. In
this case, calibration of the current measurement chain using the same reference
ensures that all sectors track each other, allowing the beam to circulate around the
machine without “seeing” any difference in the magnetic field between sectors.

The periodicity of calibrations must be set according to the accuracy require-
ments of the power converter. Some devices include automatic calibration mecha-
nisms: a common practice is to use a multiplexer that connects the ADC input to
a voltage reference for calibration. However, the references themselves might need
periodic calibration, so human intervention might be unavoidable.

Calibration procedures usually involve the use of dedicated equipment which
must be previously characterised in a laboratory using well known reference
devices. The complexity of the necessary calibration infrastructure depends on the
accuracy one is trying to achieve. Some of the methods employed to calibrate
DCCTs and ADCs and required calibration equipment are described below.

DCCTs can be calibrated through different methods:

1. The reference DCCT method, where the output of the DCCT being calibrated is
compared against the output of a “reference” DCCT measuring the same current.

2. The output stage method, which involves injecting a reference current in the
burden resistor of the DCCT and measuring its output with a calibrated ADC or
with a DVM. The value of the error is then memorised by the digital controller.
This method has the disadvantage that it only calibrates the DCCT output stage
(burden resistor + precision amplifier) and it requires a precision current source
to generate the calibration current.

3. The calibration winding method, which involves injecting a reference current in
an auxiliary winding in order to produce an Ampere-Turn value equivalent to the
one produced by the primary current hence simulating real primary current. The
output of the DCCT is measured with a calibrated ADC or with a DVM and the
value of the error is memorised by the digital controller.

The latter method requires a precision current source to generate the calibration
current. At CERN, a programmable current reference has been developed for the
calibration of DCCTs equipped with calibration windings [89]. It can produce DC
currents ranging from −5 A to 5 A with sub-ppm accuracy. In the LHC, in-situ
calibration systems equipped with these devices are installed close to the main
power converters. They are housed in temperature controlled racks and can be
remotely controlled via an ethernet connection in order to calibrate one or several
DCCTs in the main dipole and quadrupole power converters.

The remotely controlled calibration system used in the LHC is depicted in Fig.
8.54.

In applications where a reference current source is not available, DCCTs
are usually calibrated using the reference DCCT method. However, since in-situ
deployment of a reference device is not always easy, the calibration procedure
often requires bringing the DCCT to a laboratory. As removal and transport of the
magnetic heads is a difficult process, the calibration in the laboratory is normally
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Fig. 8.54 The remotely controlled calibration system for the main power converters in the LHC

performed using a different magnetic head. This can introduce errors that must be
accounted for.

ADCs can be calibrated using different methods depending on the requirements
of the application. The most common is a three point calibration i.e. calibration
at ± FS (Full Scale) and at zero. Calibration at FS can be performed using a
voltage standard connected to the input of the ADC. The use of voltage standards
requires constant monitoring and maintenance of these devices, including periodic
calibration in an independent standards laboratory. In the LHC case, a set of voltage
and resistor standards as well as forty unique 10 mA portable current standards [90]
are kept in a controlled environment to be used as the basis for CERN’s calibration
infrastructure. Some units are used for field calibration whilst a set of standards is
kept constantly in the laboratory, under permanent monitoring.

8.5 Ultra-High Vacuum

V. Baglin · J. M. Jimenez

8.5.1 Introduction

In particle accelerators, beams are travelling under vacuum primarily to reduce the
beam-gas interactions i.e. the scattering of beam particles by the molecules of the
residual gas. These interactions are responsible for machine performance limitations
such as reduction of beam lifetime (nuclear scattering) and of luminosity (multiple
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coulomb scattering), intensity limitation by pressure instabilities (ionization) and,
for positive beams only, electron (ionization) induced instabilities, e.g. beam blow
up.

Beam-gas scattering can also increase the background to the detectors in the
experimental areas (non-captured particles or nuclear cascade generated by the lost
particles upstream the detectors) and the radiation dose rates in the accelerator
tunnels. Thus leading to material activation, dose rates to intervention crews,
premature degradation of tunnel infrastructures like cables and electronics and
finally higher probability of electronic single events induced by neutrons which can
destroy the electronics in the tunnel but also in the service galleries.

In addition, the design of an accelerator vacuum system must observe severe
additional constraints which have to be considered at the design stage since
retrofitting mitigation solutions is often impossible or very expensive. Among
them, the vacuum system has to be designed to minimise beam impedance and
radiofrequency higher-order-modes (HOM) generation as well as to optimise the
beam aperture in particular in the magnets. It also must provide enough ports for the
pumps and for the vacuum diagnostics and allow for bake-outs in order to achieve
Ultra-High Vacuum (UHV) pressures (<10−8 Pa). The impact of other constraints
like integration, safety (material and personnel), operational issues (conditioning of
RF and HV devices) and costs often lead to a compromise in performances of all
systems of an accelerator. This explains why these issues must be addressed at the
design stage [91].

For accelerators operating at cryogenic temperatures [92], the heat load induced
by scattered beam particles and synchrotron radiations can also be an issue for the
cryo-magnets since local heat loads can lead to a magnet quench i.e. a transition
from the superconducting to the normal state. The heavy gases are the most
dangerous because of their higher ionisation cross-sections. Thus, the beam-pipes
shall be designed to intercept heat loads induced by synchrotron radiation, energy
loss by nuclear scattering, image currents, energy dissipated during the development
of electron clouds. In the LHC, these constraints required, for the first time in a
particle accelerator, the use of a beam screen [93]. Increasing further the luminosity
of a storage ring operating at cryogenic temperature, such as in the High-Luminosity
LHC (HL-LHC), the very large production of collision debris must be intercepted
at the level of the beam screen by heavy material, e.g. tungsten. This shielding is
designed to offer a protection of the superconducting coil against radiation induced
ageing and extract the beam induced heat load at an elevated temperature, e.g. 60 K,
to optimise the Carnot efficiency [a].

8.5.2 Vacuum Fundamentals

Vacuum is defined as the absence of matter or a space empty of matter. These
are idealistic definitions since a perfect vacuum is a theoretical limit. Realistically,
whenever a pressure in an enclosed space is less than the pressure of the surrounding
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atmosphere, the enclosed space is defined to be under vacuum. Hence, vacuum is
obtained by removing molecules of gas from an enclosed space to the necessary
level required for a specific process or experiment. A gas in an enclosed space can
be physically described by its volume, its temperature and the amount of molecules
or the pressure.

8.5.2.1 Total, Partial and Vapor Pressures

The residual gas is usually composed of several types of molecules (ex: air, gas in
vacuum systems). The total pressure, Ptot, is the sum of all the partial pressure, Pi,
as shown by the Dalton law:

Ptot =
∑

Pi = kT
∑

ni. (8.46)

The saturated vapor pressure of gasses (Fig. 8.55) is of major importance for
the accelerators operated at cryogenic temperatures. Above ambient temperature,
only water condensation is a limitation justifying the use of bake-out to improve the
outgassing. At 1.9 K, the operating temperature of the LHC cold mass, helium is
of concern in case of leaks. In the 5–20 K range, the hydrogen is pumped onto the
cold bore due to the beam screen’s perforation which has a conductance designed to
maintain the partial pressures below the 100 h life time limit. If operated between 20
and 40 K, then the scheme is less favorable and strong pressure oscillations can be
expected in presence of temperature variations. This is one reason why this range of

Fig. 8.55 Saturated vapour pressure [94]
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temperature is avoided others are the cryogenic implications and magneto-resistance
of the beam-pipe materials.

8.5.2.2 Gas Laws and Gas Densities

The vacuum system of an accelerator will behave as the gas it contains. The major
Laws of interest to predict the behaviour of gasses are Boyle’s Law, Charles’s Law,
Gay-Lussac Law and the General Gas Law which resulted from the combination of
Boyle’s and Charles’ Laws.

The Avogadro’s Law is very useful to convert pressures, P, into gas densities,
n, for a given volume, V. Under the same conditions of pressure and tempera-
ture, equal volumes of all gases have the same number of molecules: called a
mole.

PV = nkBT , (8.47)

with:

kB = 1.38× 10−23
[

Nm

K
= Pa·m3

K

]
= 1.38× 10−22

[
mbar· l

K

]
. (8.48)

For T = TRT = 296 K (23 ◦C):

1

kBTRT
= 2.45× 1020

[
Pa·m3

]−1 = 2.5× 1019 [mbar· l]−1,

in other words, a volume of 1 l at room temperature and 1 mbar contains
2.5 × 1019 molecules.

8.5.2.3 Gas Flow, Mean Free Path, Throughput and Ultimate Pressure

After having pumped out the gas molecules from the volume (Fig. 8.56), the residual
pressure in the beam-pipe is dominated by the surface desorption then, at much
lower pressures, by the diffusion from the beam-pipe walls and the permeation
through them. Modern pumping systems allow roughing the accelerator beam-
pipes quickly enough to have only to consider the molecular regime, laminar and
intermediate regimes being ruled out in few minutes. The molecular flow regime
occurs when molecules are so far apart that they no longer have any influence
on each other. Their motion is strictly random and their mean free path, i.e. the
path length that a molecules traverse between two successive impacts with other
molecules becomes larger than the beam-pipe dimensions. The mean free path for
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Fig. 8.56 Typical pump
down curves observed in
accelerator beampipes [b]

air at room temperature is given by:

λair [m] = 6.67× 10−3

P [Pa]
; λ = 67 m at 10−4Pa

(
10−6mbar

)
, (8.49)

In steady-state or equilibrium conditions, the throughput (quantity of gas per unit
of time), Q, is conservative: the same at one end of a vacuum system as it is at the
other.

Q = PV

t
= P

V

t
= P · S, (8.50)

S being defined as the pumping speed [m3/h], often in l/s.
In reality, Eq. (8.49) becomes Eq. (8.50) where, P0, is defined as the ulti-

mate pressure. In general, S varies in the range of three orders of magnitude
(~1 → 1000 l s−1) while Q can extend over more than 10 orders of magni-
tudes: ~10−5 mbar·l·s−1·cm−2 for plastics → 10−15 mbar·l·s−1·cm−2 for met-
als [95]. The right choice of materials and treatments is compulsory in the
design of vacuum systems especially those for accelerators. In this respect the
measurement of outgassing rates is a basic activity for an ultra-high vacuum
expert.

Equation (8.50) shows that the ultimate pressure which is intrinsic to the system
dominates at low pressure regimes. At a given stage, increasing the pumping speed
will not lead to the expected pressure decrease.

P = Q

S
+ P0, (8.51)
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8.5.2.4 Outgassing of Materials

The outgassing is the spontaneous evolution of gas from solids or liquids. To be
compared with the degassing which is the deliberate removal of gas from a solid or
a liquid and with the desorption which is the stimulated release of adsorbed chemical
species from the surface of a solid or liquid.

The intrinsic outgassing rate is the quantity of gas leaving per unit time and per
unit of exposed geometric surface, or per unit of mass, at a specified time after
the start of the evacuation. The geometric surface is the visible surface without
correction for roughness or open porosity. The measured outgassing rate is the net
difference between the intrinsic outgassing rate and the rate of re-adsorption in the
test chamber. The re-adsorption rate depends on test chamber and on method of
measurement.

For unbaked metals, water is the main gas desorbed. The outgassing rate of water
decreases following a 1/t law. The outgassing of unbaked metals is not an intrinsic
value. However, measurements have shown that the water outgassing does not
depend significantly on the nature of metals, on surface treatments and on operating
temperature for temperatures lower than 110 ◦C. At present no methods, except
heating (bake-out), exist to quickly remove water from unbaked metals. The fact
that desorption rates depend exponentially on temperature allows a faster reduction
of outgassing through heating (bake-out procedure). If a heat of adsorption of
15 kcal/mol and a bake-out temperature of 150 ◦C are assumed, the rate of gas
removal will be increased by a factor of roughly 5000 relative to the value at room
temperature.

The outgassing of baked systems is dominated by H2 diffusing out of the metallic
walls. The remaining outgassing species CH4 and CO are believed to be related
to the presence of H2 and its recombination with the surface contaminants. These
species will decrease if the H2 level is reduced. Contrary to water outgassing,
the value of the outgassing rate of hydrogen is stable at room temperature. When
the thermal history is known, the outgassing of hydrogen is an intrinsic property
of metals. The diffusion model predicts values for the hydrogen outgassing that
are in agreement with experimental observations. For the vacuum-fired chambers
(950 ◦C × 2 h, 10−3 Pa H2), the outgassing rate is limited by the background
signal induced by the gauges. The upper limit at room temperature is 10−14

mbar·l s−1·cm−2. In UHV systems, the outgassing of the beampipes can often be
compared to the outgassing of the vacuum instrumentation. Therefore, the out-
gassing of the instrumentation has to be considered in the design of an accelerator,
in particular close to the detectors in the experimental areas or in regions where
non-evaporable getter (NEG) coatings are used.

8.5.2.5 Kinetic Theory of Gasses

The gas density velocity distribution (mass of gas m) at a temperature, T, in a sta-
tionary large volume and at equilibrium follows a Maxwell-Boltzmann distribution
law:
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dn

dν
= 2n

√
m3

2πk3T 3 e
−mν2

2kT ν2. (8.52)

The average velocity of molecules is given by Eq. (8.52) in m/s with T in K and
M the molar mass. The number of molecular hits on a wall per second is given by
(8.53).

ν =
√

8kT

πm
= 146

√
T

M
, (8.53)

μ = n

4

√
8kT

πm
= 1

4
nν. (8.54)

8.5.2.6 Conductance and Effective Pumping Speed

The conductance of an orifice of surface A, and of a tube of diameter D and
length L, can be derived from the previous expression and are given for air at room
temperature by Eqs. (8.54) and (8.55), respectively.

Cair, 20◦C [l/s] = 11.6 A
[
cm2
]
, (8.55)

Cair,20◦C [l/s] = 12.1
D[cm]3

L [cm]
, (8.56)

to be noted that both equations show that the conductance varies with
√
T/M .

The conductances add when in parallel (C = ∑ Ci) and they add in the inverse
when in series (1/C = ∑

(1/Ci)). The flux through a conductance is given by:
Q = C(P2 − P1) [96, 97].

As any type of discrete pump is connected to the beampipe through a connecting
piece with a conductance, C, the efficient pumping speed is given by:

Seff = Q

P
= C S

C + S
, (8.57)

in practice, Seff ~ S if C >> S, Seff ~ C if C << S, and Seff ~ S/2 if C ~ S. It is
therefore of great importance to optimise the conductance of the connecting pieces
to benefit as much as possible of the pumping system.
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8.5.3 Vacuum Dynamics

8.5.3.1 Synchrotron Radiation

When a particle beam circulates in a bending magnet or circulates off-axis in
a quadrupole magnet, it might radiates photons and lose energy by synchrotron
radiation (SR). The interaction of the synchrotron radiation with the vacuum
chamber wall stimulates molecular gas desorption and dissipates heat load.
Therefore, the vacuum chamber design must take into account these effects [98,
99].

The synchrotron radiation is due to the acceleration (centripetal or longitudinal)
of the charged particles. Therefore, these charged particles loose energy which
must be compensated by the RF system in order to keep the particles on
the closed orbit. The dissipated power due to the centripetal acceleration
is much larger than the longitudinal acceleration. The proportional factor is
equal to the relativistic factor γ to the square. Due to the relativistic effects,
the radiation is strongly emitted in the forward direction. The opening angle
is roughly 1/γ. The energy of the emitted photons varies from meV to
MeV.

The synchrotron radiation spectrum is characterised by the critical energy εc.
This energy separates the power spectrum in two equal amounts. However, 90% of
the emitted photons have energy below the critical energy. The critical energy is
given by Eq. (8.57) where h is the Planck constant, c the speed of light and ρ the
curvature radius.

εc = 3

2

hc

2π

γ 3

ρ
, (8.58)

A practical equation for engineers is given by Eq. (8.58) for electrons and
protons.

εc [eV] = 2.218× 103 E [GeV]3

ρ[m] for electrons, and

εc [eV] = 3.5837× 10−7 E [GeV]3

ρ[m] for protons.
(8.59)

At CERN, the critical energy of the Large Electron Positron Collider (LEP) was
varying from 6 keV at injection till 660 keV at 104 GeV. For the Large Hadron
Collider (LHC), the critical energy varies from 10 meV at injection till 44 eV at
7 TeV.

Practical equations for engineers of the dissipated power, P0, and photon flux, Γ ,
as a function of beam energy, E, and beam current, I, are given by Eqs. (8.59) and
(8.60).
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P0 [W/m] = α
E [GeV]4

2πρ[m]2 I [mA] ,with α = 88.7 or 7.79 × 10−12 for electrons or protons,

(8.60)

Γ̇
[
ph/m/s

] = β E [GeV ]
ρ[m] I [mA] , with

β = 1.288× 1017 or 7.017× 1013 for electrons or protons.
(8.61)

In accelerators with synchrotron radiation (SR), e.g. LEP, DIAMOND, SOLEIL,
. . . , the heat load of some 10 kW/m requires the use of coolant and dedicated
engineering design in order to evacuate the heat deposited on the beam-pipe
wall. In the LHC, the heat load of 0.2 W/m is evacuated by the beam screen’s
cooling circuit maintained between 5 and 20 K while the cold bore is operating
at 1.9 K.

The photo-desorption of neutral gas from the oxide layer is a 2 steps process
where photo-electrons and secondary electrons desorb molecules from the near
surface and excite strongly bounded molecules which subsequently desorb ther-
mally. The desorb species are H2, CH4, H2O, CO, O2 and CO2. The phenomenon
is characterised by the photo-desorption yield η, which is the ratio of the desorb
molecules to the number of incident photons. The photodesorption yield increases
when decreasing the angle of incidence. Below 1 keV, the photo-desorption yield
scales roughly like the critical energy and is almost constant above 1 keV. The
desorption yield, which decreases under photon irradiation, can be expressed as a
function of the initial desorption yield, η0, initial and accumulated photon dose, D0
and D, by Eq. (8.61) with D0 ~ 1021 . . . 1022 ph/m and a ~ 0.9 . . .1.3.

η = η0

(
D

D0

)−a
. (8.62)

At 3.75 keV, after a period of beam cleaning of 1024 . . . 1025 ph/m accumu-
lated, the photo-desorption yield is reduced from 10−2 . . . 10−3 to 10−5 . . . 10−6

molecules/ph for unbaked and baked Cu or baked stainless steel surfaces. The
desorption yield of aluminium is a factor 10 higher, most probably owing to the
fabrication process. The amount of gas desorbed during the process varies from
0.5 in the baked case to ~10 monolayers in the unbaked case. At large doses, the
irradiated surfaces have a pumping speed of ~100 l/s/m for CO and CO2. The
pumping capacity is however very small (10−4 monolayer). Figure 8.57 shows
typical curves measured during photon stimulated desorption studies.

Beside its pumping characteristics, Non Evaporable Getter (NEG) coating such
as TiZrV is also used to reduce the desorption yield. The diffusion barrier created
during the activation after the surface oxide layer has diffused into the bulk could
be the origin the low intrinsic yields. At 4.5 keV critical energy, the intrinsic
photodesorption yield is as low as 10−5 H2/ph and even lower for other gas species.
When the film is saturated with CO, the photo desorption yields remain constant.
Photon induced pumping by the getter is also observed for CO at a rate of 10−5
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Fig. 8.57 Photo-desorption
yields of unbaked stainless
steel irradiated by 3.75 keV
critical energy photons [100]

CO/ph [101]. A cleaning rate a = 0.4 (Eq. 8.61) was observed with 20 keV critical
energy.

At cryogenic temperature, the photo-desorption yields are reduced by one order
of magnitude as compared to room temperature. The primary desorption equals
10−4 molecules/ph for unbaked Cu held at 5 K when irradiated by SR of 200 eV
critical energy. The cleaning rate a equals ~0.6. During irradiation, the previously
strongly bounds molecules are weakly bounded (physisorbed/condensed) to the cold
surface. In a closed geometry, these molecules can in turn be recycled into the gas
phase by the subsequent irradiation. A recycling yield as large as 1 H2/ph is reached
at one monolayer. In this case, the pressure level inside the vessel can increase up
to the saturated vapour pressure. However, the operating pressure, Pop, inside a cold
bore can be controlled by inserting a perforated liner with a conductance c. In this
case Pop is given by Eq. (8.62) [102].

Pop = η$̇

c
. (8.63)

8.5.3.2 Electron Cloud

Operation with trains of bunches of high intensity can lead to the formation of
a cloud of electrons. This was and is the case of machines such as ISR, PSR,
KEK-B, PEP-II, SPS, RHIC and LHC. This electron cloud affects the beam
properties but also contribute to the vacuum dynamics. When an electron is in
the vicinity of the beam potential, it can be attracted or repelled in the case of
a positive or negative beam. In both cases, there can be beam conditions which
produce photoelectrons, ionise the residual gas and/or allow the multiplication of
secondary electrons with time. Once the energy given to electrons is above the
binding energy of physisorbed and/or chemisorbed molecules (0.1 . . .1 eV) the
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bombardment stimulate gas desorption from the vacuum chamber wall. Clearly, the
highest gas load is observed in the multipacting regime. For instance, in the LHC,
the proton bunch intensity is large enough to give a kick of ~100 eV to the stray
electrons. At the wall, these electrons stimulate gas desorption but also produce
secondary electrons. The secondary electrons are further accelerated to ~100 eV
by the following bunch, 25 ns apart, leading to a multiplication of electrons in the
vacuum system.

Similarly to photon stimulated molecular desorption, electron simulated molec-
ular desorption is characterised by the electron desorption yield. The electron
desorption yield is also decreased under electron bombardment according to Eq.
(8.61). The electron desorption yield increases almost linearly with the electron
energy. Table 8.17 shows the initial yield and cleaning rate for unbaked and baked
copper when perpendicularly irradiated by 300 eV electrons. At an integrated dose
of 5 × 1016 e/cm2, the desorption yield of the baked Cu is about one order of
magnitude lower than unbaked Cu. After an accumulated dose of 1018 e/cm2, i.e.
1.6 mC/mm2, 1 . . .10 monolayers of gases have been desorbed, mainly H2. The
hydrogen electron desorption yield can be explained by a diffusion model (a ~ 0.5).
The H atoms are produced by the dissociation of the hydroxides and diffuse under
the electron bombardment.

Electron desorption yields of metallic surfaces are about the same. As a compari-
son to the baked case, after activation, the initial yields for NEG coatings are further
reduced by 1 and 2 orders of magnitude for H2 and CH4, CO, respectively. Like
the SR case, electron induced pumping is observed for CO at a rate of 10−3 CO/e
[105]. At 4.2 K, the electron desorption yield of physisorbed/condensed molecules
is linear up to a monolayer and then levels-off. Values up to 500 H2/e were reported
with 300 eV electrons [106].

The secondary electron yield (SEY) is another key parameter which defines
the vacuum level in a beam tube. It is defined as the ratio of the number of
produced electrons to the number of incident electrons. The SEY value determines
the amount of stray electrons between each bunch and therefore the electron flux
to the wall. Therefore, there are strong interests to reduce the SEY for the vacuum
scientist. The maximum of the SEY curve δmax, lies in the range 200 . . .300 eV.
Typical δmax values for as received metallic surface are ~2. Baked Cu has 1.8

Table 8.17 Desorption yield parameters δ for unbaked and baked copper perpendicularly irradi-
ated by 300 eV electrons [103, 104]

H2 CH4 H2O CO CO2

Unbaked η0 2 × 10−1 3 × 10−2 1 × 10−1 4 × 10−2 5 × 10−2

D0 [×1014] 3 1 6 2 4
a 0.5 0.6 0.7 0.5 0.5

Baked η0 4 × 10−3 2 × 10−4 – 1 × 10−3 7 × 10−4

D0 [×1016] 5 5 – 5 5
a 0.6 1.3 – 0.6 0.9
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and atomically cleaned Cu has 1.5. Water condensation on atomically cleaned Cu
resets δmax to 2 which correspond to the as received state. Coating such as baked
TiN, activated TiZrV or amorphous carbons are used to reduce δmax close to 1.
Due to graphitization of the carbon oxides, an accumulated electron dose of a few
mC/mm2 is also effective by beam scrubbing to reduce δmax of a metallic surface
(except Al) close to 1 [107]. These methods are used in recent machines to control
the multipacting process. Thanks to their morphology, laser engineered structured
surfaces can reduce δmax below 1. However, their exploitation in future accelerator
is still under study.

8.5.3.3 Vacuum Stability

In storage rings, the circulating particle beam ionise the residual gas. The produced
ions are then repelled toward the vacuum chamber wall desorbing neutral gasses.
As a consequence, the amount of beam-ionisation is increased leading to a higher
gas load. Ultimately, this mechanism, which was first observed in the Intersecting
Storage Rings (ISR), can conduct to a particle loss and a pressure run-away [108].
Modern accelerators operated with high beam intensities are designed to maintain
vacuum stability (SNS, LHC).

The flux of molecules Q(I), inside the vacuum chamber is a function of the ion
desorption yield, η, the gas pressure, P, the ionisation cross section, σ , and the
thermal outgassing, Q0. It is given by Eq. (8.63) where I is the beam intensity and e
the electron charge.

Q(I) = ηPσI/e +Q0. (8.64)

With a linear pumping speed, S, the dynamic pressure is given by Eq. (8.64).

P(I) = Q(I)

S
= Q0

S − ησI/e
. (8.65)

The stability limit is then given by Eq. (8.65) when the denominator of Eq.
(8.64) equals zero. During operation, when the beam current approaches the critical
current, the pressure increases drastically leading to strong particle losses and
ultimately to beam dump.

(ηI)crit =
eS

σ
. (8.66)

In practice, a treatment to reduce the ion desorption yield and the optimisation
of the pumping speed at each position of the vacuum system is required to
achieve vacuum stability. Ex-situ Argon glow discharge with in-situ bake-out was
successfully applied in the ISR.
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In the LHC, the ion impact energy is ~500 eV. For baked materials, ion desorption
yields are a few 0.1 molecules/ion while minor beam conditioning is expected
during operation. When using NEG coatings, the vacuum stability is ensured by
lumped pumping to constraint CH4. This allows to achieve a critical current larger
than 4 A in the LHC experiments and in the long straight sections [109]. At 4.2 K
and 5 keV, the ion desorption at a monolayer for a condensed gas is as large as 2000
and 2 for H2 and CO2 respectively. Due to the closed geometry of the beam tube
and the possibility to physisorbed/condensed gas, the critical current of Eq. (8.65)
is modified into Eq. (8.66). It is a function of the sticking probability α and the ion
desorption yield at cryogenic temperature, η’.

Icrit = αS

(η + η′) σ/e
. (8.67)

For such a closed geometry when operating at cryogenic temperature, the critical
current is less than 1 A for vacuum chambers of 1 m length. However, the perforation
of the LHC beam screen inserted inside the cold bore guarantee a minimum
pumping speed. Thus, the equilibrium coverage of the condensed gas is below a
monolayer and the product (ηI)crit is ~ 100 [98, 99].

8.5.3.4 Particle Losses

In heavy ions storage rings or accelerators, beam losses linked to charge transfer
induce large pressure rises (RHIC, LEAR, GSI, LHC . . . ) which could trigger the
beam dump. These pressure rises are due to heavy ions bombarding the vacuum
chamber wall at grazing incidence. At high energy, the heavy ions lose energy in
the solid by electronic losses (stopping power) which determines the desorption
yield. The reported desorption yields are very large but decrease when increasing
impact energy above the Bragg maximum (1 MeV/u for lead ions on Cu). At
grazing incidence, the yields range from 102 to 105 molecules/ion as a function of
surface treatment and impact energy. Possible mitigation techniques implemented
in operating machines are the use of dedicated collimators, beam conditioning (2
orders of magnitude is gained after 100 h i.e. 1013 ions/cm2), NEG coatings, etc.
[110]. For machines operating at cryogenic temperatures, the dominant factor is the
quench level of the cryomagnets. For these typical loss rates, pressure rises are often
negligible.

8.5.4 Vacuum Engineering

The engineering of the vacuum system of a particle accelerator has to be started
right from the beginning of the project. Indeed, if considered later on, the resulting
integration and performance issues will lead to a significant increase of the cost of
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the vacuum system (complex shapes, more pumps, retrofitted modifications, etc.)
and even into performance limitations. Experience has shown that the vacuum engi-
neering shall proceed in parallel on the following topics: expertise provided to beam-
related components (magnets, beam instrumentation, radio-frequency systems, etc.),
engineering of vacuum related components (beampipes, bellows, pumping ports,
etc.) and machine integration including cabling and services.

8.5.4.1 Vacuum Pumping

The pumping scheme is often decided at the early stages of the design since it affects
the overall engineering of the accelerator. Indeed, the pumping scheme will define
the reserved space for the pumping and in case of integration problems will lead to
alternative solutions to preserve the expected performances or to compromise. The
number and types of pumps will allow reaching the design operating pressure which
is linked to the beam lifetime, a parameter in relation with the beam-gas scattering.

As the pumping speeds vary between a few litre-per-seconds to thousands of
litre-per-seconds while the outgassing rates of materials in the vacuum system vary
by up to 8 orders of magnitude, an appropriate selection of material and design is
required to achieve the specified vacuum performances. Said differently, increasing
the installed pumping speed in an accelerator by a factor 2 is already challenging
and costly, whereas losing several orders of magnitude in outgassing rates could
easily result from an inappropriate use of materials or bad vacuum engineering or
cleaning of the materials.

8.5.4.1.1 Discrete Pumping

In particle accelerators, discrete pumping is the most commonly used solution and
is often obtained by ion pumps combined with sublimation or non-evaporable getter
(NEG) cartridge pumps, cryogenic and turbomolecular pumps.

Ion pumps [111] are widely used since they are very reliable and provide a
large pumping speed, up to 800 l/s. In addition, the discharge current of an ion
pump is directly proportional to the pressure, and thereby provides an indication of
pressure for a limited cost. This signal is often used to trigger vacuum interlocks for
machine protection. Ion pumps have also the advantage of pumping all gas species
and once baked-out at 250–300 ◦C, the ultimate pressure is in the low 10−10 Pa.
Special attention has to be taken while pumping noble gasses and water. Above a
given quantity of gas pumped, part of the pumped noble gasses will be released as
hydrogen (via dissociation of the water molecules) when pumping water.

Sublimation pumps [112] are often used to speed up the pump down to the UHV
pressure range or as a complement to ion pumps at very low pressures (<10−10 Pa).
If used at high pressures, the pump’s bodies must be water cooled to prevent the
heating induced by the frequent activations (several per minute). Similarly to NEG
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pumps, the major limitation of the sublimation pumps is that the pumping speed of
noble gasses and methane is very small.

NEG pumps are commercially available as different types: cartridges [113], strips
and coatings. Only the first type is used as discrete pumping, strips and coatings
are, by nature, used as distributed pumping. NEG cartridges offer a huge pumping
speed for hydrogen, carbon mono- and dioxide. Once the NEG material is saturated,
the pumping capacity can be recovered by heating via Joule effect, most of the
commercial products include this option in the body of the NEG cartridge.

Turbo-molecular pumps are widely used by the industries and this has resulted
in a significant decrease of prices and increase in reliability. Most vacuum suppliers
provide a large variety of turbo-molecular pumps off-the-shelf. The improvement in
performance and lifetime over the last decades has stimulated their use in particle
accelerators. The major limitation comes from the radiation inherent in particle
accelerators. Indeed, this requires decoupling the power supply and associated
electronics from the body of the pump, a technical solution contrary to the needs
of industry. Thus explaining why most of the suppliers are reluctant to develop and
maintain such products in their catalogues.

Cryogenic pumps are also widely used by industry and similarly to turbo-
molecular pumps, the prices have decreased. Cryogenic pumps are used in accel-
erators to cope with huge local outgassing, mainly on unbaked systems. Special
operating precautions have to be taken to limit the back streaming of condensed
gasses in case of power cuts or compressor failure.

8.5.4.1.2 Distributed Pumping

Distributed pumping has been used for decades in particle accelerators and is of
special interest for conductance limited beam pipes. The most commonly used
distributed pump was the ion pumps cells inserted in the dipole beampipes [114];
the dipole magnet field serving also for the ion pump cells. Later on and in particular
in the large electron-positron collider (LEP), NEG strips were used. The NEG strips
[115] were activated by the Joule effect.

More recently, the large hadron collider (LHC) could profit from the develop-
ment of the NEG coatings [116], a technology developed and industrialized at
CERN. These coatings provide many advantages such as a huge pumping speed,
large pumping capacity for hydrogen and low yields for secondary electrons and
stimulated desorption by electrons, photons and ions. The activation temperature
has decreased; 180 ◦C is enough to obtain nominal pumping speed and capacity.



8 Accelerator Engineering and Technology: Accelerator Technology 435

8.5.4.2 Vacuum Instrumentation

8.5.4.2.1 Pressure Sensors

Similar to the pumps, the evolution of the pressure sensors is stimulated by the
needs of the industry and the tendency is to use pressure sensors with electronics on
their heads. All types of pressure sensors are now available in catalogues covering
the range of pressure from several atmospheres (106 Pa) down to UHV pressures
(10−10 Pa). These products are cheap, reliable and easy to maintain.

However, their use in particle accelerators is also compromised by the inherent
radiation. An alternative are the so-called passive gauges with the electronics
decoupled from the pressure sensor. The existing sensors can be placed far away,
up to 2 km, from their controllers. It should be noted that the installation of
appropriate cables is an important issue to allow use of the sensors up to their
design specifications. Special attention has to be taken while laying the cables,
to avoid electromagnetic incompatibility and interference (EMI) perturbations; it
is recommended to lay these cables in special cable trays or with instrumentation
cables and to pay special attention to cable shielding and grounding loops.

The ion pumps are also often used as pressure indicators since their discharge
current is proportional to the pressure. Modern controls electronics allow a fast
conversion of the currents into pressures. The stability of the discharge current
explains why these signals are used as pressure interlocks.

8.5.4.2.2 Residual Gas Analyzers (RGA)

The residual gas analysers are of primary importance to understand the beam-gas
scattering since, as mentioned earlier, the ionisation cross-section varies with the gas
species. Therefore, while operating an accelerator with beams, knowing the residual
gas composition can allow calculating the beam lifetime and predicting potential
limitations.

As the modern accelerators require more and more UHV conditions to operate,
the RGAs must provide partial pressure resolutions in the low 10−11 Pa range to
provide useful information. This type of residual gas analyser is available off-the-
shelf, but in many cases, the electronics is attached to the head or placed at a few
meters. This limitation still exists and the demand being very small, most of the
suppliers do not plan to modify the position of the electronics thereby limiting the
use of RGA to radiation free environment.

8.5.4.3 Vacuum Sectorisation

The sectorisation of the beam vacuum system results from the combination of var-
ious constraints, the major being: venting and bake-out requirements, conditioning
requirements (RF and HV devices), protection of fragile and complex systems
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(experimental areas and ceramic chambers), decoupling of baked vacuum parts,
which are at room temperature, from non-baked parts at cryogenic temperature,
radiation issues, etc.

For UHV beam vacuum systems, all-metal gate valves are preferred in order
to allow for bake-out at temperature above 250 ◦C. VITON-sealed valves are less
expensive but limited in bake-out temperature. A special treatment of the VITON
seals is recommended prior to their use nearby NEG coatings or pumps since minor
outgassing of Fluor will degrade the pump characteristics.

Interlocking the sector valves is not an obvious task. Indeed, increasing the
number of sensors will provide more pressure indications but might results in a
degradation of the overall reliability. Protection at closure (pressure rise, leaks) is
treated differently from the protection while recovering from a technical stop. In the
latter case, parts of the accelerator beampipe vented or being pumped down must
not be put in communication with upstream or downstream sectors which remained
under vacuum.

8.5.4.4 Corrosion Issues

In vacuum systems, feed-throughs and bellows are particularly exposed to corrosion.
Feed-throughs, particularly those of the ion pumps where high voltage is perma-
nently present, are critical parts. Despite the design optimization made by many
suppliers, a direct heating of the protective cover to reduce the relative humidity
around the feed-through is the most efficient and commonly used technique to limit
the corrosion.

The bellows are also vulnerable due to their thinness, often between
0.1 . . .0.15 mm. Aluminum bellows are exposed to corrosion by nitric acid
(HNO3) which is generated by the combination of O3 and NOx. In presence of
PVC material, radiation can lead to the creation of hydrochloric acid (HCl) which
corrodes stainless steel materials. This corrosion is strongly penetrating, and once
seen at the surface, it is often too late to mitigate the effects.

Relative humidity is the critical parameter and must be kept below 50%.
However, accidental spillage can compromise locally the conditions and therefore,
corrosion-resistant design are strongly recommended.

Corroded components like feed-throughs and bellows normally start to leak
after a mechanical action or a venting to atmosphere. If several components are
affected, this could result in a long sequence of pumping, leak searching, venting,
repumping, etc., leading to a long downtime and often subsequent radiation dose
rates to personnel doing the interventions.

8.5.4.5 Experimental Areas

Their design must include the following additional constraints: integration, reliabil-
ity, availability, engineering and performances.
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The installation of the vacuum system follows the closure of the detector.
Therefore, the design has to be validated beforehand in order to prevent integration
issues which could prevent the closure of the detector and lead to significant delay
and increase of costs. Temporary supports and protection are required at each stage
of the installation. Indeed, as compared to the size of the detectors, the beam pipes
are small, fragile and need to be permanently supported and protected while moving
the detector components.

The leak tightness and bake-out testing are compulsory at each step of the
installation since all vacuum systems are later on encapsulated in the detector,
thereby preventing any access, even for repair. Their reliability is critical.

The installation of the detectors dictates the speed and sequence of installation of
the beam-pipes. To avoid delays, the vacuum components must be available (tested
and ready for installation) in advance in order to adapt to the installation sequence.

The experimental beam-pipe must be thin and manufactured from light material
in order to allow the particles created inside the beam-pipe to escape from it
through the vacuum envelope. Since the detectors are extremely demanding in
terms of operating pressure (normally expressed in gas densities) light materials
are mandatory. Beryllium and aluminium materials are the most commonly used.
Titanium is sometimes an alternative. These materials can be NEG coated by
plasma discharge and baked-out in-situ. Beryllium being is extremely expensive
and dangerous in case the beampipe breaks; beam-pipe design attempts have been
made to replace the beryllium by composite chambers. Carbon-carbon materials
have been used with metallic layers but the ultimate pressure is not yet in the range
of the specification of the modern detectors. The engineering solutions for the bake-
outs have also to be studied in details since the bake-out solutions (heaters, probes
and cables) must fit within the limited space available between beam-pipes and the
detector parts.

The excellent performances of the vacuum system in the experimental areas are
a determinant factor for the performances of the detectors themselves. The most
important issues to follow are the beam-pipe transparency, gas density and residual
gas composition, impedance and high order mode trapping and precise alignment.
The last point is difficult to achieve once the beam-pipes are installed in large
detectors.

8.6 Beam Instrumentation and Diagnostics

R. Jones · T. Lefevre · H. Schmickler

Beam instrumentation and diagnostics [117, 118] combines the disciplines of
accelerator physics with mechanical, electronic and software engineering, making it
an extremely interesting field in which to work. The task of a beam instrumentation
physicist or engineer is to design, build, maintain and improve the diagnostic
equipment for the observation of particle beams with the precision required to tune,
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operate and improve the accelerators and their associated transfer lines. This chapter
will give an overview of the instrumentation in use in modern accelerators, although
the choice available today is so vast that inevitably it will not be possible to cover
them all.

8.6.1 Beam Position Measurement

A beam position monitoring system can be found in every accelerator. Its role is to
provide information on the position of the beam in the vacuum chamber. In linacs
and transfer lines Beam Position Monitors (BPMs) are used to measure and correct
beam trajectories, while in synchrotrons such monitors are distributed around the
ring, providing the global orbit. Their location is usually chosen to be close to
the main quadrupole magnets where the β-functions are largest and so any orbit
distortion a maximum.

8.6.1.1 Pick-Ups

The measurement of beam position relies on processing information from pick-up
electrodes located in the beam pipe.

Four pick-up families are commonly employed (see e.g. [118]):

• Electrostatic
These consist of two electrodes insulated from and located on opposite sides

of the vacuum chamber (either left & right for the measurement of horizontal
position and/or up & down for the measurement of vertical position). As the beam
passes inside the pick-up it charges up the electrodes, which act as capacitors. The
amount of charge collected by each electrode will depend on the position of the
beam. Hence, by comparing the charge on opposite electrodes, a beam position
can be calculated. A so called “shoe-box” design (Fig. 8.58) is often used for
linearity, while a button design (Fig. 8.59a, b) is favored for short bunches and its
low cost, but needs correction for its non-linear response [119].

• Electromagnetic

Fig. 8.58 Example of a horizontal shoe box pick-up from the CERN SPS showing right electrode,
left electrode and the full assembly in its vacuum chamber
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Fig. 8.59 (a) Example of a button electrode from the CERN LHC. (b) Schematic of the full
LHC button pick-up assembly for dual plane measurement using four electrodes. (c) Example
of a stripline pick-up from the CERN-SPS

Fig. 8.60 Principle and example of a cavity pick-up (ATF2, KEK, Japan)

The most common type of electromagnetic pick-up is the stripline coupler
(Fig. 8.59c). These consist of two strip electrodes located on opposite sides of the
vacuum chamber, with an output port at each end. The particularity of this pick-
up is that the beam induced signal is only produced at one end of each strip and
depends on the direction of the beam. Commonly known as directional couplers,
they are used to distinguish between counter rotating beams present in the same
vacuum chamber. Due to their relatively high signal level they are also sometimes
exploited instead of electrostatic monitors for low intensity beams. Striplines also
provide beam signals with a fast time response, in excess of a few GHz, and are
used to observe transverse beam instabilities [120].

A second type of electromagnetic monitor is the cavity pick-up (Fig. 8.60).
These are constructed to exploit the fact that an off-centre beam excites a
dipole mode (TM110) in the cavity, with the amplitude of excitation directly
proportional to the off-axis displacement of the beam. This dipole mode has a
slightly different frequency from the main monopole mode (TM010) of the cavity,
which allows an excellent suppression of the intensity related signal. This in turn
can lead to very good accuracy and nanometre scale resolution 121].
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• Resistive/Inductive
These monitors make direct use of the image current flowing on the wall of

the vacuum chamber. A ceramic gap is used to force the image current through
external resistors, in the case of the resistive (wall current) monitor, or through
metallic rods fitted with transformers in the case of the inductive pick-up [122].
The position is calculated by comparing the output from suitably placed resistors
or rods.

• Magnetic
Such monitors are usually exploited for their relative insensitivity to stray

particles. In this case the two electrodes are replaced by two loops orthogonal
to the plane of measurement which couple to the magnetic field of the beam.

8.6.1.2 Beam Position Acquisition Systems

In order to extract an intensity independent position from all of these monitors a
normalised difference signal needs to be obtained, i.e. a difference signal which is
independent of the beam intensity [123]. In the case of the cavity this is simply
done by dividing the output of the dipole (difference) cavity with that of a separate
monopole (sum) cavity. In all the other cases one of the following methods is
employed (A and B being the signal from each electrode):

• Difference over sum (�/�)
The sum and difference are obtained either using a 0◦/180◦ passive hybrid,

a differential amplifier or calculated by software after digitising the signal from
each electrode The resulting transfer function is highly linear with Normalised
Position = (A−B)/(A+B).

• Logarithmic ratio
The two input signals are converted into their logarithmic counterparts and

subtracted. In practice this is done using logarithmic amplifiers followed by a
differential amplifier. The transfer function is an S-shaped curve which becomes
highly non-linear when exceeding 70% of the normalised aperture: Normalised
Position = Log (A/B) = Log(A)− Log(B).

• Amplitude to Phase or Time
The two input signals are converted into signals of equal amplitude but

varying phase by combining them in a 90◦ passive hybrid. Normalised Posi-
tion = ϕ = 2×arctan(A/B). The transfer function is again an S-shaped curve but
does not diverge for large excursions. In addition, the gradient is larger around
zero, making it more sensitive towards the middle of the pick-up.

The type of normalisation to be used will depend on the choice of processing
electronics, which in turn depends on the type of measurements to be performed
(single pass, single bunch, average orbit etc.). In all cases the non-linearity is taken
into account by calibration circuits and correction algorithms. Common acquisition
electronics include:
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• Multiplexed
Each electrode is multiplexed in turn onto the same, single acquisition

electronics chain. This eliminates channel to channel variations, giving very good
accuracy. However, since the switching is generally quite slow such an acquisition
only tends to be used in circulating machines where the average position is of
importance.

• Sigma/Delta
A passive hybrid is generally used to produce sum (%) and difference (�)

from opposite electrodes. The resulting signals are then directly digitised, or
downmixed to lower frequency before digitisation using homodyne detection
(self-mixing the signal) or heterodyne detection (external mixing using a clock
related to the accelerator radio-frequency). Once digitised, the position is com-
puted as K×�/% with K a scaling factor dependent on the pick-up geometry
(typically close to ¼ of the aperture).

• Individual Treatment
Each electrode is acquired separately but in parallel either by direct digitisation

or logarithmic amplifiers. Position is calculated by difference over sum or
logarithmic ratio normalisation by the central processing unit of the acquisition
system.

• Passive Normalisation
Such electronics convert the amplitude difference from opposite electrodes

into a phase or time difference, which can then be detected using standard phase
detection or time to digital conversion techniques. The position is extracted from
this measurement using amplitude to phase or time normalisation as described
above.

8.6.2 Beam Current and Intensity Measurement

The measurement of beam current or bunch intensity is one of the most basic
measurements performed at any accelerator [124]. This is usually done by means
of a Faraday Cup or Beam Current Transformer (BCT).

8.6.2.1 Faraday Cup

The Faraday cup technique relies on measuring the charge deposited in a metallic
cup when intercepting the whole beam. This requires careful design, often using
a bias voltage or magnetic field at the entrance of the cup, to avoid the secondary
charges created by the interaction of the beam with the metal from escaping. They
are usually used for relatively low current measurements due to problems related to
the heat-load for higher intensity beams. Such devices act as an absolute calibration
standard and are capable of providing fA resolution [125].
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8.6.2.2 AC Beam Transformers

In order for a transformer to interact with the magnetic field of the beam it has to be
placed over a ceramic gap in the vacuum chamber. The wall current accompanying
the beam along the metallic wall of the vacuum chamber is deviated around the
transformer using a low impedance radio-frequency bypass. A beam current, IB, can
be considered as the primary winding of the transformer, with the output voltage
from the secondary windings given by V α L dIB/dt, L being the transformer
inductance. An ideal transformer would give a differentiated response, with the
integrated charge being zero, which is not of much use as a measuring device. In
reality the secondary windings of the transformer have some capacitance and are
terminated by some finite resistance. This leads to signals that closely resemble the
beam intensity distribution, with the added inconvenience of a DC offset due to the
transformer droop. This DC offset can be corrected for either electronically or by
software treatment of directly digitised data. Bandwidths from 200 Hz to 1 GHz
are now available, using ferromagnetic cores wound with high permeability metal
tape to avoid eddy currents. Such transformers are capable of resolving the charges
contained within single short bunches, acquired either by direct digitisation or using
fast integrator electronics. Resistive or inductive wall current monitors can also be
used to provide such signals, but again require DC offset compensation [126].

8.6.2.3 DC Beam Transformers

In storage rings and accelerators with cycle times of several seconds a DC beam
Current Transformer (DCCT) can be used to measure the total current. Such an
instrument has a bandwidth that extends from a few kHz down to DC (hence its
name) and was developed for the CERN-ISR (Intersecting Storage Rings), the first
machine to sustain beams for hours [127].

A DC transformer is based on a pair of matched, toroidal, ferromagnetic cores,
which are driven into saturation by a modulation current at frequencies of up to a
few kHz. The principle of operation makes use of the hysteresis loop of the toroid.
If an equal but opposite modulation current is applied to both cores with the beam
not present, then the voltage induced in the detection windings on each core will
be equal but opposite. When, however, there is a beam current present, the starting
point in the hysteresis loop for zero modulation current is offset due to the static
magnetic field generated by the beam current. Since the modulation is opposite in
each toroid, the time spent in saturation will be different for the two branches of
the hysteresis loop. This results in the generation of voltage pulses at twice the
modulation frequency when the induced voltage in the detection windings on each
core is combined. The demodulation of this signal gives a train of pulses, with the
width of each pulse being a direct measure of the beam current, i.e. by how much
the hysteresis curves are offset.

In the “zero flux detector” implementation of the DC beam transformer, the result
of the demodulation is fed back through the pair of transformers by a compensating
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Fig. 8.61 Schematic of a Modern DCCT. The two cores on the right form the “zero flux” DCCT,
while the left hand core is an AC transformer that extends the bandwidth of the system to higher
frequency

current loop (Fig. 8.61). Once the compensation current and the beam current are
identical the net static magnetic field seen by the toroids is zero (hence zero flux)
and the output from the demodulator is also zero. The beam current is then simply
obtained by measuring the voltage produced by this compensation current across a
known resistor. For modern DC transformers such a zero flux detector is combined
with an AC transformer. The AC transformer is used to feedback on fast changes
which are not compensated by the DC transformer and hence significantly increases
the bandwidth of the system, allowing measurement from DC to a few MHz.

8.6.3 Diagnostics of Transverse Beam Motion

The instrumentation used to look at transverse beam motion is very important for the
efficient operation of any circular accelerator [128]. There are three main parameters
that can be measured using such diagnostics: the betatron tune, chromaticity and
coupling.
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8.6.3.1 Tune Measurement

All betatron tune measurements are based on measuring the characteristic frequency
of the transverse motion of the beam. In the simplest case the beam is given a
single kick using a powerful stripline or magnetic kicker and allowed to oscillate
freely. A position pick-up is then used to measure the resulting beam motion, with
the betatron tune being the frequency which has the highest amplitude response
in the power density spectrum obtained using Fourier Transform techniques. If the
detection technique is sufficiently sensitive (see e.g. [129, 130]) and there is enough
external excitation from other sources such as ground motion then the method also
gives useful information without any specific, additional beam excitation (Fig. 8.62).

What is usually of more interest is to be able to track the tune evolution during the
whole of the acceleration cycle. The simplest way of achieving this is to repeat the
tune measurement at regular intervals, with the results displayed as a spectrograph.
In order to minimise the frequency range over which power is put into the beam,
a swept excitation frequency or “chirp excitation” is often used (so-called because
if listened to at audio frequencies such a signal sounds like the chirp of a bird).
The chirp range is set around the expected betatron tunes and the sweep time is
determined depending on the requested time resolution and precision of the tune

Fig. 8.62 Beam response to a single-turn kick excitation (top, left) and corresponding magnitude
spectrum (top, right). Example of continuous tune measurement in the CERN Super Proton
Synchrotron (left)
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measurement. The advantage of this technique is that in addition to an amplitude
response it also gives phase information. This makes it more sensitive than the single
kick method and so allows smaller excitation amplitudes to be used.

To have a fully continuous measurement of the tune when no signal is visible
due to external sources, a Phase Locked Loop (PLL) needs to be implemented.
A voltage or numerically controlled oscillator (VCO or NCO) is used to put a
sine wave excitation, Asin(ωt), on the beam. The beam response to this signal is
then observed using a pick-up and will be of the form Bsin(ωt+φ), where φ is the
phase difference between the excitation and the observed signal. A phase detector
multiplies the excitation and observed signals together, giving a signal of the form
½ABcos(−φ) − ½ABcos(2ωt+φ) which has a DC component proportional to the
cosine of the phase difference. This will therefore be zero when the phase difference
is 90◦ and the amplitude response is a maximum, i.e. at the tune frequency. The
aim of the PLL is to “lock-in” to this 90◦ phase difference between excitation
and observed signal by correcting the VCO frequency until the DC component of
the phase detector output is zero. Since the PLL will always try to maintain this
90◦ phase difference, the VCO frequency will track any tune changes, so giving a
continuous tune measurement.

In practice things are not quite that simple. Many parameters have to be optimised
in order to for the PLL to find, lock-in and subsequently track the tune peak. The
beam spectra and dynamics also have to be well understood if the PLL is not to
lock or jump to a spurious line, resonance, synchrotron sideband etc. In addition,
for hadron machines, the continuous excitation will lead to some emittance blow-
up. In order for this to be kept to a minimum the applied excitation has to be small
and therefore the observation pick-up and following electronics very sensitive. This
is less of a problem for lepton machines, where radiation damping takes care of any
emittance blow-up caused by the excitation, making PLL systems much easier to
implement on such machines.

8.6.3.2 Chromaticity Measurement

For any high energy synchrotron, the control of chromaticity is very important for
beam stability and quality. If the chromaticity is of the wrong sign (positive below
transition energy or negative above) then the beam quickly becomes unstable due to
a head-tail instability. If the chromaticity is too large then the tune spread increases
such that particles are inevitably lost as they hit resonance lines in tune space. The
most common method of measuring the chromaticity of a circular machine is to
measure the betatron tune as a function of the beam momentum and then to calculate
the chromaticity from the resulting gradient. This is usually done by varying the RF
frequency, keeping the magnetic field static. The equations of interest are:
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where �Q is the change in tune, �p/p the momentum spread (or relative change in
momentum), �R/R the relative change in average radius, �f /f the relative change
in RF frequency and ξ the chromaticity. Please note that the chromaticity, ξ , is
often expressed as Q’ = Qξ , where Q is the total betatron tune including the integer
part. A typical chromaticity measurement therefore consists of performing a tune
measurement for several different RF frequency settings. What is usually measured
is the average change in closed orbit, due to dispersion, from which the relative
change in radius, and hence momentum change can be calculated. The chromaticity
is then simply the measured tune change divided by the applied momentum change.

In order to obtain a continuous chromaticity measurement the technique of RF
modulation can be combined with PLL tune measurement [131].

8.6.3.3 Coupling Measurement

The control of coupling (the degree to which horizontal and vertical betatron motion
is linked) is also important for circular accelerators. Excessive coupling will make
tune and chromaticity measurements almost impossible, as the information from
both planes are mixed-up in the observed signal. A direct measure for the total
coupling coefficient |C-| can be obtained by the “closest tune approach” method.
Both betatron tunes are measured during a linear quadrupole power converter ramp
which crosses the values of the horizontal and vertical tunes. Any coupling present
in the machine will introduce a forbidden band through which the tune cannot cross,
instead jumping from one side to the other. The width of this band is given by the
total coupling coefficient |C-|.

In order to obtain a continuous measurement of coupling the PLL tune measure-
ment can again be used, comparing the amplitude of the tune response in the plane
of excitation with that of the other plane [132].

8.6.4 Beam Profile Measurements

Transverse beam distribution measurements are performed in all accelerators. As
well as providing a direct measure of the beam quality, they can be used verify
accelerator lattice functions and to calculate the emittance of particle beams. There
are many ways to measure the beam size with the most commonly used techniques
described in this section.

8.6.4.1 Secondary Emission Grids

Secondary Emission (SEM) Grids, also known as harps, consist of ribbons or
wires which are placed in the beam [133]. See Fig. 8.63. As the beam intercepts
the grid, secondary emission occurs leading to a current in each strip which is



8 Accelerator Engineering and Technology: Accelerator Technology 447

Fig. 8.63 Secondary emission grid and its insertion mechanism

proportional to the beam intensity at that location. By measuring this current for
all strips a beam profile is obtained. SEM-grids are the most widely used means
to measure the density profile of beams in transfer lines. In addition, sets of
three, properly spaced grids (i.e. with the right phase advance between monitors),
allow a direct determination of the complete emittance ellipse. What makes them
popular is their simple and robust construction, the fact that there is little doubt
about the measured distribution, and their high sensitivity, in particular at low
energies and for ions. At higher energies they can be considered semi-transparent.
Amongst their drawbacks are the limited spatial resolution (difficult to get the wire
spacing much below 0.25 mm) and the rather high cost for the mechanisms and
electronics.

8.6.4.2 Scintillator and Optical Transition Radiation Screens

Scintillator screens have been used for nearly a century and are the simplest and
most convincing device when one has to thread a beam through any accelerator.
The modern versions used in accelerator instrumentation applications [134] are
typically based on an activated inorganic ceramic or crystal structures, such as
chromium activated alumina (Al2O3) or Cerium doped YAG (Y3Al5O12). These
screens are directly inserted into the beam’s path and can stand high intensities
and large amounts of integrated charge. In its simplest form a graticuled screen is
observed using a TV-camera. It can deliver a wealth of information to the eye of
an experienced observer, but precautions need to be taken into account to extract
quantitative measurements. Much can be done about that with modern means of
rapid image treatment, but questions concerning the linearity of these screens at
high beam densities remain.

Optical Transition Radiation (OTR) [135] screens are a cheap substitute for
scintillator screens. OTR radiation is generated when a charged-particle beam
transits the interface between two media with different dielectric constants (e.g.
vacuum to metal or vice versa) [136]. Since this is a surface phenomenon, the
screens can be made of very thin foils which reduces beam scattering and minimises
heat deposition. The radiation produced when the beam enters the foil is emitted in a
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narrow cone around the angle of reflection for backward (vacuum to metal) OTR so
that if the foil is placed at 45◦ to the beam direction, the radiation produced is at 90◦
to the beam direction. In addition, forward OTR (metal to vacuum) is also produced
around the beam direction when the beam exits the foil. The angular distribution of
the emitted radiation has a central hole and a peak located at 1/γ . The higher the
value of γ the sharper the peaks and the more light can be collected, which is why
OTR is generally suited to lepton or high energy hadron machines. The imaging
can again be performed using simple optics followed by a CCD camera. See Fig.
8.64. Recent studies have demonstrated that OTR imaging systems are capable of
measuring a beam size below one micron [137, 138]. A non-invasive alternative to
OTR screens has been developed using diffraction radiation from slits [139], which
has also demonstrated good performance [140].

8.6.4.3 Wire Scanners

Of all the instruments used for measuring the emittance of circulating beams, wire-
scanners are considered to be the most trustworthy. They come in two different
types; rotative and linear. Rotative wire scanners can reach speeds of up to 20 ms−1

and consist of a thin wire (some tens of microns in diameter) mounted on a fork
which is attached to a rotating motor, while linear scanners use motors which
push/pull the wire across the beam. There are two ways of obtaining a beam profile
with wire scanners; by measuring the secondary emission current in the wire as
a function of wire position (similar to SEM-grid acquisition) or by measuring the
flux of secondary particles created as the beam interacts with the wire. This latter
technique is often used for high intensities, where the heating of the wire produces
thermal emission which falsifies the secondary emission results. It relies on the use
of radiation detectors, typically scintillators followed by photo-multipliers, placed
downstream of the wire scanner to detect the γ -radiation and secondary particles
produced when the wire intercepts the beam. To make the flux collected independent
of the wire position may require the summation of the signals from two or more
detectors positioned around the beam chamber. Fast wire scanners are nearly non-
destructive over a wide range of energies. Their spatial resolution can reach the
micrometer range [141] and, with fast gated electronics, the profiles of individual
bunches can be observed. Their great sensitivity also allows them to be used for the
study of beam halo.

For H− and lepton accelerators the wire can be replaced by a laser beam, with
the detection of stripped electrons [142] or Compton scattered [143] electrons
respectively. This technique is ideally suited to high power machines, where a wire
would not survive, or to machines where the transverse beam size is extremely
small requiring a very thin ‘wire’ which is obtained by tightly focussing the laser
beam.
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Fig. 8.64 (Left) Combined OTR and scintillator screen mechanism showing chamber in the out
position and (bottom) an example of images obtained during the very first injection into the LHC

8.6.4.4 Residual Gas and Luminescence Monitors

Rest gas monitors are used in many high energy accelerators in order to reconstruct
transverse beam distributions [144]. The signal results from the collection of either
the ions or the electrons produced by the beam ionising the small amount of
residual gas in the vacuum chamber. These ions or electrons are accelerated using
a bias voltage of several kilovolts and typically collected on a micro channel plate
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(MCP). The avalanche of electrons produced by the MCP are then collected on
strip detectors or hit a phosphor screen to give an image of the beam profile that
can be monitored using a CCD camera. Due to their rigidity, ions are less sensitive
to the distorting effects of the space charge from the circulating beam, but their
slow drift time, even with high bias voltages, means that they spend a long time
in this beam field, making it difficult to analyse beam dimensions smaller than one
millimetre. However, in order to use electrons to produce an image, a transverse
magnetic field needs to be added around which the electrons spiral on their way to
the MCP. This eliminates, to a large extent, the space charge effects of the beam
and allows sharper images to be produced than with ions. This additional magnetic
field is also seen by the beam and has to be compensated by two corrector magnets
either side of the ionisation profile monitor. Direct detection of ionized particles
using in-vacuum pixel sensors has recently been demonstrated as an alternative to
MCP detection [145], providing a more sensitive monitor and eliminating the ageing
effects associated with micro channel plates.

Luminescence monitors [144] also rely on the interaction of the beam with a gas
in the vacuum chamber. In this case electrons are excited from the ground state to
a higher energy level by the passing beam. Once the beam has passed the electrons
return to the ground state and emit photons. In the case of nitrogen the dominant
photon wavelength is 391.3 nm, corresponding to light at the lower end of the visible
range, for which many detectors are available. In general, the residual gas alone
does not produce enough photons for accurate imaging and hence a local pressure
bump is usually created by injecting a small amount of additional gas to enhance
the photon production.

Most users consider both the residual gas ionisation and luminescence profile
monitors to be semi-quantitative and not to be relied upon for absolute emittance
measurements, even after calibration against some other instrument such as a wire
scanner. Their virtual transparency for the beam, however, makes them useful for
the continuous on-line tracking of beam size.

8.6.4.5 Synchrotron Radiation Monitors

Synchrotron radiation monitors [146] are limited to highly relativistic particles
and offer a completely non-destructive and continuous measurement of the 2-
dimensional density distribution of the beam. These monitors make use of the light
produced when highly relativistic particles are deflected by a magnetic field. They
are therefore usually positioned to make use of parasitic light produced by a dipole
magnet in the machine or behind a purpose built “undulator” magnet in which the
beam is deflected several times to enhance the photon emission.

The most common way of measuring the beam size with synchrotron radiation
is to directly image the extracted light using traditional optics and a camera. The
spatial resolution for such systems is usually limited by diffraction and depth-of-
field effects which can be overcome using interferometers [147]. If the beam is
sufficiently relativistic then the photon emission extends into the hard X-ray region
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of the spectrum and X-ray detectors can be used [148], for which diffraction effects
become less important.

8.6.5 Beam Loss Monitoring

Beam loss monitors (BLMs) have three main uses in particle accelerators: Damage
prevention, diagnostics and machine optimisation [149]. The job of the BLM system
is to establish the number of lost particles at a certain position within a specified time
interval. Most BLM systems are mounted outside the vacuum chamber, so that the
detector observes the shower caused by the lost particles interacting in the vacuum
chamber walls or in the materials of the magnets. The number of detected particles
and the signal from the BLM should be proportional to the number of lost particles.
This proportionality depends on the position of the BLM with respect to the beam,
the type of lost particles and the intervening material. It also, however, depends
on the momentum of the lost particles, which may vary by a large amount during
the acceleration cycle. One has to distinguish between two types of losses; fast
losses, where a large amount of beam is lost in a short time (for circular machines)
or distance (for LINACs and transport lines) and slow losses, where partial beam
loss occurs over some time or distance. In storage-rings, the lifetime is defined by
slow losses. Superconducting accelerators use the BLM system to prevent beam
loss induced quenches. The fact that BLM systems have to cover both of these
cases means that they are often required to function over a very large dynamic
range, typically in the region of 104 to 106. BLMs can be classed into two main
families: global—containing a few long detectors covering most of the accelerator;
distributed—with many units of relatively small active area.

8.6.5.1 Global BLM Systems

The first global system was proposed by Panowsky for SLAC in 1963 [150] and
was composed of a 3.5 km hollow coaxial cable filled with Ar (95%) + CO2 (5%),
mounted on the ceiling of the LINAC, about 2 m from the beam. When a beam
loss occurs the secondary particles produced traverse the monitor and induce an
electrical signal which propagates to both ends of the cable. Position sensitivity is
achieved by comparing the time delay between the direct pulse from one end and the
reflected pulse from the other. The time resolution achievable with such systems is
about 30 ns (~8 m), which can be reduced to about 5 ns by using shorter cables. This
principle of space resolution works for relativistic linear accelerators and transport
lines with a bunch train much shorter than the machine. For particles travelling
significantly slower than the signal in the cable the resolution of multiple hits in the
cable becomes difficult. In this case, and for circular machines, it is necessary to split
the cable. Each segment has to be read out separately, with a spatial resolution which
becomes approximately equal to their length. A similar measurement can these days
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be achieved using Cherenkov or scintillation light created in long optical fibres
[151]. The fast response of the Cherenkov signal is detected using photomultipliers
at the ends of the fibre, allowing a longitudinal position resolution of 20cm to be
achieved.

8.6.5.2 Distributed BLM Systems

By far the most common, distributed BLM systems are comprised of many
individual beam loss monitors located throughout the accelerator, each acquired in
parallel. The active medium in these systems is tailored to the type of loss to be
measured. Ionisation chambers are commonly used due to their robustness and large
dynamic range (see e.g. [152]). The chamber provides some medium with which
the secondary particles created by the beam loss can interact, typically a gas such as
nitrogen or argon. This interaction produces electron-ion pairs that are collected by
a series of high voltage gaps along the length of the chamber. The resulting current
is then measured and is proportional to the beam loss at the location of the monitor.

The drawback of the ionisation chamber is its relatively slow response time,
dominated by the drift velocity of the ions created during a beam loss. In cases
where a fast response is required scintillation counters are often employed. These
come in plastic or liquid form and are read-out using a photomultiplier. The
disadvantages of these systems are the susceptibility of plastic scintillators to
radiation damage and long term drift of photomultiplier gain. It is also possible
to directly use the photomultiplier as a detector by replacing the photocathode
with an aluminium foil that works as a secondary electron emitter when irradiated.
Known as an Aluminum Cathode Electron Multiplier (ACEM) it gives response
times in the nanosecond regime [153]. Diamond detectors, consisting of a biased
monocrystalline or polycrystalline diamond wafer with an active area of a few cm2,
have also recently been demonstrated to give nanosecond response times while
being relatively radiation resistant [154].

In order to distinguish beam losses in accelerators where there are sources of
background ionising radiation such as X-rays or synchrotron radiation, Cherenkov
or PIN photodiode detectors can be used. Cherenkov detectors are useful as the
threshold for light production is above the typical Compton-electron energies
produced by such background radiation, while back to back PIN photodiodes can
be used to distinguish between the hadronic shower created by beam losses and
synchrotron radiation [155]. In the latter case only the charged particles will interact
with both photodiodes, giving a coincidence signal, with the photons absorbed by
the first diode. In contrast to the charge detection of most other BLM systems,
PIN photodiode detection depends on counting coincidences, with the count rate
proportional to the loss rate so long as the number of overlapping coincidences is
small.
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8.6.6 Short Bunch Length Diagnostics

Recent developments for Free Electron Laser (FEL) accelerators and studies for
linear colliders in the TeV range are driving the typical bunch length of accelerated
lepton beams down to the 10–100 femtosecond level. To measure the longitudinal
behaviour of such beams is not trivial and a lot research has been carried out over the
last decade to develop instruments that allow their characterisation. They broadly
fall into three categories: direct beam observation; coherent radiation techniques;
radio-frequency and electro-optic sampling techniques.

8.6.6.1 Direct Beam Observation

Direct Beam Observation, as its name suggests, relies on the direct measurement
of longitudinal beam structure by means of fast detectors. Wall Current Monitors
followed by fast sampling oscilloscopes are able to probe time structures down to
well below the nanosecond, while streak cameras can reach some 200 femtoseconds
[156]. The latter relies on analysing an optical replica of the longitudinal bunch
distribution obtained by means of synchrotron, transition, diffraction or Cherenkov
radiation.

8.6.6.2 Coherent Radiation

For wavelengths shorter than the bunch length, the particles within the bunch
radiate incoherently, with the power emitted proportional to the number of particles.
However, for wavelengths equal to or longer than the bunch length, the particles
emit radiation in a coherent way with the emitted power dependent on the bunch
length and scaling as the square of the number of particles.

incoherent term
⇓

S (ω) = Sp (ω) [N +N (N − 1) F (ω)] ,

coherent term
⇓
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∞∫
−∞

ρ(s)e−i ωc sds
∣∣∣∣∣

2 (8.69)

where S(ω) represents the radiation spectrum, Sp(ω) the single particle spectrum,
N the number of particles and F(ω) the longitudinal bunch form factor, which
depends on the longitudinal particle distribution ρ(s).

Measuring the power spectrum therefore allows the form factor to be calculated
from which an indirect estimate of the bunch length is possible. This method is
relatively simple to implement and has already demonstrated its capacity for the
measurement of extremely short bunches [157].
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8.6.6.3 Radio-Frequency and Electro-optic Sampling Techniques

These techniques rely on encoding the longitudinal bunch length information
into spatial or optical information. Radio-frequency manipulation makes use of a
transverse RF deflecting cavity [158] to kick the head of the bunch in one direction
and the tail of the bunch in the opposite direction. By measuring the transverse beam
size downstream, it is then possible to reconstruct the longitudinal bunch profile.
This technique is the standard method for measurement of femtosecond bunches,
with the drawbacks being its destructive nature and cost.

Electro-optic sampling [159] (Fig. 8.65) is an alternative to the RF technique
and relies on converting the coulomb field of the bunch into an optical intensity
variation by means of an electro-optic crystal. The crystal is placed close to the
beam so that the charged particles in the bunch induce a polarization change of
a laser beam passing through the crystal at the same time. Three main types of
encoding are in common use; spectral, temporal and spatial. In spectral decoding
the beam passes the electro-optic crystal at the same time as a chirped wavelength
laser pulse. The longitudinal distribution of the bunch is hence encoded as an optical
power variation at different wavelengths in the chirped laser pulse. A spectrometer
is used to separate out the wavelengths and so reconstruct the longitudinal profile.
Temporal decoding [160], works in much the same way as spectral decoding, with
the spectrometer replaced by a non-linear crystal. A femtosecond laser pulse is
mixed with the chirped laser pulse in this crystal to produce a frequency doubled
replica of the longitudinal distribution. Spectral encoding can characterise bunch
distributions down to the picoseconds level, while temporal encoding works down to

Fig. 8.65 Electro-optic sampling techniques for the measurement of short bunch lengths
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some 100 femtoseconds. Spatial decoding [161] uses a short laser pulse that crosses
the crystal at an angle such that when it interferes with the beam signal, the temporal
profile of the electron bunch is encoded onto the transverse profile of the laser, i.e.
mapping time into space.

Such techniques all rely on the use of very short laser pulses and precise laser to
beam synchronization.

8.7 Injection and Extraction Related Hardware: Kickers
and Septa

M. J. Barnes · J. Borburgh · V. Mertens

This chapter describes the main hardware elements involved in single-turn
injection and fast extraction, as well as resonant slow extraction: fast pulsed systems
(kickers) and magnetic and electrostatic septa. For a description of the beam
processes involved reference is made to Sect. 6.3. For space reasons other associated
components, such as stripping foils used for multi-turn injection, injection and
extraction related protection systems, or specific beam instrumentation, are not
discussed here. For certain of these components information can be found in the
corresponding chapters of this volume.

Injection and extraction regions are particularly challenging areas in accelerators
in several respects. The space allocated for these parts, which are usually located
in straight sections, is naturally rather limited so that the space available for
bending sections (in the case of a circular machine) or accelerating structures (in
the case of a linear accelerator) can be maximized, and with it the achievable
energy for a given circumference or length of the accelerator. As a result injection
and extraction related elements are often required to be as physically short and
electrically or magnetically strong as technically feasible (yet remaining reasonable
in cost). Although magnetic kickers and septa are dipole magnets, following the
same principles as ordinary bending elements, they have very distinct features and
must often fulfil conflicting design requirements. They are typically purpose-built
single elements or only produced in a small series. Many of these elements are
installed under vacuum, with the resulting implications.

Figure 8.66 shows an example of fast single-turn injection in one plane [162,
163]. The injected beam passes through the homogeneous field region (aperture)
of the septum: circulating beam is in the field-free region. The septum deflects the
injected beam onto the closed orbit at the centre of the kicker magnet; the kicker
magnet compensates the remaining angle. The septum and kicker are either side of a
quadrupole (defocusing in the injection plane) which provides some of the required
deflection and minimizes the required strength of the kicker magnet.

Magnetic septa usually have high current densities (in the order of 100 A/mm2);
a short interruption in the cooling can lead to their destruction. Electrostatic septa

http://dx.doi.org/10.1007/978-3-030-34245-6_6
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Fig. 8.66 Fast single-turn injection in one plane

are operated with very high fields and must also cope with the heat load from the
impinging beam. To reduce the particle losses septa (coils, or foils/wires in case of
electrostatic septa) must be as thin as possible; nevertheless, the characteristics of
the beam processes involved mean that septa are usually among the most radioactive
parts of an accelerator, together with collimators and dumps. This has to be taken
into account during the design, for example, it must be possible to quickly assemble
and release electrical, water and vacuum connections.

The rise time of the field produced by the kicker magnets must be very short
(ranging from several tens of μs down to several ns), while the requirements for
low ripple and good reproducibility of the flat-top amplitude are stringent (at least
considering the pulse-type excitation). Redundancy can also be an important design
criterion: if one of the devices fails the remaining devices should be sufficient,
in combination with special protection elements, to handle the beam safely. For
single-turn injection or extraction there is only one action on the beam and the
timing needs to be precisely set up; although it may be feasible to compensate for
small, non-ideal, deflection of the first and last bunches of a train [164], significant
online corrections are not possible. Applications are often safety critical (beam abort
systems) and imminent failures must be recognized in real time.

8.7.1 Fast Pulsed Systems (Kickers)

Apart from their use for injection and extraction purposes specific kickers are also
used to excite the beam, for instance to measure the tune or probe the machine
aperture. Kicker magnet yokes are frequently made out of NiZn ferrite because of its
relatively high resistivity and magnetic permeability: with the NiZn ferrite field rise
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can track current rise to within ~1 ns [165], while slower kickers can use laminated
steel yokes. Fast rise times are particularly required in smaller machines to optimize
the filling factor (amount of beam which can be injected). Useable pulse durations
are in the range of a few 100 ns to 100 μs (case of the CERN LHC beam dump
kicker which must empty the whole 27 km circumference at once; here the fall time
is not important as all beam is anyway extracted after one turn). Even faster rise
times, in the range of a few ns, can be achieved with yoke-free stripline kickers,
where the field is created by a pulse running along two longitudinal electrodes [166,
167].

The main design options for kicker systems include the type of magnet (“trav-
elling wave” (also known as “transmission line”) or “lumped inductance”), the
installation of the magnet in- or outside of the machine vacuum, the type of aperture
(window-frame or C-core), and the type of termination (impedance-matched or
short-circuited) [162]. The actual choice depends on the demands and constraints
of the application, but is also impacted by cost considerations. Applications where
a considerable number of bunches must be placed at a precise position on the
circumference of an accelerator, without disturbing the already circulating bunches,
or where only a part of the circulating beam needs to be extracted, requires kickers
with fast rise and fall time. Low flat-top ripple reduces the injection oscillations
which could lead to emittance blow-up (in hadron machines), and ensures constant
deflection angle for a train of extracted bunches. To achieve fast rise and fall times
and low flat-top ripple, quasi-rectangular pulses are applied to “transmission line”
kicker magnets. For space reasons most of the discussion below will be devoted to
such systems.

A simplified block diagram of the power circuit is given in Fig. 8.67. Shortly
prior to the required kicker pulse a resonant charging power supply (RCPS) charges
either a high voltage coaxial cable (also known as a Pulse Forming Line (PFL)) or
a Pulse Forming Network (PFN); the choice between a PFL and a PFN is discussed
below. At the appropriate time the main switch (thyratron or semiconductor) is
turned on (closed) and the pulse current is sent through a coaxial transmission line
into the kicker magnet. In the schematic of Fig. 8.67, once the current pulse has
passed through the magnet the energy is absorbed in a terminating resistor. If for
any reason the pulse current must not be sent to the kicker magnet (for instance
if the accelerator turns out to be no longer ready to receive beam or the kicker
system exhibits an internal fault, e.g. a charging voltage not matching the beam
energy), the dump switch is turned on and the PFN is thus discharged. The dump
switch is also turned on when the pulse duration, in the kicker magnet, needs to

Fig. 8.67 Simplified block diagram of a typical transmission line kicker system
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be reduced. An additional “clipper switch” can be used to connect the magnet side
of the PFN to ground in order to improve the fall time. The main components of
the electrical circuit are all matched to a characteristic impedance Z (typically in
the range of a few Ohms to a few tens of Ohms) to avoid unwanted reflections
and thus distortions of the pulse shape. The interplay of the different components
is therefore important and a carefully chosen set of parameters and a coherent
design are required to achieve optimum performance. Computer aided design tools
(electric circuit simulation and finite element analysis software) are used extensively
to predict and verify the performance achieved by the hardware, or to study how an
existing system can be improved [162]. The main components of a kicker system
are presented in more detail below.

8.7.1.1 Kicker Magnets

A transmission line magnet consists of typically between 5 and 30 cells (Fig. 8.68) to
approximate the behaviour of a coaxial cable. The cells consist of either a sequence
of metallic plates which are alternately connected to the high voltage conductor
and ground, thus forming capacitors, or commercial capacitors. Ferrite cores are
sandwiched between the high voltage plates (Fig. 8.69).

After general considerations, such as available space, deflection angle, rise time,
flat-top ripple, and fault tolerance, the system design usually commences with
the choice of the charging voltage (V) and the characteristic impedance (Z) of
the system. The impedance is given by Z = (Lc/Cc)1/2, where Lc and Cc are the
inductance and capacitance of a cell, respectively (Fig. 8.68). The choice of Z
depends on the required field rise time and the space available. The field rise time
is given approximately by the sum of the current pulse rise time, at the terminating
resistor, and the fill time of the magnet [162]. The fill time (tm) of a kicker magnet,
terminated in its characteristic impedance, is given by tm = Lm/Z; to achieve a
short fill time the series inductance of the magnet, Lm, should be small and the
impedance rather high. In addition high impedance provides for a relatively high
cut-off frequency [162] which in turn helps achieve a low flat-top ripple. In the
case of a C-core kicker magnet the high voltage conductor usually consists of
a single straight bar (single turn) which helps to ensure the low inductance. In

Fig. 8.68 Simplified equivalent electric circuit of a transmission line kicker magnet
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Fig. 8.69 Cut-away of a
transmission line kicker
magnet

practice impedances up to that of commercially available coaxial high voltage cables
are used (50 �), within the boundaries dictated by the available length for the
kicker magnets and the chosen PFN voltage. The lower the impedance needs to
be the greater must be the cell capacitance. In magnets using vacuum as dielectric,
high cell capacitance requires that either the plate surfaces are very large (which
would be impractical for space reasons) or the separation between high voltage and
ground plates is small (however the distance must not be made so small so as to
risk electrical breakdown). Therefore in some cases capacitor media with higher
permittivity must be used, e.g. ceramic capacitors, as for instance is done for the
LHC injection kickers.

A design where the whole kicker magnet is under vacuum allows for the
minimum size of magnetic aperture; for out-of-vacuum magnets the magnetic
aperture must also enclose a vacuum chamber. For a larger aperture the current
must be increased to ensure that, for a given impedance, the same magnetic flux is
achieved, which in turn implies an increase of the PFN voltage [162]. Hence, for a
given current, under-vacuum magnets can be of a shorter length than the equivalent
out-of-vacuum magnet, but also have some disadvantages. The magnet materials
must be compatible with the vacuum requirements and the whole construction must
allow for bake-out and resulting thermal expansion. In addition a vacuum tank and
pumps are required, and the repair in case of magnet or vacuum equipment failures
is usually very time consuming.

The termination of the kicker magnet with a resistor (Fig. 8.67) avoids unwanted
reflections and ensures a fast filling time of the magnet. The resistor is usually
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formed by a stack of high power ceramic-carbon resistor disks housed in a
coaxial metallic enclosure, which is the return path of the current, to minimize the
inductance and thus allow good matching over a wide range of frequencies. For
cooling and insulation purposes the resistors are usually immersed in oil. Where
available length for the kicker magnet has priority over rise time, a short circuit at
the pulse output end of the magnet has the advantage of doubling the kick strength,
for a given PFN voltage and system impedance. However the fill time of the magnet
is also doubled; to establish full field in the magnet the pulse has to travel to the
magnet output and then reflect back to the driven end of the magnet. In addition,
for a magnet terminated in a short-circuit, during the field pulse the magnet also
experiences both polarities of voltage [162].

8.7.1.2 Beam Coupling Impedance

Kicker magnets with ferrite or laminated steel yokes, directly exposed to the beam,
can contribute a major fraction of the longitudinal and transverse beam coupling
impedance of a machine [168]. The passage of the beam, without providing an
appropriate path for the beam image current, can also cause resonances within
the volume of the tank and lead to higher order mode losses. Since these effects
can results in beam instabilities their reduction is becoming increasingly important
with rising beam intensity. Electromagnetic coupling with high-intensity beams also
leads to heating of the ferrites, sometimes beyond their Curie temperature.

Where needed and possible these issues are being addressed in existing applica-
tions by various retrofitting techniques, thus avoiding a costly redesign of the whole
kicker system and possible implicit layout changes. The kicker magnet vacuum tank
can be shielded from the beam by incorporating metallic transition pieces between
the tank flanges and the kicker magnet [169] and between subsequent magnet
modules in a common tank, thus minimising changes in aperture dimensions and
avoiding some resonances.

To reduce the temperature rise of the ferrites, due to beam induced heating, indi-
rect water cooling has been implemented with electrically insulating but thermally
conducting Aluminium-Nitride plates in contact with the ferrites [170]. Particular
precautions must be taken here because of the presence of the high voltage. To
reduce the coupling of the beam with the ferrite yoke, without loss of aperture,
two comb structures of silver paint stripes can be serigraphed onto a ferrite (Fig.
8.70, left) [171]. Each of the two sets of stripes is connected to a high voltage
plate; the capacitive coupling between the two sets of stripes, which is enhanced
by the permittivity of the ferrite, provides the path for the beam image current,
without creating eddy current loops which would adversely impact the field rise
time. Nevertheless the overlapping length of the two serigraphed combs should
be optimized to avoid resonances at undesirable frequencies [172]. The serigraphy
technique is less attractive for short cells because of both high voltage breakdown
issues and the relatively small capacitive coupling between the two sets of stripes.
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Fig. 8.70 Serigraphed ferrite yoke of the CERN SPS fast extraction kickers (left); ceramic tube
with wires forming the beam screen of the LHC injection kickers (right)

In new designs, where the beam impedance is taken into account from the
beginning of the design, or where the available aperture permits, a proper beam
screen can be inserted between the magnet yoke and the beam. In the LHC injection
kickers a 3 m long ceramic tube serves as support for up to 24 Nickel-Chrome
(80/20) wires lodged in grooves around its inner circumference (Fig. 8.70, right).
The tube also provides insulation between the wires and the ferrites and high voltage
plates, but has no vacuum function. On one end the wires are directly connected to
the beam pipe, on the other end through a capacitive coupling with a grounded
metallization on the outside of the tube [173]. The LHC extraction kicker magnets,
which have a rise time of approximately 3 μs, use a 1.4 m long ceramic vacuum
chamber with a 3 μm thin uniform Ti layer on the inside which acts as beam screen
[174]. To note that beam screening techniques have equally to be compatible with
the particular demands from ultra-high vacuum, nearby high voltage and acceptably
low secondary electron yield [175].

For certain applications, e.g. beam extraction, the problem of beam impedance
and screening can be diminished or to some extent circumvented if the beam
circulates most of the time outside of the kicker, and is only bumped into the
magnetic aperture of an open C-core kicker shortly (few ms) before the kicker is
used [176]. The advantage of such a configuration is that the kicker aperture can
be smaller, because of the beam shrinkage during acceleration, than if the beam
passes through its aperture right from injection. However the smaller aperture may
increase beam coupling impedance again; detailed studies are required to find the
best trade-off.
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8.7.1.3 Pulse Generation and Forming

The simplest pulse forming circuit consists of a coaxial cable (a pulse forming
line, PFL) charged to twice the required pulse voltage. A PFL provides fast and
low-ripple pulses but requires low dispersion and attenuation, especially for longer
pulses, to keep droop and “cable tail” within specification. Since semiconductor
materials in the cable (used to improve the breakdown voltage) increase the atten-
uation and dispersion, SF6 pressurized polyethylene (PE) cables have historically
been used for PFL voltages above 50 kV. The required length and cost of PFL cable,
as well as the attenuation and dispersion, limits the practical application to pulse
durations of less than approximately 3 μs.

Where long pulses with low droop are required, a PFN is used which acts as
artificial coaxial cable. The PFN consists of a series of “cells” forming a delay
line. There are many configurations for PFNs [177] but a commonly used design
is where each cell consists of a series inductor (sometimes with a parallel damping
resistor) and a capacitor connected to ground (Fig. 8.71, left). The precision of the
mechanical and electrical dimensions is important for a good pulse shape, i.e. short
rise and fall times with low over- and undershoot, and low ripple. To preserve the
precise inductance and to avoid time consuming adjustment by hand, longer coils
are often wound onto an insulating support (Fig. 8.71, right) [178]. To obtain good
matching and thus low ripple, two parallel lines can be used (Fig. 8.71): in addition,
to compensate for conduction losses along the coil, the values of the capacitors are
selected prior to assembly. The first cell and last cell of a PFN are mechanically
adjustable, to allow catering for as-built imperfections which cannot be simulated
with precision. The whole assembly is normally immersed in a dielectric liquid
(polydimethylsiloxane or ester oil) which permits a more compact design than with
air insulation, and which serves also as coolant.

Prior to turning on the main switch, to send the pulse to the kicker magnet, the
PFN is charged to the voltage V. The charging components are usually connected at
the dump switch end of the PFN (Fig. 8.67). When the main switch closes a pulse
with amplitude of V/2 is sent through the transmission line to the kicker magnet and
a voltage pulse of −V/2 propagates from the main switch end of the PFN towards
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Fig. 8.71 PFN of the LHC injection kickers, consisting of two parallel 10 Ohm lines
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the dump switch end. If the kicker magnet is terminated in its own characteristic
impedance there is no reflection of the pulse which propagated through the magnet.
However if the kicker magnet is short circuited at its output the pulse which
propagated through the kicker magnet is reflected and travels backwards through
the magnet, doubling the current and hence the field in the magnet; the fill time is in
this case also increased by a factor 2.

8.7.1.4 Power Switching

Various technologies are used for power switching [177]. Thyratrons are still
commonly used for fast, high power, switching applications. These deuterium filled
gas tubes are characterized by a short turn-on time, high rate of rise of current and
generally good reliability. They need however careful tuning and supervision of
parameters such as reservoir voltage and grid bias voltages, as well as requiring
occasional HV conditioning, to ensure optimum performance. Thyratron faults
include failure to become conducting when required (so called “missing” pulses),
or on the contrary becoming conducting before being triggered (so called “erratic”
turn-on). High power thyratrons are also relatively expensive (up to several 10 k$
each) and have a limited lifetime which is strongly determined by the conducted
charge (typically several 100 thousand pulses for very high current and long duration
(tens of μs) pulses, to 100 million pulses for lower current and shorter pulses). To
lower the risk of erratic turn-on the anode-cathode voltage is only applied to the
thyratron a short time (typically few ms) before the kick is required. Although
not many companies produce thyratrons anymore they are still widely used in
accelerators.

For many years high power semiconductors have been used as switches in
those kicker applications which do not require the high rate of rise of current of
thyratrons. Semiconductors have the advantage of requiring little or no maintenance
in comparison with gas tubes and they have a less critical dependence on the
anode-cathode voltage, but generally have a lower rate of rise of current rating.
An example where these switches are preferred are the LHC extraction (dump)
kickers: the associated PFNs need to be charged over hours and the switches must
therefore withstand the high voltage over extended periods without erratic turn-
on. Semiconductors used for power switching in kicker systems include GTOs
(Gate Turn-off Thyristors, which have been improved for fast switch-on; they are
also called Fast High Current Thyristors (FHCTs)), IGBTs (Insulated Gate Bipolar
Transistors), and MOSFETs (Metal-Oxide Semiconductor Field-Effect Transistors).

Although in principle semiconductors require no maintenance and have a very
long lifetime when used in normal conditions, their application in accelerators is not
completely straightforward. Since the typical breakdown voltage of a representative
GTO is in the order of a few kV, the high voltages used in kicker systems requires
the assembly of the semiconductors in series stacks (in practice up to 10–15 per
stack, including redundancy) (Fig. 8.72). The distribution of the total voltage within
the stack of series GTOs and the synchronous injection of a sufficiently high trigger
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current into the gates are important, to avoid excessive voltage across individual
GTOs which could lead to unwanted conduction of the whole stack (“erratic”) or
destruction of the power semiconductors. It is noteworthy that such assemblies
are often operated near or even beyond their normal specification limits; this is
to achieve suitable high current with adequately fast rise time. In areas with a
high background radiation (either from activated ambient materials or from beam
losses) the radiation effects can be cumulative, with relatively slow deterioration of
semiconductor performance, and/or sudden malfunction or failure [179]. Protection
against particle-triggered breakdowns can be important. For installations in which
the turn-on delay is critical, temperature stabilization of the semiconductors (usually
through cooling of the surrounding air) is also an issue. High power GTOs used for
the LHC extraction kicker systems (Fig. 8.72) have turn-on delay times in the order
of 300 ns, a hold-off voltage of 2.5 kV per GTO for d.c. operation, a current rate of
rise capability of 20 kA/μs, and conduct a current with an amplitude of 30 kA.

To provide redundancy in critical applications, two switches can be installed in
parallel for each pulse generator, as for example in the LHC extraction kickers [174].
It should be noted, however, that putting switches in parallel has the disadvantage of
increasing the risk of unwanted erratic turn-on. Other switch configurations include
for example an ignitron in parallel with a thyratron, where the faster thyratron
ensures the rapid and precise start of the pulse while the sturdier but somewhat
slower ignitron takes over the bulk of the current [180]. Ignitrons are being phased-
out from existing applications due to their mercury content, and resulting safety and
environmental risk.

Fig. 8.72 Semiconductor switch stack of the LHC extraction kickers, together with voltage
grading networks and gate trigger transformer
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Topologies such as the inductive adder [181–183] and Marx generator [184,
185], utilizing fast and high-voltage semiconductor switches such as MOSFETs, are
being actively pursued by CERN as possible alternatives to both thyratron and PFL
technologies. The inductive adder and Marx generator use the series and parallel
connection of power semiconductor switches to achieve high pulse power designs.
The required energy is stored in capacitors. The MOSFET semiconductor switches
have the ability to both turn on and turn off the current pulse.

Other types of switches for particular applications include so called “pseudo
spark gaps”, fast high-voltage MOSFETS and Fast Ionisation Dynistors (FID, also
called Fast ionization Devices) [162]. With advances in semiconductor technology
new, interesting, types of devices or switches with improved characteristics are
expected to become commercially available.

8.7.1.5 Other Types of Circuits

In applications where only a few bunches need to be injected or extracted (e.g.
LEP), fast deflection is most economically achieved by an oscillation system using
half-sine wave pulses, where a capacitor is discharged into a purely inductive
magnet terminated in a short circuit [186]. In this case no particular PFN is needed
and the magnet does not need to be fitted with matching capacitors, permitting
important economies. The charging voltage is half that for a travelling wave kicker
system, with the same magnetic parameters, which often allows working with more
economic air insulation in the pulse generator.

Capacitive discharge systems complemented by free-wheel circuits are mainly
used for applications such as beam abort systems where a fast rise of the magnet
pulse is required which can be followed by a long exponential decay (since all beam
has been dumped after one turn), while the requirements of the flat-top are not very
stringent. This is the case for instance for the LHC extraction kickers [174]. Here a
capacitor is discharged into an inductive magnet with a stack of diodes in parallel.
During the sinusoidal rise of the current the diodes are non-conducting, but when
the magnet current pulse starts to reduce in magnitude the diodes conduct and the
magnet current free-wheels in the low impedance circuit.

Where very fast rise times are required (order of few ns) stripline kickers are
used [166, 167, 187]. These consist essentially of electrodes parallel to the beam
direction, and contain no magnetic material. The deflection is provided by the
electric and magnetic field between the plates. Generators with fast semiconductor
(MOSFET) switches are typically used and sub-nanosecond jitter can be achieved.
For an ultra-relativistic beam, the beam is deflected only if it is travelling from the
terminated to the driven end of the striplines [188]. A schematic view of a stripline
kicker system, for the tail clipper of the CTF3 facility, is given in Fig. 8.73.
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Fig. 8.73 Schematic view of a stripline kicker system

8.7.1.6 Electronics and Controls

The electronics and controls for a fast pulsed system is an important, complex
and voluminous part of the overall system. They must be designed from the outset
together with the power circuit. Typically they comprise systems for synchroniza-
tion with the accelerators (mainly the radiofrequency and general timing system),
systems to generate and distribute the timing across the system (including fine
delays), and power triggers to drive the high voltage switches. A beam energy
tracking system checks that the charging PFN/PFL voltage corresponds to the
present energy of the accelerator. Fast interlocks, waveform acquisition and analysis
hardware and software, as well as comprehensive software to monitor, follow-up and
document the performance of the overall system complete the installation.

8.7.2 Electrostatic and Magnetic Septa

A septum, either electrostatic or magnetic, constitutes the separation between an
area of ideally zero field, which is traversed by the circulating beam, from an area
with high field in which the injected or extracted beam experiences a deflection. The
septum should be as thin as possible to reduce particle losses and thus irradiation
of the septum and the surroundings. If used in combination with a kicker (case
of single-turn injection or extraction, Fig. 8.66) it serves also to keep the strength
requirements for the kicker at an affordable level. Since the beam passes only once
through the high field area of a septum its field homogeneity is not as critical as for
normal bending magnets, however the stray field in the “field-free” region must be
minimized, since the circulating beam experiences it at every passage. If the field
homogeneity in the aperture is an issue, appropriate measures can help to improve
it (e.g. deflectors, end plates).

8.7.2.1 Electrostatic Septa

Electrostatic septa [163, 189] for extracting beam provide an electric field in the
direction of extraction, by applying a voltage between the septum and an electrode.
Figure 8.74 left shows a schematic cross section of an electrostatic septum device.
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Fig. 8.74 Schematic of an electrostatic septum (left); CERN PS foil septum (right)

Fig. 8.75 Electrostatic wire septum for the CERN SPS (left); zoom on wires with bottom ion trap
electrode (right)

The septum and its support structure are marked in blue; they form an electrode
which is in most cases, for practical reasons, at ground potential. The opposite
electrode is marked in red. In the lower part of the figure the electric field E is shown
as it could be measured along the x-axis. The field in the gap between the septum
and the electrode is homogeneous on the axis and equal to E = V/d, where V is the
voltage applied to the electrode and d the distance (gap) between the septum and
the electrode. As shown in Fig. 8.74 the orbiting beam passes through the hollow
support structure which is a field free region.

During the process of slow extraction, which can take thousands to millions of
turns, the beam is moved towards the septum, which is to be chosen very thin to have
the least interaction with the beam. The part of the beam entering the gap between
the septum and the electrode experiences an electric field which deflects it away
from the circulating beam. The septum consists either of a series of wires (several
100 to over 1000, made for example out of tungsten-rhenium) or a set of foils (for
instance of molybdenum), precision aligned on the support frame. Typical septum
thicknesses range in the order of 50 to 100 μm, but can also be lower (10 μm).
Figure 8.74 right shows an example of a foil septum in the CERN PS, Fig. 8.75
shows a photo of a wire septum used for slow extraction from the CERN SPS.
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Beam impact leads to heating of the septum, and the thermal expansion can
cause warping which increases the effective thickness seen by the beam (case of
foil septa). Once the deformation becomes too important the device needs to be
overhauled. Wires are typically spring-loaded such that damaged wires will be
retracted from the beam and high voltage regions and not get stuck in an unwanted
position. To further reduce deformations caused by thermal effects the septum
support can be made out of Invar which is most relevant for high intensity or high
energy extraction channels. The opposite electrode consists essentially of a bar made
out of stainless steel or titanium and is at high voltage (up to over 300 kV). Careful
preparation and high voltage conditioning of the surfaces exposed to the high field
are essential for reliable operation.

To allow high electric fields electrostatic septa are installed under vacuum;
the vacuum works as an insulator between septum and electrode. If the vacuum
requirements are not too severe (order of 10−9 mbar) anodized aluminium can be
used to eliminate the dark current on the cathode electrode, thus allowing operation
with fields as high as 10 to 20 MV/m. To achieve a vacuum of up to 10−12 mbar septa
may be designed to be bake-able at up to 300 ◦C. Electrostatic septa are usually fitted
with remote positioning systems which allow alignment of the septum with respect
to the circulating beam to minimize losses, optimize the trajectories, and adjust the
gap width. This feature is also very helpful for HV conditioning purposes.

If the interaction with the beam is to be minimized, a wire septum is the preferred
choice. However, it allows some of the field to penetrate into the circulating beam
region, the degree of which depends on the wire diameter and spacing. Ions created
by ionisation of the residual gas by the beam can cross through the wire array
into the high field area and provoke HV breakdowns. To counteract this, clearing
electrodes (so called “ion traps”, visible in Fig. 8.75) are added which provide a
small electric field (few kV) in the circulating beam area and capture the ions before
they can escape. The price to pay for the reduced beam interaction with a wire
septum is the additional complexity of the clearing electrodes and their associated
power supplies and electronics. Foil septa do not need clearing electrodes; to avoid
ionised residual gas entering the high field region longitudinally, aluminium screens
are sometimes mounted at the entry and the exit of the extraction channel (septum).

Beam impact leads to activation of the septum (either foil or wires), and, due
to the scattered particles, also of the septum support and surrounding material and
equipment. The radiation level has an impact on the cool-down time needed before
maintenance or an intervention can be carried out on the equipment. To reduce the
amount of beam interacting with the septum, a passive diffuser can be installed
upstream of and in line with the septum [189, 190]. A diffuser is typically composed
of an array of wires with a thickness greater than the septum, to scatter away the
beam that otherwise would hit the septum. By scattering this finite part of the beam,
the beam density that hits the septum is reduced, reducing the overall activation of
both diffuser and electrostatic septum. Relevant for the effectiveness of a diffuser
is the angular spread of the beam at the septum, the distance between diffuser and
septum (phase advance), as well as the alignment of the diffuser with respect to the
septum [191]. To ease the alignment with the septum, the diffuser can be installed on
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Fig. 8.76 A wire diffuser (left) on the common support in front of the foil septum (right) used for
the CERN PS extraction towards SPS. The 4 wires directly in front of the foil are part of a beam
observation system. The orbiting beam is circulating inside the hollow diffuser and septum support,
while the extracted beam is passing through the high field of the septum outside the support (to the
right)

the same support. In case a bigger distance is required between diffuser and septum,
the diffuser is a separate device upstream of the septum (mainly for high-energy
extractions). A diffuser was deployed in the CERN PS upstream of the beam slicing
septum used to extract the so-called Continuous Transfer beam (CT) towards the
SPS. Figure 8.76 shows the wires diffuser in front of the foil septum used for the
CT extraction in the PS.

8.7.2.2 Magnetic Septa

There are several major types of magnetic septa [163]: direct-drive septa (pulsed
or d.c.) [189], eddy-current septa, Lambertson (steel) septa, massless septa and
superconducting septa. Figure 8.77 left shows a schematic cross section of a direct-
drive magnetic septum. The coil, consisting of the septum conductor (also called
“septum blade”) and rear conductors, is marked in red. In the lower part of the figure
the magnetic field B is shown as it could be measured on the axis O–X as indicated in
the cross section. In this schematic drawing the field is homogeneous in the magnet
gap, and dropping to zero in the septum conductor for the region with circulating
beam. The stray (or leak) field of a septum magnet is kept to a minimum by using
a magnetic yoke with a steel with a relative permeability as high as possible (thus
limiting the use of the yoke near saturation), by assuring a uniform current density
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Fig. 8.77 Schematic drawing of a direct-drive magnetic septum (left); CERN SPS extraction
septum (right)

in the septum conductor (thus minimising the impact of the cooling channels on
the current uniformity), by reducing the space between the current carrying septum
conductor and the magnet yoke, as well as by using a magnetic shield between
septum conductor and orbiting beam area.

Figure 8.77 right shows a septum used in the extraction of the SPS. Such type
of septa are often housed under vacuum (in the range 10−9 to 10−10 mbar) to avoid
adding vacuum chambers which would increase the apparent septum thickness. The
steel yoke is made from thin laminations; bake-out of up to 200 ◦C must thus be
foreseen to permit reaching the desired vacuum levels. As another example Fig. 8.78
shows the extraction septum of the PS Booster, with 4 magnets in 2 vacuum vessels
(for the 4 superimposed machine rings), with bake-out heating lamps switched on.

The coil is generally constructed as a single turn to minimize magnet self-
inductance. This allows the magnet to be pulsed, thus reducing its power dissipation
and hence cooling requirements. The septum thickness is typically in the range of
a few mm. Powering is through a capacitor discharge providing a half sine wave
pulse of a few ms length with peak currents of the order of 5 to 40 kA. To improve
the flat-top a 3rd harmonic circuit and active filtering can be added [163]. As for
electrostatic septa, the magnet is often equipped with a positioning system, to allow
precise matching of the septum position with the circulating beam trajectory. The
mechanical forces on the thin septum conductor can be quite significant (up to
10 kN) and lead to fatigue failure. The coil fixation is usually done with beryllium-
copper springs at regular intervals along the magnet.

Slowly pulsed or d.c. septa typically use thicker conductors with cooling
channels inside the individual conductors to remove the heat, or use edge cooling.
In the latter case non-homogeneous temperature distributions may lead to imperfect
current distributions causing important stray fields. The thermal design, hence the
cooling circuitry of a d.c. septum, is very critical and has a significant impact on the
robustness of the device. Generally, the cooling circuit is designed to use the cooling
water in turbulent regime to profit from the improved heat exchange between the
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Fig. 8.78 PS Booster
extraction septa for the four
rings, before closing the
vacuum vessels

copper conductors and the cooling water. Particular attention needs to be paid to
avoid cavitation inside the cooling circuit. The water quality (electrical resistance,
but also filtering of microparticles) is essential to assure a reasonable lifetime of the
septum magnet. A d.c. septum magnet is often used outside vacuum. In this case the
coil and the magnet yoke can be split into an upper and a lower part allowing the
magnet to be “clamped” over the vacuum chamber [192], permitting magnet and
coil maintenance or repairs without breaking the accelerator vacuum (Fig. 8.79).
The magnet is usually fitted with a multi-turn (series) coil, so as to reduce the
current needed. Nevertheless required currents range between 0.5 and 4 kA and can
consume up to 350 kW; efficient high-flow cooling and temperature surveillance are
therefore essential.

In an eddy-current septum magnet [193–195] the septum blade is not part of
the coil. Instead, the drive coil is situated around the back leg of the C-shaped
yoke. Coil dimensions are therefore less critical, and can be designed for a lower
current density, while the fixation as well as the robustness of the septum conductor
are improved with respect to a direct-drive septum. The coil is constructed as a
single turn, therefore minimizing the self-inductance of the magnet. Eddy-current
septa are powered with a half or full sine wave current with a period of typically
50 μs. To avoid a leak field being created next to the magnet, the magnet opening is
screened off with a copper plate, the so-called septum. When the magnet is pulsed,
the magnetic field induces eddy currents in the septum, counteracting the fringe field
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Fig. 8.79 Schematic of a d.c. septum (left) and a d.c. septum coil (cut open) showing the cooling
channels (right)

created. These induced eddy currents in the septum and return box help to keep the
field inside the magnet gap, thus improving the field homogeneity in the gap as well
as reducing the stray (leak) field of the magnet. The septum conductor can be made
somewhat thinner than for the direct-drive septum, but cooling circuits may still be
needed at the edges to cool the septum. A schematic drawing of an eddy-current
septum is shown in Fig. 8.80.

Without additional measures the typical maximum leakage field would be 10%
of that in the gap. Using a magnetic screen between the septum and the circulating
beam, and by installing a copper “return box” around the septum the fringe field can
be reduced to 0.01% of the gap field at all times and places [196]. These magnets
are often under vacuum to minimise the distance between circulating beam and
extracted beam axis. The need for a fast pulse to make the eddy current shield
effective, calls for very thin yoke steel laminations (typically 0.23 mm or less)
which adds significantly to the gas load for the vacuum system, in particular for
large aperture magnets.

Lambertson (steel) septa [197–200] can be constructed as d.c. or pulsed devices,
mostly outside vacuum. The conductors are enclosed in a steel yoke, and are
relatively far away from beam which allows a robust low current density design.
The septum is formed by a thinner part of the yoke, between the magnet aperture
and the circulating beam; additional steel is required to avoid saturation. Figure 8.81
left shows a schematic cross section of a Lambertson septum; Fig. 8.81 bottom row
shows a cross section of a Lambertson septum used in the LHC injection. Here the
two counter-rotating LHC beams circulate through the holes in the upper yoke part.
Their vacuum tubes are clad with mu-metal to shield the circulating beams from the
stray field.

A massless septum is a septum device that has a high field and a (near) zero
field region, without a physical separation between them. The transition between
the high field and zero field region is not instantaneous but gradual [201–203].
The septum thickness is defined as the space between the 2 regions, defined by
chosen percentages of the main field (5–95% for example). Since the design of a
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Fig. 8.80 Top: Schematic of an eddy current septum (left) with a return current box and magnetic
shield (right). Photo shows the ESRF S3 eddy current septum constructed at CERN (1991)

massless septum is intimately linked to the performance of the magnetic material,
the fields which can be achieved are relatively low (typically below 1 T), and the
septum width is typically at least as big as the gap height. Massless septa require
the injection or extraction to be designed to accommodate the particles that transit
through the septum region. A fraction of these particles are only partially deflected,
insufficiently deflected to enter the extraction channel. To deal with this, a dedicated
absorber may need to be installed further downstream, to intercept these particles
on a sufficiently robust device. Only few massless septa have been constructed and
used in accelerators.

To limit electrical power consumption, superconducting septa are an attractive
option [204], in particular for storage rings or accelerators with long cycle times.
Although the direct-drive septum could be equipped with a superconducting coil,
most superconducting septa are derived from superconducting cosine theta dipoles
[205–207]. A novel concept under study uses a superconducting tube, used to shield
a magnetic field (in principle generated by a superconducting magnet outside the
tube), the tube becoming effectively the septum separation between the high field
generated by the external magnet and the field-free region inside the tube [208]. This
topology is often referred to as the SuShi (superconducting shield) septum. When
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Fig. 8.81 Schematic of a Lambertson septum (left); a Lambertson septum used in the LHC
injection (bottom row)

using a superconducting septum, care must be taken to protect the superconductors
from beam impact, hence heat load, to avoid quenching the septum. Also because
of the superconductors, the use of superconducting septa is more suitable for
slowly varying fields (extraction towards dump lines of high-energy accelerators for
example) of constant energy application (such as injection into colliders or storage
rings).

To reduce activation of magnetic septa, caused by beam hitting the septum
blade, dummy septa can be installed upstream of the septum, see Fig. 8.81 (left).
A dummy septum is a passive element that is to intercept the particles that
otherwise would hit the septum blade [209]. This is relevant for unbunched beam
transfer. To be effective, the dummy septum needs to be perfectly aligned with
the downstream septum, and therefore can be equipped with its own displacement
system. The dummy septum being a more robust device than the septum magnet,
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Fig. 8.82 Dummy septum TPS15 from the CERN PS extraction being assembled in the laboratory
(left). The copper dummy septum blade can be seen through the vacuum flange. The carbon blade
of the extraction protection element TPSG6 as used in the CERN SPS extraction towards the LHC
(right)

it needs far less maintenance and moves the activation (partially) from the septum
magnet to the dummy septum. This facilitates the maintenance activities related
to the septum. Of similar technology are extraction protection elements upstream
of septa magnets. Their role is to protect the septa from mis-steered beams by
diluting the beam sufficiently that no permanent damage occurs in case a beam
be accidentally steered onto the septum, see Fig. 8.82 (right). This is most relevant
for high energy accelerators where a direct impact could lead to damage of the
septa. The requirements for the extraction protection elements is related to the
impact resistance to the beam, but most importantly to the protection of the septum
downstream, in terms of sufficient dilution of the beam energy to avoid damage to
the septum coil (either mechanical stress in the conductors) or shock and pressure
waves in the septum cooling circuits.

8.8 Collimators

R. W. Aβmann · S. Redaelli

8.8.1 Introduction

Several definitions are introduced for the topic of collimators:
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– Collimators are special accelerator devices that place scattering or absorbing
blocks of materials around the beam. They can be fixed or movable with respect
to the beam.

– The collimator jaws are the blocks of material that are placed close to the
beam. The jaw material is characterized by its nuclear properties, its thermal
conductivity, its electrical resistivity, mechanical properties (surface roughness
and flatness) and vacuum properties (residual outgassing rates).

– A collimation system is an ensemble of collimators that is integrated into the
accelerator layout to intercept stray particles and to protect the accelerator.

– The impact parameter b is the typical transverse offset from the edge of a
collimator jaw for particles impacting the collimator. It is measured in m and
can be as small as a few hundred nano-meters for the collimator jaws that are
closest to the beam to intercept primary beam losses.

– Collimation is acting in the normalized phase space. With z = x or y, the Twiss
functions βz and αz, and the emittance εz we define the normalized coordinates
zn and zn

′ as:

zn = z/
√
εzβz (8.70)

z′n =
αzz+ βzz

′
√
εzβz

(8.71)

It is noted that the transverse betatron beam size (Gaussian rms) for a beam
with zero energy spread is given by:

σz =
√
εzβz (8.72)

– An unperturbed particle describes a circle in normalized phase space with
amplitude:

az =
√
z2
n + z′2n (8.73)

– Collimator settings (distance between jaw surface and beam center) are defined
in normalized coordinates zn with zn = n1 being the collimator family setting
closest to the beam, zn = n2 the second closed setting, and so on. Several families
usually define a hierarchy that must be respected. Often this results in stringent
mechanical and operational tolerances for collimators.

– The radiation length X0 can be defined as the mean distance over which
the energy of a relativistic electron is reduced to 1/e of its initial value by
bremsstrahlung.
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– The nuclear interaction length λi is the mean path length that a relativistic
charged particle can traverse through matter before its energy is reduced to 1/e of
its initial value.

– The nuclear collision length λT is the mean free path of a particle before nuclear
reaction.

Collimator technology has seen significant advances over the last 40 years,
driven by the requirements of more and more performing accelerators. The first
collimation systems were conceived in the 1970’s, see for example [210]. In the
1980’s more elaborate collimation systems were designed and constructed for the
e+e− colliders LEP [211] and SLC [212]. The 1990’s saw the development of
two-stage collimation theory [213–218], primarily for hadron beams with energies
in the 100 GeV–10 TeV regime. The first two-stage collimation systems were
constructed for HERA [219], Tevatron [220, 221] and RHIC [222]. The 2000’s
took modern collimator technology to linac-based, GeV range energy, high power
facilities [223–231], where multi-stage collimation is required for ensuring hands-
on maintenance and reducing environmental impact of high power accelerators. At
the same time collimator technology was developed for linear collider concepts
[232]. A major effort in the 2000’s was spent at CERN to develop an ultra-efficient
and robust collimation system for the LHC, in the end consisting of four stages
and more than 100 fully movable collimators [213, 233, 234]. Recently, this design
effort was further extended to cope with the challenges of the High-Luminosity
upgrade of the LHC (HL-LHC) [235, 236], adding in-jaw orbit measurements [237]
and conceiving improved designs for local protection of cold magnets with warm
collimators [238, 239]. Recent R&D develops a new collimator design with low
desorption for cryogenic accelerator regions [240].

8.8.2 Requirements for Modern Collimators

Modern collimators must support operation of accelerators with high power loss
and beams that are often beyond the destruction limits of available materials [233].
At the same time collimators must be placed closer and closer to the beam and
allowable tolerances have reached the micron regime [241]. A collimating slit is
shown in Fig. 8.83 for the example of an LHC collimator. At the LHC, the closest
jaws sit at distances as small as 1 mm from the circulating beam. Collimators
become heavily cooled, high power devices, which are highly radioactive, must be
good absorbers, extremely robust and work as precision tools under heavy beam
loads. A few central requirements that drive the collimator design are introduced.
The adopted solution must be closely targeted to the foreseen use case and requires
a detailed analysis of accelerator physics and operational requirements before the
design work is started.
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Fig. 8.83 Photograph of a collimating slit (LHC example) along the beam path. The collimator
tank hosts two 1.2 m long parallel jaws that define a collimating slit. The beam passes through
the middle. Collimator jaws, which are made of fiber-reinforced carbon (black material), intercept
stray particles. RF contacts guide electro-magnetic image currents. The jaw material is tapered at
its end to provide a smooth transition to the beam tank. More advanced designs implement orbit
pick-up bottoms in the tapered part to measure the beam position [242]

8.8.2.1 High Power Loads

State-of-the-art accelerators have advanced into the regime of high beam brightness.
This regime is characterized by high beam power that is compressed into small
transverse beam size. The beam power can be characterized by considering the
energy that is stored in one beam with Np charged particles:

Estored = pceNp. (8.74)

Here, c is the light velocity. We consider particles with charge q = e and
relativistic momentum p. The stored energy in the beams is compared in Fig. 8.84
for several accelerator facilities. It is seen that modern accelerators operate or are
designed for beam momenta between a few GeV/c to a few TeV/c. The stored beam
energies are in the range of 10 KJ to 500 MJ. Losses and power loads must be
distinguished for different types of accelerators:

– The highest stored energies are achieved in proton storage rings (RHIC, Tevatron,
HERA, LHC) where the beam is kept for many hours [219, 220, 222, 233].
Power loss can be 1–500 kW if 0.1% of the beam is lost over 1 s. Several
future accelerators are under study and plan to exceed the design goal of the
LHC: the High-Luminosity upgrade of the LHC [236] is an approved project
that will increase by a factor 10 the LHC integrated luminosity starting in
2026 and HE-LHC [243] and FCC-hh [244] are studies for machines up to
50 TeV. Assuming similar loss scenarios for future accelerators, entails power
losses easily exceeding the MW levels. The loss will most often appear fully
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Fig. 8.84 The stored energy (left) and the density of stored energy (right) are shown versus the
beam momentum for various accelerators. Filled symbols refer to proton, while open symbols
indicate electron/positron accelerators. ILC and CLIC are design studies

at the location of the smallest ring aperture, by design a collimator. In modern
proton colliders, these power losses must be controlled in the presence of super-
conducting magnets, placing high demands on the efficiency of collimators.

– Lepton storage rings (like LEP2) have additional power loss due to synchrotron
radiation [211]. The power loss can reach several MW, for example in LEP2
where 3% of the beam energy was lost per turn. Synchrotron radiation losses
are distributed over the length of the accelerator. Collimators intercept only part
of the synchrotron radiation, mainly at strategic locations at the end of the arcs or
around any experimental detectors.

– Linac-based accelerators (SNS, J-PARC, CLIC, ILC) do not store the beams but
regenerate them at 5–100 Hz, using each beam pulse only once [223, 227, 232].
Power loss can range from a few kW at SNS to a few 10 kW at the ILC (for a
0.1% loss per beam pulse). Losses can appear concentrated at one collimator.

It is seen that modern collimators must usually be designed for an impacting
power in the range from a few kW to 500 kW. Future projects must aim at designs
capable to cope with multi-MW levels. Depending on the choice of jaw material and
length only a fraction of the impacting beam power will remain in the collimator jaw,
the rest being sprayed downstream. A proper design of thermal heat flow, collimator
cooling and vacuum outgassing is essential.

8.8.2.2 Destructive Beam Densities

The transverse beam size σz at collimator locations has decreased over the years,
either due to lower normalized emittances from injectors or due to the operation
at high beam energies (adiabatic emittance damping). This increases the energy
density in the beam:

ρE = Estored/
(
πσxσy

)
(8.75)
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The stored energy densities are compared in Fig. 8.84 for several facilities,
the beam size taken at typical collimator locations. It is noted that this parameter
is directly proportional to relevant performance parameters like luminosity and
therefore is usually maximized.

The stored energy densities range from 10 kJ/mm2 to 4 GJ/mm2 for operating
accelerators but exceeds 100 GJ/mm2 for future studies like the FCC-hh. Damage
limits depend on the type and length of material that is hit by beam. Typical values
for metals are around 50 kJ/mm2. Very robust materials like fiber-reinforced carbon
can survive an impacting proton energy density of around 5 MJ/mm2 for 1 m long
blocks. In many cases, collimators can only survive fractions of the collimated beam
[233, 245]. A full beam impact must be avoided and collimators must be designed
for maximum robustness, non-catastrophic failure in case of beam impact and in-
situ handling of damaged surfaces.

8.8.2.3 Precision Tolerances

Precision requirements arise from various issues. Collimator settings are given in
normalized distance to the beam center. Movable collimators are often designed to
be placed as close as possible to the beam. Typical desired settings for half gaps are
in the range of 5σz to 10σz. As transverse beam sizes at collimators are reduced to
sub-mm (as small as 0.14 mm in the LHC), collimator full gaps can be as small as
1 mm in existing accelerators. Maintaining the correct full gap over long collimators
(e.g. 1 m long parallel jaws) introduces tolerances on jaw flatness, deformation
during power impact, reproducibility, parallelism, angular alignment, etc. that are
all in the order of 50 μm (μrad) or lower [234].

Other requirements arise in the case that several collimators are combined to
form a multi-stage collimation system. The collimators then belong to different
stages (families), where all collimators of a given stage sit at the same setting
(in normalized coordinates). Most notably, in colliders where the performance is
maximized by reducing the transverse spot sizes of colliding beams, limitations
often occur from the aperture of the triplet quadrupole magnets, ntriplet, that are
used to squeeze the beams [246, 247]. The system will only work correctly if the
collimators fulfill the hierarchy requirement. For the example illustrated in Fig. 8.85
the following condition would apply:

n1 < n2 < n3 < ntriplet < n4 < narc (8.76)

The smallest difference in this condition (for example ntriplet-n3) can be a fraction
of σz and then imposes additional tolerances for the design and operational control
of the collimators.
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Fig. 8.85 Illustration of various collimator families that are put at different settings n1, n2, n3,
n4 to form a multi-stage collimation system. The example illustrates the protection of super-
conducting magnets in the arcs and the experimental insertions. Robust collimators (low Z) are
used for primary and secondary stages, while non-robust collimators (high Z) are used for the third
and fourth stages

8.8.3 Collimator Solutions

Collimators can follow different concepts, from very simple to very advanced
technology. A few typical concepts are illustrated in Fig. 8.86. Each concept has
its use and one should always follow the simplest possible solution for the problem
at hand. The different concepts are discussed:

– In the simplest case, collimators consist of fixed masks with either elliptical
or rectangular shape. Such objects are best used either in cases of well-defined
aperture bottlenecks where the beam energy, the beam size and the center at the
collimator location are constant or in cases where broad showers or synchrotron
radiation must be intercepted. Such collimators can easily be cooled and (in case
required) heavily shielded as no movable parts need to be accessible. Collimator
jaw materials can be shrink-fitted into a metallic pipe. These simple collimators
are not adequate for high-efficiency collimation close to the beam. In addition,
fixed-aperture devices are not suitable for accelerators that need collimation
during dynamic changes of beam energy or optics, where multiple aperture
bottlenecks occur, potentially at different ring locations. Some improvement can
be implemented by making the whole assembly movable with respect to the beam,
however, the collimating gap cannot be adjusted. Fixed collimators with very low
desorption (“catchers”) have recently been developed for handling losses from
partly ionized beams, as foreseen for the FAIR project [240].

– A more advanced concept is an L-shaped, one-sided collimator design as used
for the Tevatron and RHIC primary collimators [220, 222]. A single L-shaped
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Fig. 8.86 Illustration of a
few different collimator
concepts, with fixed or
moveable apertures, that have
been used for various
accelerators

(a) (b)

(c) (d)

Beam Beam

BeamBeam

Vacuum tank

collimator jaw is placed into a vacuum tank. The L-shaped design is very cost-
effective as one device can be used to collimate the beam in both horizontal and
vertical directions. The L-shaped jaw is fully movable and can be adjusted to the
beam center and size. It is adequate for high-efficiency collimation close to the
beam. While it is very cost-effective, it is compromised in terms of operational
stability. There is no direct measure of the distance to the beam. Also, the beam
centering is not constrained and the beam can wander off in one direction without
a practical limit.

– The most advanced concept consists of a vacuum tank that hosts two parallel,
fully movable jaws [234, 248]. The two jaws define a collimation gap that
constrains the beam position. If the beam wanders off it will be collimated more
deeply in one side. The design is operationally fail-safe and is adequate for high-
efficiency collimation close to the beam. Each collimator can act only in one
plane, depending on its azimuthal orientation.

8.8.3.1 An Advanced Two-Jaw Collimator Concept

The two-jaw collimator design has been modernized for the purposes of the LHC
[234, 248, 249]. The final design offers fully movable jaws (position and angle to
beam), choice of jaw materials, redundant position monitoring, a concept of spare
surface (by moving the full tank) and a precise measurement of the collimation
gap that is placed on the beam. The conceptual solution is shown in Fig. 8.87.
The decision to support the collimator jaws from the bottom reduces the width
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of the assembly and allows matching to tight space requirements in a two-beam
pipe accelerator like the LHC. The second beam pipe can be passed besides the
collimator vacuum tank. A further improvement on the initial design was achieved
by adding at both jaw extremities beam position monitors for on-line measurements
of the local beam orbit, as shown in Fig. 8.88 [236]. About twenty BPM collimators
are already operational in the LHC [237].

The adopted mechanical solution offers the additional benefit of an accurate
online measurement of the collimator gap and the jaw positions. It is possible to infer
the inside gap from measurements of the outside gap, using precision calibration
data that can be obtained during production. The concept of inside versus outside
gap is illustrated in Fig. 8.87. The precision calibration of an LHC collimator during
production is shown in Fig. 8.88.

Each end of the collimator has two motors [250] and therefore 2 degrees of
freedom (DOF). Monitoring it with two position sensors plus one gap sensor
provides important redundancy: three measurements are performed for two DOF.
Self-consistency can be checked in real time and possible sensor problems can

Fig. 8.88 (a) Photograph of collimator precision calibration during production (LHC example).
The two jaws have been installed into a vacuum tank but the cover has not yet been welded,
providing possibility for precise calibration of jaw positions versus mechanical stops. (b) New
collimator jaw with integrated BPMs at each extremity. The active part if made of CFC. A detail
of the BPM is given on the left-hand side. A variant of this design, made with a Glidcop support
and tungsten inserts for the active jaw part, was used for adapting this concept to collimators made
of higher-Z materials. From [236]
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be detected and addressed. The LHC collimator controls system allows a syn-
chronization to other accelerator systems like magnets and radio-frequency to the
micro-second level. Motors are used in a dedicated tool to align in parallel several
collimators, at frequencies up to 50 Hz, in a feedback loop that uses 100 Hz beam
loss measurements [251, 252]. The recent addition of orbit measurements [242]
improves further the on-line diagnostic capabilities, allowing an earlier detection of
possibly critical shifts of the local beam orbit.

8.8.3.2 Mechanical Design, Cooling and Vacuum

The demanding requirements in modern high power accelerators were already
shortly reviewed. These requirements translate into important constraints for the
design of collimators. We summarize some of them:

– The design of mechanical movement must be precise, robust and reproducible.
The lifetime of the collimator movement system should be a few 10,000 cycles
for slowly ramped accelerators (like LHC) up to a few million cycles for
rapidly cycled accelerators. The tolerances for mechanical plays and setting
reproducibility can be as small as a few 10 μm.

– The use of traditional grease is often not permitted due to the presence of high
beam losses and radiation. Grease could age and become sticky. Instead, advanced
techniques like dry grease (graphite powder) or surface coatings must be used.

– Thermal heat flow must be carefully designed, from the jaw where heat is
deposited to the cooling pipes that take it out. Heat loads from direct particle
losses and electro-magnetic currents must be taken into account (W to 100 kW).
Thermal expansion coefficients of materials must be well adapted to ensure
minimal deformations during power gradients (few 10 μm for several kW) and
good thermal contact for heat transfer [253].

– The impacting power loads often require powerful cooling of the jaw materials.
High-pressure water flow (20 bar) must be integrated into the jaw design.
Sometimes, it is required to also cool the vacuum tank and flanges.

– Safety and robustness against beam shock impacts (accidents) often requires
that cooling pipes do not have brazed parts under vacuum.

– Many accelerators require ultra-high vacuum (~10-8 mbar) and the collimators
must not disturb this. As heated materials show outgassing, additional constraints
on maximum jaw temperatures and cooling must be respected.

– Intense beams induce electro-magnetic image currents on the surrounding mate-
rials: machine impedance or wakefields are induced [254–256]. As collimator
materials are very close to the beam, their electro-magnetic properties must
be well designed. Critical are good electrical resistivity (~μ�m) and smooth
geometrical shapes. Tapering of jaws is used to avoid sharp edges close to the
beam. RF fingers need to be used to guide image currents.

– The high irradiation at collimators [257] often requires special measures.
Possibilities include quick plug-ins for cables and water pipes, absence of
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shielding (to have easy access to devices), heavy shielding (to provide radiation-
free passage), robotic survey techniques and remote handling. All active com-
ponents, like motors, and sensors must be compatible with high radiation
operation.

The use of modern programs is important for precise calculation of halo impact,
heat deposition, heat transfer, deformations, electro-magnetic fields and currents
[258–264]. The calculations must be used to verify the adequate performance of the
chosen design before construction starts as well as to optimize the performance of
operating system (see for example [265]).

8.8.3.3 Precision Actuation and Monitoring

The collimator is a mechanical system that (if movable) requires actuation and
monitoring. In dependence of the design chosen, one or several motors must
be used for moving the system. The motor of choice should be a stepping
motor with a resolver mounted to count the steps performed. The mechani-
cal system translates the rotary into a lateral movement. The absolute posi-
tion of jaws in the collimator tank can be determined in presence of a pre-
cise calibration with well-known mechanical stops. Similar is true for collimator
gaps.

The precise monitoring of jaw positions is often required for safety reasons.
In this case independent position sensors should in real-time monitor the jaw
positions. The measurements provide redundancy to the setting procedure that
relies on stepping motors and mechanical stops. The sensors also monitor posi-
tions when the jaws are away from the mechanical stops. The addition of orbit
measurements from in-jaw pickups [242] is complementary to mechanical jaw/gap
measurements.

Actuation and monitoring is more complicated for large accelerators where
issues of radiation resistance and signal transport over long cables arise. Specialized
solutions must be adapted [250, 266].

8.8.3.4 Examples of Installed Collimators

Two examples of recently constructed and installed collimators are shown in Fig.
8.89. The selected examples from SNS and LHC illustrate the strong differences
that are possible in collimator design, reflecting different requirements and boundary
conditions.
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Fig. 8.89 Photographs of an installed collimator for the SNS linac (left, courtesy G. Murdoch)
and an installed collimator for the LHC ring (right). The difference in design choices is clearly
visible: SNS relies on heavily shielded, massive collimators (18 tons per collimator) while LHC
implemented a non-shielded, cooled and heavily instrumented solution (0.5 tons per collimator).
The SNS solution becomes highly activated inside but has little radiation outside. The LHC design
avoids radiation hot spots but dilutes radiation over a larger volume

8.8.4 Choice of Collimator Jaw Material and Length

The purpose of a collimator is to intercept stray particles and its performance is
determined by the choice of the collimator jaw material. The material must be
adapted to the specific boundary conditions that the collimator should fulfill.

A summary of often-used collimator materials is listed in Table 8.18 [267]. The
interaction with the beam particles is determined by the nuclear properties of the
collimator material. Full descriptions of beam-matter interactions are published in
literature and cannot be repeated here, but see for example [221]. We note a few
general observations that can be important for collimator design:

– Energy loss of charged beam particles in matter (ionization and excitation) is
described by the Bethe-Bloch equation. The average lost energy for relevant
materials is in the range of 0.5 GeV/m to 5.8 GeV/m. Highly energetic particles
can therefore traverse collimator blocks with small energy change. For example,
a 7 TeV proton would lose 0.7 GeV in a 1m long carbon collimator, a relative
energy loss of 10−4.

– Multiple Coulomb-scattering (MCS) will induce a net deflection for charged
particles by some angle θMCS:

θMCS = 13.6 MeV

βcp
z

√
x

X0

[
1 + 0.038 ln

(
x

X0

)]
(8.77)

– Here, βc is the velocity of the particle, p its momentum, z its charge number, x the
length of material traversed and X0 the radiation length of the material. The MCS-
induced kick increases the normalized amplitude of the particle oscillation. This
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Table 8.18 Overview of various commonly used collimator materials and their main nuclear
physics parameters [267]

Element
Atomic
number Z

Mass number
of nucleus A

Nuclear collision
length λT [cm]

Nuclear
interaction length
λi [cm]

Radiation
length X0 [cm]

Be 4 9 29.9 42.1 35.3
C 6 12 26.8 38.8 19.3
Al 13 27 25.8 39.7 8.9
Fe 26 56 10.4 16.8 1.8
Cu 29 63.5 9.4 15.3 1.4
W 74 184 5.7 9.9 0.35
Pb 82 207 10.1 17.6 0.56

effect is used in collimation system to intercept amplitude-increased (scattered)
particles in a second stage downstream or in following turns. As seen from Table
8.18, it is advantageous to select high Z materials for maximizing MCS.

– Particles are considered “stopped” in the collimator material if they undergo an
inelastic interaction and a secondary particle cascade is initiated. A short nuclear
collision length and a long collimator jaw length are desirable for ensuring that
particles are efficiently “stopped”. This favors high Z materials. In case of high
power beams, the deposited energy may become too large and low Z or low length
solutions are required.

– As highly energetic particles traverse even long collimator blocks with small
energy loss and reduced MCS kicks, it becomes more likely that their energy
is dissipated through inelastic nuclear collisions. Some processes can become
limiting for collimation performance. For example, the cross-section for single-
diffractive scattering is as follows:

σSD = 0.68 mb ln (0.3pc) (8.78)

It is seen, that the effect of single-diffractive scattering becomes stronger with
higher beam energies. Protons that experience single-diffractive scattering can lose
significant amounts of energy while escaping the material with small transverse
kicks. An off-center proton can acquire an off-momentum component that might be
important for their loss location.

– Ions must be treated specially [240, 268, 269]. Ion-specific processes like
dissociation and fragmentation can dominate the processes that are used for
efficient collimation of elementary particles like electrons, protons, etc. See for
example some recent results from an LHC run [270].
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It can be seen that long collimator jaws often seem beneficial. It is, however,
important to take into account the edge feature of beam collimation. Most particles
will impact close to the jaw edge. The typical impact parameters on primary
collimators, for a circular machine like the LHC, can range from 100 nm to a
few μm. Surface roughness and MCS will result in many particles exiting from
the jaw before its full length has been traversed. It is seen that longer collimators
jaws are often not useful for interception of primary beam particles. In addition,
longer jaws also require a better design to control static and dynamic deformations
to the required accuracy.

The optimum choices of collimator jaw length and material must be based
on simulations with special programs [258–263, 271]. These programs take into
account the beam properties (beam type, energy, impact parameters), the accel-
erator type (single-pass or multiple-pass) and the material properties (geometry,
nuclear properties). Results from beam simulations are then put into programs for
calculating energy deposition [264]. Figure 8.87 shows a FLUKA energy deposition
calculation for 1m long carbon block.

A few common directions in collimator design are described:

– Short, high-Z collimators (for example W) are often used as primary scatterers,
which increase particle amplitudes via MCS, while still limiting the energy
deposited on the jaws. Length can range from a few 100 μm to a few cm.

– Long, high Z collimators (for example W) are often used as absorbers, which
effectively stop the particles that hit with large impact parameters. Length can
range from 10’s of cm to several meters.

– Long, low Z collimators (for example C) are used as primary scatterers when
energy deposition with short, high Z collimators would be too high for material
survival. The use of special materials (for example fiber-reinforced graphite CFC)
can maximize the robustness. Such solutions are important for high power beams.
Length can range from 10’s of cm to several meters.

It is noted that research on modern composite materials is ongoing [249, 272]
and can provide new directions and solutions in the future. A key aspect for this
development is to take into account effects related to specific aspect of materials’
response to beam losses [273] while optimizing the machine impedance. Reviews
of recent developments that are already being implemented for the upgrade of the
LHC can be found in [236]. Promising results were achieved recently that identified
valid solutions for a new generation of secondary collimators for the HL-LHC made
of a novel Molybdenum-Graphite composite [274], possibly Mo-coated, as well as
for metallic composites suitable for tertiary collimators, but about 15 times more
robust against beam impact than the tungsten alloy used presently at the LHC [275,
276] (Fig. 8.90).
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Fig. 8.90 Example of an energy deposition result as obtained with FLUKA [258, 262]. The impact
of 7 TeV protons on a 1m long graphite block is considered. The development of the secondary
showers from inelastic proton interactions is seen

8.8.5 Advanced Collimator Concepts

The traditional collimator design places materials close to the beam to intercept
the beam halo. It is noted that several research efforts investigate alternative
technological solutions for collimation:

– The technique of bent crystals investigates the channeling of stray particles (see
for example [277] and references in there). Instead of amorphous scattering in a
material block, particles enter into the channel of a bent crystal that guides them
onto a different trajectory. The particles receive a net deflection (equivalent to the
crystal bent angle). Large controlled deflections (~mrad) can be realized over a
small distance (~mm). The crystals would replace primary collimators. Absorbers
would be used to intercept the channeled beam halo. Research challenges include
(1) the edge effects of crystals, (2) the design of an appropriate halo dump system
and the (3) operational procedures for alignment of halo particles with the crystal
channels [278]. Promising results were achieved in the LHC with a test system
installed in the betatron cleaning insertion [279], demonstrating for the first time
channeling of proton and heavy ion beam halos at 6.5 TeV. This technique is now
being considered for the upgrade of LHC collimation system.

– The technique of a hollow e-beam lens [280] investigates the usage of a low
energy, hollow electron beam for inducing a diffusion boundary for particles
beyond some amplitude. Such a device could act as a scraper that cannot
be destroyed by beam and could therefore act close to the beam core. The
reduction of beam tails could lead to lower peak loss rates and higher feasible
intensities. Research challenges include (1) the design of such a device with
controllable diffusion rates and (2) the emittance preservation of the beam core.
A well-advanced design for the LHC was produced and is being considered
to enhance the performance of the LHC collimation system in view of the
challenging requirements of the HL-LHC beams (see [281] and references in
there).

– The technique of non-linear collimation [282] investigates the creation of
non-linear fields with magnets, inducing a diffusive boundary for the beam. The
goal is to replace primary collimators with such a device, while obtaining larger
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impact parameters at the absorbing collimators. Research challenges include the
emittance preservation of the beam core.

– The concept of a rotatable collimator [283] uses a circular jaw with many
facets. Such a solution can be used for applications where occasional damage
to the jaw surface cannot be avoided. After a damaging beam impact, the jaw is
rotated and a fresh facet is presented to the beam. The collimator only needs to be
exchanged once all facets have been used up. The testing of this concept is well
advanced, thanks to beam tests carried out recently on a prototype developed
at SLAC for the LHC upgrade [284]. Another, even more advanced variant
of a circular jaw design uses liquid metal coating that is continually refreshed
[285].

8.9 Geodesy and Alignment for Particle Accelerators

D. Missiaen

8.9.1 Introduction

Particle accelerators require very tight tolerances for the positioning of their
components. These tolerances are coming mainly from optics requirements but can
also be triggered by aperture and mechanical considerations as is the case for the
LHC.

The task of the surveyors in this domain is to measure and align the position,
the orientation, the shape and the size of big objects, such as electro-magnets and
particle detectors with an accuracy never requested elsewhere. This activity is deeply
linked to the geodesy.

8.9.2 Alignment Tolerances

The alignment precision requirements are the key values that will drive any survey
study. The absolute accuracy in the vertical direction is the deviation to the
theoretical plane of the collider, while it is the variation of its radius R with respect to
the theoretical value in the transversal direction. The differential variations between
several consecutive magnets represent the relative accuracy. This latter type of error
has a more direct effect on the closed orbit of the particles.
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8.9.3 Reference and Co-ordinate Systems

For the positioning of an object, one has to define a Reference system, a frame to
which the position and the orientation of the object are referenced. A co-ordinates
system is attached to this frame and defines the position of the object in units (m for
distances, gon for angles) and ways of describing the position (Polar or Cartesian
system).

At CERN, the reference system has evolved with the increase of the size of its
installations. At the epoch of the PS (50’s) and the ISR (60’s), the surface of the
earth could be considered as a plane without significant error. The XY plane adopted
was the plane of the PS synchrotron and a polar co-ordinate system was used. The
Z co-ordinate was the difference of height measured with respect to the XY plane.

With the extension towards the SPS (70’s) with a total surface of 3 km by 3 km
of CERN installations, the earth couldn’t be considered any longer as a plane. A
sphere, materializing the average sea level extended through the continents, was
chosen as the reference surface and a new co-ordinate H, the altitude, was defined
as the distance measured with respect to this surface (Fig. 8.91).

In the 80’s, the size of the LEP, with its 27 km circumference, obliged
to reconsider the reference surface for the earth as an ellipsoid of revolution.
But, this surface is not accurate enough to take into account the anomalies of
the vertical provoked by the neighboring Jura mountains and Geneva lake. An
equipotential surface of gravity, called the Geoid, to which the force of gravity is
perpendicular everywhere (Fig. 8.92) has been defined by means of zenithal camera
and gravimetric measurements. The measurements taken with survey instruments
are therefore linked to this Geoid. In the case of the LEP and of the LHC, the Geoid
was calculated as a hyperbolic paraboloid tangent to a local ellipsoid in the CERN
area.

The CERN reference system is therefore a local ellipsoid which fits the earth in
CERN area, a geoid model has been calculated to take into account the deviation
of vertical between the local vertical and the perpendicular to this ellipsoid. A
Cartesian XYZ co-ordinate system has been defined; the XY plane being the PS
synchrotron plane, and the Z is perpendicular to the XY plane. An H co-ordinate
has been added to take into account the shape of the earth and the anomalies of the
vertical due to the presence of mountains and valleys masses. This geoid model will

Fig. 8.91 The spherical model (left) and the Geoid (right)
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Fig. 8.92 Absolute and relative tolerance

have to be refined in the future in order to fit with the tight tolerances requested by
the Compact Linear collider (CLIC) or by the Future Circular Collider (FCC).

8.9.4 Definition of the Beam Line on the Accelerator Site

A circulating particle beam is not influenced by gravity, therefore the physicists
calculate the theoretical trajectory of a beam line in a local Cartesian co-ordinate
system xyz. A specific software application (Beatch, MADx) providing the optics
can also generate a 3D co-ordinate file in this local system. In order to obtain
the co-ordinates in a global site co-ordinate system XYZ, the geodesists provides
parameters for the geographical location of the accelerator with respect to the
existing installations or geological/technical constraints. These parameters are
typically the co-ordinates of a starting point and two angles, a slope and an
orientation. They can also be three translations and three rotations, allowing the
transformation from the local co-ordinate system one into the global one.

The 3D co-ordinates of the accelerator components will be used in particular
for the 3D definition of the civil engineering works as well as for the accurate
positioning of these components.

8.9.5 Geodetic Network

The absolute positioning of accelerator components, known in a XYZ co-ordinate
system, is ensured by means of a geodetic network. The accuracy of this framework
has, of course, a direct influence on the control of the absolute geometry of the
accelerator to be built.
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The first level of this network is a surface network. It is constituted of monuments
solidly anchored to the earth by means of concrete works, forming a very well-
defined basic framework and from which the links to national and international
reference system can be established. It will also be used for regular checks
and eventual extension of the project. The determination of the co-ordinates of
these monuments is done by very accurate triangulation, trilateration, leveling
measurements and nowadays when possible by Global Navigation Satellite System
(GNSS) measurements. The accuracy of these network points has to be in the
range of a few mm (1σ). It could be advisable to equip some network points with
permanent GNSS receivers in order to have their position permanently recalculated
together with permanent GNSS stations located in the vicinity of the site.

This surface network is transferred to an underground network by the means of
several techniques among which one can mention:

• Angles and distances measurements with total stations
• Azimuthal orientation with gyro measurements
• Plumb lines measured by theodolites at the top and at the bottom of the shaft at

the same time
• Nadiro-zenithal telescope
• Calibrated Electronic Distance Measurers (EDM) and optical levels for the

altitude determination.

All the observations are processed together as a spatial block. Deflections of the
vertical and meridians convergence are also taken into account. For a pit as deep as
140 m, the accuracy is estimated to be in the range of one mm in the XY plane and
better than 2 mm in H (altitude), both values given at 1σ.

The underground network is constituted of tripods regularly spaced out along
the accelerator tunnel, the distance between them being often directly linked to
the lattice of the machine. The topographical traverse linking one access shaft
to the adjacent one is realized by gyro-theodolites, theodolites and very accurate
Electronic Distance Measurer, namely the Mekometer. Offset distances with respect
to a nylon stretched wire are also frequently measured in order to improve the
“smoothness” of the network. As an example, for a distance of 3.3 km between
two points transferred from the surface network, as is the case for the LHC, the
transverse deviation is estimated to be 4 mm (1σ) in the middle between these two
points (Fig. 8.93).

In the vertical direction, the determination of the altitude of the points of the
underground network is done by leveling measurements using optical or digital
levels. The accuracy is of the order of 0.4 mm (1σ) per km. In order to have a stable
reference plane, for calculation and future stability comparison, it is advisable to
anchor references at a depth of 25 to 30 m under the tunnel level in stable rock. Two
of these references installed in the SPS have given proof of their utility and therefore
such a reference has been installed in the vicinity of each of the eight LHC shafts.
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Fig. 8.93 From surface to the underground network

8.9.6 Tunnel Preliminary Works

The geometrical checks of the civil engineering works is done by the firm itself,
often with the help of a consultant specialist in geodesy. They are done with respect
to the geodetic surface network provided by CERN.

Once the civil engineering works are delivered to CERN, the beam line is
marked on the tunnel floor, with respect to the underground network, as well as
the longitudinal and transversal position of the components and their supporting
systems. This information is also very useful for the installation of all the services
from this early stage of installation.

8.9.7 The Alignment References

The “beam” points, entering and exiting each magnet, provided by the physicists
are often not accessible in the tunnel at the time of the alignment. The surveyors,
therefore, recommend the installation of “fiducials” or alignment references directly
on the magnets. In order to align a component along its 6 degrees of freedom, at least
two “fiducials” are requested and a reference surface for the measurement of the
transverse inclination also called the roll (Fig. 8.94). At CERN, these “fiducials” are
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Fig. 8.94 Fiducials and local magnet co-ordinate system

Fig. 8.95 LHC fiducials and fiducialisation equipment

equipped with forced centering system. It allows not only the measurements of a
Taylor-Hobson sphere located on top of it but also the installation of a theodolite
or any specific device, considering then this point as part of the network (Fig.
8.95).

The “fiducialisation” is the operation during which the position of the fiducials is
determined with respect to a reference axis (magnetic or mechanic). It can be done
using:

• Magnetic measurements for most of the main magnetic components (quadrupoles
and dipoles) which are realized by magnet people;

• Coordinate Measuring Machine (CMM) Mechanical measurements in a metrol-
ogy laboratory;

• Laser tracker measurements when the size of the component is such that a
metrological control is inadequate or impossible (Fig. 8.95).

For CLIC components, the fiducialisation has to be performed with an accuracy
better than 10 microns. To achieve it, several techniques and instruments have been
developed. Among them, one has to mention the micro-triangulation and the Fre-
quency Scanner Interferometry (FSI). The principle of the micro-triangulation (Fig.
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Fig. 8.96 Micro-triangulation

Fig. 8.97 FSI principle and instrumentation

8.96) is based on angle measurements taken automatically by several theodolites.
This technique allows to measure at the same time the fiducials located on the
magnet and the wire used for the determination of the magnetic axis. The FSI (Fig.
8.97) technique measures very accurate absolute distances between points located
around the magnet, including the fiducials.

In the case of cryogenic components, the magnet is located inside a vacuum
vessel. The fiducialisation having been done at warm or at cold temperature, it could
be necessary to monitor the movement of the magnet with respect to the fiducials
at different state. This determination could be done using the FSI technique or an
optical measuring system called Brandeis Camera Angle Monitor (BCAM). It is
a three points measuring system composed of a CCD camera measuring a light
flashing through a lens (Fig. 8.98).
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Fig. 8.98 BCAM

Fig. 8.99 Fiducials in the CCS

8.9.8 Determination of the Co-ordinates of the Fiducials

The combination of the theoretical position of the “beam” points and the position
of the “fiducials” with respect to a reference axis provides the coordinates of the
fiducials in the CERN Co-ordinates System (CCS) XYZ. The H co-ordinate is also
generated (Fig. 8.99).

8.9.9 Alignment of Accelerator Components

The initial alignment is the phase during which the components are aligned at their
absolute position, therefore with respect to the underground geodetic network. As
the function of the quadrupoles magnets is to focus/defocus the particle beams,
these are the most critical components in terms of alignment and consequently
they are aligned first, followed by the dipole magnets. Optical or digital levels
are used for the vertical positioning while total stations and wire offset measuring
devices are used for the horizontal (Fig. 8.100). The roll angle is adjusted thanks to
accurate inclinometers which are installed on the magnet reference surface. The
adjustment of the components is realized thanks to three mechanical jacks, an
auxiliary hydraulic device is sometimes needed when the necessary force to move
the jack in the vertical direction is too important.

As the major requirement for the geometry of an accelerator is that the relative
errors must be very small, a compulsory step is to check the alignment by measuring
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Fig. 8.100 Vertical (left) and horizontal (right) alignment of a magnet

Fig. 8.101 Position of the components around the trend curve

and—if needed—improving the smoothness of the initial alignment. The magnets
are finally positioned around an unknown mean trend curve contained within the
envelope of maximum errors (Fig. 8.101). The measurements are done using only
the “fiducials”, the underground network is not used anymore. Digital levels and
“ecartometers”, a device developed at CERN to measure an offset with respect to
a stretched wire installed directly on the “fiducials”, are used for this smoothing
operation. Some software has been developed in-house in order to determinate the
trend curve. The principle is to fit, in a sliding window, a portion of an accelerator
line with polynomials and to reject from the calculation a component located
further than a defined tolerance. It can be compared to a carpenter’s plane used
for smoothing an irregular plank: depending on the length of the tool and on the
adjustment of its blade, one can obtain different qualities of smoothness with more
or less waves on the wood.

The polynomial degree of the curve depends on the redundancy, the overlap of
measurements, and the betatron harmonics of the beam.

The relative position of the quadrupole magnets with respect to the trend curve
is achieved with an accuracy better than 0.15 mm (1σ).
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After this operation, the less critical components from the alignment point of
view are positioned with respect to the “smoothed” components.

During the exploitation of the accelerator, when making successive maintenance
surveys of these long and flexible figures, absolute comparisons would be a non
sense and the differences between trend curves, corresponding to each survey, must
be analytically eliminated. The state of the alignment is expressed by the statistical
dispersion observed around the mean trend curve in these successive comparisons.
In any case, and for successive measurements as well, the problem is the difference
between these distorted curves and the theoretical geometry. Each “image” of the
ideal line has the same likelihood of being “true”, within the envelope of errors,
but is nevertheless different. This difference has (globally) no physical meaning, but
local discrepancies or distortions may be the signal of a move, either for a single
element or for a group, depending on the deformations of the supporting structure
(floor and tunnel) due to geo-mechanical forces, and/or to some constraints along
the machine (vacuum, dissipated energy, etc.).

8.9.10 Permanent Monitoring and Remote Alignment of Low
Beta Quadrupoles

The low beta quadrupoles magnets ensure the final focus of the particle beam
before the collisions and for this purpose they are located in close vicinity to
the experimental detectors. Their positioning accuracy (1σ) is requested to be as
followed:

• 0.1 mm (1σ) for the positioning of one triplet of quadrupoles with respect to the
triplet located on the other side.

• A few microns of stability of the position of one quadrupole inside its triplet

These tight tolerances, the absence of a direct line of sight through the detectors
and the difficult environment (radiations, magnetic fields) have justified the perma-
nent monitoring of the position of these critical components and the addition of
dedicated survey galleries (Fig. 8.102).

In the vertical direction, the permanent monitoring is realized by Hydrostatic
Leveling System (HLS). The principle is based on communicating vessels, the
sensors measuring the distances to a water level by means of capacitive technology
with a resolution below the micron. This high accuracy can only be obtained by
taking into account the temperature gradients, the difference of pressure, the tidal
effects and the influence of the deviation of the vertical. Both sides of the experiment
are linked by a network of pipes (Fig. 8.103—below) running along the cavern and
avoiding big changes in height which would generate temperature gradients.

In the horizontal plane, on each side of the experiment, a “short” (30 m to
45 m) stretched wire detected by biaxial sensor from Wire Positioning Systems
(WPS), also using the capacitive technology, measures the relative position of
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Fig. 8.102 Survey galleries

Fig. 8.103 The HLS and WPS around an LHC experiment

the quadrupoles. To link both sides, a “long” (120 m) wire has been installed in
dedicated Survey galleries and goes through the experimental cavern (Fig. 8.103).
The distances between the “long” and the “shorts” wires are measured by invar
rods and proximity sensors in six locations to have redundant measurements. The
accuracy obtained is in the range of several microns for the quadrupole magnets
located along the same “short” wire and 0.1 mm between both sides of the
experiment.

In addition, a motorized system has been installed to enable a remote readjust-
ment for the improvement of the beam trajectory. This is not an active alignment
system, the alignment is allowed only when the beam is off.
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8.9.11 Alignment of Detector Components

Modern Experiments are complex structures made up of many individual modules,
assembled concentrically, each one being design to detect a certain physics phe-
nomena and can be likened to a set of Russian dolls. In the working position, only
the outer skin of the experiment is visible, the position of the inner detectors has
to be reconstructed from the position of the external ones. Their impressive size
(several thousand tons, and thousands of m3) combined with their confinement
in caverns make the alignment operation difficult in such a restrictive environ-
ment.

Furthermore, in order to obtain good results in the analysis of the events
(reconstruction of particle paths), a precise knowledge of detector positions both
with respect to the beam and respect to each other is required. The geodesists have
therefore to ensure that the dimensional parameters of the experiment are fulfilled
during fabrication and assembly and to give the final position of the whole detector
with respect to the theoretical beam line.

The positioning of the experiment with respect to the beam line is done using
a geodetic experiment network. This network of points is composed of forced
centering sockets distributed in the whole cavern volume on walls and floor. It is
used during all the steps of the assembly and positioning of the detectors. The
design of the network is a very important step as its configuration influences
the final accuracy of the measurements. It is measured, once the cavern has
been delivered and is still empty, using mainly distances, angles and leveling
measurements. The use of laser tracker technology, which uses a very accurate
distance-meter, could also be envisaged. The network accuracy has to be within
a few tenths of a mm (1σ) with respect to the underground network and later to
the accelerator components. It must be periodically controlled knowing that some
points may become physically inaccessible or hidden from the others (Figs. 8.104
and 8.105).

To obtain the final co-ordinates of each detector of the experiment, a succession
of survey operations is needed from the first availability of an individual object
through its final positioning. Each individual sub-detector has to be equipped with
fiducial marks geometrically linked to the sensitive components. These references
must be included in the design of the detectors with the right specifications and
at the most strategic positions to allow their coordinate measurement in the future
with the required accuracy. The surveyors have to be involved at an early stage of
the projects.

One of the first in field operations, called the link geometry, is carried out in labs,
workshop or assembly hall by means of micro-triangulation/trilateration. Fifteen
years ago, the close range digital photogrammetry was added to these techniques
and is now extensively used. Its principle relies on the reconstruction of an object
simultaneously from several images taken from different positions and with the
best possible perspective to ensure a suitable geometry of intersecting rays. The
pictures are taken from free camera positions stationed in the object space and
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Fig. 8.104 Experimental
network in the Atlas cavern

without a camera tripod. The photogrammetric network and the object coordinates
are reconstructed from a bundle adjustment of rays. The valuable advantages are
the non necessity to have stable stations, the short time of on-site intervention,
nearly independent from the number of object points, coupled with a high measuring
accuracy, even for voluminous objects.

After the survey involvement in all the phases of the detector construction:
the preparatory work, the prototyping, the tests, the step-by-step adjustment and
alignment of sub-detectors, the final stage of the complex geodetic process is
carried out when the whole experimental equipment is installed on the beam line.
From the experiment geodetic network, a control is done on a sufficient number
of visible marks located on the outer skin of the object using techniques such as
close range photogrammetry, leveling, angles, distances and offset measurements.
From the obtained co-ordinates, successive 3D transformations will allow the
calculation of each detector internal reference position both in the experimental
local co-ordinate system and in the CERN co-ordinate system, the one in which
the accelerator components, in particular the low beta quadrupoles, are also
known.

The operation of the opening and the closure of all the parts of the detectors at the
beginning and the end of each shut-down of an accelerator is quite delicate. During
these two phases, the detectors shall remain within a few mm with respect to their
nominal trajectory in order not to be damaged during the longitudinal movement.
To limit the survey interventions, a positioning system based on the principle of the
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Fig. 8.105 Fiducialisation of a CMS big wheel by photogrammetry

BCAM has been developed. The design of the lines of sight has been chosen either
vertical or parallel to the movement of the detectors so that the BCAM can measure
the most critical deviations during the movement of the detectors.
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Chapter 9
Accelerator Operations

M. Lamont, J. Wenninger, R. Steinhagen, R. Tomás García, R. Garoby,
R. W. Assmann, O. Brüning, M. Hostettler, and H. Damerau

9.1 Introduction

M. Lamont

The cost of building a particle accelerator is a major capital investment. Commis-
sioning should be swift and the subsequent exploitation of a facility must provide
an effective return. This return may be difficult to quantify unambiguously but
generally acceptable measures of performance can be established. These measures
might include: machine availability; integrated luminosity; protons on target; beam
hours to users and so on.

The role of accelerator operations is to maximize the performance of an acceler-
ator or accelerator complex by: minimizing downtime; maximizing the amount of
beam delivered to the users; fully optimizing the quality of beam delivered to the
users; and doing it all safely.

Accelerators and the control of particles beams have advanced considerably over
recent years. There is deep understanding of particle dynamics, innovative measure-
ment techniques, in-depth simulation and modelling, and widespread leverage of
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twenty-first century technology. It is not possible to go into too much depth here,
instead some fundamentals that have been established from experience are outlined.
References are given to more detailed sources. Some key operational considerations
are outlined below and addressed in more detail in this chapter.

• Availability Accelerators are complex and their operations demands interfacing
to a wide number of systems. Some these may be regarded as technical services
e.g. cooling; cryogenics; electricity distribution. Others will have a more direct
relationship with beam based operation e.g. power converters; radio frequency
systems; beam instrumentation. One main challenge is to maintain the facility
in a operable state for the maximum amount of time. Preventative maintenance,
consolidation, fault tracking and fast problem resolution are required. In larger
complexes there can be a chain of dependencies from sources, linacs and so
on. Availability will be the cross product of the whole chain and associated
primary services. Mean time between failure of essential components have to
be evaluated at the design stage and appropriate component reliability assured.
An effective fault tracking system is essential to identify weaknesses and targets
for improvement.

• Reproducibility One key operational driver is reproducibility. In terms of the
magnetic machine this implies careful attention to the powering history via a
well defined pre-cycling strategy in a collider or careful cycle configuration in a
fast cycling machine. A on-line measurement of the dipole field in a dedicated
reference magnet system may be required. Reproducibility and stability of
orbit can be critical for a number of reasons including guaranteeing collimator
hierarchy or available aperture. Reproducibility of machine settings is to be
expected and must be guaranteed.

• Control The control system will act as the primary interface to the accelerator
systems and provide the means to communicate with a sub-system components.
It will also provide high level facilities for driving the accelerator through its duty
cycle. Although sometimes taken for granted, poorly designed controls can have
a debilitating effect on the operability of an accelerator. Careful evaluation of the
requirements and sufficient resources for development are required. Flexibility is
required for commissioning and machine studies; access to control functionality
and measurements for non-standard development should be considered.

• Instrumentation Effective beam instrumentation underpins control, optimiza-
tion and understanding. The importance of well specified, reliable, accurate
systems with appropriate acquisition systems and software cannot be understated.

• Optimization and stability The high performance demanded of modern
machines can demand operating within tight parameter envelopes. Appropriate
flexibility and precision in parameter control should be anticipated. Feedback
systems for control of the key beam parameters can become mandatory. These
could range from orbit and tune to transverse feedback systems. Harnessing
modern technology and techniques is vital and again, expert resources must be
given over to ensuring appropriate solutions. Commissioning these systems early
in the lifetime of a machine should be a priority.
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• Understanding Accelerator operations offers almost infinite possibilities for
empirical tweaking as a way around problems. There is no substitute for building
up real understanding of the key properties of a machine. These might include
aperture, optics, instabilities, beam losses, beam and luminosity lifetimes. Good
control and instrumentation are the tools of this trade and their importance is
again stressed.

• Safety High energy and high power machines bring with them a number of
risks. These risks have to be properly understood and protected against. For a
complex machine the process of understanding the risks and their, sometimes,
subtle interplay can be a painstaking process. Failure to perform this process
properly can prove costly.

9.2 Parameter Control

M. Lamont

The high level control system shall provide the following functionality:

• monitoring, recording and logging of accelerator status and process parameters;
• display of operator information regarding the accelerator status and beam

parameters;
• operational settings management should provide facilities for the settings

changes of all individual equipment systems; all settings changes shall be
recorded, with simple-to-use roll-back possibilities;

• automatic process control and sequence control during all beam related modes
of operation and covering all operational scenarios i.e. control within normal
operating limits;

• prevention of automatic or manual control actions which might initiate a hazard;
• detection of the onset of a hazard and automatic hazard termination (e.g. dump

the beam), or mitigation (e.g. establish control within safe operating limits).

In particular, control of the key beam parameters is vital to maintain good beam
lifetime and minimize beam loss at all stages of operation. A general operational
principle is to effect control at the appropriate level. Thus high level parameters such
tune, chromaticity, synchrotron tune, bucket area, phase advance should used where
appropriate. Software provides the appropriate translation to lower level hardware
parameters such as current and voltage. The results of more complex beam dynamics
analyses such as beta beating measurement and correction or the measurement and
correction of non-linear effects have also to be incorporated in a sensible way into
the machine settings.
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9.2.1 Magnetic Elements

For a given machine configuration, optics programs are generally used off-line to
generate the baseline settings in normalized strength for magnetic elements. These
strengths should be imported into the settings management system and be amenable
to adjustment as required. The required beam momentum is used to calculate the
field or gradient required in a magnet or series of magnets.

For example, the required quadrupole gradient given a normalized quadrupole
strength is calculated via Eq. (9.1).

k2 = e

p

dBz
dx

= 1

Bρ

dBz
dx

. (9.1)

Given a required field or gradient in a magnet circuit the next challenge is to
establish the required current to be supplied to the circuit. The two forms of Eq. (9.1)
reflect the two main approaches to the challenge of conversion from required field
or gradient to current.

The first approach depends on precise knowledge of the instantaneous total
bending field in a synchrotron. This information can be obtained from a closed-loop
measurement system, which generates and distributes a train of impulses (“B-
train”) representing the field in a reference unit powered in series with the machine,
or by a mathematical field model (“synthetic B-train”) possibly supplemented by
off-line measurements. The real-time measurements of the main dipole field are
then distributed to the power supply front-ends which perform a conversion from
required gradient to current. Several major uncertainty sources apply in these cases,
namely: temperature drifts, hysteresis behaviour in the iron, eddy current effects,
material ageing [1].

An alternative, used at LEP and the LHC, is an off-line approach. Here look-
up tables (gradient/field versus current) are pre-generated and used directly in the
calculation of magnet currents, usually at the higher level of the control system. The
LHC developed a semi-empirical model (“FiDeL” [2]) to generate the look-up tables
and a description of the dynamic behaviour of multipole field errors. This model was
based on a large database of test results which included all magnetic elements. The
measurements were statistically analysed to extract model parameters. The required
momentum is the taken as the driving parameter in the settings generation software;
the current in all magnetic circuits is then given by pushing the required fields and
gradients through the look-up tables.

9.2.2 Transverse Beam Parameters

Tune adjustment can be made using either the main quadrupoles circuits or
dedicated trim quadrupole circuits. In the linear approximation it is straightforward
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to pre-calculate the coefficients relating strength changes to a given tune change.
The key point here is to have on-line a rapid and easily available conversion between
a beam parameter, magnet strength and ultimately power supply current. Once
established the method can be used by on-line, off-line and real-time software.

The coefficients can either be established from standard definitions involving
Twiss parameters or by pre-calculating the corresponding coefficients using, say,
MADX, and use them with appropriate linear scaling to calculate the required
changes in quadrupole strengths. The same arguments hold for all other commonly
used operational parameters.

For chromaticity a matrix equation can be formed for the required change in
sextupole strength given a desired change in chromaticity. Operationally the matrix
coefficients can be pre-calculated either via the standard integrals or a machine
model and then used on-line. Different sextupole families are often used in colliders
to target different sources of chromaticity. Correction algorithms can be configured
to weight different families as required.

Correction of the coupling can be important for machine performance and beam
diagnostics. Sources of coupling include: tilted quadrupoles; solenoid fields; and
vertical orbit deviations in sextupoles. Anticipating these sources at the design
stage ensures that appropriately placed families of skew quadrupoles can be
used to correct all sources of coupling. In principle the coupling generated by
experimental solenoids and its correction can be pre-calculated. Correction of
coupling from random sources in the machine can either be performed empirically
or by compensating the coupling driving terms extracted from multi-turn BPM
measurements. Knobs to correct the real and imaginary part of the coupling driving
terms should be anticipated.

An effective method of measuring coupling is required. Methods range from
measurements of the cross-plane tune amplitudes; the closest tune approach; mea-
suring the cross-plane effects of beam excitation. More sophisticated measurement
techniques can identified local sources of coupling and local correction may be
possible if dedicated elements are available e.g. correction of coupling arising from
tilts of the inner triplet magnets in the LHC. On-line methods using the transverse
damper in AC-dipole mode to obtain spectral data around ring have provided
automatic on-line correction of the real and imaginary parts of the coupling in the
LHC.

The principles of orbit correction are described later in this chapter. Orbit dipole
kicks should be treated as a parameter like any other. Thus

θi = �B�s

Bρ

∣∣∣∣
i

(9.2)

where θi is an orbit kick at a location si would slot into a settings management
system in a consistent way, along with the use of orbit correctors in predefined local
bumps and the like.
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9.2.3 Generalization

The parameter space of a particle accelerator can be complex and large and might
include the parameters such as tune, chromaticity and orbit but also others such as:
Landau damping octupoles; bunch length control with wigglers; compensation of
eddy current effects; higher order multipole correction with dedicated magnets etc.
In a machine with an energy ramp these parameters and required corrections will be
a function of time.

It should be easy to define combinations of parameters to give other higher level
parameters (a “knob” in CERN parlance). These knobs can be then manipulated to
control the ensemble. A simple example is a closed orbit bump. A more sophis-
ticated example would be an optics correction which could include quadrupole
strength adjustments and tune compensation.

Reliable settings management is mandatory. Generic tools for tracking all
changes to settings should be deployed providing a full record of all settings
changes. Archive and roll back facilities are essential. It is important that all
parameter control be dealt within the same parameter and settings management
system.

Besides the provision of tools for standard operations, the requirements of
machine studies and commissioning should be borne in mind. Exploiting the
machine in study mode often required non-standard measurements and non-standard
control actions on accelerator hardware. An appropriate scripting environment
(e.g. Python) with interfaces to control system functionality should allow the user
to fully exploit the potential of the hardware and control system in a flexible
and experimental way. Many of the tools thus developed can subsequently be
incorporated into the standard operational environment. At the LHC this has
included, for example, tools for beta beating measurement and correction, detection
and logging of beam instabilities etc.

9.3 Orbit Correction

J. Wenninger

The main role of orbit correction is to centre the trajectory (in a transfer line) or
the closed orbit (in a ring) inside the aperture or the magnetic elements, typically
quadrupoles or wiggler magnets. This is usually achieved using global correction
algorithms acting on all or a large part of the accelerator. In some cases local
excursions may be desired, requiring the use of local ‘bumps’ of the orbit or
trajectory.
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9.3.1 Global Orbit Correction

Consider a storage ring with M beam position monitors (BPM) and N correctors.
Orbit displacements �d (M-component vector) arising from corrector kick angles �θ
(N-component vector) are determined by the M ×N linear response matrix A,

A�θ = �d , (9.3)

Amn=
√
βmβn

2 sinπν
cos (|φm − φn| − πν) . (9.4)

The elements of A may be obtained from the machine model or be determined
experimentally by measuring the deviation at each BPM resulting from exciting
each corrector individually.

The task of the orbit correction is to find a set of corrector kicks �θ that satisfy the
following relation,

�d + A�θ = 0 . (9.5)

In general the number of BPMs (M) and the number of correctors (N) are not
identical and Eq. (9.5) is either over- (M > N) or under-constrained (M < N).
In the former and most frequent case, Eq. (9.5) can not be solved exactly. Instead,
an approximate solution must be found, and commonly used least square algorithms
minimize the quadratic residual

S = ‖�d + A�θ‖2 . (9.6)

9.3.2 SVD Algorithm

When M ≥ N , the Singular Value Decomposition (SVD) [3] of matrix A has the
form A = UWVt ,

A =

⎡

⎢⎢⎢⎢
⎣
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⎥⎥⎥⎥
⎦

⎡

⎢⎢⎢
⎣

w1

w2
. . .

wN

⎤

⎥⎥⎥
⎦

⎡

⎢⎢⎢⎢
⎣

v
(1)
1 v

(1)
2 · · · v(1)N

v
(2)
1 v

(2)
2 · · · v(2)N

...
...

...

v
(N)
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⎤

⎥⎥⎥⎥
⎦
. (9.7)

U is the M × N matrix whose column vectors �u(α), (α = 1, . . . , N) form
an orthonormal set, UtU = I. W is N × N diagonal matrix with non-negative
elements. Vt is the transpose of the N × N matrix V, whose column vectors
�v(α), (α = 1, . . . , N) form an orthonormal set, VtV = VVt = I.
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From Eq.(9.7), it follows that (α = 1, . . . , N),

A�v(α) = wα �u(α), At �u(α) = wα �v(α), (9.8)

and

AAt �u(α) = w2
α �u(α), AtA�v(α) = w2

α �v(α). (9.9)

When none of the diagonal elements wα vanish, the solution of Eq.(9.5) is �θ =
−VW−1Ut �d . �d may be expanded in terms of eigenvectors �u(α) [4],

�d =
N∑

α=1

Cα �u(α) + �d0 , (9.10)

where Cα = �d · �u(α), while �d0 corresponds to the uncorrectable part of the orbit.
The corrector strength required for correction is

�θ = −
N∑

α=1

Cα

wα

�v(α) . (9.11)

If a given wα = 0 indicating that the matrix is singular, one discards the
corresponding term from Eq. (9.11). An example for an eigenvalue spectrum is
given in Fig. 9.1 for LEP.

In practice one may want to limit the number of eigenvalues used for the
correction to control the r.m.s. strength of the orbit correctors or to avoid small
eigenvalues that are very sensitive to the accuracy of the model.
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Fig. 9.1 Vertical orbit eigenvalue spectrum for LEP. The last four eigenvalues correspond to
singular solutions in the low-beta sections around the interaction points
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The SVD algorithm is ideally suited for feedback application since the correction
can be cast in the simple form of a matrix multiplication once the SVD decomposi-
tion has been performed. This provides a fast and reliable correction procedure for
realtime orbit feedback.

9.3.3 MICADO Algorithm

MICADO [5] is a least square correction algorithm based on Householder trans-
formations. MICADO performs an iterative search for the most effective corrector
and is, together with SVD, one of the most common orbit correction algorithms.
For a non-singular matrix, a MICADO correction with all N correctors and an SVD
correction with all N eigenvectors yield identical solutions. For corrections with
a limited number of correctors or eigenvectors, and for singular matrices, the two
algorithms converge differently.

A major difference between SVD and MICADO is the corrector strength
distribution, MICADO using fewer but also much stronger kicks. The corrector
strength r.m.s. can be easily controlled with SVD over the number of eigenvalues
that are included in a correction. A correction of a small number of localized kicks
is very effectively handled by MICADO, particularly when the response matrix
is accurate, in which case MICADO can be used to identify the sources of the
kicks. On the other hand, corrections based on few eigenvectors with the largest
eigenvalues are similar to corrections of the main harmonics. Such a scheme spreads
out the correction of a few kicks over the whole machine which can be an asset
when the strength of correctors is limited. To compensate an isolated kick locally, a
large number of eigenvectors must be included in the correction such that the linear
combination forming �θc converges to a single nonzero corrector.

Singularities of the response matrix, associated to very small eigenvalues, are
handled more easily with SVD, since it is sufficient to avoid using the corresponding
eigenvectors in the corrections procedure. For the MICADO algorithm, it is
necessary to regularize matrix A by removing redundant correctors.

9.3.4 Local Orbit Bumps

A local bump may be build from three correctors with deflections θ1,2,3 at locations
1, 2, 3. The deflections may be expressed in terms of the lattice parameters,

θ2

θ1
= −
√
β1

β2

sin(φ3 − φ1)

sin(φ3 − φ2)
,

θ3

θ1
= −
√
β1

β3

sin(φ2 − φ1)

sin(φ2 − φ3)
.

(9.12)
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At a target point t between 1 and 2, the position and angular displacements are

dt = θ1
√
β1βt sin(φt − φ1) ,

d ′t = θ1

√
β1

βt

[
cos (φt − φ1)− αt sin (φt − φ1)

]
.

(9.13)

At a point t between 2 and 3,

dt = θ3
√
β3βt sin (φ3 − φt) ,

d ′t = − θ3

√
β3

βt

[
cos (φ3 − φt)+ αt sin (φ3 − φt )

]
.

(9.14)

To control both position dt and angle d ′t at the source point, a four-magnet local
bump is required. The four-magnet local bump with corrector locations 1, 2, 3, 4,
where the source point t is located between correctors 2 and 3 is given in terms of
optics functions by:

θ1 = dt (cos(φt − φ2)− αt sin(φt − φ2))√
βtβ1 sin(φ2 − φ1)

− d ′t
√
βt/β1 sin(φt − φ2)

sin(φ2 − φ1)
,

θ2 = −dt (cos(φt − φ1)− αt sin(φt − φ1))√
βtβ2 sin(φ2 − φ1)

+ d ′t
√
βt/β2 sin(φt − φ1)

sin(φ2 − φ1)
,

θ3 = −dt (cos(φ4 − φt )− αt sin(φt − φ4))√
βtβ3 sin(φ4 − φ3)

+ d ′t
√
βt/β3 sin(φt − φ4)

sin(φ4 − φ3)
,

θ4 = dt (cos(φ3 − φt)− αt sin(φt − φ3))√
βtβ4 sin(φ4 − φ3)

− d ′t
√
βt/β4 sin(φt − φ2)

sin(φ4 − φ3)
.

(9.15)

9.3.5 Software

To be operationally useful the above algorithms must be fully integrated into
application software. The software should typically provide the following function-
ality:

• an interface to orbit and trajectory acquisition system;
• the ability to compare measured orbits with saved references;
• the ability to calculate orbit corrections with a range of correction strategies

(correction algorithm, number of correctors, number of eigenvalues) and send
resulting correction to the machine;

• the ability to introduced a fully configurable local bump into the machine;
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• facilities for dispersion measurement, harmonic analysis, energy offset analysis;
• facilities for threading, averaging and correction of the first N turns, injection

point correction;
• multi-turn capture and analysis facilities.

9.4 Beam Feedback Systems

R. Steinhagen

The domain of control system design is too vast to be comprehensively and
briefly covered and thus this section focuses only on the key aspects that are
applicable to accelerator control. The inclined reader is referred for a more detailed
introduction to [6]. One distinguishes two paradigms that are used to drive and
stabilise any given beam parameter:

• Feed-Forward which relies on the knowledge of the transfer function between
beam parameter, required current and corresponding effective magnetic field,
and essentially consists of inverting the scalar or matrix relations discussed
in Sect. 9.3, and for matrices most commonly done using a Singular-Value-
Decomposition based approach[7]. While this scheme is often sufficient, its
intrinsic weakness of being limited by inaccuracies of the magnet’s transfer
function, dynamic field effects such as e.g. the decay- and snapback phenomenon
in superconducting magnets and random external perturbations may lead to a
potentially out-of-tolerance systematic error �ε = 1 − ε, which is illustrated as
a difference between the reference and actual beam process variable in Fig. 9.2a.
Still, this type of control is suitable for many beam parameters such as the beam
momentum where the magnet and RF transfer functions involved are typically
known on the 0.1% level.

• Feedback may be used in case the beam parameter model is insufficient (due
to, for example, multiple dependencies or random perturbations) and at the
same time the parameter deviations being accessible by beam instrumentation
or diagnostics methods. In this case, the corresponding measurements can either
be used to: (a) improve the knowledge of the beam parameter to magnetic
field to current transfer function (feed-forward scheme), or (b) to ‘feed back’
part of the measured value into the reference that is send to the magnets or
RF systems. In this case the difference �ε = 1 − ε drives a controller that
iteratively optimises the actuator signal by minimising �ε till the actual beam
process variable matches the desired reference value as shown in Fig. 9.2b. Due
to intrinsic limitations such as the bandwidth of the magnetic circuits and non-
linear effects such as delays and rate-limits, the stabilisation is typically not
instantaneous. To cope with these effects requires a more complex form of
controller to optimise temporal convergence.
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Fig. 9.2 Feed-forward and feedback signal in response to a step reference change: the actual value
of process variable and residual errors 1-ε are indicated and vanishes to zero in case of an integral
feedback

The strength of feedbacks is that they require, in comparison to feed-forward
systems, only a rough process model while reducing the residual error through con-
tinuous adjustments or measure-and-correct iterations. For a steady-state scenario,
the final parameter stability is ultimately limited by the noise and systematic error
of the underlying beam parameter measurement. Since the robustness and stability
of the beam instruments directly translates through this into the robustness and
stability of the feedback loop, a good understanding of the underlying instrument,
measurement and diagnostic principles is of paramount importance while designing
beam-based feedback systems.

Two types of feedback are often distinguished: those acting within a given
accelerator cycle (e.g. during injection, acceleration, store, dump) and those acting
on a cycle-to-cycle basis where the disturbance measurements of the previous
cycle are used to drive the actual state.1 Both cases are similar and differ mainly
on the time-scale in between measurements and corrections, the latter offers less
strict requirements in terms of read-out speed and bandwidth of the involved beam
instrumentation’s acquisition system and is often initially favoured to a continuous
read-out. The basic measurement, control principles and issues remain the same
however.

9.4.1 Feedback Controller Design

A simple loop block diagram consisting of a single-input-single-output (SISO) beam
response G(s) and controller D(s) is shown in Fig. 9.3. Here, r is the desired beam

1The cycle-to-cycle feedbacks are sometimes incorrectly referred to as “fill-to-fill feed-forward”
though—in the strictest sense—they usually also rely on beam-based measurements.



9 Accelerator Operations 531

Fig. 9.3 First order closed
loop block diagram
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parameter reference, y the actual parameter state, e the feedback error being the
difference between both, and u the output that is generated by the controller that
minimise the error within the given constraints (e.g. response time, required power,
etc.). One distinguishes typically at least three different error sources that can enter
the feedback system: internal perturbations δi that are amplified by the same beam
transfer function G(s) as the to be stabilised parameter, external perturbations δd
and measurement noise δm that while not directly affecting the actual state y may
propagate to it depending on the choice of controller function D(s). Depending
on whether the system is implemented in the analogue or digital domain, it is
convenient to transform the differential or difference equations of controller and
beam process transfer functions using the Laplace2 or Z-Transform. Both transforms
translate complex convolutions in time domain to simple multiplications in the s- or
z-domain. For the sake of simplicity, further discussion uses the Laplace transform
but equally applies to Z-transformed digital systems.

For low-order beam parameters—such as orbit, tune, coupling, chromaticity
and energy—the effects of the RF and individual corrector circuits are usually
sufficiently linear and thus G(s) is often approximated by a scalar K or matrix
transfer function as described in Sect. 9.2 followed by a given time dependence.
The time dependence of most electrical magnet circuits and RF systems is well
approximated as first- (low-pass) and second-order (simple harmonic oscillator)
systems with transfer functions given as:

Gfirst order(s) = K

τs + 1
, (9.16)

Gsecond order(s) = Kω2
0

s2 + 2ζω0 · s + ω2
0

, (9.17)

2The Laplace transform of a function if (t) is given by F(s) = L{f (t)} = ∫∞0 e−st f (t)dt and
is closely related to the Fourier transform. While not exact, in many cases replacing s → iω

yields the Fourier transformed form. As a good approximation, Laplace-transformed functions can
be translated to the Z-Transform using the bilinear transformation s = 2

Ts

z−1
z+1 with Ts being the

sampling period.
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with τ being the constant of the low-pass characteristic, ζ the damping factor and
ω0 the eigenfrequency of the system. In an ideal world the feed-forward (M(s) = 0)
controller design would try to achieve a unity gain system transfer function

Topen−loop(s) := D(s)G(s)→ 1 , (9.18)

which for a perfect actuator response corresponds to inverting Eqs. (9.16) and (9.17).
However, in a real-world environment this can be only be achieved for reference
changes with limited time-constants due to intrinsic limits on the power converter’s
slew-rate. Also, any scaling error in D(s) or modelled G(s) would yield a static
error on the actual parameter output and discussed before.

If part of the actual parameter value is measured via a monitor transfer function
M(s), compared to the reference and the difference fed into the controller it is useful
to define the following transfer functions that describe the stability and sensitivity
to perturbations and noise

T (s) := y

r
= D(s)G(s)

1 +D(s)G(s)
, (9.19)

Sd(s) := y

δd
= 1

1 +D(s)G(s)
, (9.20)

Si(s) := y

δi
= G(s)

1 +D(s)G(s)
, (9.21)

Su(s) := u

δd
= D(s)

1 +D(s)G(s)
, (9.22)

where T (s) is the nominal closed-loop (feed-back) transfer function, Sd(s) the nom-
inal sensitivity defining the loop disturbance rejection, Si(s) the input-disturbance
sensitivity and Su(s) the control sensitivity. The state variables are indicated in
Fig. 9.3.

It can be easily see, inserting Eq. (9.18) into 9.19, that using the same ideal
open-loop controller relation described above in a closed-loop would yield a loop
response error of 50% even for a perfect system. However, assuming only a perfect
scalar controller D(s) = D0 on can see that the loop response converges to one
for larger controller gain D0 and in particular becomes less dependent on relative
errors ofG(s)which again illustrates the advantages of feed-back over feed-forward
systems. However, at the same time one can show that the transfer function between
actual beam parameter and measurement noise is equal to the nominal transfer
function T (s) = y

δm
. Thus while simply increasing the scalar gain D0 yields a

perfect loop response to reference changes, it also causes the system to propagate
any measurement error directly onto the actual beam parameter.

Thus, from the beam diagnostics point of view, in case the given instrument is
to be used in beam-based feedbacks, the involved instrumentation performance is
sometimes prematurely optimised—often including significant filtering in M(s) to
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reduce the measurement noise—prior to closing the feedback loop. While this is
suitable for systems that are used for verification or monitoring only, it has certain
disadvantages when used in feedbacks e.g. through introducing additional sampling
delays. Combining the filtering of beam instruments and closed-loop responses
insideD(s) is not just equivalent to this from a noise point of view but also improves
the feedback response by minimising the total loop delay in these cases.

The discussed simple scalar controller are usually only used if the beam
parameter response is much faster than the required reference changes (e.g. feedback
that act on a cycle-to-cycle basis) but need to be extended for time dependent
components for the other cases. Classic feedback designs typically rely on the
discussion of denominator zeros in Eqs. (9.19) and (9.20) while keeping constraints
such as required bandwidth, minimisation of overshoot, limits on the maximum
possible excitation signal and robustness with respect to model and measurement
errors. For ideal processes, this yields adequate controller designs but often falls
short in providing a simple comprehensive method for estimating and modifying the
loop sensitivity (robustness) in the presence of process uncertainties, non-linearities
and noise.

Here, Youla’s affine parameterisation method for optimal controllers is briefly
introduced, which is based on the analytic process inversion, first introduced in [8].
For an open-loop stable process G(s), the nominal closed-loop transfer function is
stable if and only if Q(s) is an arbitrary stable proper transfer function and D(s)

parameterised as:

D(s) = Q(s)

1 −Q(s)G(s)
. (9.23)

The stability of the closed loop system follows immediately out of the above
definition if inserted into Eqs. (9.19)–(9.22). The sensitivity functions in the Q(s)
form are given as:

T (s) = Q(s)G(s) , (9.24)

Sd(s) = 1 −Q(s)G(s) , (9.25)

Si(s) = (1−Q(s)G(s))G(s) , (9.26)

Su(s) = Q(s) . (9.27)

Assuming G(s) is stable, the only requirement for closed loop stability is for Q(s)
to be stable. The strength of this method is the explicit controller design with respect
to required closed loop performance, as visible in Eq. (9.24), and required stability
(Eqs. (9.25)–(9.27)). Equations (9.24) and (9.25) are complementary and illustrate
the intrinsic limiting trade-off of feedbacks that either have a good disturbance
rejection or are robust with respect to noise. The ultimate limit is thus defined
rather by the bandwidth and noise performance of the corrector circuits and beam
measurements than by the feedback loop design itself.
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9.4.1.1 First and Second Order Example

The design formalism can be demonstrated using a simple first order system
G0(s) = K0

τ ·s+1 with open-loop gain K0 and time constant τ . A common controller
design ansatz is to write Q(s) as

Q(s) = FQ(s) ·Gi
0(s) , (9.28)

with FQ(s) a trade-off function and Gi
0(s) the pseudo-inverse of the process. Since

G0 does not contain any unstable zeros, the pseudo-inverse equals the inverse and
is given by Gi

0(s) := [G0(s)]−1 = τ ·s+1
K0

. Q(s). In order for D(s) to be biproper,
FQ(s) must have a degree of one and can be written as:

FQ(s) = 1

αs + 1
. (9.29)

Inserting Eq. (9.28) into Youla’s controller parameterisation equation (9.23) yields
the following controller:

D(s) = τ

K0α
+ 1

K0αs
= Kp +Ki · 1

s
, (9.30)

which shows a simple PI controller structure with proportional gainsKp and integral
gain Ki . Inserting Eq. (9.28) into (9.24) yields

T0(s) = FQ(s) (9.31)

that the closed loop response is essentially determined by the choice of trade-off
function FQ(s) and that the closed loop bandwidth is proportional to the parameter
1/α. This can be used to tune the closed loop between: high disturbance rejection
but high sensitivity to measurement noise (small α) and low noise sensitivity but
low disturbance rejection (large α) depending on the operational scenario. The
maximum possible closed loop bandwidth is limited by the excitation, as described
by Eq. (9.27). In case of power converters, for example, the excitation is limited by
the maximum available voltage.

One can derive a similar optimal controller for a second-order system (Eq. (9.17))
using a similar ansatz:

Q(s) = FQ(s) ·Gi(s) = ω2
cl

s2 + 2ζclωcl ‘s + ω2
cl

·Gi(s) (9.32)

yields the following controller PID structure

D(s) = Kp +Ki · 1

s
+Kd · s

τds + 1
(9.33)



9 Accelerator Operations 535

with proportional gains Kp, integral gain Ki and integral gain Kd defined as:

Kp = 4ζclζ0ω0ωcl − ω2
0

4K0ζ
2
cl

, (9.34)

Ki = ω2
0ωcl

2K0ζcl
, (9.35)

Kd = 4ζ 2ω2
cl − 4ζ0ω0ζcl + ω2

0

8K0ζ
3
clωcl

, with τd = 1

2ζclωcl
. (9.36)

There are several options but the most commonly used discrete ‘velocity form’ of
above PID controller (without contracting sums) can be written as

u[n] = u[n− 1] +Kp · (e[n] − e[n− 1])+Ki · Ts · e[n]

+ Kd

Ts
· (e[n] − 2e[n− 1] + e[n− 2]) (9.37)

with n being the sampling index, Ts the sampling frequency, u[n] the controller
output and e[n] the measured error signal. The error signal e[n] that is specifically
used for the last differential part of the controller is nearly always low-pass filtered
to suppress high-frequency noise that is common in discrete systems and that would
otherwise be amplified by the Kd term. Compared to analogue feedbacks, digital
feedbacks are more robust and their operation more reproducible compared to cases
where temperature drifts or other external factors would affect analogue controller.
Thus, in case the requested bandwidths are in the few Hz to MHz-range, digital
feedbacks are the de-facto standard. Still, digital controllers are fundamentally
limited by the intrinsic phase-lag caused by the sampling and dynamic range due
to the finite number of ADC bits available at that frequency. Thus for feedbacks
operating in the range of a few hundred to GHz range or where a high dynamic range
is required, analogue feedbacks are still used. In any case, neither fully analogue
nor fully digital representations are exact, and the final implementation is usually
validated using beam-based optimisation techniques.

9.4.1.2 Non-linear Systems

The same method can be extended to open-loop unstable and multi-input-multi-
output (MIMO) systems [8]. Real life feedbacks may contain significant delays λ
(due to e.g. data transmission, data processing etc.) and non-linearities GNL(s),
due to e.g. saturation and rate limits of the corrector circuits’ power supplies. The
modified process can be written, for example as:
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G(s) = G0(s) · e−λsGNL(s) . (9.38)

Using the same pseudo-inverse Gi
0(s) as for the above example and inserting

Eq. (9.28) into (9.23) yields a controller parameterisation DNL(s) including a
classic Smith-Predictor and anti-windup paths, discussed in more detail in [6, 9].
Inserting Eq. (9.28) including the delay and non-linearities into Eq. (9.24) yields
the following closed loop transfer function:

T (s) = FQ(s) · e−λsGNL(s) . (9.39)

Similar to the linear case discussed above, the closed loop is essentially defined by
the function FQ(s) that within limits can be chosen arbitrarily based on the required
disturbance rejection and robustness during possibly different operational scenarios
(gain-scheduling). Further information and a review on Youla’s parameterisation
can be found in [6, 10].

9.4.2 Inter-Loop Dependencies

Above described individual parameter control complexity is dwarfed by the chal-
lenge of operating parallel feedback loops on for example orbit, tune, chromatic-
ity, coupling, radial position and transverse bunch-by-bunch motion. Even in a
fully optimised scheme, some cross-talk is inevitable: the momentum modulation
required to measure chromaticity induces tune and radial offsets that are seen by the
tune, orbit and radial position feedbacks; transverse feedback, by design, minimises
the very same beam oscillations required to measure the tune. If not addressed at an
early design stage, a naïve one-by-one implementation of these feedback loops can
lead to serious interferences, coupling and instabilities.

There are various classic de-coupling strategies such as: diagonalisation, e.g
decoupling of horizontal and vertical planes; suppression of known cross-terms,
i.e. allowing certain variations which are required for measurements; dead-bands to
limit the operational ranges of one feedback in favour of another; time-scheduling
between feedback actions, such as alternating tune measurements with transverse
feedback operation; choosing different bandwidths for each loop.

An improved de-coupling strategy is to derive the dependent variable from the
compensated feedback actuator control signal. In this case the tune feedback is
operated at the maximum desired bandwidth, fully compensating radial modulation
induced tune changes. Chromaticity is in turn derived and corrected from the
amplitude of the actuator signal required to stabilise the tunes. Due to the finite
bandwidth and gain of the feedback, the actuator signal does not typically contain
the full modulation. An accurate chromaticity estimate needs to account for this
and should be complemented by the demodulation of the residual tune frequency
oscillation remaining on the beam. The required dispersion orbit variation and
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corresponding momentum mismatch need to be addressed differently. This is
done by subtracting them dynamically from the orbit and radial-loop feedback
reference targets. In machines running with transverse feedback systems, the tune
can similarly be derived from its actuator signal while keeping beam oscillations and
potential instabilities under control. Because of the various inter-loop dependencies,
it is beneficial to implement the tune, chromaticity, coupling, orbit and radial-loop
feedbacks in one global controller to minimise data exchange and synchronisation
requirements.

9.5 Optics Measurement and Correction

R. Tomás García

9.5.1 Introduction

The unavoidable misalignments and field errors of the different components of
an accelerator cause distortions of the machine optics with respect to the design.
Optics errors deteriorate the accelerator performance and can even challenge the
machine safety when operating with beam. Optics measurement and correction
techniques are therefore fundamental to keep optics errors as low as possible or
within specified tolerances [11]. The following sections review procedures and
techniques to measure and correct various optics parameters, focusing on circular
accelerators.

9.5.2 Optics Measurement Techniques

The tune is probably the most fundamental optics parameter as resonances need to
be avoided for efficient accelerator operation. One- and two-dimensional resonance
lines in the tune space have correspondances to Farey sequences [12]. The fractional
part of the tune,Q, is given by the frequency of the beam oscillations when sampled
turn-by-turn at any longitudinal location s,

z(N) = √2Jβ(s) cos
(
2πQN + φ(s)+ φ0

)
, (9.40)

where z stands for horizontal or vertical position and J and φ0 are the amplitude and
phase invariants of the beam oscillations. Exciting the beam oscillations above the
frequency noise floor of the Beam Position Monitors (BPMs) is crucial for the tune
measurement. All optics measurements involve some kind of excitation as discussed
below.
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9.5.2.1 Quadrupole Strength Modulation

A change in the integrated strength of a quadrupole �KL yields a change in
the tunes �Qx,y that can be unambiguously used to determine the average βx,y
functions over the quadrupole [13],

βx,y = ± 2

�KL

(
cot(2πQx,y)

(
1 − cos(2π�Qx,y)

)+ sin(2π�Qx,y)
)
≈ ±4π

�Qx,y

�KL
,

(9.41)

where the ± sign refers to the horizontal and vertical planes, respectively. The
approximation displayed to the right of Eq. (9.41) is applicable for 2π�Qx,y � 1
and Qx,y far away from the integer and the half-integer. This technique is routinely
used in many synchrotrons [14–18]. Hadron colliders typically operate with Qx

very close to Qy . In this case a good correction of coupling is required prior to
measurements with quadrupole strength modulation.

9.5.2.2 Closed Orbit Distortion

Exciting an orbit corrector with a deflection strength of �θ yields a closed orbit
distortion around the ring given by

�xco(s) = �θ

√
β(s)β(s0) cos

(|φ(s)− φ(s0)| − πQ
)

2 sinπQ
, (9.42)

where s is the location of the BPM and s0 is the location where the kick (�θ ) is
applied. The β(s) and φ(s) functions can be obtained at the BPMs as the result
of fitting to a collection of orbit distortions induced by, at least, three different
orbit correctors per plane, as done in KEKB [19]. Closed orbit distortions are
also the basis of another optics measurement and correction algorithm [20, 21]
where quadrupole strengths and other machine parameters are fitted to reproduce
a large ensemble of closed orbit acquisitions. This has demonstrated very effective
in synchrotron light sources, however its application to large scale machines as the
LHC requires unaffordable long times for measurements and computer calculations.

9.5.2.3 Betatron Oscillations, Free or Forced

The phase of the turn-by-turn free betatron oscillations, see Eq. (9.40), can be
directly used to compute phase advances between pairs of nearby BPMs. The
amplitude of the betatron oscillations can be used to measure β functions but it
requires a good control of the BPM calibration errors [22–24]. Instead the phase
advances between three or more BPMs can be used to obtain β and α functions as
described in [25–27].
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The Fast Fourier Transform (FFT) of the BPM signal, z(N), offers a poor
resolution on the phase measurement. Interpolated FTs like [28] or Singular Value
Decomposition (SVD) algorithms like [29] feature a higher performance in terms of
spectral resolution. The achievable resolution is usually limited by decoherence pro-
cesses that damp the bunch centroid oscillations. Furthermore, beam decoherence
also affects FT amplitudes and phases, which can be partially restored [30, 31, 42].
These limitations can be overcome by forcing betatron oscillations with the aid of
an AC dipole with a frequency close to the machine tune. Moreover, if the AC dipole
is ramped up and down adiabatically the beam emittance is preserved [32, 33].

The beam dynamics with forced oscillations features remarkable differences
from that of free oscillations [34–37]. In presence of an AC dipole the measured
β functions differ from the machine β functions. This difference is simply modelled
as a quadrupole error of strength KLac in the location of the AC dipole [38], where
KLac is given by

KLac = ±2
cos(2πQx,y)− cos(2πQac)

βac sin(2πQx,y)
≈ ±4π

Qac −Qx,y

βac
, (9.43)

where the ± sign refers to the horizontal and vertical planes, respectively. This
equivalence allows to apply exactly the same analysis to all experimental data but
using a modified reference model which includes the quadrupole error according to
the AC dipole settings.

9.5.2.3.1 Transverse Momentum Reconstruction

It is convenient to study the transverse phase space using normalized coordinates,
ẑ(N) = z(N)/

√
β. The turn-by-turn transverse normalized momentum, ẑ′(N) =

−√2J sin
(
2πQN + φ(s) + φ0

)
, can be reconstructed by using the normalized

signal from two BPMs, ẑ1(N) and ẑ2(N), as

ẑ′1(N) =
(
ẑ2(N)− ẑ1(N) cos(2π�12)

)
/ sin(2π�12) , (9.44)

where �12 is the phase advance between the two BPMs. If non-linear elements are
placed in between the two BPMs extra contributions to ẑ′1(N) appear as described
in [39].

9.5.2.3.2 Coupling Measurement

Using the complex variable, hz(N) = ẑ(N) − iẑ′(N), the turn-by-turn motion in
presence of linear coupling is given by [40]

hx(N) =
√

2Jxeiφx(N) − i2f1001
√

2Jyeiφy(N) − i2f1010
√

2Jye−iφy(N) ,

hy(N) =
√

2Jyeiφy(N) − i2f ∗1001

√
2Jxeiφx(N) − i2f1010

√
2Jxe−iφx(N) ,

(9.45)



540 M. Lamont et al.

where φx,y(N) = 2πNQx,y+φx0,y0 and f1001 and f1010 are the coupling difference
and sum resonance terms, respectively. These terms are linearly related to the
elements of the coupling matrix as described in [41]. All the monomials in the right-
hand-side of Eqs. (9.45) correspond to a single spectral line of the complex spectrum
with frequencies ±Qx and ±Qy . By applying a complex FT to the hx,y variables
as reconstructed from the BPMs it is possible to measure the amplitude and phases
of the coupling terms. To achieve a measurement independent of BPM calibration
and beam decoherence, the values obtained from the horizontal and vertical planes
are geometrically averaged as described in [42]. The closest tune approach,�Qmin,
can be computed from the skew quadrupolar fields as [13],

�Qmin =
∣∣∣∣

1

2π

∮
ds j (s)

√
βxβye

−i(φx−φy)+i(Qx−Qy)s/R

∣∣∣∣ , (9.46)

where j (s) is the skew quadrupolar gradient around the ring and R is the machine
radius. �Qmin can also be computed from the difference resonance term f1001
around the ring by [43–45]

�Qmin =
∣∣∣∣
4(Qx −Qy)

2πR

∮
dsf1001e−i(φx−φy)+i(Qx−Qy)s/R

∣∣∣∣ (9.47)

≈
∣∣∣4(Qx −Qy)f1001e−i(φx−φy)

∣∣∣ � 4
∣∣Qx −Qy

∣∣ |f1001| , (9.48)

where x represents the ring average of x. Linear coupling in combination with
octupolar fields gives rise to an amplitude dependent closest tune approach [46, 47].

9.5.2.3.3 Measurement of Non-linearities

Betatron oscillations are also used to measure resonance driving terms fjklm since
these affect the motion as follows [40]

hx(N)=
√

2Jxe
iφx (N)− i2

∑

jklm

jfjklm(2Jx)
j+k−1

2 (2Jy)
l+m

2 ei[(1−j+k)φx(N)+(m−l)φy(N)].

(9.49)

First sextupolar resonance driving terms measurements and applications were
carried out in [42], where the effects of beam decoherence on these measurements
are also described. First resonance terms measurements using AC dipoles to avoid
beam decoherence are described in [39].
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9.5.2.4 Dispersion Measurement

Dispersion is typically inferred from the orbit change induced by a shift in the RF
frequency, see e.g. [13]. This measurement is affected by the BPM calibration errors.
Alternatively it is possible to measure the ratio Dx/

√
βx (normalized dispersion)

independently of BPM calibration errors if
√
βx is inferred from the amplitude of

the beam oscillations [48].

9.5.3 Optics Correction Techniques

The most used correction approach consists in building a response matrix R of the
available machine variables on a collection of observables. For instance,

(

�Qx,�Qy,
��βx
βx

,
��βy
βy

,� �φx,� �φy,�
�Dx√
βx

)T
= R��kT , (9.50)

(
�� �f1001,� �f1001,�� �f1010,� �f1010,� �Dy

)T = Rs��kTs , (9.51)

where �k stands for quadrupole strengths but also horizontal orbit bumps at the
sextupoles and �ks represents skew quadrupoles or vertical orbit bumps at sextupoles.
R and Rs are pseudo-inverted and applied to the measured deviations of the
optics parameters to compute the effective corrections. The correction should
incorporate appropriate weights as illustrated in [49]. The success of this approach
strongly depends on the configuration of errors and available correctors. Sextupolar
resonance driving terms have been successfully corrected using an equivalent
approach in [50]. For large localized errors this approach tends to distribute the
correction over many correctors around the machine.

9.5.3.1 Segment-by-Segment Technique

A more local approach, the segment-by-segment technique [51, 52], consists in
splitting the machine into a collection of independent beam lines by using as
starting optics parameters the measured βx,y, αx,y,Dx,y,D

′
x,y, f1001, f1010. The

comparison of the measurements and the propagated optics parameters along the
segment will reveal discrepancies starting at the error location. The local error
sources or the effective corrections can be computed by means of matching
algorithms using only the machine variables in the segment.
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9.6 Longitudinal Control and Manipulations

H. Damerau and R. Garoby

RF systems in synchrotrons are primarily installed for beam acceleration.
However, they provide also the possibility to manipulate the longitudinal beam
characteristics like bunch length, energy spread, distance between bunches, number
of bunches, etc. [53]. The following section deals with the typical longitudinal beam
manipulations in synchrotrons, when synchrotron radiation is negligible.

9.6.1 Adiabaticity

The longitudinal motion that we consider is conservative (i.e. there is no energy
dissipation effect like synchrotron radiation, as well as no coupling of longitudinal
and transverse motion). Liouville’s theorem is then applicable, which states that the
local density of particles in the longitudinal phase plane is always constant [54].
The time scale for the rate of change is given by the oscillation frequency of the
individual particles at the centre of a bunch:

ωs ∝
(
hV · η cosφs

γ

) 1
2

, (9.52)

where h is the RF harmonic number, V the RF voltage, ϕs the stable phase and η the
slip factor (η = 1/γ 2 − 1/γ 2

t ). If the rate of change of the accelerator parameters is
slow enough for the distribution of particles to be continuously at equilibrium in the
longitudinal phase plane, longitudinal emittance is preserved [55]. Such a process
is called “adiabatic”. The degree of adiabaticity is assessed by the adiabaticity
parameter ε. It is defined as the relative change of the synchrotron frequency, ωs ,
during one period:

ε = 1

ω2
s

∣∣∣∣
dωs

dt

∣∣∣∣ . (9.53)

Adiabatic processes can be reversed in time.

9.6.2 Changing the Longitudinal Characteristics of the
Bunches

When a process is slow enough to be quasi-adiabatic (ε < 0.1), the particle
distribution is completely determined by the instantaneous beam and accelerator
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parameters. The area occupied in the longitudinal phase plane (emittance) remaining
constant, bunch length lb (in ns) and energy spread �Eb (in eV) evolve like:

lb ∝ 1

β
·
(

η

γ · hV cosϕs

) 1
4

, (9.54)

�Eb ∝ β ·
(
γ · hV cosϕs

η

) 1
4

. (9.55)

When the accelerator parameters (e.g. RF voltage or phase) are quickly varying,
the process is non-adiabatic and tracking simulations are required to evaluate the
final particle distribution. Although the local density of particles remains constant,
the contour containing all particles is usually not a stable trajectory in the final
state and the resulting emittance is therefore larger because of filamentation. Non-
adiabatic beam manipulations allow getting bunch lengths and energy spreads
which cannot be obtained with adiabatic processes (“bunch rotation”). They also
give the possibility to blow-up the longitudinal emittance in a controlled fashion
(“longitudinal controlled blow-up”).

9.6.3 Bunch Rotation

A step increase of the RF voltage triggers a “bunch rotation” in the longitudinal
phase plane during which the bunch length first decreases during 1/4 of a syn-
chrotron period (Fig. 9.4a).

A step decrease has the opposite effect of first lengthening the bunch. To achieve
the smallest possible bunch length, as required, for example, for transferring the
beam to the following synchrotron equipped with a higher frequency RF system,
this two effects can be combined [56, 57].

Fig. 9.4 Bunch rotation for bunch shortening. (a) 1/4 a synchrotron period in the longitudinal
phase plane after a fast voltage step; (b) bunch stretching prior to rotation by phase jump
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Because the focusing voltage is sinusoidal, the rotated bunch has a marked S-
shape if, at any moment during the process, its length has exceeded � 1/3 of
an RF period. If very short bunches have to be obtained, the maximum tolerable
length is even smaller [53]. More sophisticated techniques making use of multiple
RF harmonics have been developed to improve the results [58].

To avoid the step increase in RF voltage, a phase jump by π of the RF voltage
can be applied instead [59]. The bunch is stretched at the unstable point between
two buckets (Fig. 9.4b). Switching the RF voltage back to its initial phase triggers
the rotation in the longitudinal phase plane.

9.6.4 Longitudinal Controlled Blow-Up

Increasing the longitudinal emittance is a convenient mitigation means against
instabilities by keeping the beam below threshold. Such a blow-up should not
generate tails in the distribution of particles. The most efficient and fast technique
makes use of a phase-modulated high frequency (VH , hH ) superimposed to the RF
holding the beam (hrf � hH ) [60, 61]:

VH = V̂H sin(hHωRt + α sinωMt + ϑH) , (9.56)

α being the peak phase modulation, ωR the modulation frequency and ϑH a phase
constant. This high frequency phase-modulated voltage perturbs motion in the
longitudinal phase plane. Resonances can be induced which create a re-distribution
of density in the bunch. Parameters are in practice determined with computer
simulations and finely adjusted on the real accelerator. Typical ranges of values are
shown in Table 9.1. A smaller harmonic ratio hH/hrf can also be used, although
blow-up is then slower.

With RF voltage at a single harmonic controlled longitudinal blow-up is obtained
by modulating either the voltage [62] or the phase [63] with noise, which introduces
diffusion [64, 65]. To target specific parts of a bunch with the blow-up to shape its
distribution, bandwidth limited noise can be applied.

Table 9.1 Typical ranges of blow-up parameters

V̂H /V̂rf hH /hrf α [rad] ωH/ωs Duration [s]

0.1–0.3 >10 for fast blow-up 0.8π to 1.2π 3–12 ≥20 · (2π/ωs)
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9.6.5 Changing the Bunch Train

9.6.5.1 Iso-Adiabatic Rebunching (Debunching)

The simplest technique for bunching a continuous beam (e.g. a beam from a linac
after it has debunched because of its energy spread) with a minimum emittance
blow-up consists of applying an iso-adiabatic increase. With ωs ∝ V 1/2 (Eq. (9.52))
the RF voltage function which keeps the adiabaticity ε constant (ε < 0.1) becomes
(Fig. 9.5)

V (t) = VI
[
1 −
(

1 −
√

VI
VF

)
t
tF

]2 , (9.57)

VI being the initial RF voltage applied at the start of rebunching, and tF the moment
when the final RF voltage VF is reached. The adiabaticity of the process is inversely
proportional to its duration, ε ∝ 1/tF .

To minimize the emittance blow-up, VI has to be low, typically such that the
beam energy spread is significantly larger than the bucket height. However, for a
given adiabaticity, the smaller VI is, the smaller the initial synchrotron frequency
and hence the slower the whole rebunching process.

Debunching is the inverse process to transform a bunched beam into a continuous
beam. An iso-adiabatic voltage variation is also used, which is a time-reversed
version of the one used for rebunching (Fig. 9.5).

9.6.5.2 Splitting (Merging)

Splitting is used to multiply the number of bunches by 2 or 3 and merging is the
reverse process [66–68]. With respect to iso-adiabatic debunching-rebunching, these
processes have the advantage of preserving gaps without beam and keeping the
beam always under RF control. In theory as well as in practice, they can be quasi-
adiabatic and almost without blow-up.

Fig. 9.5 Iso-adiabatic
rebunching voltage Voltage V

Time t

tF

VF

VI



546 M. Lamont et al.

Fig. 9.6 Bunch splitting in
two. (a) RF voltages vs. time;
(b) longitudinal phase plane
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Fig. 9.7 Bunch splitting in
three. (a) RF voltages vs.
time; (b) longitudinal phase
plane
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Splitting bunches in 2 can be obtained using two RF systems with an harmonic
ratio of 2 [67]. The bunch is initially held by the first system (V1, h1) while the
second (V2, h2 = 2h1) is stopped. The unstable phase on the second harmonic
is centred on the bunch. As V2 is slowly increased and V1 decreased the bunch
lengthens and progressively splits in two as illustrated in Fig. 9.6.

Good results are consistently obtained when the voltage V1(h1) = V1sep
is such that, at the moment when two separate bunches have just formed, the
initial bunch would fill 1/3 of the bucket acceptance in the absence of second
harmonic (V2(h2) = 0). Linear voltage variations with a total duration larger
than 5 synchrotron periods in the bucket (V1sep, h1) give satisfying results. Each
final bunch has ideally 1/2 the emittance of the initial one. Practically, less than
10% additional longitudinal emittance growth is achieved. The longitudinal bunch
distribution is preserved during the process. Splitting is also obtained when applying
an RF voltage at h2 > 2h1, resulting in empty buckets in between split bunches [69].

Splitting bunches in three requires three simultaneous RF systems on three
harmonics [68]. A stable phase on the third harmonic (3h0) coincides with the stable
phase on first one (h0) and with an unstable phase on the second harmonic (2h0).
The voltage variations are computed for obtaining three equal bunches of 1/3 the
initial emittance. Voltages and evolution in longitudinal phase space as a function
of time are illustrated in Fig. 9.7.
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Fig. 9.8 Slip stacking:
evolution in the longitudinal
phase plane during the
process
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9.6.6 Slip Stacking

Slip stacking is a non-adiabatic technique for combining bunches two by two [70,
71]. It is fast, but it leads to large emittance blow-ups. The two beams have to be held
by two slightly different RF frequencies. If the frequency difference is large enough
(�ω > 2ωs , where ωs is the synchrotron frequency in the centre of an unperturbed
bucket of one family), two families of buckets coexist which drift towards each
other because of their frequency difference (Fig. 9.8). Consequently, and provided
the acceptance of the buckets is large enough (acceptance > 2× emittance), the
bunches drift with them and slip past each other. When they are superimposed in
azimuth, pairs of bunches can be captured in large buckets centred at the middle
frequency.

Although improvements are possible, like reducing the frequency difference
towards the end of the process, the longitudinal contour enclosing a pair of bunches
in the final bucket always contains a large area without particles. Therefore the
emittance after filamentation is much more than doubled and longitudinal density is
accordingly reduced.

9.6.6.1 Batch Compression (Expansion)

Batch compression does not change the number of bunches but concentrates them
in a reduced fraction of the accelerator circumference [72]. It can be quasi-adiabatic
and consequently avoids longitudinal emittance blow-up.

The principle is slowly to increase the harmonic number of the RF controlling
the beam as shown in Fig. 9.9. Starting from harmonic h1, voltage is progressively
increased on harmonic h2 > h1 and decreased on h1, until harmonic h2 finally
holds the batch of bunches. The phase on h2 with respect to h1 must be such
that bunches converge symmetrically towards the centre of the batch. This can
be achieved for even (compression around unstable point between buckets) or odd
number of bunches (central bucket does not move in phase).

Due to the presence of RF voltage at two harmonics simultaneously during
each harmonic number step, the effective RF voltage is amplitude modulated at the
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Fig. 9.9 Batch compression (top to bottom) or expansion (bottom to top)

difference harmonic |h1 − h2|,

V =V1 sinh1ωRt + V2 sin h2ωRt

=2V0 cos

(
h1 + h2

2
ωRt

)
· sin

(
h1 − h2

2
ωRt

)
at V0 = V1 = V2 . (9.58)

In case h1 and h2 have common dividers, the process repeats gcd(h1, h2) (gated
common divider) times around the circumference, which allows to compress or
expand multiple batches of bunches simultaneously.

The amount of compression achievable in a single step is limited by the
acceptance of the buckets holding the edge bunches. A consequence is that multiple
batch compression steps are necessary to reach large compression factors, and
complicated manipulations of RF parameters are involved.

Non-linear voltage programs can be applied to improve the adiabaticity of the
process [73].

9.7 Collimation

R. W. Assmann

9.7.1 Introduction

The concept of a collimator and its design are introduced in [74]. The design process
for a collimation system and several important issues are discussed in [75]. In this
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chapter we focus on the performance and operational use of a collimation system.
We quickly introduce a few central definitions:

• A collimation system is an ensemble of collimators that is integrated into the
accelerator layout to intercept stray particles and to protect the accelerator.

• Collimation is acting in the normalized phase space. With z = x or z = y,
the Twiss functions βz and αz, and the emittance εz we define the normalized
coordinates zn and z′n as:

zn = z√
εzβz

, z′n =
αzz+ βzz

′
√
εzβz

. (9.59)

It is noted that the transverse beam size (Gaussian rms) is given by σz = √
εzβz.

• An unperturbed particle describes a circle in normalized phase space with
amplitude:

az =
√
z2
n + z

′2
n . (9.60)

• Collimator settings from the beam are defined in normalized coordinates (num-
bers of beam size σz) with n1 being the collimator family setting closest to the
beam, n2 the second closest setting, and so on. Several families usually define a
hierarchy that must be respected. Often this results in stringent tolerances on the
positioning of collimators.

9.7.2 Definition of Cleaning Efficiency and Performance

A collimation system is designed to intercept stray particles with maximum
efficiency and thus to protect critical regions of the accelerator. Critical regions
can be experiments that must be protected against background from beam halo,
super-conducting magnets that must be protected against quenches or hands-on
maintenance equipment that must be protected against activation from beam losses.
A system with 100% efficiency would absorb all impacting particles and power
with zero leakage into critical zones. However, the various nuclear processes in the
collimator jaw materials will always cause some particles to escape the system.
The creation of secondary and tertiary halo in a two-stage collimation system is
illustrated in Fig. 9.10.

9.7.2.1 Local Cleaning Inefficiency

For collimation it is convenient to define inefficiency or leakage [76]. We first
introduce inefficiency and then connect it to efficiency. The inefficiency ηc of a
collimation system with a primary collimation cut at n1 is defined as the ratio
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Fig. 9.10 Illustration of the
secondary and tertiary halo
created by a two-stage
collimation system in vertical
phase space (LHC example).
The scattering along the jaw
surface creates the
characteristic lines of halo
particles in phase space
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between the number Nleak of particles that leak out and reach a normalized
transverse amplitude acutz and the number Nimpact of impacting particles:

ηc = Nleak(az > acutz )

Nimpact

. (9.61)

We require that acutz > n1. The value for az is given by the available machine
aperture and is often around 10 sigma. Modern collimation systems can reach quite
low inefficiencies with ηc in the range of 10−2 (1%) to 10−4 (0.01%). Efficiency η
can then be defined as η = 1 − ηc and is in the range of 99% to 99.99%.

Inefficiency is, however, not sufficient to characterize the performance of a
collimation system. It is important to realize that the large amplitude particles are
not lost at one location but are spread over some dilution lengthLdil . For local losses
we define a local cleaning inefficiency η̃c [76]:

η̃c = ηc

Ldil
. (9.62)

Local cleaning inefficiency has a unit of 1/m. As the dilution is not uniform,
simulations are used to predict the local cleaning inefficiency η̃c along the whole
accelerator. This definition allows a direct comparison with measurements. Colli-
mation systems must be designed to minimize local cleaning inefficiency. This is
achieved by both minimizing global inefficiency (overall leakage) and maximizing
dilution. It is crucial to work on both aspects for achieving best performance.

9.7.2.2 Performance Reach with Collimation

The overall performance of an accelerator is often limited by the peak residual
loss that appears in one or few critical locations. It is therefore useful to define
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a maximum local cleaning inefficiency max[η̃c] over all critical locations. For
example, in a super-conducting storage ring max[η̃c] describes the peak loss per
m in super-conducting magnets. Alternatively, in a linac max[η̃c] may describe the
peak loss per m in the regions that must be protected for hands-on maintenance.

During the design phase one should define an allowable maximum beam loss rate
Rlim for critical locations. The maximum allowed loss rateRloss at the collimators is
defined in particles per second. It depends on the allowable maximum beam loss rate
Rlim for critical locations and the maximum local inefficiency of the system [76]:

Rloss = Rlim

max[η̃c] . (9.63)

The loss rates Rloss can be converted into energy deposition rate Ploss using:

Ploss = Rloss

(p/s)
· Eb

(GeV)
· 1.6022× 10−10 W . (9.64)

Considering a stored beam and assuming that all leaked particles are lost at
collimators we can relate Rloss = �N/�T to the number of particles Nmax and
beam lifetime τmin:

τmin = − �T

ln
(

1 − Rloss ·�T
Nmax

) ≈ Nmax

Rloss
. (9.65)

For convenience we give the equation for calculating the energy deposition rate for
any lifetime:

Ploss ≈ Nmax · (h)

τmin
· Eb

(GeV)
· 4.45× 10−17 kW . (9.66)

The maximum achievable beam intensity can be expressed as a function of the
maximum local cleaning inefficiency, the minimum beam lifetime that must be
sustained and the limit of beam loss in critical regions [76]:

Nmax = τmin · Rlim
max[η̃c] . (9.67)

Similar equations can be given for single-pass accelerators. This equation can be
used during the design phase of an accelerator to specify the required collimation
performance once beam intensity, minimum beam lifetime and loss limits have been
determined. A proper design of a collimation system requires a well-defined target
for cleaning efficiency.
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9.7.3 Operational Settings and Tolerances

Modern collimation systems are often designed to form a multi-stage cleaning sys-
tem. The collimators then belong to different stages (families), where all collimators
of a given stage sit at the same setting (in normalized coordinates). The system will
only work correctly if the collimators fulfil the hierarchy requirement [77, 78]. For
the example illustrated in Fig. 9.11 the following condition must be fulfilled for the
collimation half gaps:

n1 < n2 < n3 < ntriplet < n4 < narc . (9.68)

Typical values for the half gaps n1 to n4 are in the range of 5 σz to 10 σz. The
differences in normalized settings are called collimator retractions �x:

�x1 = n2 − n1 ,

�x2 = n3 − n2 ,

�x3 = ntriplet − n3 , (9.69)

�x4 = n4 − ntriplet ,

�x5 = narc − n4 .

Primary stage
(low Z)

Secondary stage
(low Z)

Absorbing stage
(high Z)

Tertiary stage
(high Z) SC triplet

n3n4
n2n1

Primary
beam &
halo  

Secondary halo

Tertiary halo

Cleaning insertion Experimental insertion

Quartiary halo

SC arc(s)

Beam
orbit

ntriplet ( *)narc ( )

Fig. 9.11 Illustration of collimation hierarchy for the example of LHC collimation [79]. The
system establishes global, multi-stage cleaning of halo particles. To be effective, the different
collimator families must respect a strict hierarchy in normalized phase space
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The retraction values can become quite small. For example, in LHC at 7 TeV
retraction values can be smaller than 1 σz. At the same time emittance at high energy
becomes very small (0.5 nm for the LHC at 7 TeV) and the transverse beam size σz
can be as small as 140 μm. The smallest collimator retraction values can therefore
be in the range of 100 μm, imposing strict operational tolerances.

Various imperfections can reduce the available collimator retraction [78]:

• Beam loss deposits energy on the collimator jaws. The resulting heating can lead
to transient jaw deformations.

• If off-momentum beta beating is not or insufficiently corrected, the retraction
becomes a function of particle momentum and can be different for particles inside
a bunch. See discussion in [74].

• Inaccuracies in beam-based set-up for collimators in different families. See
discussion in next section.

• Drifts in beam orbit around the ring since last beam-based set-up or during the
beam cycle (for example during squeeze in IP beta function). The possible impact
on retraction is illustrated in Fig. 9.12. Most critical is a zero orbit change at a
primary collimator and a maximum change at a secondary collimator.

• Change in beta functions around the ring. The possible impact on retraction is
illustrated in Fig. 9.12. Most critical is a reduction in beta function at primary
collimators and an increase at secondary collimators.

A reduction in collimator retraction reduces the efficiency of the system (up to
a factor 10 is possible [80]) and can render it operationally unstable. At some
point a secondary collimator can start acting as a primary collimator and efficiency
can suddenly be reduced by two orders of magnitude. A collimation system
should always be quantified in terms of operational tolerances to make sure that
it is appropriately designed and can deliver the required performance. Two sided
collimators (as shown in the example of Fig. 9.12) are preferable for operational
stability.

Primary
collimator

Secondary collimators

Orbit offsets
Beta beating

Retraction
x

Primary
collimator

Secondary collimators

Retraction
x

Fig. 9.12 Illustration of machine errors (top: orbit error; bottom: beta beating) that can affect the
collimation hierarchy in normalized phase space and reduce cleaning efficiency
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9.7.4 Beam-Based Set-Up of Collimation

The previous section explained the criticality of correct collimator hierarchy. It
was shown that retraction values can be in the range of 100 μm. Collimators must
be centred around the beam with an accuracy that is a fraction of the collimator
retraction. Tolerances for collimator settings can then be in the range of a few 10’s
of μm. However, the exact beam position and size are not known a priori with this
accuracy. Collimators are therefore set up in a beam-based process. This beam-based
procedure differs for one-pass or stored beams.

• In a single pass accelerator or in transfer lines a collimator jaw is moved through
the beam [81–83]. This process is illustrated in Fig. 9.13. Initially (the jaw
is still out of the beam) there is a transmission of 100% of beam intensity
while downstream beam loss monitors (BLM’s) read zero (no showers from
the collimator). When the jaw is cutting the beam in its centre then there is
a transmission of about 50% and the BLM reads half of its maximum value.
Finally, when the jaw intercepts the full beam, the transmission is almost zero
and the BLM reads a maximum value, independent of the exact jaw position.
This “collimator scan” method allows calibrating the beam centre and size. A
related method establishes a collimation gap that is smaller than the beam size.
This gap is then scanned across the beam. The transmission and beam loss
signals are measured during the scan while recording the gap position. A precise
determination of beam centre and size is possible.

• In a storage ring the effects of phase space mixing and amplitude conservation are
used, as shown in Fig. 9.14. Any collimator (most often a primary collimator) can
be used to define a betatron cut in normalized phase space [77, 78, 81]. This can
be done with a single jaw. Assuming zero dispersion, the same phase space cut is
present all around the ring after phase space mixing (particles oscillating around

BLM

COLL

beam 
& halo

COLL

BLM

BLM

COLL

beam 
& halo

COLL BLM

BLM

COLL

beam 
& halo

COLL

BLM

I) II) III)

shower shower

Fig. 9.13 Illustration of beam-based set-up of a collimator in a beam line with single pass beam. A
collimator jaw is moved from out position (I) through a centre position (II) into a beam-intercepting
position (III). The beam centre is inferred by (a) measurement of beam-induced showers with a
beam-loss monitor and/or (b) by measurement of the not intercepted beam intensity
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Fig. 9.14 Illustration of beam-based set-up of collimators in a ring with stored beam. At first a
reference collimator is defined and one of its jaws is used to create an edge in the normalized
beam shape (I). Phase space mixing establishes the same edge all around the ring, in positive and
negative directions (in case of zero dispersion). Then the second jaw of the reference collimator is
moved to the same normalized position by observing beam loss (II). Analogous, a jaw from any
other collimator can be moved to the same defined beam cut (III)

the closed orbit, sweeping around the whole allowed phase space volume). The
second jaw of the reference collimator can then be moved to the same cut. A
sudden spike in beam loss measured downstream of the collimator is used to
detect the halo edge. Successively all collimators around the ring are set up to
the same cut in normalized phase space. In the end all jaws are centred on the
beam and any beta variations have been calibrated. It is noted that the method is
affected by systematic errors that must be taken into account. For example, each
set-up will scrape the beam halo by a small additional amount δ. It is advisable
to recheck the edge periodically with the reference collimator. Also, tilts in the
collimator jaws can induce errors in the knowledge of the collimation gap which
can limit the accuracy in determining local beam size.

Once collimators have been set up it is important to record all beam conditions,
especially the orbit and optics of the accelerator. This information can then be used
to re-establish the collimator set-up and hierarchy for extended periods of times.
Collimator set-ups could be used and kept operational for up to 5 months without
repeating a set-up for the LHC.

9.7.4.1 Measurement of Collimation Performance

Collimation performance can be measured if a distributed beam loss measurement
system has been installed around the ring [84, 85]. Ideally beam loss is measured at
all collimators [86, 87], all quadrupoles (here the beta functions are maximal) and
other critical locations [88]. An example measurement of collimation performance
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Fig. 9.15 Example for a measurement of collimation performance in the LHC at 450 GeV. The
data shows peak integrated losses over 1.3 s. A beam loss is provoked for beam 1 in the horizontal
plane. Losses are normalized to the peak loss in the ring. The peak loss appears as expected at
the betatron collimators and falls off exponentially over the betatron cleaning insertion. Leakage
around the ring is measured. The measurement resolution is limited by noise in the beam loss
monitors (6 orders of magnitudes below the peak loss)

in the LHC at 450 GeV is shown in Fig. 9.15. The procedure for such a measurement
is described below.

• The measurement should not disturb the orbit or the beta functions, as this would
decrease the cleaning efficiency. Therefore one induces a strong diffusion process
that rapidly increases the beam emittance. In a storage ring one can move the
beam onto a resonance, for example the 1

3 resonance.
• The integrated beam losses are monitored around the ring as the beam emittance

is blown up, for example with a 1.3 s integration time as shown in Fig. 9.15. The
data with the highest losses is selected.

• The loss data is normalized to the highest loss all around the ring, which
by definition should occur at a collimator. Losses at different locations are
distinguished by colour.

The example in Fig. 9.15 shows the results that can be achieved when generating
a rapid horizontal emittance blow-up for one beam. The relative loss measurement
shown is very similar to the local cleaning inefficiency as defined above, if we ignore
differences in BLM response and realize that measured losses are per BLM and not
per meter. The measured maximum “local cleaning inefficiency” in a critical region
(super-conducting magnets) is about 2×10−5, illustrating a very good performance.
The collimators in the cleaning insertion and other areas in the ring intercept reliably
all losses and leakage is very small.
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9.8 Luminosity Optimization

O. Brüning and M. Hostettler

9.8.1 Introduction

The performance of a collider can be characterized by three main parameters:

• the centre of mass collision energy ECM (in the following we will assume two
beams with equal beam energies → ECM = 2 · Ebeam);

• the instantaneous luminosity specifying the rate at which certain events are
generated in the beam collisions (number of events per second = L(t) · σevent
with σevent being the cross section of the event of interest);

• the integrated luminosity specifying the total number of events that are produced
over a time interval t − t0.

The instantaneous luminosity is given by

L = frev · nb ·N1 ·N2

2π
√
(σ 2

x,1 + σ 2
x,2) ·

√
(σ 2

y,1 + σ 2
y,2)

· F ·H, (9.70)

where frev is the revolution frequency, nb the number of bunches colliding at the
interaction point (IP), N1,2 are the particles per bunch and σx,1,2 and σy,1,2 the
horizontal and vertical beam sizes of the two colliding beams. F is the geometric
luminosity reduction factor due to collisions with a transverse offset or crossing
angle at the IP and H is the reduction factor for the hour glass effect that becomes
relevant when the bunch length is comparable or larger than the beta functions at the
IP (→ the transverse beta function varies over the luminous region where the two
beams interact with each other).

In the following we assume that all bunches of both beams have equal intensities
(N1 = N2 = Nb) and the same size at the IP. The transverse beam sizes at the IP
are given by

σx,y =
√
(β∗x,y · εx,y)+D2

x,y · δ2
p, (9.71)

where δp is the relative momentum spread (δp = �p
p0

) of the particles within a
bunch, β∗x,y and Dx,y are the horizontal and vertical beta and dispersion functions
at the IP and εx,y the horizontal and vertical emittances of the two beams.

Because the bunch intensities and beam sizes of a collider vary over time, the
instantaneous luminosity is implicitly a function of time.
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The integrated luminosity is defined by

L̂(t − t0) =
∫ t

t0

L(τ)dτ, (9.72)

where t0 is an arbitrary starting point, L(τ) the instantaneous luminosity at a given
time and t − t0 the time period of interest.

Optimizing the luminosity of a collider aims essentially at two goals:

• maximize the total number of events over a given time interval → maximize the
integrated luminosity;

• minimize the experimental background (e.g. events created by collisions of the
beams with rest gas molecules).

The first goal can be achieved by three means: maximizing the instantaneous
luminosity, maximizing the luminosity lifetime and minimizing the so called
‘turnaround’ time which specifies the time interval between the end of one physics
fill and the start of the next one.

Then second goal can be achieved by minimizing the vacuum pressure near the
IP (reduced rate of rest-gas collisions) and dedicated collimators and absorbers for
removing synchrotron light and stray particles before the beams collide at the IP.

The following discussion concentrates on the optimization of the luminosity in
circular colliders. The performance optimization of linear colliders will be discussed
separately.

9.8.2 Maximizing the Instantaneous Luminosity

Maximizing the instantaneous luminosity implies (in order of priority):

• maximize the number of particles per bunch (enters quadratically into the
luminosity);

• minimize the beam size at the interaction points (does not imply a ‘cost’ in
terms of total beam power and impedance but might require special focusing
quadrupoles near the experiment);

• maximize the number of bunches in the collider;
• optimize the overlap of the two beams at the IP (this essentially implies a precise

control of the orbit and optics functions at the IP during operation).

Leaving aside potential single bunch intensity limits due to collective effects and
instabilities, the instantaneous luminosity is limited by the strength of the non-linear
beam-beam interaction that the particles experience when the bunches of both beams
collide with each other at the IP. The strength of the beam-beam interaction can
be characterized by the linear head-on beam-beam parameter which specifies the
maximum tune shift due to the beam-beam interaction per IP that a particle at the
centre of a bunch experiences when the two bunches collide without a crossing angle
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and transverse offset. The beam-beam parameter is given by

ξx,y =
Nb · rp · β∗x,y

2π · γ · σx,y · (σx + σy)
, (9.73)

where β∗x,y are the horizontal and vertical beta functions at the IP and rp is the

classical radius rp = e2/(4πε0mc
2) for the colliding particles.

It is worthwhile underlining that for round beams with equal beam emittances in
both planes the beam-beam force is independent of the transverse beta-functions at
the IP and depends only on the normalized beam emittance. For such round beams
the beam-beam parameter can be written

ξ = Nbrp

4πεγ
, (9.74)

where εγ is the normalized emittance εn in a Hadron storage ring.
The beam-beam force provides additional focusing for colliders with beams of

opposite charge (e.g. particle anti-particle colliders like LEP) and an additional
defocusing strength for beam collisions between particles of the same charge (e.g.
particle-particle colliders like the LHC). In either case, the non-linear beam-beam
force generates an amplitude growth of the particle oscillations within a bunch
which eventually limits the maximum collider performance.

For large particle amplitudes (>2σ ) the (de-)focusing due to the beam-beam
force changes sign and there is a reduction of the effective tune shift which
eventually becomes negligible for very large oscillation amplitudes and effectively
averages to zero for head-on collisions. The beam-beam force therefore results in
different tune shift values for different particle amplitudes. Figure 9.16 shows on
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Fig. 9.16 Left: Schematic dependence of the beam-beam force on the particle oscillation ampli-
tude at the IP. Right: Tune foot print for the nominal LHC collisions covering oscillation amplitudes
from 0 to 6σ [89]
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the left-hand side a schematic picture for the dependence of the beam-beam force
on the particle oscillation amplitude and on the right-hand side as an example the
resulting tune foot print for the nominal LHC collisions covering particle amplitudes
from 0 to 6σ (the particles with zero amplitudes are located at the tip of the tune foot
print). Note that the LHC tune foot print shown features the effect of both head-on
and long range collisions.

With increasing instantaneous luminosity, the number of concurrent interactions
increases. The number of collisions per bunch crossing, the pile-up, is given by

μ = L

frevnb
σtot (9.75)

where σtot is the total cross-section for the interaction of beam particles.
The maximum acceptable pile-up may be limited by the capabilities of the

installed experimental detectors, e.g. due to a limited read-out rate or detector
dead time. It may also be limited by the accelerator itself, e.g. due to heating or
radiation limits. If this is the case, it imposes an additional limit for the instantaneous
luminosity; increasing the luminosity per colliding bunch pair (through intensity or
beam size at the IP) increases the pile-up proportionally. The luminosity of a collider
operating at the pile-up limit can be optimized through luminosity levelling, which
will be discussed in Sect. 9.8.7.

Similarly, the acceptable pile-up density in the luminous region around the IP
may be limited e.g. by the detector resolution. Apart from reducing the overall pile-
up, this can be mitigated by increasing the size of the luminous region or changing
the bunch distribution.

9.8.3 Collider with Strong Synchrotron Radiation Damping

In circular colliders with strong synchrotron radiation the amplitude growth due
to the beam-beam interaction is stabilized by the synchrotron radiation damping
yielding an increased but stable beam size at the IP. As a result, the instantaneous
luminosity no longer increases quadratically, but rather linearly, with the bunch
current above a certain limit of the beam-beam force and the beam-beam tune
shift reaches asymptotically a maximum value. This maximum value defines the
so called beam-beam limit in a collider with strong radiation damping. The actual
value of the beam-beam limit varies between different colliders and depends on
the actual operating point (the horizontal and vertical tunes) and the strength of
the synchrotron radiation damping. Figure 9.17 shows as an example the measured
vertical beam-beam parameter in LEP as a function of the bunch current for the LEP
operation with beam energies of 98 GeV and 101 GeV.

In an ideal storage ring without coupling and vertical dispersion, the vertical
beam size shrinks to a minimum value which is in theory only limited by the
quantum fluctuation of the synchrotron radiation. In the horizontal plane this effect
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Fig. 9.17 Measured vertical beam-beam limit in LEP for operation with beam energies of 98 GeV
and 101 GeV [90]. The beam-beam parameter has been derived from the measured luminosity
assuming a constant value of β∗. The straight line indicates the expected linear scaling of the
beam-beam parameter for operation below the beam-beam limit

is outweighed by the oscillation excitations due to the photon emission in regions
with dispersion and the equilibrium horizontal beam size increases as a result with
the beam energy. Provided the associated synchrotron radiation damping times are
short compared to the typical store length of the collider, the beam sizes are therefore
essentially determined by the synchrotron radiation yielding a flat beam with small
vertical and large horizontal beam sizes. In practice, the minimum attainable vertical
beam emittance is limited by the rms vertical dispersion and the coupling between
the horizontal and vertical motion along the storage ring. Furthermore, the minimum
vertical beam size at the IP is limited by the momentum spread within a bunch
and the spurious vertical dispersion at the IP (see Eq. (9.71)). Colliders with strong
synchrotron radiation are therefore normally optimized for the operation with flat
beams that have a large aspect ratio between the horizontal and vertical beam sizes at
the IP. The generation of non-equal betatron functions at the IP can be best provided
by a doublet quadrupole configuration of the focusing elements next to the IP (→
non-equal β∗ values in both planes for equal peak betatron function values inside
the doublet magnets).

Assuming vanishing dispersion functions at the IP, the beam-beam parameters of
a collider with flat beams and a large aspect ratio between the horizontal and vertical
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beam sizes are approximately proportional to

ξx ∝ Nb

εx
, (9.76)

ξy ∝ Nb ·
√
β∗y√

εy
√
εx
· 1
√
β∗x

. (9.77)

Optimizing the instantaneous luminosity for flat beams at the beam-beam limit
therefore implies:

• increasing the bunch intensity so that the horizontal beam-beam parameter
approaches the beam-beam limit;

• minimizing the vertical dispersion (via, for example, dispersion free steering) and
coupling along the whole the machine to get a small vertical emittance;

• minimizing the vertical beta function at the IP to reduce the vertical beam-beam
parameter;

• adjusting the horizontal beta function at the IP for obtaining approximately equal
beam-beam parameters in both planes.

For example, the LEP operation at the beam-beam limit for beam energies of 94.5
GeV, featured an aspect ratio of the horizontal and vertical beta functions at the IP
of ca. 31 (1.25 m/0.04 m) and an aspect ratio of the horizontal and vertical beam
sizes at the IP of ca. 51 (180 μm/3.5 μm) yielding for a bunch current of 780 μA
(ca. 1.4× 1011 particles per bunch) theoretical beam-beam parameters of ξx ≈ 0.04
and ξy ≈ 0.06. Depending on the operation configuration and beam energy the
measured vertical beam-beam limit in LEP varied between ξbeam−beam = 0.05 and
0.01 [90–93].

Another interesting feature of the operation with large beam-beam parameters
is that the additional focusing due to the beam-beam interaction can also change
the beta-functions at the IP. This dynamic β∗ effect can result in a non-negligible
second order perturbation of the optic functions at the IP.

The luminosity can be further increased by increasing the number of bunches
in the machine. The maximum number of bunches in the collider is then either
limited by collective effects (e.g. impedance and collective oscillations, electron-
cloud effect for positron bunches or ion trapping for electron bunches) or by the
maximum acceptable synchrotron radiation power or the simple fact of having one
or two rings. If such considerations still permit a large number of bunches, it might
be necessary to introduce a crossing angle at the IP in order to avoid unwanted
collisions next to the IP (e.g. the KEKB factory). In this case, the luminosity
optimization becomes more complex. The crossing angle decreases the luminosity
and the beam-beam parameter at the IP via the geometric form factorF in Eq. (9.70)
and introduces a dependence of the luminosity on the crossing angle, the bunch
length and the transverse beam size in the plane of the crossing angle (see Sect. 6.4
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for more details). The luminosity optimization in this configuration will be discussed
in Sect. 9.8.5

9.8.4 Collider with Weak Synchrotron Radiation Damping

In circular colliders with weak synchrotron radiation damping (with damping times
much larger than a typical store length—typically the case for hadron colliders
where the relativistic γ factor is small) the amplitude growth of the particle
oscillations within a bunch due to the beam-beam interaction is not stabilized
and leads to emittance growth, the development of tails in the bunch distribution,
particle losses and a reduction of the beam lifetime and possibly an increase of
the experimental background. The above detrimental processes of the beam-beam
interaction become more pronounced the more resonances are covered by the
tune distribution for the particles within a bunch. The beam-beam limit in hadron
colliders is therefore more commonly expressed by the total maximum acceptable
tune spread within a bunch due to the beam-beam interactions rather than the
maximum attainable beam-beam parameter for a single interaction. For hadron
colliders the beam-beam limit is therefore the sum of all beam-beam related tune
spreads. For purely head-on collisions it is proportional to the number of collisions a
single bunch experiences during one revolution. For a collider that features parasitic
long range beam-beam encounters it also includes the tune spread contributions
from the long-range beam-beam interactions.

The maximum acceptable beam-beam related tune spread depends on the
operation point (transverse tune values) and other sources for tune spread in the
collider (e.g. tune spread due to magnetic octupole components) and typically varies
for different Hadron colliders between values of �Q = 0.015 and �Q = 0.03 (e.g.
RHIC and Tevatron). The ‘precise’ value of the quoted beam-beam limit in a Hadron
collider depends on the acceptable luminosity lifetime and background rates for a
given operation mode and is therefore somewhat less well defined as for the case
of lepton colliders with strong synchrotron radiation. For example, a beam-beam
driven tune spread of �Q = 0.03 is in principle attainable in the Tevatron operation
but the normal machine operation rather aims at a smaller beam-beam driven tune
spread of �Q = 0.02 (the quoted tune shift refers to the anti-proton beam—the
beam-beam tune shift for the proton beam is ca. five times smaller) [94].

There are currently several studies under way for looking into possibilities
of compensating part of the beam-beam generated tune spread either by the use
of wires with DC or pulsed currents for the compensation of the tune spread
arising from the long-range beam-beam interactions [95] or by the use of electron
lenses for a compensation of the tune spread generated by the head-on beam-beam
collisions [96, 97].

Without damping the beam sizes are mainly determined by the injector complex
and the ability to preserve the injected emittances in the collider during injection
and acceleration. Without natural equilibrium beam sizes, the luminosity with head-
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on collisions can be best optimized by deploying round beams (equal beam sizes
and emittances in both planes). The generation of equal betatron functions at the IP
can be best provided by a triplet quadrupole configuration of the focusing elements
next to the IP (this implies equal β∗ values in both planes for equal peak betatron
functions for both planes inside the triplet magnets). The beam-beam parameter in
this case is given by Eq. (9.74) and is entirely independent from the beta function
values at the IP. Optimizing the instantaneous luminosity in this case therefore
implies:

• increasing the beam brightness (Nb/εx,y) until the beam-beam limit is reached;
• increasing the bunch population at constant brightness;
• minimizing the beta functions at the IP in both planes.

The second point is limited by the available aperture along the whole collider and by
collective effects that might limit the maximum bunch intensity. The third point is
limited by the available aperture of the triplet elements next to the IP (the maximum
beta function in these elements is proportional to 1/β∗), the ‘hour glass’ effect
and eventual chromatic aberrations due to large betatron functions in the focusing
elements. The hour glass effect depends strongly on the bunch length and is only
relevant for a configuration with β∗ ≤ σs . Shortening the bunch length might be
another strategy for maximizing the luminosity in this case but the minimum bunch
length might itself be limited by other constrains such as the available RF voltage
and limitations on the maximum acceptable Intra-Beam-Scattering (IBS) growth
rates.

The maximum number of bunches in the collider is then either limited by
collective effects (e.g. electron-cloud effect for proton bunches), the maximum
acceptable stored beam power (e.g. machine protection issues) and the rate of
particle production in case the collider uses anti-protons in the collisions (e.g. the
Tevatron).

9.8.5 Luminosity Optimization in the Presence of a Crossing
Angle

If the operation of the collider permits a large number of bunches, it might be
necessary to introduce a crossing angle at the IP in order to avoid unwanted
collisions of the two beams next to the IP (e.g. the KEK-B factory and the LHC).
A crossing angle reduces the luminosity and the beam-beam parameter via the
geometric form factor F in Eq. (9.70). The geometric form factor is a function
of the crossing angle, the bunch length and the transverse beam size in the plane
of the crossing angle and therefore crossing angle operation introduces additional
parameter dependencies which make the luminosity optimization more complex.
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Fig. 9.18 Left: The geometric form factor as a function of the Piwinski angle. Right: the form
factor for the nominal LHC parameters as a function of β∗ for a constant bunch length and beam
separation in terms of transverse rms beam sizes

The geometric luminosity reduction factor becomes relevant for large Piwinski
angles (Θ ≥ 1) were the Piwinski angle is defined as:

Θ = σsφ

2σ⊥
. (9.78)

φ is the full crossing angle and σ⊥ the transverse beam size in the plane orthogonal
to the crossing angle. In terms of the Piwinski angle, the geometric reduction factor
can be expressed as

F = 1/
√

1 +Θ2. (9.79)

The left-hand side of Fig. 9.18 shows the geometric form factor as a function of the
Piwinski angle and the right-hand side as a function of β∗ for the data of the nominal
LHC assuming a constant bunch length and beam separation in terms of rms beam
sizes were the form factor is essentially a function of β∗. The right-hand side of
Fig. 9.18 illustrates with the example of the LHC that a collider with crossing angle
operation can rely on a performance increase though a reduction of β∗ only up to a
certain point. If the Piwinski angle becomes large, the desired performance gain is
essentially directly lost via the geometric form factor.

The resulting loss in luminosity can partially be compensated either by the use
of Crab cavities [98] which tilt the bunches longitudinally at the IP such that the
bunches effectively still collide head-on (see Fig. 9.19) or by the implementation of a
‘crabbed waist’ crossing scheme [99] for very large crossing angles and long and flat
bunches (σzφx,y >> σx,y) which shifts the location of the minimum beta function
in the plane orthogonal to the crossing angle along the bunch length with the help
of dedicated crab sextupole magnets. The crab waist optimization requires in fact a
crossing angle in the plane with the larger beam size dimension (the horizontal plane
for a collider with strong synchrotron radiation damping) and features three separate
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Effective cross section Effective cross section

Fig. 9.19 Schematic illustration of the crab-crossing collision scheme for large crossing angles.
Left: the beam interaction in the presence of a crossing angle without crab crossing. Right: the
beam interaction with crab crossing and a maximized bunch overlap during the collision

ingredients: operation at large Piwinski angle, a vertical β∗ value comparable to the
luminous area and a shift of the vertical betatron function waist of one beam along
the central trajectory of the other beam.

In the presence of two IPs with orthogonal crossing angle planes, small β∗ values
and round beams one can write the dependence of the luminosity and the head-on
beam-beam parameter approximately as follows (if the collider does not feature two
orthogonal crossing angle planes, the form factor will not reduce the beam-beam
parameter equally in both planes):

L ∝ �Qbb · Nb

β∗
, (9.80)

�Qbb ∝ Nb

ε
· F(β∗) . (9.81)

In this situation one can essentially distinguish four different strategies for optimiz-
ing the instantaneous luminosity (we limit the discussion here to the case of round
beam operation):

• keep the geometric form factor (and thus β∗) and the beam-beam parameter
constant and maximize the luminosity by increasing the bunch intensity at
constant brightness—this strategy requires sufficient aperture in the collider
for accommodating large beam emittances and the absence of any other bunch
intensity limitations (e.g. collective effects and single bunch instabilities);

• keep the beam emittance constant and increase the bunch intensity inversely
proportional to the geometric form factor when β∗ is lowered. This strategy
implies that the beam intensity in the collider is not limited by collective effects;

• keep the number of particles per bunch constant and vary the beam emittance
proportionally to the geometric form factor when β∗ is lowered;

• compensate the performance loss due to the geometric form factor (e.g. by the
use of Crab cavities or crabbed waist operation) and reduce β∗.
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9.8.6 Maximizing the Integrated Luminosity

Several effects can lead to an intensity decrease of the colliding beams over the
length of a physics store:

• the loss of particles via the actual collisions (beam burn off);
• particle losses via collisions with the rest gas and photons in the vacuum system;
• loss of particles via resonances (e.g. driven by the beam-beam interaction);
• particle losses through the Touschek effect;
• particle losses through aperture restrictions (relevant for colliders where the

beam distribution is an equilibrium distribution determined by the synchrotron
radiation and were any part of the distribution (e.g. the tails of the Gaussian
distribution) lost through aperture restrictions will be repopulated).

In addition, several effects can lead to an increase of the beam size via an emittance
blow-up:

• resonances in the machine (e.g. driven by the beam-beam interaction);
• noise in machine equipment (e.g. kicker and RF elements);
• intra beam scattering (IBS).

All the above effects together result in a reduction of the luminosity with time and
require the preparation of a new fill with fresh beams once the performance dropped
too much. The integrated luminosity depends then on the luminosity lifetime, the run
length and the ‘turnaround’ time required for preparing a new fill in the collider. The
turnaround time is defined as the time interval between the end of one fill and the
start of the next one. Assuming an exponential luminosity decay (L(t) = L0 ·e−t/τL)
the integrated luminosity per fill can be written as:

L̂f ill = L0 ·
[
1 − e−Trun/τL

]
, (9.82)

where τL is the luminosity lifetime, Trun the length of the physics operation and
L0 the initial instantaneous luminosity of the physics fill. The optimum run length
is a function of the average turnaround time of the collider and a high integrated
luminosity requires a short and reproducible turnaround time.

If the luminosity lifetime is not much longer than the average turnaround time the
total integrated luminosity might be limited by the machine reliability and variations
in the turnaround time. Furthermore, if the luminosity lifetime is too short, a fraction
of the generated luminosity might be lost for the experiments if not all detector
components can be fully operational from the very beginning of a physics fill when
the operation still performs beam adjustments and measurements.
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9.8.7 Luminosity levelling

For colliders limited by pile-up, the integrated luminosity can be significantly
improved by implementing a luminosity levelling scheme that initially reduces the
peak luminosity and levels it at a constant value that yields an acceptable pile-
up throughout a physics fill [100, 101]. In case different detectors with different
levels of acceptable pile-up are installed in a collider (e.g. at the LHC), it also
allows satisfying the requirements of the low pile-up detectors without impairing
the performance of the high luminosity experiments.

The effective luminosity lifetime increases when levelling the luminosity due
to the slower burn off rate and, for certain means of levelling (e.g. offset, crossing
angle), weaker head-on beam-beam effects. The luminosity evolution over a fill with
luminosity levelling consists of a first part, where the levelling is used to reduce the
instantaneous luminosity to a certain target value, possibly followed by a second
part where the luminosity is left to decay without levelling (Fig. 9.20).

If the beam emittance is constant and beam losses are dominated by burn off
while levelling, the beam current decays linearly and the levelling time is directly
proportional to the initial beam current:

Tlvl =
(

1 −
√

Llvl

Lpeak

)
nb Ni

nIPσtotLlvl
(9.83)

where nb is the number of bunches with initial intensity Ni , Lpeak is the theoretical
peak luminosity, Llvl is the levelled luminosity, σtot is the cross-section for the
interaction of beam particles, and nIP is the number of IPs.

In the following, the machine parameters commonly used to control the luminos-
ity for levelling are discussed.

Fig. 9.20 Luminosity
evolution in a burn-off
dominated scenario with and
without levelling. In the
levelled case, the peak
luminosity is initially levelled
down by a factor of 0.4. The
dotted line shows the
“virtual” luminosity which is
reduced to the target through
levelling. The levelling time
is Tlvl = 15 h 0 5 10 15 20 25 30
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Fig. 9.21 Luminosity
reduction factor as a function
of the transverse separation
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9.8.7.1 Levelling by Transverse Offset

A beam separation is introduced by local closed orbit bumps around the IPs. In the
presence of a crossing angle, the separation is typically applied perpendicular to the
crossing plane. This reduces the luminosity by a geometric factor given by

F = exp

(
− d2

4 σ⊥

)
(9.84)

where d is the separation and σ⊥ is the transverse beam size in the separation plane.
This factor is shown in Fig. 9.21.

When levelling by offset, the pile-up density decreases along with the total pile-
up. Since the required offsets are small (a few units of the transverse beam size)
and the bumps are locally closed, this levelling approach is operationally easiest.
However, it offsets the particles from the centre of the linear part of the beam-beam
force, reduces the beam-beam tune spread and drives odd-order resonances, which
can affect the beam stability. Furthermore, the luminosity becomes more sensitive
to small variation of the offset, requiring a good orbit control around the IP.

Offset levelling has been used successfully e.g. at the LHC with levelling factors
between 0.01 and 1. While this allowed for a great flexibility and worked well in
general, instabilities were observed with separated beams close to the beam-beam
limit [102].

9.8.7.2 Levelling by Crossing Angle

In the absence of crab-crossing, an increased crossing angle reduces the luminosity
as explained in Sect. 9.8.5. Levelling by crossing angle only affects the total pile-
up while the pile-up density remains constant (as the length of the luminous region
changes with the crossing angle). While the crossing angle can be controlled through
local closed orbit bumps, the resulting orbit excursions are significantly larger than
for a transverse separation. In particular for small β∗, the maximum orbit excursion
and hence the maximum crossing angle may be limited by the aperture of the triplet
elements next to the IP.
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Fig. 9.22 Luminosity levelling by reducing the crossing angle in steps over the course of a fill
at the LHC. Four crossing angle were used: 150 μrad (initial), 140 μrad, 130 μrad and 120 μrad
(final). Left: the geometric reduction factor F , which increases as the crossing angle is decreased.
Right: the resulting luminosity. The integrated gain due to the levelling (shaded area) was at the
level of 5%

In a collider with crab cavities, a similar effect can be achieved by varying the
crab cavity voltage instead of the external crossing angle. In this case, the bunches
collide tilted at the IP, reducing the effective cross-section and hence the geometric
factor.

Furthermore, levelling by crossing angle can also be used to improve the
performance of a collider limited by beam-beam interactions. Since the bunch
intensities decrease over the course of a fill, beam-beam forces (both head-on and
parasitic) decrease and allow for a smaller crossing angle. By gradually reducing
the crossing angle throughout a fill, the loss of luminosity due to the geometric
factor can be minimized. Since reducing the crossing angle increases the length of
the luminous region, the pile-up density remains constant during this operation. This
approach has e.g. been used at the LHC as of 2017. An example is given in Fig. 9.22.

9.8.7.3 Levelling by β∗

Adjusting the β∗ allows controlling the luminosity while keeping the beams head-
on, avoiding aperture restrictions of closed orbit bumps and providing a constant
beam-beam tune spread. It implies changing the local optics around the IP, which
will change the orbit and β functions locally. Therefore, care must be taken ensure
smooth transitions between different β∗ values and ensuring machine protection at
all times. In particular, orbit excursions must be kept under control e.g. by using
feedback systems and any collimators around the IP must be moved to match the
new optics.

To allow for arbitrary values of β∗ and independent levelling of all IPs, the
corresponding IP optics would need to be matched online during collider operation.
To reduce complexity, a discrete set of IP optics covering the range of β∗ needed
for operation can be pre-generated. If necessary, this can then be combined with
levelling by separation or crossing angle for a fine-grained luminosity control
between the foreseen β∗ steps.
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Fig. 9.23 β∗ and luminosity during a β∗ levelling test at the LHC. To demonstrate that the beams
can be squeezed and un-squeezed at the IPs as necessary, multiple cycles between β∗ = 40 cm and
β∗ = 30 cm were performed. The luminosity follows accordingly

levelling by β∗ is a baseline concept for novel accelerators (e.g. HL-LHC,
FCC-hh) and has been successfully demonstrated at the LHC. An example from
a machine test is given in Fig. 9.23.

9.8.7.4 Alternative Methods and Combined Levelling Scenarios

In addition to the methods described above, the luminosity can also be reduced in a
controlled way by creating a longitudinal separation through RF cogging. However,
this is operationally challenging and intrinsically effects all IPs equally. In a collider
with synchrotron radiation damping of the transverse and longitudinal emittances,
controlled emittance blow-up (transverse or longitudinal) could be used likewise.

Also, two or more levelling methods described above can be combined to a
full levelling scenario for a collider which yields the optimal integrated luminosity
within the given constraints of pile-up, beam-beam effects and machine limitations
(e.g. aperture). For example, the luminosity could initially be reduced to a target
via a combination of β∗ and offset levelling; once this is not effective anymore,
the intensity and hence the beam-beam forces will have decreased, so the crossing
angle could be reduced to increase the luminosity, gaining extra time at the levelling
target. Once the crossing angle is small enough, the triplet aperture may allow for a
further reduction of β∗.

9.9 Machine Protection

J. Wenninger

Two main machine protection domains are considered. Firstly the protection of
accelerator equipment related to high power equipment. For example: the protection
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of powering equipment from overheating (magnets, power converters, high current
cables); the protection of superconducting magnets from damage after a quench;
and the safe operations of high power klystrons. Secondly there is the protection
of equipment from high stored beam energy. This is related to the high beam
power of high power proton accelerators such as ISIS, SNS and the PSI cyclotron,
to the emission of synchrotron light by electron/positron accelerators and to the
increase of energy stored in the beam (in particular for hadron colliders such
as TEVATRON, HERA and LHC). Effective protection in this case requires an
excellent understanding of accelerator physics and operation to anticipate the
failures that could lead to damage. It includes sophisticated beam and equipment
monitoring, a system to safely stop beam operation (e.g. dumping the beam) and
an interlock system providing the means to integrate the various systems. Machine
protection must be considered during design, construction and operation of the
accelerator.

9.9.1 Definition of Risk

The risk factor may be defined as the product of the probability of a failure
multiplied by the consequences of the failure (e.g. damage to equipment). The total
risk is the product of the individual risks factors of the possible failures in play.
Protection can be used to mitigate risk. In the accelerator domain it is clear that the
higher the risk factor, the more important that protection becomes.

The cost of given failure scenario can be estimated. The consequences may
be in terms of, for example: damage to equipment (repair requiring expenditure);
downtime of the accelerator; or the radiation dose to personnel accessing equipment;
or indeed a combination of the above.

The second factor entering into the risk is the probability that a given failure
happens. One can imagine that such an estimate be measured in number of failures
per year.

For operation with beam, a list of all possible failures that could lead to beam loss
into equipment should be considered. This is not obvious to establish since there are
a potentially large, but not innumerable, ways to lose the beam. However, the most
likely failure modes and, in particular, the worst case failures (in terms of cost) and
their probability must be considered.

9.9.2 Beam Losses and Consequences

Particle losses in a material lead to particle cascades. The maximum energy deposi-
tion can be deep in the material at the maxima of the hadronic and electromagnetic
showers. The energy deposition leads to a temperature increase and stress in the
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material that can be vaporised, melt, deform or lose its mechanical properties,
depending on the material and the beam impact.

There is already some risk of damage to sensitive equipment from an energy
deposition of some 10 kJ for a beam impact on the time scale of a few milliseconds.
The risk of damage to equipment from losses in the mega-Joule regime is enormous.

Equipment becomes activated due to beam losses. Rigorous radiation protection
measures are required and acceptable exposure limits must be clearly established.
For potential exposure to higher rates one possible approach is the ALARA principle
which aims to keep the exposure of personnel to radiation “As Low As Reasonably
Achievable”. Cool-down times might be required to respect this principle with
knock on costs to operational availability.

For accelerators with superconducting magnets there is a specific problem—
even with beam loss much below the damage threshold superconducting magnets
may quench due to the temperature increase induced by beam loss. In the case of a
quench, beam operation is interrupted leading to downtime for recovery. To avoid
beam induced quenches, beam losses are monitored and beam operation is aborted
if a predefined threshold is exceeded. Since the damage threshold is well above
the quench threshold, this strategy also protects the superconducting magnets from
damage.

There is no simple expression for the energy deposition of high energy particles,
since this depends on the particle type, the momentum, beam parameters and
material parameters (atomic number, density, specific heat). Programs such as
FLUKA [103], MARS [104] or [105] are used to estimate energy deposition as
well as the activation of the exposed material.

9.9.3 Time Constants for Beam Losses

Potential beam losses scenarios can be broken down according to the time scale of
the losses. Monitoring and reaction to losses must, of course, act at the appropriate
time scale.

9.9.3.1 Ultra Fast Beam Losses

Sources of failures that lead to a beam loss within very short time, typically in the
range of ns to μs are:

• failures of kicker magnets (during injection, at extraction, or during the use of
special kicker magnets used for beam diagnostics);

• failure during beam transfer via transfer lines between different accelerators or
from the accelerator to a target station.
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9.9.3.2 Very Fast Beam Losses

Sources for failures that lead to a very fast beam loss (typically in the range of ms)
are multi turn beam losses in circular accelerator. These can have a large number
of possible causes, most of which will concern the powering system of the main
magnets. Time constants could be in the order of some 10 turns.

9.9.3.3 Fast Beam Losses

Fast beam loss (some 10 ms to seconds) can have many different origins, for
example failures in the magnet powering system; vacuum valves that close; trips
of the RF acceleration system; beam instabilities; control system failures.

9.9.3.4 Slow Beam Losses

Slow beam losses (many seconds) can have many different origins, for example,
high vacuum pressure; failures in the powering system for corrector magnets;
operational error. The main difference between slow and fast losses is that the
operation crew could still be involved in the decision how to continue operation (for
example, to stop beam operation or to correct a parameter that is not set correctly).

9.9.4 Principles of Machine Protection

The key high level requirements for machine protection outline below.

• Protect the accelerator and ensure no, or minimal, damage. The highest priority
to avoid any damage to accelerator equipment.

• Protect the beam and ensure maximum machine availability. Complex protection
systems with many interlocks may reduce the availability of the machine. The
number of false interlocks stopping operation must be minimized. A “false”
interlock is defined as an interlock that stops operation although there is no risk
(for example when a sensor involved in an interlock gives an incorrect reading).

• Provide the evidence and ensure complete availability of all post mortem data
in case of failure, or false triggers of the machine protection system. When the
protection systems stop operation (e.g. dump the beam or inhibit injection), clear
diagnostics should be provided [106] to understand cause and consequences.
This requires fast diagnostics based on synchronised transient recording of all
the important parameters, as well as long term logging of parameters.

The principle components of a machine protection system are listed below.

• Systems to monitor the correct operation of all hardware.
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• Beam instrumentation to measure and check that beam parameters are in the
correct range.

• A beam dumping system, in general including a fast kicker magnet and absorber
block.

• Collimators and beam absorbers to provide passive protection against beam loss.
• A beam interlock system that links the different protection systems. Its role is

to ensure that the appropriate action is taken in case of problems (the beam is
extracted from a synchrotron, injection is stopped etc.). The interlock system
might include complex logic.

There are several principles that should be considered in the design of protection
systems, although it might not be possible to follow all these principles in all
cases.

• If the protection system does not work or is compromised, it should prevent
continued operation. The design should be fail-safe. In case of a failure in the
protection system, protection functionalities should not be compromised. As an
example, if the cable that triggers the extraction kicker of the beam dumping
system is disconnected, operation must be stopped and the beam dumped.

• Detection of internal faults: the protection system must monitor its status. In case
of an internal fault, the fault should be reported. If the fault is critical, operation
must be stopped.

• Remote testing of correction system behaviour should be possible. For example
between two runs unit testing should allow verification of the correct status of
the system.

• Critical systems should have built in redundancy of critical functionality (possi-
bly diverse redundancy, with the same or similar functions executed by different
systems).

• Critical processes for protection should not rely on complex software running
under an operating system and requiring the availability of a computer network.

• It should not be possible to remotely change the most critical parameters of a
given system. If parameters need to be changed, the changes must be controlled,
logged and password protection should ensure that only authorised personnel can
make the change.

• Safety, availability and reliability of the systems should be demonstrated. This is
possible by using established methods to analyse critical systems and to predict
failure rates.

• One should attempt to gain experience of operating the protection systems in
good time before they become critical, to gain experience and to build up
confidence. This could be done before beam operation, or during early beam
operation when the beam intensity is deliberately kept relatively low.
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9.9.5 Strategy for Protection

The best protection strategy is to prevent by design the occurrence of a potential
failure. As an example, fast kicker magnets for diagnostics that could deflect the
beams into the vacuum chamber should only be installed in high intensity machines
if they are indispensable. If they are installed the available kick strength should be
below the level that can kick the beam to the aperture.

Failure should be detected as early as possible, with priority at the hardware level
of the system at the origin of the failure. If the failure detection is fast enough, beam
operation may be stopped before the beam parameters are affected in a significant
way. As an example, a failure of a magnet power converter should be detected as
early as possible within the converter itself.

When a failure is detected, beam operation must be stopped. For synchrotrons
and storage rings the beam is extracted by a fast kicker magnets into a beam dump
block. Injection must be inhibited.

Since detecting failures at the hardware level is not always possible or fast
enough, beam diagnostics is needed to detect abnormal beam behaviour. This
requires reliable, and sometimes dedicated, beam instrumentation.

9.9.6 Active and Passive Protection

Active protection is based on detection of a failure or of the consequences of the
failure on the beam. After detection the beam must be turned off and injection
inhibited, or, the case of a storage ring, the beam must be dumped as soon as
possible.

Passive protection there is a certain class of failures when active protection is
not possible. For example, protection against misfiring of an injection or extraction
kicker magnet might include a beam absorber or collimator to catch any mis-kicked
beam. All possible beam trajectories in such case must be considered, and the
absorber must be designed and positioned to absorb the beam energy without being
damaged itself.

9.9.7 Interlock Management

In large complex accelerator with high beam currents it is unavoidable that there will
be a high number of interlocks. In certain phases of operation (e.g. commissioning)
when operating with limited beam power, the disabling of certain interlocks is
certainly to be envisaged. However, it is vital to track any disable interlocks and
ensure that they are re-enabled when required. In the LHC the disabling of a selected
number of interlocks is possible for low intensity, low energy beams. When the beam
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energy or intensity increase above damage level, the interlocks are automatically
enabled.

9.9.8 Beam Instrumentation for Machine Protection

Beam instrumentation plays an important role for machine protection, and is used
to monitor beam parameters and stop beam operation if a parameter is outside a
predefined range. If machine protection relies on the correct operation of beam
instruments, failures in beam instrumentation sub-systems need to be considered.

9.9.8.1 Beam Loss Monitors—BLM

BLMs are used for monitoring beam losses and can clearly play an important role in
machine protection. In simple terms the BLMs measure localized beam losses along
the accelerator and stop beam operation in case losses the losses become too high.
It is important that the monitors cover the entire accelerator and there is no region
with potential for losses without BLM coverage.

The monitors can be fast, for example, the LHC BLMs operate on a 40 μs time-
scale. The BLM system should be designed so that it can trigger a beam dump and
stop operation before beam losses on this scale can damage equipment.

Failure cases for the system might include defective BLMs providing no or too
low readings and therefore not providing a signal even in case of high beam losses;
and the thresholds could be set incorrectly. The former can be caught via rigorous
unit testing, the latter by strict and rigorous threshold management.

9.9.8.2 Beam Position Monitors—BPM

BPMs coupled with appropriate orbit or trajectory correction can ensure that the
beam is in the correct place in respect to the aperture. This position would normal
be around the centre of the beam pipe but there are many exceptions, for example
during extraction where a closed orbit bump is applied to position the beam close
to a septum magnet. BPMs can monitor the amplitude of such bumps and are
effectively redundant monitors of the magnet current in the closed orbit dipoles.

One possible issues is the presence of constant offset in BPM readings which can
be independent of the beam position. If a closed orbit feedback system is used, the
feedback tries to correct an erroneous position. A closed-orbit bump can develop
and, in the worst case, the beam touches the aperture. Even if the protection systems
work correctly and the beam is dumped there is some risk—for example, the beam
dump kicker might push the trajectories of part of the beam to the aperture.
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9.9.8.3 Beam Current Monitors

Beam current monitors can be used to monitor transmission and lifetimes of beams.
If the beam transmission between two locations of the accelerator complex is too
low, implying beam loss, the obvious action is to stop operation and address the
problem. If the beam lifetime in a synchrotron or storage ring is too low, one
dumps the beam. The dangers of erroneous readings are fairly clear. Duplication
of monitors can provide some level of redundancy.

9.9.9 Machine Protection at the LHC

A Livingston type plot (Fig. 9.24) shows the energy stored in the beam as a function
of particle momentum.

Machine Protection is required during all phases of operation since the LHC
is the first accelerator with the intensity of the injected beam already far above
threshold for damage. Protection during the injection process is mandatory. It is
striking that the energy stored in the nominal LHC beam at injection is about one
order of magnitude higher than the stored energy in the beam for other accelerators.
At 7 TeV fast beam loss with an intensity of about 5% of one single “nominal bunch”
can damage equipment (e.g. superconducting coils).

The only component that can stand a loss of the full beam are the beam dump
blocks—all other components would be severely damaged. The LHC beams must
always be extracted onto the beam dump blocks at the end of a fill and in case of
failure.

During powering at 7 TeV beam energy, about 10 GJ is stored in the super-
conducting magnets. Therefore quench protection and powering interlocks must be
operational and fully debugged and tested long before the start of beam operation.

Fig. 9.24 Energy stored in
the beams for different
accelerators (based on a
figure by R. Assmann)
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Chapter 10
The Largest Accelerators and Colliders
of Their Time
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Karl Hubert Mess, Peter Schmüser, R. Bailey, and J. Wenninger

10.1 Proton Accelerators and Colliders

K. Hübner · S. Ivanov · R. Steerenberg

10.1.1 CERN Proton Synchrotron (CPS)

The Study Group for a GeV-scale Proton Synchrotron was launched in 1952 at
CERN. Initially, an up-scaled version of the 3 GeV Cosmotron was considered but
soon a new design based on the newly discovered alternating-gradient principle and
promising a proton energy of 30 GeV was adopted by the CERN Council in the
same year. In order to limit cost the energy was subsequently limited to 25 GeV
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Table 10.1 Basic parameters of the CPS [5]

Accelerated particles Protons, lead ions

Momentum protons/lead ions 26 GeV/c, 5.9 GeV/c nucleon
Circumference [m] 200 π

Magnetic lattice Alternating-gradient focusing, combined-function
Focusing order FOFDOD
Magnetic field index n = 288
Number of main magnets 100
Bending magnetic field 0.1013 T (inj. at 1 GeV), 1.25 T (extr. at 26 GeV/c)
Betatron oscillations/turn 6.24 (h), 6.26 (v)
Rise time/flat top time 0.7 s/0.3 s (26 GeV/c)
Long straight sections Number = 20, length = 3.0 m
RF system (tunable) 11 cavities, 2.8–9.55 MHz, 220 keV/turn total maximum
Auxiliary RF systems 13, 20, 40, 80, 200 MHz
Vacuum chamber Stainless steel, 146 × 70 mm2 in the bending magnets

and the project led by J.B. Adams was approved in 1953. The final parameters were
fixed in 1954 and construction started in 1955. The CPS [1] became operational
towards the end of 1959 reaching an energy of 28 GeV [2, 3]. It has turned out to be
an extremely versatile facility [4] (Table 10.1).

Initially, the proton injector was a 50 MeV Alvarez-type linear accelerator (linac
L1) operating at 200 MHz. In order to increase the intensity a four-ring synchrotron
booster (PSB) was inserted in 1972 between L1 and CPS raising the kinetic injection
energy to 0.8 GeV. Over the years, it had its top kinetic energy raised in steps to
1 GeV in 1985 and 1.4 GeV in 1999 to allow for the production of the LHC beams.
As part of the LHC Injectors Upgrade (LIU) project [6] a further increase to 2 GeV
is being prepared at present for first beam in 2020. In 1979, L1 was replaced by linac
2 (L2) of a more modern and robust design. The 50 MeV proton linac 2 is presently
being replaced by the new linac 4 (L4) [7] that will provide H− ions at 160 MeV to
the charge exchange injection equipped PS Booster.

The CPS provided initially secondary beams by means of internal targets. Since
1967 a fast extraction system over one turn became available for fixed-target physics
complemented in 1969 by a system providing slow-extracted beams spilling out
particles over a large number of turns. The fast extraction was used to produce
neutrino beams with protons and, between 1970 and 1983, 26 GeV/c protons for
the Intersecting Storage Rings (ISR). At present, the fast extraction provides a
26 GeV/c proton beam (1.5 × 1013 per pulse) for the Antiproton Decelerator
(AD) after compression of the four equidistant bunches that occupy half the
CPS circumference. This manipulation by the radio-frequency accelerating system
makes this proton bunch train so short that the secondary antiproton bunch train fits
into the AD circumference being one quarter of that of the CPS. Further, a 20 GeV/c
single high-intensity bunch containing up to 9 × 1012 protons is extracted after a
non-adiabatic bunch shortening to produce neutrons from a lead-target. Since 2010,
a large variety of LHC beams have been produced that over time have become much



10 The Largest Accelerators and Colliders of Their Time 587

Table 10.2 Pre- and post-LIU main LHC beam parameters at 26 GeV/c PS extraction

Beam type N [×1011 p] ε [mm mrad] Nb/extr

2018 Standard 1.4 2.3 72
BCMS 1.3 1.2 48

Post-LIU Standard 2.6 1.85 72
BCMS 2.6 1.45 48

brighter. As foreseen in the LHC design report [8] the PS produces single bunch
beams varying in intensity from 0.05 × 1011 to 1.2 × 1011 protons. For the initial
multi-bunch beams 12–72 bunches per extraction at 26 GeV/c with respective bunch
spacings of 25, 50, 75 and 150 ns were routinely produced. The highest LHC bunch
intensity of 1.7 × 1011 protons per bunch in a transverse emittance of 1.6 mm mrad
and a bunch train length of 36 bunches was reached with the 50 ns bunch spacing
that was initially used to limit electron cloud effects in the LHC. By mid-July 2015
the LHC requested the 25 ns bunch spacing with 1.15 × 1011 protons per bunch in
a transverse emittance of 2.5 mm mrad and 72 bunches per extraction. Thanks to
the versatile PS RF system an even brighter LHC beam, based on Bunch Merging,
Compression and Splitting (BCMS), was established. Up to 1.3 × 1011 protons per
bunch in a transverse emittance of 1.1 mm mrad and 48 bunches per extraction
are delivered to the SPS since mid-2016. The LIU project aims at increasing the
bunch intensity to 2.6 × 1011 protons per bunch for both beam types as given in
Table 10.2.

For fixed-target experiments at the Super Proton Synchrotron (SPS), a 14 GeV/c
proton beam (3 × 1013 per pulse) was spilled out over five turns by cutting it with
an electro-static septum in horizontal phase space in order to fill by box-car stacking
5/11 parts of the SPS circumference being 11 times longer than the one of the CPS.
A second CPS beam pulse fills further 5/11 parts, thus leaving 1/11 for the kicker
rise-times. Since 2010 a novel scheme, using a fourth order betatron resonance for
capturing the beam in five stable islands in the horizontal phase space, avoids the
losses at the electrostatic extraction septum [9].

The slow-extraction based on a third-order betatron resonance is still in use to
produce primary 24 GeV/c proton beams. Up to 5 × 1011 protons can be spilled out
in up to 450 ms for the production of secondary beams for fixed-target experiments
at the CPS, but also for primary protons to the IRRAD and CHARM irradiation
facilities [10].

As soon as L2 was available, L1 was modified to provide Deuterium and α-
particle beams for collisions in the ISR and, later, Sulphur beams for fixed target
experiments in the SPS. In 1994, L1 was replaced by linac 3 (L3) providing
4.2 MeV/amu Pb+53 ions which, fully stripped after CPS extraction, are used for
fixed-target experiments in the SPS. Since 2010 the lead ions are also fast-ejected to
the SPS for lead-lead collisions in LHC. They no longer pass through the PSB but a
small storage ring, the Low Energy Ion Ring (LEIR), acts as accumulator between
the fast-cycling L3 and the slow-cycling CPS and is equipped with stochastic and
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electron cooling to decrease the transverse emittance of the accumulated beam. The
CPS provides a total of 8 × 1010 ions per pulse in four bunches.

The acceleration cycles for the different users are grouped in a supercycle
depending on the user requirements allowing for a quick, reproducible switching
from one to another mode of operation [11].

10.1.2 Brookhaven Alternating Gradient Synchrotron (AGS)

After successful completion of the 3 GeV Cosmotron in 1952 the design study for
a more powerful accelerator was launched coincident with the invention of the
alternating-gradient principle [12, 13]. Construction led by G.K. Green and J.P.
Blewett started in 1953 and commissioning was completed with the first proton
beam accelerated to 31 GeV in July 1960 [14]. In order to test experimentally
whether the beam would pass transition energy, an electron analogue had been
built in 1954 and operated until 1957. This model had a circumference of 43.1 m
accelerating electrons from 1 to 10 MeV with transition energy at 3.5 MeV. In
order to reduce cost, the alternating-gradient, strong-focusing was provided by
electrostatic lenses and bending by electrostatic fields [15]. The test showed that
transition can be crossed without problems but the price was a delay in the AGS
construction relative to the CERN PS, which however was at the end compensated
by better preparation of the experimental programme compared to CERN.

The first injector was a 50 MeV Alvarez-type proton linear accelerator. The
present 200 MeV linear accelerator began operation in 1970. In 1982 H− charge
exchange injection into the AGS was introduced [16] and in 1991 a 1.5 GeV booster
synchrotron was commissioned [17]. The Booster can provide 1.5 × 1013 protons
per pulse at 1.9 GeV at the design repetition frequency of 7.5 Hz. The acceleration
harmonic schemes (Booster harmonic, AGS harmonic, transfers) evolved from (3,
4, 12) to (2, 4, 8) and finally to (1, 6) in pursuit of higher intensity [18] (Table 10.3).

Secondary beams from the AGS were initially provided from internal targets.
This also creates high beam loss and activation in the accelerator not compatible
with high-intensity operation. The first fast-extraction was installed in the mid-60s
followed by slow-extraction in 1967 which served up to six target stations and
spilling out protons with repetition periods from 1.8 s to 5.8 s. To cope with the
intensity increases, the AGS underwent a series of upgrades including a new main
magnet power supply, addition of transverse feed-back, special magnets to provide
fast crossing of the transition energy, and a high power RF system [20]. In the early
2000s the AGS provided a slow-extracted beam of 7 × 1013 protons per pulse at
24 GeV [21].

With the appropriate source added to the 200 MeV linear accelerator, polarized
protons have been produced by the injector chains from 1985 onward for fixed target
experiments. To meet injector requirements for RHIC—intensity and polarization—
the polarized source underwent a major upgrade [22]. The polarization transmission
efficiency in the AGS has been substantially improved with the installation of two
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Table 10.3 Basic parameters of the AGS [19]

Accelerated particles Protons, polarized protons, heavy ions (up to Au)

Particle energy 30 GeV, 25 GeV, 14.5 GeV/n
Circumference [m] 256.9 π

Magnetic lattice Alternating-gradient focusing, combined-function
Focusing order (F/2)O(F/2)(D/2)O(D/2)
Magnetic field index n = 365
Number of main magnets 240
Bending magnetic field 0.105 T at injection, 1.31 T at maximum particle momentum
Betatron oscillations/turn 8.75 (h), 8.75 (v)
Rise time/flat top time 0.6 s/0.5 to 2.5 s
Long straight sections Number = 24, length = 3.15 m
RF system (tunable) 10 cavities, 1.8 to 4.5 MHz, 200 KeV/turn total maximum
Auxiliary RF system (fixed RF) 92 MHz
Vacuum chamber Inconel, 173 × 78 mm2 in the bending magnets

“partial Siberian” snakes [23, 24] and a system to rapidly cross weak resonances.
Polarization at transfer to RHIC (24 GeV) is 70% (with 82% at 200 MeV) and with
intensity 2 × 1011 protons per bunch [25, 26].

Since 1986 the Booster has also accelerated ions (d to Au) using a Tandem Van
de Graaff as injector. For RHIC operation about 5 × 109 Au31+ ions at 41.6 MeV/n
are injected over 60 turns into the Booster, accelerated to 101 MeV/n, stripped to
Au77+ and injected into the AGS. The ions are fully stripped before injection into
RHIC [27]. A new pre-injector is being commissioned based on an EBIS source
followed by a new linear accelerator [28]. The new system increases the available
ions for RHIC to include Uranium [29].

10.1.3 The 70 GeV Proton Synchrotron (U-70) of NRC
“Kurchatov Institute”: IHEP (Protvino)

The study of a powerful synchrotron started in the mid-60s in the then Soviet
Union and focused onto the Protvino site since 1958 [30]. The project was led
by V.V. Vladimirski from 1958 and A.A. Logunov from 1963 after the foundation
of the Institute for High-Energy Physics. The construction started in 1961 and the
commissioning [31] took place in 1967 culminating in a test run at 76 GeV in the
same year, which was the world record at that time (Table 10.4).

The first proton injector has been the 100 MeV Alvarez-type DTL proton linear
accelerator (I-100) providing a pulse current of 100 mA over five turns in U-70. It
served until 1985 as injector [34] and is still in operation as light ion injector [33]. In
order to increase the intensity, the 1.5 GeV booster synchrotron (U-1.5) cycling at

162
/

3 Hz came on line in 1985 [35]. Its injector is a 30 MeV RFQ-type DTL linear
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Table 10.4 Basic parameters of the U-70 [32, 33]

Accelerated particles Protons, carbon nuclei

Particle energy 70 GeV (34 GeV/n carbon nuclei)
Circumference 1483.7 m
Magnetic lattice Alternating-gradient focusing, combined-function
Focusing order FODO
Magnetic field index n = 443
Number of main magnets 120
Bending magnetic field 0.035 T at injection, 1.2 T at maximum energy
Betatron oscillations/turn 9.9 (h), 9.8 (v)
Rise time/flat top time 2.8 s/2 s
Long straight sections Number = 24, length = 4.87 m
RF system (tunable) 38 (+2 spare) cavities, 2.6–6.1 MHz, 150 keV/turn total

maximum
Auxiliary RF system (fixed RF) 2 cavities at 200 MHz, 500 kV peak total voltage
Vacuum chamber stainless steel, 200 × 100 mm2 in the bending magnets

accelerator (URAL-30) injecting 1–4 turns into the booster with a pulse current up to
80 mA. Twenty nine single-bunch pulses of the booster with up to 8 × 1011 protons
per pulse build up the beam in U-70 within 1.8 s using bunch-to-bucket transfer. The
U-1.5 has a circumference 1/15 times the one of U-70. It operates now at 1.3 GeV
limited by the power supply.

The U-70 accelerator has been equipped with a new vacuum chamber in 1997
and the control system has been modernized from 1998 onwards. Thanks to all
these upgrades and, in particular, to the addition of the booster and the new linear
accelerator, the beam intensity has reached 1.5 × 1013 protons per pulse with a
repetition time of 9.8 s, which has to be compared with the initially planned 1× 1012

protons per pulse [32]. In recent years, U-70 operates with 1.1 × 1013 protons per
pulse at 50 GeV to save energy [36].

Initially, only internal targets have provided a large variety of secondary beams
and some internal targets are still in use providing spills up to 1.8 s. A fast-extraction
system has been added soon. A slow-extraction system based on a third order
resonance came into operation in 1979 and it has been upgraded for higher intensity
in 1989. Its spill-length could be extended up to 1.3 s. Now, a stochastic slow
extraction system provides smooth spills over up to 3 s at top energy. Extraction,
beam splitting and collimation using bent crystals have been achieved being under
study since 1990 [37].

Deuterons have been accelerated from 2008 onwards in I-100 and U-1.5 to
16.7 MeV/n and 455 MeV/n, respectively. In 2009 deuterons were further accel-
erated in U-70 to 23.6 GeV/n corresponding to 50 GeV protons. The latter has the
potential to accelerate them to 34 GeV/n. An intensity of 5 × 1010 deuterons per
pulse has been achieved.

In 2011, carbon ions have been first accelerated in I-100, U-1.5 and U-70 to
34 GeV/n [38]. In 2013, validation tests of all the top-energy extractions available
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with carbon beam have been accomplished successfully. Carbon beam intensity is
3–5× 109 ions per pulse (8.2 s), in a single bunch. At the DC flat-bottom, U-70 now
also operates in a beam storage- and stretcher-ring mode for 455 MeV/n carbon ions
enabling their square-wave slow stochastic extraction (0.5–1 s long) via a Piccioni-
Wright technique for an applied fixed-target research [39, 40].

10.1.4 The CERN Intersecting Storage Rings (ISR)

The first ideas for a realistic proton-proton collider were publicly discussed in
1956 [41, 42]. The Accelerator Research Group set up by the CERN Council in
1956 formulated in 1960 the first proposal for a proton-proton collider attached to
the CERN PS. In 1960 construction began on a small-proof-of-principle 1.9 MeV
electron storage ring, the CERN Electron Storage and Accumulation Ring (CESAR)
which experimentally proved the accumulation of particles by RF stacking in 1964,
an essential technique [43] to build up intense beams, a prerequisite for getting the
required luminosity. CESAR also was an important test bed for the for Ultra-High
Vacuum (UHV) technology which had to developed to achieve a very low vacuum
pressure, indispensable for a long lifetime of stored beams. The Design report [44]
was issued in 1964, the project was approved in 1965, and construction lead by
K. Johnsen started without delay. The first proton-proton collisions took place in
1971 with a beam momentum up to 26.5 GeV/c, the maximum momentum available
from the CPS. The ISR consisted of two independent storage rings intersecting
at eight points at an angle of 14.8◦. To create space for long straight sections in
the interaction regions, the circumference of the ring was 1.5 times of that of the
CPS which supplied particles to the ISR through two long transfer lines. The ISR
operated for physics as collider from 1971 to 1983. It was decommissioned after
1984 (Table 10.5).

The CPS was the injector for the ISR supplying mainly protons up to 26.5 GeV/c.
Typical intensities were 3 × 1012 protons per pulse in 20 bunches every 2.4 s during
the filling process. The filling of one ISR ring took less than 10 min. Later, also
deuterons, alpha particles and antiprotons were accelerated for the ISR.

The ISR team had to tackle a number of technological challenges but the most
important was to assure UHV imperative for a long beam lifetime. The stainless steel
vacuum chamber was in situ bakeable eventually to 300 ◦C. Pumping was provided
by sputter ion-pumps and, at critical places, Ti-sublimation pumps. All vacuum
chambers had to be glow-discharge cleaned. The continuous effort eventually
resulted in average pressure below 10−11 Torr (N2 equivalent) reducing beam loss
rates to typically around one part per million per minute during physics runs. Beams
of physics quality could last 40–50 h. Beam currents of 10 A were achieved already
after start-up. Later up to 57 A were stored per ring with 30–40 A as typical value.
The proton-proton initial luminosity (design 4 × 1030 cm−2 s−1) was increased
from 1.6 × 1030 cm−2 s−1 in 1971 to 1.4 × 1032 cm−2 s−1 in the superconducting
low-beta section installed in one of the interaction points in 1982, which stayed the
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Table 10.5 Basic parameters of the ISR [45]

Colliding particles pp, dd, pd, αα, αp, pp

Particle momentum 3.5–31.4 GeV/c, typically 26 GeV/c
Circumference [m] 300 π

Magnetic lattice Alternating-gradient focusing, combined-function
Focusing order FODO
Number of main magnets 132 per ring
Magnetic dipole field 1.33 T at maximum momentum
Length of main magnets 4.88/2.44 m
Magnetic field index n = 248
Betatron oscillations/turn 8.90 (h), 8.88 (v)
Long straight sections Number = 8, length = 16.8 m
β∗ (h/v) 21 m/12 m
β∗ (h/v) 2.5 m/0.28 m in superconducting low-beta section
RF system per ring 7 cavities, 9.5 MHz, 16 kV RF peak voltage
Auxiliary RF system 3rd harmonic
Vacuum chamber Stainless steel, 160 mm/52 mm full width (h/v)

world record luminosity until 1991. The superconducting low beta-section had been
preceded by an insertion based on conventional magnets, operational from 1974.
From 1973 onwards, the beams could be accelerated in the ISR to 31.4 GeV/c by
phase displacement acceleration [46].

From 1976 onward deuterons were stored in the ISR so that dd and pd collisions
became available. Alpha particles were stored in 1980 for αα and αp collisions.
Initial dd luminosities reached 1.6 × 1030 cm−2 s−1 and were 4 × 1028 cm−2 s−1

in the αα case. Antiprotons were stored as soon as the antiproton injector complex
had become operational in 1981 (see Sect. 10.1.6). This required a new transfer line
from the CPS.

The ISR will be remembered for a number of breakthroughs in accelerator
physic and technology: UHV-technology for a large scale facility, control of
intense coasting beams, discovery of Schottky scans, experimental demonstration
of stochastic cooling, and absolute luminosity measurement by van der Meer scans
[46].

10.1.5 The CERN Super Proton Synchrotron (SPS)

Design studies of a powerful proton synchrotron started at CERN in 1961 when
the Accelerator Research Division had been created, not long after the CPS had
become operational in 1960. The design energy was 300 GeV and the specified flux
1013 protons/s. A study group lead by K. Johnsen presented a first design report in
1964 [47]. However, the idea that the facility should be constructed on a green field,
i.e. not in Switzerland near CERN, made the choice of the site difficult and funding
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Table 10.6 Basic parameter of the SPS in proton fixed-target mode [51]

Accelerated particles Protons

Momentum protons 450 GeV/c
Circumference [m] 2200 π

Magnetic lattice Alternating-gradient focusing, separated-function
Focusing order FODO
Number of dipole magnets 744
Dipole magnetic field 0.056 T at injection, 1.8 T at maximum particle momentum
Betatron oscillations/turn 26.6 (h), 26.6 (v)
Rise time/flat top time 0.75 s/2.5s
Long straight sections Number = 6, length = 128 m
RF system 4 traveling-wave structures at 200 MHz, 4 MeV/turn total
Vacuum chamber Stainless steel, 150 × 50 mm2

problems delayed the decision over many years. In 1969, J.B. Adams was appointed
leader of the 300 GeV Programme and the project gathered new momentum with
the suggestion to construct the facility close to the existing laboratory and using
the CPS as injector, which had been advocated already in 1961 by C. Ramm [48].
This and a new design based on the alternating-gradient principle but with the
function of bending and focusing separated instead of combined-function allowed
a considerable cost reduction [49]. The project was approved in 1971 and a beam
energy of 400 GeV, exceeding the design energy, was reached in 1976 after almost
a decade of planning and decision making [50] (Table 10.6).

The CPS acts as proton injector having 1/11th circumference of the SPS. Initially,
the SPS beam was created by peeling off the required beam from the CPS beam by
an electrostatic septum over 10 turns of the CPS at 10 GeV/c, leaving 1/11th of the
circumference for the SPS injection kicker fall-time and ejection kicker rise-time,
in a process called continuous transfer. From 1978 onwards, after the CPS intensity
had been increased by the new linac 2 and the booster synchrotron, two CPS pulses
were consecutively sent to the SPS, each CPS pulse was peeled five times. The
CPS acted also as positron-electron injector during lepton operation for LEP and as
injector during the fixed-target ion runs. It provides also a 26 GeV/c proton beam
and 5.9 GeV/u ion beams to the SPS when the latter is used to fill the CERN Large
Hadron Collider (LHC).

The intensity of the proton beam for fixed-target experiments had been raised
gradually. In 1984, the injection momentum was raised to 14 GeV/c providing a
more stable, reproducible injection and a beam of lower emittance. After the kinetic
beam energy of the PS-Booster (PSB) had been raised to 1.4 GeV in 1998 resulting
in a further emittance reduction, the SPS delivered more than 4 × 1013 protons per
pulse with a record value of 5.3 × 1013 ppp.

Since the start-up in 1976 three types of extraction modes have been available
towards the two experimental areas: (i) fast extraction of part or the entire beam
(spill 3–23 μs); (ii) slow-resonant extraction (0.5–2 s); (iii) fast-resonant extraction
(<3 ms). A typical pattern was extraction to the West-Area at an energy of 200 GeV
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(250 GeV maximum) during a short pause in the acceleration followed by extraction
at top energy to the North Hall. After the upgrading to 450 GeV of the transfer
line to the West Hall in 1983, simultaneous resonant extraction to both areas was
implemented by an appropriate adjustment of the horizontal betatron phase advance
in the ring. The sharing ratio between the two clients was fully adjustable. Extraction
towards the West Hall was terminated in 2003 to free resources for LHC.

In 1986 and 1987 two exploratory fixed-target runs with ions took place after
linac 2 had become operational freeing linac 1 which had in the meantime been
equipped with the appropriate front-end for ion operation. In 1986, fully stripped
oxygen ions were accelerated for the first time to 200 GeV/n after the SPS had been
set up with a deuteron beam of more convenient higher intensity. In the second run,
in 1987, sulphur ions were used. The sulphur runs were resumed from 1990 to 1992
providing 9 × 109 charges per pulse with four batches injected from the CPS. After
the construction of the dedicated heavy-ion linac (linac 3) lead ions at 177 GeV/u
were available for the experiments from 1994 to 2002 and indium at 158 GeV/u in
2003. No ion runs took place in 1997 and 2001. The SPS delivered up to 6 × 1010

fully-stripped ions in terms of charges per pulse [52].
It is worthwhile to mention that the SPS also accelerated electrons and positrons

for injection into LEP in the years 1989 to 2000. This had required substantial
modifications. Since the traveling-wave cavities could accelerate the beam only
to 14 GeV, 32 copper-based standing-wave cavities operating at 200 MHz and
providing a peak-voltage of 30 MV were added. Ejection and injection channels
were equipped appropriately and a campaign of meticulously shielding the magnet
coils against synchrotron radiation was conducted [53]. The LEP injection energy
was first set to 20 GeV and, later, when the standing-wave cavities were replaced
by two four-cell superconducting RF structures, the LEP injection energy could be
raised to 22 GeV.

The SPS acts as injector into the LHC providing protons at 450 GeV since 2008
and ions at 176 GeV/u since 2010 [54]. Lead is the preferred ion species for the first
years of operation. This new role required a number of hardware modifications and,
in particular, the addition of a new extraction system for the anti-clockwise LHC
ring which serves also the target for the new long-base line neutrino beam towards
Gran Sasso in Italy. Two new beam lines towards the LHC had to be built.

10.1.6 The CERN Super Proton Synchrotron (SPS) as
Proton-Antiproton Collider

The proposal to use the SPS as proton-antiproton collider was made in 1976 [55].
The required increase of phase space density of the secondary antiprotons was to be
produced by stochastic cooling invented by S. van der Meer [56] which had been
experimentally demonstrated in the ISR [57]. Simultaneous stochastic cooling in
transverse and longitudinal phase space at cooling rates several orders higher than
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Table 10.7 Basic parameter of the SPS in proton-antiproton collision mode [60]

Accelerated particles Protons and antiprotons

Maximum particle energy 315 GeV
Circumference [m] 2200 π

Magnetic lattice Alternating-gradient focusing, separated-function
Focusing order FODO
Number of dipole magnets 744
Dipole magnetic field 0.12 T at injection, 1.4 T at maximum particle energy
Long straight sections Number = 6, length = 128 m (including 2 low-β insertions)
β∗ (h/v) 1.0 m/0.5 m
Filling time 29 s
RF system 4 traveling-wave structures at 200 MHz, 3.6 MeV/turn total
Auxiliary RF system 100 MHz, 2 MV/turn
Vacuum chamber Stainless steel, 150 × 50 mm2

those achieved in the ISR was proven to work in the Initial Cooling Experiment
(ICE) in 1978. ICE was a small storage ring of 74 m circumference operating at 1.73
and 2.1 GeV/c and fed with protons from the CPS [58]. With the project decision
taken in 1978, the construction of the Antiproton Accumulator Ring jointly led by
R. Billinge and S. van der Meer started as well as the modifications of CPS and SPS.
The first collision of protons and antiprotons occurred in 1981 and the data taking of
the experiments took place from 1982 to 1991 except 1986 [59]. All modifications
of the SPS for collider operation were removed after 1991 (Table 10.7).

The antiproton injector chain [59] consisted of the CPS with its proton injectors
and of the Antiproton Accumulator storage ring (AA). The CPS produced an intense
pulse of 1.2 × 1013 protons at 26 GeV every 4.8 s consisting of five bunches
and having a pulse length matched to the circumference of the AA (157 m). The
pulse impinged on a tungsten target followed by a magnetic horn or a lithium
lens focusing the emerging antiprotons. The latter were collected in the AA
operating at 3.5 GeV/c, the momentum where the production was close to the peak.
Subsequently, the stochastic cooling systems increased the phase space density by a
factor of more than 5× 108. The best daily production was close to 2× 1011 per day.
For the SPS fill, the collected and cooled antiprotons were transferred to the CPS,
accelerated to 26 GeV/c and injected into the SPS through a new transfer line built
for anti-clockwise injection. The fill was terminated by acceleration of the protons
in the CPS and their injection through the existing transfer line upgraded from
14 GeV/c to 26 GeV/c. Subsequently, both beams were simultaneously accelerated
to collision energy and, after the β∗ had been lowered, brought to collision by
adjusting the separators. The duration of a coast was between 10 and 20 h.

In order to increase the transverse and longitudinal acceptance after the target, an
additional storage ring of 187 m circumference was constructed around the AA in
1986, the Antiproton Collector (AC). This new ring featured an RF system providing
1.5 MV at 9.5 MHz rotating the antiproton bunches in longitudinal phase space to
reduce their momentum spread. It took over from AA the stochastic pre-cooling
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so that AA could be simplified but had its cooling systems upgraded. With these
measures the antiproton production rate could be raised to more than 1 × 1012 per
day.

The SPS required a number of modifications: the vacuum ion pumps were
doubled and Ti-sublimation pumps added resulting in a reduction of pressure
from 2 × 10−7 to 6 × 10−9 Torr; an electrostatic deflector separated the beams
horizontally at injection; the magnet lattice included two low-beta sections for
focusing the beam in the two interaction points; the RF travelling wave structures
at 200 MHz had to accelerate particles travelling in both directions, and two
underground experimental areas had to be constructed [61]. The initial beam energy
was raised from 273 to 315 GeV after an upgrade of the magnet cooling. Towards
the end of the operation, the SPS was cycled between 100 and 450 GeV, thus
providing collisions at 900 GeV c.m. The performance of the collider was steadily
increased during its lifetime by the upgrade of the antiproton injectors, in particular
after the commissioning of AC; by adding electrostatic deflectors allowing to raise
the number of bunches per beam from three to six avoiding collisions except in
the two experiments and in the mid-arc between them; by the installation of a
100 MHz RF system to increase the acceptance at injection. Hence, the average
initial luminosity and the centre-of-mass energy rose from 0.05 × 1030 at 546 GeV
in 1982 to 3 × 1030cm−2 s−1 at 630 GeV with β∗ (h/v) at 0.6 m/0.15 m in 1991,
the last year of collider operation. The collider collected an integrated luminosity of
17 pb−1 during its lifetime [59].
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10.1.7 Tevatron of Fermi National Laboratory (FNAL)

The study of superconducting magnets started in 1972 in view of doubling the
proton energy available at FNAL by adding another accelerator in the tunnel of
the Main Ring (MR). In the same year, MR equipped with conventional magnets
had reached its design energy producing 200 GeV protons. Since a magnet study
had shown the feasibility of ramped superconducting magnets of 4–5 T, the official
design study of this new accelerator, the Tevatron, with the MR as injector was
launched in 1974 under the leadership of R.R. Wilson. Project authorization was
granted in 1979 and the accelerator reached 512 GeV during commissioning in
1983 with the MR operating at 150 GeV as injector [62]. The accelerator was then
routinely used between 1983 and 2000 in eight runs for fixed-target physics in the
three experimental areas dedicated to physics with mesons, neutrinos, and protons
respectively. The beam energy was 800 GeV except in the first run (400 GeV) and



10 The Largest Accelerators and Colliders of Their Time 597

Table 10.8 Basic parameters of the Tevatron [63]

Accelerated/colliding particles Protons/protons—antiprotons

Particle energy 800 GeV/980 GeV
Circumference [m] 2000 π

Magnetic lattice Alternating-gradient focusing, separated-function
Focusing order FODO
Number of main bending magnets 774
Bending magnetic field 0.67 T at injection, 4.35 T at maximum energy
Rise time 15 s
Bending magnet Nb-Ti conductor at 4.3 K, cold-bore, iron at ambient

temperature
Quadrupole field gradient 11.4 T/m at injection, 76 T/m at maximum energy
Betatron oscillations/turn 20.59 (h), 20.59 (v)
Long straight sections Number = 6, length = 50 m (incl. 2 low-β insertions)
β∗ (h/v) 0.28 m in low-β sections
RF system (tunable) 8 cavities, 53.1 MHz, 1.2 MeV/turn total maximum
Vacuum chamber Stainless steel, rounded square 63 mm full aperture (h,v)

(in dipoles)

the repetition rate of the order of one per minute. Slow-spills (20 s) and fast beam
extraction (2 ms) were available (Table 10.8).

The potential of the accelerator for proton-antiproton collisions with a centre-
of-mass energy close to 2 TeV had been realized very early [64]. The bunched
proton beam and anti-proton beam counter-rotating in the same vacuum chamber
would be simultaneously accelerated in the Tevatron and brought to collision at top
energy. Initiated in 1977, a study of the anti-proton beam cooling methods revealed
that an anti-proton beam of sufficient intensity and density in phase space could
be produced. This led to the construction of the anti-proton source in the period
1982–1985. The MR would also accelerate antiprotons and protons for injection
into the Tevatron. It was equipped with two overpasses to provide space for the large
detectors located in the two crossing points of the Tevatron. In 1985, the conversion
of the Tevatron itself to a collider was started by the installation of the first low-β
section in the straight section housing later the CDF detector. First collisions were
recorded at a centre-of-mass energy of 1.6 TeV in 1985 and this energy could be
raised to 1.8 TeV in 1986. It was increased again to 1.96 TeV for Run II [65] which
started in 2001 [66].

In order to increase the average proton beam power on the anti-proton target
and to eliminate the perturbation of the experiments by the MR overpasses, a new
injector synchrotron, the Main Injector (MI), was constructed between 1993 and
1999 and MR was decommissioned. MI is a synchrotron of 3.32 km circumference
and a minimum repetition time of 1.4 s. It is located in a new tunnel and provides
the protons at 120 GeV for anti-proton production. It also accelerates the antiprotons
and the protons from 8 GeV to 150 GeV for injection into the collider.
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For the antiproton production, the full complement of accelerators and storage
rings in the injector chain is used. The first accelerator in the injector chain is a
400 MeV H− linear accelerator (linac) operating at 200 MHz. Its initial energy was
200 MeV but half of the original drift-tube linac was replaced in 1992–1993 by side-
coupled accelerating structures providing 300 MeV. The protons are transferred to
the booster synchrotron operating with 15 Hz repetition rate and are accelerated to
a kinetic energy of 8 GeV. The intensity is up to 5 × 1012 protons per booster pulse.
Next the particles are accelerated to 120 GeV in the Main Injector (MI), and hit a
solid metal target followed by a lithium lens.

From the emerging secondary particles anti-protons of 8 GeV kinetic energy are
selected and their phase space density is stepwise increased in two rings in series,
the Debuncher Ring and the Anti-Accumulator Ring; the latter also accumulates the
particles. The anti-protons pass then to the latest addition, the Recycler Ring (RR),
were they are cooled further and a second step of accumulation takes place. The RR
could be fitted into the MI tunnel as its bending and focusing magnets have a small
cross-section the magnetic fields being generated by permanent magnets (1.45 T
field strength). This new storage ring has therefore the same circumference as MI;
it is in operation since 2004. Due to this elaborate anti-proton source the antiproton
production rate has reached nearly 3 × 1011 anti-protons/h. Still the production rate
of the antiprotons is rather low compared to proton production. Hence, the injector
chain produces and accumulates anti-protons all the time except during the period
of filling the Tevatron with protons and antiprotons which takes about 1 h.

When the Tevatron needs a new fill, which happens about every 10–20 h, the
linac, the booster and MI produce the 36 proton bunches for the Tevatron, then
anti-protons collected in RR are transferred to MI for acceleration to 150 GeV and
injection into the Tevatron. The 36 bunches are arranged in 3 trains of 12 bunches.
Protons and antiprotons circulate on helical orbits produced by high-voltage electro-
static separators to prevent collisions during injection and acceleration. At top
energy, after increasing the focusing in the two collision points equipped with
detectors, the separator configuration is modified to bring the beams in collision
in these two points [67].

A peak luminosity of 4 × 1032 cm−2 s−1 has been reached by continu-
ously upgrading all the systems, introducing advanced accelerator technology and
stream-lining the operational procedures. The Tevatron has delivered an integrated
luminosity of more than 12 fb−1 to each of the experiments (CDF and D0) before
it ceased operation at the end of September 2011. It was one of the most complex
research instruments ever built and will be known for its advances in accelerator
physics and technological breakthroughs [68].
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10.2 RHIC1

T. Roser

10.2.1 The RHIC Facility

With its two independent superconducting rings RHIC is a highly flexible collider
of hadron beams ranging from intense beams of polarized protons to fully stripped
gold ions [69, 70]. The layout of the RHIC accelerator complex is shown in
Fig. 10.1. The collision of 100 GeV/nucleon gold ions probes the conditions of
the early universe by producing extreme conditions where quarks and gluons are
forming a new state of matter, the strongly interacting quark-gluon plasma. Several
runs of high luminosity gold-gold collisions as well as comparison runs using
proton, deuteron and copper beams have demonstrated that indeed a new state of
matter with extreme density is formed in the RHIC gold-gold collisions. (See also
Sect. 11.5).

IR 10

IR 12

IR 2

IR 4 [RF]

IR 6 [STAR]

IR 8 [PHENIX]

High Intensity Proton Source

RHIC

EBIS BOOSTER

LINAC
Pol.Proton Source

1 MeV/n
Q = +32

AGS

9 GeV/n
Q = +79

TANDEMS

Fig. 10.1 Layout of RHIC and the injector accelerators. The gold ions are stepwise ionized as
they are accelerated to RHIC injection energy
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The RHIC polarized proton collider has opened up the completely unique physics
opportunities of studying spin effects in hadronic reactions at high-luminosity
high-energy proton-proton collisions. It allows the study of the spin structure of
the proton, in particular the degree of polarization of the gluons and anti-quarks,
and also verification of the many well-documented expectations of spin effects in
perturbative QCD and parity violation in W and Z production. The RHIC center-of-
mass energy range of 200–500 GeV is ideal in the sense that it is high enough for
perturbative QCD to be applicable and low enough so that the typical momentum
fraction of the valence quarks is about 0.1 or larger. This guarantees significant
levels of parton polarization.

During its 10 years of operation RHIC has greatly exceeded the design param-
eters for gold-gold collisions, has successfully operated in an asymmetric mode
of colliding deuteron on gold with both beams at the same energy per nucleon,
and thereby at different rigidities, and successfully completed a comparison run of
colliding copper beams with record luminosities. Operation at unequal rigidities of
the two colliding beams is a unique feature of RHIC with its two independent rings.
The interaction regions are designed to separate the two beams first before they go
through their separate final focus triplets. This is shown in Fig. 10.2 for equal species
and for the most unequal species of protons and gold beams with a rigidity ratio of
2.47 for equal energy per nucleon. The necessary increase in distance between the
interaction point and the final focus triplet limits the achievable luminosity in RHIC.

In addition to heavy ions, RHIC successfully demonstrated its capabilities as a
high luminosity polarized proton collider both at 100 and 250 GeV proton beam
energy. For most of the heavy ion runs RHIC was operating with beam energies
of 100 GeV/nucleon—the gold beam design energy. Additional running at lower
beam energy was also accomplished again demonstrating the high level of flexibility
of RHIC. Gold collisions at energies much below the RHIC injection energy of
10 GeV/nucleon is allowing the study of the critical point in the quark-gluon phase
diagram. Figure 10.3 shows the achieved integrated nucleon-pair luminosities for
the many modes of operation of RHIC since its start of operation in 2000. Using
nucleon-pair luminosity, which is calculated as the ion-ion luminosity times the

Fig. 10.2 Interaction region
geometry in RHIC for equal
species (solid line) and the
most extreme example of
dissimilar species—protons
and gold (dashed line)
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Fig. 10.3 Integrated nucleon-pair luminosity for the heavy ion (left) and the polarized proton
(right) running modes since the start of RHIC operation

Table 10.9 Major
parameters of RHIC

Parameter Value

Circumference 3833.845 m
Number of interaction points 6
Harmonic number, acceleration 360
Harmonic number, storage 2520
Typical betatron tunes for Au 28.23/29.22
Transition energy γ T 26.7 (Au), 22.8 (p)
Maximum magnetic rigidity 839.5 Tm
Total number of dipoles, both rings 396
Total number of quadrupoles, both rings 492
Dipole field at 100 GeV/nucleon, Au 3.458 T
Arc dipole effective length 9.45 m
Arc quadrupole gradient 71.2 T/m

number of nucleons in each of the two beam ions, allows the comparison of the
different modes of operation properly reflecting the relative statistical relevance of
the data samples and also the degree of difficulty in achieving high luminosity.

For RHIC’s major parameters and achieved performance parameters see
Tables 10.9 and 10.10, respectively.

10.2.2 Collider Operation

Gold-Gold Operation
Starting with Au1− from a sputter source the gold ions are stepwise ionized as they
are accelerated in the Tandem Van de Graaff, the AGS Booster and the AGS to
RHIC injection energy. The electrostatic acceleration in the Tandem Van de Graff
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provides an extremely bright gold beam that can be captured and bunch-merged
to provide the necessary bright bunches of 1 × 109 Au ions with a normalized
transverse rms emittance of less than 2.5 μm and a total longitudinal emittance of
less than 0.3 eVs/nucleon. The final stripping to bare Au79+ occurs on the way
to RHIC. Recently the Tandem van de Graff pre-injector has been replaced by an
Electron Beam Ion Source (EBIS) followed by an RFQ and IH-Linac. The EBIS
can produce very bright high-charge state heavy ion beams by accumulating and
stripping heavy ions with a 10 A space-charge neutralizing electron beam. The new
source can produce beams of many species including uranium.

The two RHIC rings, labeled blue and yellow, are intersecting at six interaction
regions (IRs). All IRs can operate at a betastar between 2 and 10 m. In two
interaction regions, occupied by the two main detectors STAR and PHENIX,
the quality of the triplet quadrupoles allows further reduction of betastar to less
than 1 m. Typically betastar is about 10 m at injection energy for all IRs and is
then squeezed during the acceleration ramp first to 5 m at the transition energy
(γ T = 26.7), which minimizes the momentum dependence of the transition energy
crossing, and then to less than 1 m for PHENIX and STAR. A typical acceleration
cycle consists of filling the blue ring with 111 bunches in groups of 4 bunches, filling
the yellow ring in the same way and then simultaneous acceleration of both beams
to storage energy. During acceleration the beam bunches are longitudinally aligned
but are separated vertically by 10 mm in the interaction regions to avoid beam losses
from beam-beam interaction.

The collision rate is measured using identical Zero Degree Calorimeters (ZDC)
at all detectors. The ZDC counters detect at least one neutron on each side from
mutual Coulomb and nuclear dissociation with a total cross section of about 10
barns. Typical stores in RHIC last about 4–5 h. Due to intra-beam scattering, which
is particularly important for the fully stripped, highly charged gold beams, the initial
normalized rms emittance of about 2.5 μm grows to about 5 μm at the end of the
store and a significant amount of beam is lost from the RF bucket. The resulting
luminosity lifetime is about 2.5 h.

The reduced number of gold ions compared to typical proton bunches makes it
possible to contemplate stochastic cooling of the 100 GeV/nucleon bunched beam.
A 6–9 GHz longitudinal and a 5–8 GHz vertical stochastic cooling system was
installed using novel high power multi-cavity kickers and the high energy bunched
beam was successfully cooled [71]. Figure 10.4 shows the successful cooling of the
transverse emittance in the yellow ring compared to the emittance growth in the
blue ring without cooling. Both the vertical and horizontal emittance are reduced
due to x-y coupling. Figure 10.5 shows the vertex distribution at the end of the
store with and without stochastic cooling. It clearly shows a significant increase in
luminosity in the central region. The modulation of the vertex distribution is a result
of the 200 MHz storage RF system that provides about 4 MV/turn to compress
the bunch length and consequently reduce the length of the vertex distribution
to better match the acceptance of the collider detectors. Again due to intra-beam
scattering the initially narrow distribution widens during the store. A new 2 MV,
56 MHz superconducting cavity will provide improved RF focusing that, together
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Fig. 10.4 Transverse
emittance evolution in the
blue (filled) and yellow
(open) RHIC rings with
vertical stochastic cooling in
the yellow ring [71]

Fig. 10.5 Vertex distribution
at the end of a 100 GeV/n
Au-Au store with and without
longitudinal stochastic
cooling

with the longitudinal stochastic cooling, will maintain the short vertex distribution
throughout the store.

With the two planes of stochastic cooling operational in both rings a peak lumi-
nosity at PHENIX and STAR of up to 40 × 1026 cm−2 s−1 (160 × 1030 cm−2 s−1

nucleon-pair luminosity) with an average store luminosity of 20 × 1026 cm−2 s−1:
ten times the original RHIC design average store luminosity. The full stochastic
cooling system will include also the horizontal plane and should result in another
doubling of the luminosity.

The total gold beam intensity in RHIC was initially limited by vacuum break-
downs in the room temperature sections of the RHIC rings [72]. This pressure rise
is associated with the formation of electron clouds, which in turn appear when the
bunch peak intensity is high around transition and after bunch compression, and
when the bunch spacing is below about 200 ns. This situation was greatly improved
by installing vacuum pipes with an internal coating of non-evaporative getter (NEG)
that is properly activated. The resulting residual static pressure is about 10−11 Torr.
The NEG coating acts as a very effective distributed pump and also suppresses
electron cloud formation due to its low secondary electron yield.

Very fast single bunch transverse instabilities that develop near transition, where
the chromaticity needs to cross zero, originally limited bunch intensity and is still
responsible for occasional emittance growth, especially towards the end of bunch
trains. The instability can be stabilized using octupoles [73] and the instability
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threshold can be increased by lowering the peak current during transition crossing.
This instability has a growth rate faster than the synchrotron period and is similar
to a beam break-up instability. The instability is also enhanced by the presence of
electron clouds [74].

Deuteron-Gold Operation
Colliding 100 GeV/nucleon deuteron beam with 100 GeV/nucleon gold beam will
not produce the required temperature to create a new state of matter and therefore
serves as an important comparison measurement to the gold-gold collisions. The
rigidity of the two beams is different by about 20%, which results in different
deflection angles in the beam-combining dipoles on either side of the interaction
region. This requires a non-zero angle at the collision point, which slightly reduces
the available aperture.

The injection energy into RHIC was also the same for both beams requiring
the injector to produce beams with different rigidity. With same energy beams
throughout the acceleration cycle in RHIC the beams can remain cogged. Without
this the effect of the time-modulated long-range beam-beam interaction in the
IRs would lead to rapid beam loss. The typical bunch intensity of the deuteron
beam was about 1 × 1011 with a transverse rms emittances of about 2 μm and a
total longitudinal emittance of 0.3 eVs/nucleon. The gold beam parameters were
similar to the gold-gold operation described above. Recently the ring with the
gold beam was operated with increased transverse focusing to reduce the effect of
intra-beam scattering on the transverse emittance. As a beneficial side effect the
two beams crossed transition at different times, which reduced the development
of the fast transverse instability. A peak luminosity of 27 × 1028 cm−2 s−1

(100 × 1030 cm−2 s−1 nucleon-pair luminosity) and store-averaged luminosity of
14 × 1028 cm−2 s−1 was reached at the IRs with a 0.85 m betastar.

Polarized Proton Operation
Figure 10.6 shows the layout of the RHIC accelerator complex highlighting the
components required for polarized beam acceleration. The ‘Optically Pumped
Polarized Ion Source’ [75] is producing about 1012 polarized protons per pulse. A
single source pulse is captured into a single bunch, which is sufficient beam intensity
to reach in RHIC the nominal bunch intensity of 2 × 1011 polarized protons.

In the AGS two partial Siberian snakes are installed, an iron-based helical dipole
that rotates the spin around the longitudinal direction by 11◦ and a superconducting
helical dipole that can reach a 3 T field and a spin rotation of up to 45◦. A view down
the magnet gap is shown in Fig. 10.7. With the two partial snakes placed with one
third of the AGS ring between them all vertical spin resonances are avoided up to
the required RHIC transfer energy of 23.8 GeV as long as the vertical betatron tune
is placed at 8.98, very close to an integer [76]. With an 80% polarization from the
source 65% polarization was reached at AGS extraction. The remaining polarization
loss in the AGS comes from weak spin resonances driven by the horizontal motion
of the beam [77]. It is planned to overcome them by quickly shifting the betatron
tune during resonance crossing.
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Fig. 10.6 The RHIC accelerator complex with the elements required for the acceleration and
collision of polarized protons highlighted

Fig. 10.7 View down the magnet gap of the warm, iron-based helical partial Siberian snake of the
AGS

The full Siberian snakes [78], two for each ring, and the spin rotators, four
for each collider experiment, in RHIC each consist of four 2.4 m long, 4 T
superconducting helical dipole magnet modules each having a full 360◦ helical
twist. Figure 10.8 shows the orbit and spin trajectory through a RHIC snake. The two
Siberian snakes are installed in the location of the missing dipole of the dispersion
suppression section and the orbit angle is exactly 180◦ in between the two snakes.

The spin rotation axis of the two snakes is pointing 45◦ in and out, respectively,
relative to the direction of the beam resulting in the required 90◦ angle between the
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Fig. 10.8 Orbit and spin tracking through the four helical magnets of a Siberian Snake. The spin
tracking shows the reversal of the vertical polarization. The spin rotation axis is in the horizontal
plane and is pointing 45◦ away from the beam direction

spin rotation axes. This configuration yields a spin tune Qs = 0.5 and a vertical
stable spin direction around the ring. Here, spin tune is defined as the number
of spin precessions in one orbital revolution. Since the betatron tunes in circular
accelerators are kept away from half integer to keep the beam stable, both intrinsic
and imperfection depolarizing spin resonances at Gγ = kP ± Qy and Gγ = k are
avoided [79]. Here, G is the anomalous g factor, γ is the Lorentz factor, k is an
integer, P is the super-periodicity of the accelerator, and Qy is the vertical betatron
tune.

The accurate measurement of the beam polarization is required for set-up and
operation of the polarized proton collider. Very small angle elastic scattering in the
Coulomb-Nuclear interference region offers the possibility for an analyzing reaction
with a high figure-of-merit, which is not expected to be strongly energy dependent
[80]. For polarized beam commissioning in RHIC an ultra-thin carbon ribbon is
used as an internal target, and the recoil carbon nuclei are detected to measure both
vertical and radial polarization components. The detection of the recoil carbon with
silicon detectors using both energy and time-of-flight information shows excellent
particle identification. It was demonstrated that this polarimeter can be used to
monitor polarization of the high energy proton beams in an almost non-destructive
manner and that the carbon fiber target could be scanned through the circulating
beam to measure beam and polarization profiles. A polarized atomic hydrogen jet
was also installed as an internal target for small angle proton-proton scattering
which allows the absolute calibration of the beam polarization to better than 5%.

Figure 10.9 shows circulating beam current, luminosity and measured circulating
beam polarization of a typical store with a beam energy of 100 GeV. The maximum
peak luminosity achieved with 100 GeV proton beams is about 50× 1030 cm−2 s−1

and store beam polarization of about 55% calibrated at 100 GeV with the absolute
polarimeter mentioned above. To preserve beam polarization in RHIC during
acceleration and storage the vertical betatron tune has to be controlled to better than
0.005 and the orbit has to be corrected to better than 1 mm rms to avoid depolarizing
“snake” resonances.

During acceleration from 100 GeV to the maximum RHIC energy of 250 GeV,
several very strong depolarizing spin resonances need to be crossed [81]. In
a first running period an average store polarization of 34% was measured at
250 GeV again calibrated with the absolute polarimeter. The peak luminosity
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Fig. 10.9 Circulating beam in the blue and yellow ring, luminosity at STAR (red), as well as the
measured circulating beam polarization in the blue and yellow RHIC ring (blue (dark) and yellow
(light) lines and symbols, respectively) for a typical store with 100 GeV beam energy

reached was about 85 × 1030 cm−2 s−1 and the average store luminosity was about
55 × 1030 cm−2 s−1. The goal for operation of RHIC with polarized 250 GeV
proton beams is a peak luminosity of 200× 1030 cm−2 s−1 with a beam polarization
of 70%.

Head-on beam-beam effects are the main limitation for increasing the luminosity
in proton-proton operation. The maximum beam-beam parameter reached was
0.0065 per IP with 100 GeV beams when operating with beams in collision at two
detector IPs. This value is somewhat smaller than what was reached at the Tevatron
proton-antiproton collider probably due to the smaller momentum aperture available
at RHIC as a result of the dipole first IR design. Additional sextupole circuits
are available to correct non-linear chromaticity and the beta-function momentum
dependence. In the future it is planned to mitigate the beam-beam effects with
the installation of two electron lenses in RHIC. Space is available to partially
compensate the beam-beam effect with an opposite charge electron beam separated
from the proton-proton collisions by the correct phase advance. With the electron
lenses and also a more intense polarized proton source it is expected that the proton-
proton luminosity could be increased by about a factor of two.

Recent Progress
The performance of RHIC has been continuously improved with store-averaged
luminosity reaching 87 × 1026 cm−2 s−1, exceeding the design luminosity by more
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than a factor of 40, and polarized proton operation at 510 GeV center-of-mass
energy with peak luminosity of 250 × 1030 cm−2 s−1 with store-averaged beam
polarization of up to 60%. Major upgrades to RHIC included electron lenses to
compensate for head-on beam-beam interactions [82] and a superconducting storage
RF system. In preparation for operation at very low center-of-mass energies with
beam energies below the RHIC injection energy bunched beam electron cooling of
both RHIC ion beams is being installed [83].

10.3 Electron Accelerators and Electron–Positron Colliders

J. Seeman

10.3.1 Cyclotrons

Cyclotrons are one of the first accelerators invented and use a fixed magnetic field
and a radiofrequency (RF) cavity to accelerate electrons in ever increasing orbits
[84]. The electron beam is injected into the center of a circular magnetic field region
between magnet poles and then made to circulate. These electrons are accelerated
twice on each turn and are extracted at high energy near the outer edge of the
accelerator. The cyclotron can produce continuous beams leading to high power
applications. The first cyclotron was built at Berkeley in 1931 with a diameter
of 11 cm. Many more cyclotrons were to follow over the years. The TRIUMF
cyclotron in use now is located in Vancouver, Canada, and has a diameter of 18 m
and has a 4000 ton magnet. The beam energy is limited by the field strength and the
diameter of the magnetic pole. Cyclotrons are mainly used to produce high beam
power for science, for materials analysis, and industrial processing applications.
Two cyclotrons are shown in Fig. 10.10.

10.3.2 Synchrotrons

A synchrotron is a fixed circumference accelerator that increases the electron beam
energy using RF accelerating cavities but keeps the radius constant by increasing the
magnetic fields. The field used to bend the beam in a circle is ramped in proportion
to the beam energy [85]. The beam is injected at low energy and magnetic fields,
accelerated, and then extracted at high energy and magnetic fields. The highest
beam energy is limited by the strength of the magnetic field and the diameter of the
accelerator which can be over 1 km and is usually limited by the site or its building.
Synchrotrons are pulsed machines due to the cyclic ramping of the magnetic fields.
The RF system accelerates the beam during the ramp and keeps the beam bunched.
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Fig. 10.10 On the left is the first electron cyclotron constructed at the Berkeley in 1931 (courtesy
LBNL Berkeley, CA). The right photograph is a modern cyclotron at PSI (courtesy PSI Lausanne,
Switzerland)

Fig. 10.11 The left photograph is the 12 GeV electron synchrotron at Cornell (courtesy Wilson
Laboratory Ithaca, NY) used as an injector into the CESR storage ring collider, also shown. The
right photograph is the Advanced Light Source injector synchrotron (courtesy LBNL Berkeley,
CA)

The magnets are often divided into separated units to allow simplified construction
including dipoles for bending, quadrupoles for beam focusing, sextupoles for
chromatic corrections, and correction dipoles for trajectory tuning. The quadrupoles
often form an alternating focus and defocusing magnetic lattice around the ring
to produce “strong focusing” which reduces the beam’s excursions. As a result,
the cross sections of the magnet gaps can be made significantly smaller and less
expensive. The radiofrequency RF system can have a large range of frequencies and
cavity designs. A vacuum system in the milli-Torr to nano-Torr level is also needed.
Synchrotrons are often used as injectors for higher energy accelerators and storage
rings. In Fig. 10.11 are shown the electron synchrotrons at Cornell (12 GeV, ~756 m)
and the injector at the Berkeley Advanced Light Source.
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10.3.3 Electron Positron Circular Colliders

In the late 1950s the accelerator community realized that colliding beams head-on
would increase the center of mass energy significantly over fixed target collisions
and could significantly expand the reach for new particles and physics. The goal
was to design an accelerator that could provide enough centre of mass energy to
make new physics, high enough beam currents and small enough collision spot sizes
to provide a sufficient data rate, and to provide a volume for the particle physics
detector surrounding the collision point with backgrounds sufficiently low to allow
clean data collection. A world wide effort was initiated to design these accelerators
and has continued to today [86–88]. At least 25 electron-electron or electron-
positron colliders have been built and operated for particle physics over the past
50 years with ever increasing beam currents, luminosity, energy, and sophistication.
Several colliders are shown in Fig. 10.12. In Table 10.11 are listed in chronological
order these 24 colliders along with several of their technical parameters. Following
the table are descriptions of each of the colliders discussing several of their

Fig. 10.12 The ADA collider on the top left (courtesy INFN Frascati, Italy). Top right is the PEP-
II B-Factory collider (courtesy SLAC Menlo Park, CA). The LEP collider is shown on the bottom
left (courtesy CERN Geneva, Switzerland). SuperKEKB is shown on the bottom right (courtesy
KEK Tsukuba, Japan)
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unique features and results. The intent is to illustrate the advancement of collider
technology over the years. Several of the technical advances are high power
RF systems, superconducting RF systems, high field magnets, superconducting
magnets, high field permanent magnets, ultra-high vacuum systems, low emittance
beam lattices, complex interaction region designs, and sophisticated diagnostics and
controls. Many of the colliders in later life became synchrotron radiation sources
and several serve in this capacity today.

10.3.3.1 ADA

ADA at Frascati was a pioneering electron-positron collider [89]. This collider
was used to study stored beam parameters, injection, beam lifetime, and collisions.
Injection of electrons and positrons was made by converting 1 GeV gamma rays
in a small target inside the ring. The mean lifetime was consistent with gas
bremsstrahlung. With the electrons stored, the whole magnet was rotated about a
horizontal axis to inject positrons without losing electrons. A pulsed kicker was
used to reduce the betatron oscillations of the injected particles. Luminosity was
measured. The effects of Touschek scattering was discovered and studied.

10.3.3.2 VEP-1

VEP-1 at BINP was an early electron-electron collider used to study elastic scatter-
ing and double bremsstrahlung experiments [90]. This accelerator demonstrated the
possibility to carry out colliding beam experiments for particle physics.

10.3.3.3 CBX

The Princeton-Stanford Colliding Beam Experiment CBX on the Stanford campus
was an electron-electron collider used to study elastic scattering and double
bremsstrahlung experiments [91]. G. O’Neill on this team proposed that radiation
damping for a stored electron beam could help with injection and emittance
reduction. The beam–beam tune shift limit was seen in this machine on the level
of 0.02–0.05. CBX saw indications of the single beam resistive wall instability.
Electron currents up to 1 A were stored. This accelerator also demonstrated the
possibility to carry out colliding beam experiments for particle physics.

10.3.3.4 VEPP-2

VEPP-2 at BINP was one of the first electron-positron collider in the world [92, 93].
The rho and phi meson parameters were measured using annihilation into two pions
followed later by omega and phi meson decay parameters in the vector meson region
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and the first observation of two-photon pair production. This collider was quickly
rebuilt as VEPP-2M.

10.3.3.5 ACO

ACO at Orsay was an early electron–positron collider used to demonstrate collider
principles [94]. This accelerator had six dipoles with quadrupoles in between. The
ring was later used as a synchrotron light source demonstrating ring based FEL
science. This accelerator gave way to the DCI collider a few years later.

10.3.3.6 ADONE

ADONE at Frascati was a one ring collider with a 50 MHz RF system [95].
ADONE had longitudinal phase feedback to damp beam instability modes, a 4 kG
detector solenoidal field (MEA), magnet shunts to adjust the beta functions in
the ring, and adjustable damping partition numbers generated by an RF frequency
change. Injection was from a linac with an energy ramp after the fill. The measured
luminosity increased a little over the fourth power of the energy. ADONE later
confirmed the existence of the J/Psi.

10.3.3.7 CEA

The CEA Cambridge Electron Colliding Beam Facility used a linac for injection
at 120 MeV (e+) and 240 MeV (e−) and then ramped both beams in the ring to
full energy [96]. The accelerator technology advancements for the CEA are the first
demonstration of a low beta insertion at the IP, single-turn pulsed orbit switching
into an interaction point (IP) magnetic bypass, switching from energy cycling to dc
operation at full energy and the addition of two damping magnets to redistribute
the radial damping so that both betatron and synchrotron oscillations were damped.
In particle physics the CEA measured that the R cross section ratio rose at higher
center of mass energy, hinting at many discoveries to come later at other colliders.

10.3.3.8 SPEAR

SPEAR at SLAC was designed as a two ring collider but due to funding only one
ring was built. Injection was at full energy from the SLAC 2-mile linac with a
positron source in linac sector 11 [97]. The ring lattice was extremely flexible in the
choice of operating tunes, dispersion, and beta values the IPs. Transverse horizontal
and vertical instabilities (head-tail) were observed at about 0.5 mA per bunch which
were cured by a positive chromaticity. The luminosity varied as the fourth power of
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the beam energy. SPEAR was very productive in particle physics with the discovery
of the J/Psi and tau. SPEAR has been upgraded to a medium emittance light source.

10.3.3.9 VEPP-2M

VEPP-2M at BINP reached a luminosity 100 times VEPP-2. VEPP-2 served for a
while as the injector [93, 98]. The ring operated with a superconducting wiggler with
an 8 T field that was used to increase the radial emittance, decrease the damping
time, increase the beam-beam tune shift for a higher luminosity, and also for
suppression of intra-beam scattering. The collider could generate and use polarized
beams. The particle physics results are many. Round beams have been studied at
VEPP-2M to try to reduce beam-beam effects and, thus, increase the allowed beam-
beam tune shift. Round beams required the use of solenoidal focusing at the IPs.

10.3.3.10 DORIS

DORIS at DESY started as a two ring collider with beams brought into collision
with vertical dipoles in the IR and had a vertical crossing angle [99]. Injection was
from a linac and a booster synchrotron. The single bunch currents in the collider
were limited by higher parasitic modes in the RF cavities. The luminosity was
limited by effects of the vertical crossing angle. DORIS was subsequently converted
to a single ring collider with head-on collisions and went on to do many years of B
meson physics.

10.3.3.11 DCI

DCI at Orsay was a two ring collider designed for high energy physics studies
of charged and neutral particles and also of two photon physics [100]. The two
rings were mounted one above the other and the beams were brought into collision
with vertical bends near the IR. Both rings could store both e− and e+. The rings
could operate with either two bunch collisions or four bunch collisions (opposite
in both rings). The four bunch collisions aimed at charge cancelation of the beam-
beam effects allowing higher beam-beam tune shifts and thus higher luminosity.
The four beam scheme in reality partially worked but was strongly limited by
incoherent and coherent beam-beam modes. This topic of four beam collisions has
been theoretically studied for many years since. The DCI collider mostly operated
in a one bunch mode in each ring (out of time) generating twice the luminosity. The
peak luminosity scaled as the energy squared.
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10.3.3.12 PETRA

PETRA at DESY had four interaction points and operated up to an energy of 24 GeV
per beam with 2× 2 bunches [101]. Additional seven cell RF cavities were installed
over the years to achieve these energies. Second harmonic cavities (1 GHz) were
installed to reduce the bunch length, cure a vertical single bunch instability and
reduce several synchrotron-betatron resonances. The free space for the detector was
reduced to ±4.45 m using mini-beta insertions allowing a vertical beta of 6 cm. The
injected positrons were predamped in the accumulator storage ring PIA. PETRA
is known for the discovery of the Gluon and for QCD studies. PETRA has been
upgraded to a low emittance light source.

10.3.3.13 CESR

CESR at Cornell operated for B-meson studies for 20 years [102, 103]. The
particle physics results included Vub observations of “penguin” modes, b → sγ
decays, CKM matrix constraining the unitarity triangle, and B mass and lifetime
measurements. Injection was from a 200 MeV linac and a 12 GeV synchrotron. With
electrostatic plates installed, CESR could collide up to 27 bunches separated in the
accelerator arcs by what is now called a “Pretzel orbit” that was used to suppress
parasitic beam-beam collisions and the related tune shifts. Several other colliders
went on to use this technique to increase the number of bunches. It was discovered
at CESR that a horizontal tune just above the half integer (<0.51) increased
significantly the beam-beam limit allowing higher luminosity. Superconducting
single-cell cavities with HOM damping were installed in CESR allowing up to
325 mA beams each of electrons and positron to the stored. The CESR interaction
region used a combination of permanent-magnet and superconducting technologies
for the vertically focusing quadrupoles. A ±2.5 mrad uncompensated IP crossing
angle was ultimately used. Superconducting wigglers were later installed to allow
operation at lower energy at the charm threshold. CESR is presently being used as
a light source and as a test accelerator to study low emittance damping rings and
electron cloud physics.

10.3.3.14 VEPP-4

VEPP-4 at BINP has been colliding beams for a long time including two mod-
ernizations [104]. Over the years, the vertical beta at the IP was reduced to
5 cm, superconducting wigglers were added to increase the luminosity, and a
superconducting RF cavity was installed for bunch length reduction allowing the use
of the lower IP beta. Bunch currents were limited by beam induced wakefields in the
vacuum chambers at the level of 17 mA. Eight pairs of electrostatic separation plates
allow two bunch operation in a Pretzel scheme. A transversely polarized beam could
be injected into VEPP-4 from VEPP-3 for accurate measurements of the masses of
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the upsilon family particles. Other particle physics studied at VEPP-4M included
precise tau and J/Psi mass measurements and two photon physics.

10.3.3.15 PEP

PEP at SLAC operated with three bunches per beam up to 14 GeV delivered to six
interaction points [105]. PEP had aluminum vacuum chambers and aluminum RF
cavities coated with TiN to suppress breakdowns. The head-tail microwave beam
instability was studied extensively at PEP and cures investigated. Collisions with 1,
2, 4, and 6 IPs allowed studies of the beam-beam limits with different damping times
per collision. The particle physics results at PEP included the first measurements of
the tau lepton lifetime, the discovery that the B meson lifetime was unexpectedly
long, analysis of jet structures, and the measurements of lifetimes and properties of
charm and bottom hadrons.

10.3.3.16 Tristan

Tristan at KEK collided 2 × 2 bunches in four interaction points and was designed
to search for high mass resonances [106]. The injector was a 2.5 GeV linac and a
377 m accumulator ring ramped to the 8 GeV injection energy. Tristan was the first
large accelerator to use extensive superconducting RF technology.

10.3.3.17 SLC

The SLAC Linear Collider SLC was the first (and so far only) linear collider
constructed. It was built to precisely measure the properties of the Z0 meson.
It was the first to measure the width of the Z0 indicating only three families
of light quarks and neutrinos. It also provided a precise indirect constraint on
the Higgs mass [107]. The SLC collided single e+ and e− bunches at 120 Hz
with 80% longitudinal e− polarization at the IP coming from a polarized strained
GaAs photo-gun. Other accelerator advances include BNS emittance damping in
the linac, reduced emittances from e− and e+ damping rings, pulse-by-pulse IP
position feedback, and a positron source and target with one-to-one e− in to e+ out
conversion rate. About 1013 positrons were made and collided per second.

10.3.3.18 BEPC

BEPC at IHEP was built to produce tau and charm particle physics [108]. BEPC
was a single ring collider with two collision points reaching 2.5 GeV per beam.
The single bunch current was up to 22 mA and 140 mA in multi-bunch mode.
Injection was from a full energy linac with two transport lines. A mini-beta optics
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at the IP using permanent magnet quadrupoles (0.5 m long) was installed reaching
a vertical beta of 8.5 cm. Higher RF voltage was used to reduce the bunch length to
match. BEPC measured precisely the tau lepton mass to 0.2 MeV out of a mass of
1777 MeV.

10.3.3.19 LEP

LEP at CERN has four collision points and is the largest (27 km) and highest energy
(104.5 GeV per beam) collider built to date [109]. The particle physics completed
at LEP included precise measurements of Z and W bosons, determination of the
number of light neutrinos to be three, and exclusion of the Higgs mass below
114 GeV. To reduce power usage five cell RF cavities with attached spherical copper
storage cavities were used to reach about 80 GeV. To reach 104.5 GeV additional
superconducting RF cavities were added incorporating sputtered Nb on Cu surfaces.
The bending dipoles in LEP needed only a low field so the steel laminations were
spaced by concrete filler material. At the Z resonance the luminosity was limited
by the beam-beam effect. At higher energies the luminosity limit was the available
RF power. A Pretzel orbit scheme (8 and later 12 bunches) was used to increase the
luminosity. At high energy, a low emittance optics was implemented. A beam-beam
tune shift of about 0.083 as reached at 98 GeV.

10.3.3.20 DAFNE

DAFNE at Frascati was built to make precision measurements of K meson physics.
Injection is made with a full energy linac and damping ring [110]. DAFNE operates
with damping wigglers to decrease the emittances and shorten the damping time. A
crab waist scheme was installed in the IP for increased luminosity and for tests of
the SuperB IP concept [111]. Rolled permanent-magnet IP quadrupoles were used
to compensate the detector solenoidal field.

10.3.3.21 PEP-II

PEP-II at SLAC was an asymmetric collider with two rings made to measure the
properties of the b quark sector, the CP violation in the BB system, and to confirm
the CKM matrix [112]. Injection was made at full energy at up to 30 Hz from
the SLAC 3 km linac with the SLC e− and e+ damping rings and either e− or
e+ accelerated on any given linac pulse. Accelerator advances at PEP-II include
head-on asymmetric collisions at one IR, large bore permanent-magnet IP dipole
and quadrupoles, local beta beats to correct chromaticity in the IP, fast IP position
feedback, and bunch-by-bunch transverse and longitudinal feedbacks. The nearest
final focus quadrupoles were inside the detector leaving a free space to the IP of
about 0.5 m on each side. PEP-II holds the world’s record of stored positrons at
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3.2 A and for electrons at 2.1 A. PEP-II was the first collider to allow top-up
injection (only a few Hz were needed) to keep the beam currents and luminosity
constant, all with full continuous data collection by the particle physics detector.

10.3.3.22 KEKB

KEKB at KEK was an asymmetric two ring collider made to measure CP violation
in the BB system and to confirm the CKM matrix [113]. Injection was made at full
energy with the KEK J-shaped linac with either e− or e+ injected at 50 Hz with a
several minute switch time between modes. KEKB had a lattice with a 5π/2 phase
advance to reduce the emittance well below that of a FODO cell. It had a crossing
angle IP, used ARES RF copper cavities with an attached energy storage cell, and
superconducting RF cavities to suppress longitudinal modes. Transverse bunch-by-
bunch feedbacks were used to suppress instabilities. KEKB was the first collider to
use superconducting crab cavities to reduce the effects of crossing angle collisions.
KEKB also had top-up injection of both beams. KEKB holds the world’s record for
highest luminosity at 2.1 × 1034 cm−2 s−1.

10.3.3.23 BEPC-II

BEPC-II at IHEP was built to provide tau and charm particle physics as a factory
and also have synchrotron radiation production [114, 115]. BEPC-II is a double
ring collider with one collision point reaching up to 2.1 GeV per beam with 93
bunches. The RF system has two superconducting single cavities at 500 MHz. The
luminosity was recently limited by longitudinal instability from HOMs but was
cured by a bunch-by-bunch longitudinal feedback system. BEPC-II has delivered
several billion J/Psi events to the BES-III detector.

10.3.3.24 VEPP-2000

VEPP-2000 at BINP is a recent e+e− collider and has a single ring with two
detectors and twofold symmetry [116, 117]. The particle physics being done at
VEPP-2000 is tau and psi measurements and two gamma-physics. Injection comes
from a 900 MeV booster synchrotron with one beam at a time. A round beam
concept was applied in the ring design where a particle’s angular momentum
(M = xz’−zx’ = constant) is conserved yielding an enhancement of the beam’s
dynamic stability even with nonlinear effects of the beam-beam force included.
This scheme requires equal emittances, equal small fractional tunes, equal betas
at the IP, and no betatron coupling in the collider arcs. In practice with collisions
for the detectors, only small adjustments in the tunes are needed to arrive at good
luminosity conditions at the beginning of a fill. Observations show that a beam-beam
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parameter of 0.13 has been achieved and that round beams give a solid luminosity
enhancement.

10.3.3.25 SUPERKEKB

SuperKEKB at KEK is an asymmetric two ring collider upgraded from KEKB and
made to measure CP violation in the BB system to extend the understanding of the
CKM matrix [118]. This collider has a 7.0 GeV High Energy Ring HER for e− and a
4.0 GeV Low Energy Ring LER for e+. The luminosity goal is 8 × 1035 cm−2 s−1.
The design beam currents will be doubled from KEK to 2.6 A on 3.6 A. The
nano-beam scheme for increased luminosity decreases the overlapping length of
colliding particles to about 0.25 mm with a 41.4 mrad half crossing angle [111]. The
interaction region beta functions will be about 30/0.3 mm (h/v) with a bunch length
of about 5.5 mm. The two rings without the interaction region were commissioning
in 2016 where 1.01 A of e− were successfully stored in the HER and 0.87 A of e+
stored in the LER. The installation of the interaction region will be completed in
early 2018 when luminosity commissioning will begin.

10.4 Asymmetric B-Factories

K. Oide

10.4.1 Physics Motivation

The idea of asymmetric B-factories was first introduced by P. Oddone in 1987
[119] to collide e+e− beams with different energies to measure the CP-asymmetry
between the decay of B0 and B0 mesons. The asymmetry of the energies of two
beams boosts the generated particles longitudinally, then the difference of the decay
time can be measured by the difference of the vertices, which was expected to be in
about an order of 100 μm. The center-of-mass energy of the collision is set to the
ϒ(4S) resonance at 10.58 GeV. A very high luminosity around 1034 cm−2s−1 was
required, which was more than 100 times higher than what had been achieved in
colliders by that time.

10.4.2 Double Ring Collider

There may be several ways to realize the asymmetric collision. One way is to build
a linear–linear or a ring–linear collider. Such a linear machine needs a very strong
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focusing β∗y ∼ 100 μm to achieve the luminosity, then the bunch length must be as
short as β∗y to avoid the hour-glass effect. The bunch length itself can be obtained
by bunch compressors, but the associated energy spread degrades the effective
luminosity, since the width of the resonance ϒ(4S) is only 20 MeV (2 × 10−4).
A huge damping ring would be necessary to realize such a short bunch length and a
small energy spread simultaneously. Thus linear collision schemes seemed difficult.

As for the double-ring collision, a question is the sizes of the rings. If one can
collide a large high energy ring (HER), for instance at 25 GeV, with a small low
energy ring (LER) at 1.2 GeV, the total cost will be saved, assuming an existing
tunnel for such a high energy ring. It was pointed out [120] that the collision of
rings with different circumferences has somewhat fundamental difficulty: if two
rings have the ratio of circumferences m : n(m > n), the periodicity of the system
becomes very long, i.e., LCM(m, n)/m times the revolution period of the larger ring.
Then both rings will have dense resonance lines in the tune space which reduces the
operable area, especially with a certain amount of the beam-beam tune shift. Thus
collision of rings with different circumferences seemed difficult. Therefore only the
double ring collider scheme with equal cicumferences remained.

Two projects of the asymmetric B-factories, PEP–II [121] at SLAC and KEKB
[122] at KEK, were approved and started the construction by 1994. Both projects
utilized the components and facilities of their previous generation colliders, PEP
and TRISTAN, and built the BaBar and Belle detectors, respectively. Both machines
started the collision experiments in 1999 and stopped the operation in April 2008
(PEP–II) and June 2010 (KEKB). Table 10.12 lists the main machine parameters
corresponding to their best records [123, 124]. Both colliders achieved higher per-
formance than their designs, and experimentally verified the Kobayashi–Maskawa
model to bring the 2008 Nobel Prize in Physics.

10.4.3 Luminosity

The luminosity L of an asymmetric ring collider can be expressed by the following
expression:

L = γ±
2ere

(
1 + σ ∗y

σ ∗x

)(
Iξy

β∗y

)

±

(
RL
Ry

)
, (10.1)

where γ , e, re, σ ∗x,y , I, β∗x,y are the Lorentz factor, electron charge, classical electron
radius, beam sizes at the interaction point (IP), stored beam current in the ring,
and the β-function at the IP, respectively. The suffix ± denotes each beam. The
expression (10.1) is obtained from the beam-beam tune-shift parameter

ξ±x,y = re

2πγ±

N∓β∗±x,y
σ ∗x,y
(
σ ∗x + σ ∗y

)Rx,y (10.2)
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Table 10.12 Progress of machine parameters of the PEP–II and KEKB B-factories

PEP–II KEKB (no crab) KEKB (crab)
8/16/2006 11/15/2006 6/17/2009

Date LER HER LER HER LER HER

Circumference [m] 2200 3016
Beam energy [GeV] 3.1 9.0 3.5 8.0 3.5 8.0
Effective crossing angle [mrad] 0 22 0 (crab)
Beam current [A] 2.90 1.88 1.65 1.33 1.64 1.19
Bunches 1722 1389 1584
Bunch current [mA] 4.02 1.09 1.19 0.96 1.03 0.71
Bunch spacing [m] 1.2 1.8–2.4 1.8
Horizontal emittance εx [nm] 30 50 18 24 18 24
RF frequency [MHz] 476 509
Bunch length σ z [mm] 10 10 8 6 8 6
β∗x [cm] 30 30 59 56 120 120
β∗y [cm] 0.9 1.1 0.65 0.59 0.59 0.59

Horizontal size @ IP [μm] 95 158 103 116 147 170
Vertical size @ IP [μm] 4.7 4.7 1.9 1.9 0.94 0.94
Beam-beam ξ x 0.072 0.064 0.115 0.075 0.125 0.100
Beam-beam ξ y 0.064 0.053 0.104 0.058 0.130 0.090
Luminosity [nb−1s−1] 12.1 17.6 21.1
Integrated luminosity/day [pb−1] 858 1260 1479
Integrated luminosity/7 days [fb−1] 5.41 7.82 8.43
Integrated luminosity/30 days [fb−1] 19.8 30.2 23.0
Total integrated luminosity [fb−1] 557 1040

The left, center, right correspond to the highest performance of PEP–II, KEKB (no crab) and
KEKB (crab), respectively. The integrated luminosities are the delivered numbers for PEP–II, and
recorded for KEKB. 1 nb−1 = 1033 cm−2s−1

and the definition of luminosity

L = N+N−f
4πσ ∗xσ ∗y

RL (10.3)

where N and f are the number of particles per bunch and the collision frequency
(I = Nef ), respectively, and we have assumed the beam sizes are common in two
beams. The factors RL , x, y are the geometric reduction factors due to the hour-glass
effect and the crossing angle.

While a round-beam scheme may have a merit of a factor of 2 on the luminosity
according to Eq. (10.1), a flat beam scheme has been chosen in most e+e− colliders,
as the round-beam focusing in both planes is more difficult for an extremely small
β∗ . For a flat beam, σ ∗x � σ ∗y , the luminosity is written as

L ≈ 1

2ere

(
γ Iξy

β∗y

)

±

(
RL
Ry

)
. (10.4)
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Then if there is no reason to differentiate ξ y and β∗y in the two rings,

γ+I+ = γ−I− (10.5)

is resulted. As the ratio of beam energies gets larger, the boost at the collision
becomes larger, but the low energy ring must store higher beam current. Thus
the energy ratio was a compromise between the physics merit and the accelerator
difficulty. PEP–II chose 3.1 GeV and 9 GeV for positrons and electrons, while
KEKB chose 3.5 GeV and 8 GeV. A larger ratio was more favored at PEP–II as
it needs a magnetic separation of two beams at the IP as described later. The flavor
of beams, the LER for positrons, was uniquely chosen at KEKB, where the positron
acceleration for the HER was very difficult.

The actual operation of these machines, the condition (10.5) was not kept strictly,
as shown in Table 10.12. One reason was that the natural size of each beam was not
equal, for instance, the LER positron beam was relatively easy to be blown up due
to the electron clouds at high current. Then there was a certain limit on the positron
beam current and the HER current was increased beyond Eq. (10.5). This tendency
was stronger in KEKB than PEP–II, as the former had stronger electron cloud effects
than the latter as described later.

10.4.4 Crossing Angle

One of the design choices is the beam separation scheme near the IP. A crossing
angle is a natural and easy solution of the separation, but the question was the
experience at DORIS [125]. KEKB applied a horizontal crossing angle 2θ x = 22
mrad, relying on simulation of the beam-beam effect. The corresponding Piwinski
angle (≡ θxσz/σ

∗
x ) was 0.86. Their conclusion at the design stage was that the effect

of the crossing angle on the beam-beam interaction would not be harmful up to their
design beam-beam parameter 0.05, if the operating betatron tunes were carefully
chosen. Their choice was right and verified the vertical beam-beam parameter of
0.06 in their luminosity marching. Crossing angles were also applied at CESR and
DA�NE colliders successfully in parallel with the KEKB operation. KEKB even
prepared a crab-crossing scheme [126, 127] for the backup of the crossing angle.
The ratio of the geometric reduction factors RL/Ry in Eq. (10.1) does not drastically
decrease for a large crossing angle as shown in [122].

PEP–II was much more nervous on the crossing angle, then they installed a
magnetic separation scheme near the IP with permanent dipole magnets [128]. This
scheme also worked, but their design around the IP had to be more complicated
than with a crossing angle, and gave some limitations on the performance such as
the detector background due to radiative Bhabha events [129], which was much
less significant in Belle. As the space at the IP was limited, they could not install a
compensation system for the detector solenoid field, which might have degraded the



624 K. Hübner et al.

beam-optical performance. Another issue of the magnetic separation was the non-
negligible effect due to the parasitic collision [130], which was never observed at
KEKB.

10.4.5 Storing High Current

As described above, the luminosity is proportional to the stored current. To achieve
the luminosity as high as 1034cm−2s−1, a stored current of near 3 A was required,
which was one order higher than any high energy electron storage rings at that time.
The first fundamental difficulty is to ensure the longitudinal stability of the beam.

The beam loading of the accelerating cavity is huge: a normal conducting cavity
at the RF frequency fRF = 500 MHz for the B-factories has a shunt impedance
Rs ≈ 1.7 M�. If the cavity is tuned at the harmonics, the 3 A beam generates 5.1 MV
decelerating voltage at the cavity, which is even higher than the accelerating voltage
Vc of the cavity, typically 0.5 MV. Thus the detuning of the cavity is necessary and
the optimal amount of the detuning frequency is given by

Δf = −I sin φs
2Vc

Rs

Q
frf = −Pb tanφs

4πU
, (10.6)

where φs, Q, Pb, U are the synchronous phase, the Q-value, the beam power,
and the stored energy of the cavity, respectively. If the magnitude of the detuning
frequency becomes higher than or comparable to the revolution frequency, the cavity
impedance hits the side bands of synchrotron motion to excite strong longitudinal
coupled-bunch instabilities.

This issue of the beam-loading instability was solved in two B-factories in
different ways. KEKB developed two types cavities with large stored energy, as
Eq. (10.6) is inversely proportional to the stored energy. Both ARES [131] and
superconducting [132] cavities could store electromagnetic energy 10 times larger
than a conventional cavity. Then together with the HOM damping mechanism of
them, the RF system of KEKB did not induce any beam instability up to the design
current without a help of bunch-by-much feedback system. On the other hand, PEP–
II took a different strategy to develop a sophisticated feedback system to reduce the
effective impedance seen by the beam [133]. PEP–II applied a direct RF feedback
system with newly developed sideband klystrons combing a longitudinal bunch-
by-bunch feedback [134]. Both KEKB and PEP–II systems basically worked as
expected nearly up to or even beyond their design currents.

Storing high currents caused a number of issues on the beam pipes, bellows,
collimators, and even on the detectors. Direct hit of the beam of an ampere caused by
beam instability or anything else easily melted down such components. The wakes
at transitions resulted in discharge and heating to drive the catastrophe. A number
of models have been developed and tried for the collimators, bellows, and HOM
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absorbers. Also machine protection system, loss monitors, and beam abort system
had to evolve as the stored current increased.

10.4.6 Electron Cloud

Electron cloud was the one of the toughest issues for the asymmetric B-factories,
specifically on the accumulation of the positron beam. The electron cloud had been
known as a possible cause of beam instability in positive-charged beams since a
long time ago such as the ISR era. Its observation [135] had been made at the
Photon Factory (PF) of KEK and a theoretical explanation [136] had been done
well before the start of the B-factories. What was new at the B-factories was the
single-bunch instability induced by electron clouds [137]. The previous instability
observed at the PF had been interpreted as a coupled-bunch instability, which was
supposed to be cured by a bunch-by-bunch feedback. Thus at least KEKB was not
well prepared for the single-bunch phenomena which have much higher frequency
than the available feedback. Actually possibility of such a single-bunch effect had
been suggested [138] before the construction of the B-factories, it had not been,
however, well recognized. The single-bunch effect was experimentally confirmed at
KEKB [139] as well as at CesrTA.

The electron cloud blowed up the vertical beam size drastically, and the threshold
beam current was 0.4 A with four-bucket (2.4 m) bunch spacing at KEKB. The
electron cloud appeared more severely in KEKB than in PEP–II, as the former had
a round Cu beam pipe while the latter an Al antechamber with TiN coating. Thus
the initial startup of the luminosity at KEKB was slower than PEP–II.

By applying weak magnetic field at the beam pipe, the electron cloud was
removed at least in the free space. Either permanent magnets or solenoids were
installed at KEKB and PEP–II to cover almost all straight sections and inside of
some magnets such as quadrupoles and weak dipoles by 2004. The mitigation
worked as expected and the blowup became unnoticeable at least for three-
bucket spacing in the case of KEKB [140]. Beside the magnetic field, various
mitigation techniques have been developed and tested at the B-factories, against the
formation of the electron cloud, including antechambers [141], TiN or Diamond-like
carbon coatings, grooved surface pipes [142], and clearing electrodes [143]. Those
techniques will be effective for future super B-factories and damping rings of linear
colliders. Also several measurements of the cloud density have been carried out.

Although the density of the electron cloud became below the instability threshold
by magnetic field, the betatron tune shift due to the cloud still remained in the LER
at KEKB to make the tune variation along the bunch train. A mitigation for the tune
variation was making use of pulsed quadrupoles as done at KEKB [144].
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10.4.7 Beam Optics

The luminosity of a ring collider is inversely proportional to the vertical β-function
at the IP as shown in Eq. (10.4). The B-factories have used the smallest β∗y as a
ring collider so far. Generally speaking, a small β∗y means higher chromaticity and
higher nonlinearity arisen from sextupoles for the chromaticity correction. Thus the
design of the ring lattice needs special care to ensure the dynamic aperture. One
technique applied for KEKB was non-interleaved sextupole pairs separated by a
−I transformation that cancel the geometric nonlinearity of the sextupoles up to
the second order [145]. Although the idea was very old but the reason why the
application to a real ring had to wait until the B-factories was probably the necessary
computer power to optimize the sextupole setting, as it requires a large number of
sextupole families to extend the momentum acceptance. For instance, KEKB had 54
families of sextupole pairs. The relative betatron phase advance between the pairs
became adequate by using the 2.5π cell structure in the case of KEKB arc section
[146].

Another technique to enlarge the dynamic aperture was to place a special
chromaticity correction section near the IP. The beam optics became somewhat
similar to that for linear colliders in this case. KEKB designed such a section for
the vertical correction, while PEP–II horizontal for their LERs.

These schemes worked as expected for the B-factories, and expected to work
for future super B-factories and light sources. Once the chromaticity correction is
solved, the next source of the nonlinearity is the fringe field of the final quadrupole
and the geometric nonlinearity at the IP [147], which may be mitigated by additional
octupoles placed at the final quadrupoles.

The x-y coupling and the residual vertical dispersion all over the ring were
one of the keys to achieve a high luminosity by reducing the vertical emittance.
Various techniques have been applied for such optics measurements and corrections
[148–150]. A counter solenoid to the detector solenoid was also effective to reduce
the coupling source in the case of KEKB. This was also important in the case of
crab crossing where the luminosity performance was sensitive to the chromatic x-y
coupling as described later.

10.4.8 Beam Diagnostics and Control

A number of beam diagnostic methods were developed and applied for the B-
factories:

• Beam position monitors (BPMs) with a resolution better than 1 μm in the average
mode. In some cases turn-by-turn or bunch-by-bunch electronics were equipped
[151]. In the case of KEKB, the gain imbalance of the electrodes through the
electronics was calibrated using a beam-mapping technique [152]. The design
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of the electrodes and the electronics were carefully done for the high-current
operation.

• Beam-based alignment of BPMs was regularly carried out. Displacements
of BPMs near sextupoles, caused by heating from the stored current, were
monitored at KEKB [153].

• Bunch-by-bunch feedback systems were installed both in PEP–II and KEKB.
Only PEP–II had the longitudinal system to suppress the beam-loading instability
as described above. A collaboration including the DA�NE team has been
developed on the system for the present and future applications [154].

• Betatron tune monitor: controlling the betatron tune was extremely important to
maximize the luminosity. The basic idea at KEKB was to monitor the tunes of
pilot bunches in each ring that did not collide to the other beam. Tune feedback
with these bunches was also applied to control them within an accuracy of
�ν ≈ 10−4.

• Synchrotron radiation beam profile monitors. For the visible light, an interferom-
eter was used especially for the vertical size measurement [155]. Special gated
cameras were also used to observe the beam size of individual bunch, esp. to
diagnose the electron-cloud effects [156].

• Beam loss monitors and beam abort system: both machines were very nervous
to protect the machine against accidental beam losses caused by instabilities,
RF trips, wrong injection, or whatever. The most sensitive and expensive loss
monitor was the BaBar and Belle detectors, which generated beam abort signals
if necessary. A number of beam loss monitors such as ionization chambers and
PiN diodes were distributed around the ring, esp. near the collimators. The beam
abort system consists of an abort kicker and a beam damp. The abort kicker had
a rise time of 0.5 μs in the case of KEKB.

• The injectors had developed their own diagnostics including BPMs, wire scan-
ners, streak cameras, etc.

• All accelerator components were controlled by computer control systems either
by EPICS at KEKB [157] or a legacy system at PEP–II. An online modeling such
as SAD for KEKB [149] was also important to achieve the luminosity.

10.4.9 Collision Tuning

Starting up the colliders after a period of long shut down, the following procedures
were necessary to recover the luminosity:

• Global coupling/dispersion/β-function correction all over the ring. The global
orbit was then locked to the “golden” orbit that was resulted by the optics
correction.

• Locking the betatron tunes of the pilot bunches.
• The beam steering at the IP looking at the beam-beam deflection.
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• In the case of the crossing angle at KEKB, the horizontal offset at the IP was
controlled by looking at the vertical beam size measured by the interferometer
[158].

• Tuning of the local coupling and dispersion at the IP by making offsets of orbits
at sextupoles near the IP [149].

• Dithering technique was used at PEP–II to maximize the luminosity against the
beam offsets [159].

• Skew sextupoles were introduced at KEKB to correct the local chromatic x-y
coupling terms at the IP [124].

The horizontal tunes were chosen as close to a half integer as possible, to
maximize the luminosity using the dynamic-β effect and expecting the reduction
of the degree-of-freedom of the beam-beam interaction [160]. In the case of KEKB,
the LER and the HER was operated at νx ≈ 0.506 and νx ≈ 0.510, respectively. Both
the optics correction and the tune feedback were necessary to maintain a collision
near the stop band.

10.4.10 Injector

The electron-positron injector must provide enough number of charges to the
collider rings. PEP–II could fully utilized the injection system for SLC, which
had more than enough performance for PEP–II, in the intensity, repetition, and the
emittance, especially with the damping rings for both beams. On the other hand, the
injector for KEKB was upgraded from that for TRISTAN, having only the minimum
performance to satisfy the requirements of the injection to KEKB as shown
in Table 10.13. In early days, it was thought that the performances of the two
machines would be eventually limited by the performance of each injector. Actually
such a situation did not happen. The key was the top-up operation applied for the
both machines since 2004. Then the necessary strength of the injected beam became
much smaller than the maximum performance even at KEKB [161]. Both machines
were the first to have utilized the top-up for high-energy colliders, even earlier than
the most of light sources. The 2-bunch per pulse acceleration and installing a C-
band section in the linac [162] also contributed to make the gap between PEP–II

Table 10.13 Comparison of positron injection

KEKB PEP–II
1999 2010

Production energy [GeV] 4 30
Particles per pulse [1010] 0.4 1.0 2
Repetition rate [Hz] 50 ≤120
Invariant emittances H/V [μm] ~3000/3000 3/0.3
e+/e− switching time [s] 300 0.02 0 (simultaneous)
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and KEKB smaller. KEKB has solved the conflict with the injection to the light
sources by introducing a pulse-to-pulse switching of the linac.

10.4.11 Crab Crossing

KEKB operated with crab crossing from 2007 through 2010 using superconducting
crab cavities [163] installed one cavity per ring [164]. KEKB had already achieved
a luminosity 1.76 × 1034 cm−2s−1 by then with the crossing angle, so the intension
of the crab crossing was not simply the backup. Simulations of beam-beam effect
indicated that a head-on or crab collision could increase the beam-beam parameter
ξ y even higher than 0.15 combining with a horizontal betatron tune close to a half
integer [165]. Thus the hope was to experimentally verify the possibility of such a
high beam-beam parameter, considering super B-factories.

The crab cavities were successfully installed and operated for more than 3 years.
The luminosity was actually increased as shown in Table 10.12. The resulted beam-
beam parameter was 0.09, which was indeed higher than the value with crossing
angle, but much less than the simulation (0.15). It was not easy to single out the
cause, but there were indications that remaining higher-order terms of the beam
optics at the IP degraded the luminosity and ξ y. One example was the chromatic
x-y coupling terms at the IP [166]. By installing skew sextupoles in the arc as the
tuning knobs, the luminosity was improved by up to 10% [124]. Then a speculation
was that any higher order terms at the IP could degrade the performance. It was not
easy to estimate how many terms were relevant and how to correct them, as there
were almost no direct beam diagnostics at the IP except the luminosity. What was
verified at KEKB was that the crab crossing itself should work for any colliders up
to ξ x, y � 0.1, including the Large Hadron Collider (LHC).

10.4.12 SuperKEKB

Although the crab crossing scheme tested at KEKB achieved then-highest luminos-
ity, it also showed the difficulty to realize the very high beam-beam parameter�0.1.
Thus the direction toward a higher luminosity asymmetric collider must change. An
alternative idea, Nano-beam scheme, developed by P. Raimondi [167] saved the next
generation of KEKB. The idea by Raimondi consists of:

• A large crossing angle, in terms of Piwinski angle θxσz/σ ∗x � 1, where θ x is the
half horizontal crossing angle.

• A very short β∗y ∼ σ ∗x /θx � σz.
• Small horizontal/vertical emittances.
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Fig. 10.13 Beam crossing in
the nano-beam scheme

The formula for the luminosity, Eq. (10.1) is still valid in the nano-beam scheme.
The major gain of the luminosity comes from a very short β∗y . Unlike a head-on
scheme, the bunches intersect one another only within σ ∗x /θx around the IP due to
the large Piwinski angle as shown in Fig. 10.13.

As the length of the intersecting region is σ ∗x /θx � σz, the condition to avoid
an hour-glass effect becomes β∗y � σ ∗x /θx � σz. In the case of SuperKEKB, it
is possible to choose β∗y ∼ 0.3 mm, which gives ×20 gain compared to KEKB.
Then the bunch length σ z is not necessary to be very short, thus it is possible to
avoid unfavorable effects such as the coherent synchrotron radiation. This scheme
does not require a very high ξy, so ξy ∼ 0.09, which has been achieved at KEKB,
is assumed at SuperKEKB. The crossing angle itself can be larger than the previous
machines, since it does not need crab crossing any more. As it does not require
an operation very close to a half-integer tune, and also the horizontal beam-beam
parameter is very small, the dynamic emittance effect is not an issue. The situation
of the nano-beam crossing is similar to a collision with many micro-bunches which
have a short bunch length σ ∗x /θx � σz.

Actually Raimondi has proposed one more important idea, crabbed waist
scheme, on top of the nano-beam scheme [167]. The crabbed waist aligns the
vertical waist along the center line of the other beam, to reduce the dependence
of the beam-beam effect on the horizontal displacement of a particle. This scheme
should improve ξy by reducing the synchrotron-betatron coupling caused by the
crossing angle. Although the crabbed waist scheme has merits on the collision
itself, its realization needs further study. A simple way to introduce the crabbed
waist is to install a pair of sextupoles in both sides of the IP. The nonlinearities
of these sextupoles can be canceled by −I or I transformation between the pair,
but the unavoidable nonlinearities around the IP interfere the cancellation to reduce
the dynamic aperture drastically in the case of SuperKEKB. Such nonlinearities
include the fringe field of the final quadrupoles, geometric nonlinearities at the IP,
and nonlinear fields in the quadrupoles and solenoids. As these terms increase for
smaller β∗y , the solution may be non-trivial and has not been found at least for
SuperKEKB yet. Thus the crabbed waist scheme is not included in the base line
design at SuperKEKB.

SuperKEKB started the beam operation in early 2016. The commissioning has
been carried out in three phases: no collision (Phase 1, February–June 2016), colli-
sion without central vertex detector of Belle II (Phase 2, March–July 2018) [168],
and collision with full Belle II (Phase 3, March 2019–). The design parameters [169]
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Table 10.14 Parameters of SuperKEKB, design and typical values in phase 2, comparing to
KEKB with crab crossing, where the effective crossing angle is zero

SuperKEKB SuperKEKB KEKB (crab)
Design June 2018 June 17, 2009

Date LER HER LER HER LER HER

Circumference 3016 m
Beam energy 4.0 7.0 4.0 7.0 3.5 8.0 GeV
Crossing angle 83 22/0 (crab) mrad
Beam current 3.8 2.6 0.27 0.225 1.64 1.19 A
Bunches 2500 395 1584
Bunch current 1.5 1.0 0.67 0.55 1.03 0.71 mA
Bunch spacing 1.2 ~7.2 1.8 m
Hor. emittance 3.2 4.6 1.8 4.6 18 24 nm
RF frequency 509 MHz
Bunch length σ z 6 5 4.6 5.3 8 6 mm
β∗x 3.2 2.5 20 10 120 120 cm
β∗y 0.27 0.3 3 3 5.9 5.9 mm

Hor. size @ IP 10 11 19 21 147 170 μm
Ver. size @ IP 0.048 0.048 0.56 0.56 0.94 0.94 μm
Piwinski Angle 24.9 18.9 10.0 10.5 (0.60) (0.39)
σ ∗x /θx 0.24 0.27 0.46 0.51 (13.3) (15.4) mm
Beam-beam ξx 0.0028 0.0012 0.125 0.100
Beam-beam ξy 0.088 0.081 0.030 0.021 0.130 0.090
Luminosity 800 2.3 21.1 /nb/s

1/nb = 1033 cm−2s−1

and a typical performance of Phase 2 operation [170] of SuperKEKB are listed in
Table 10.14.

The commissioning in Phase 2 has achieved several milestones of the project:

• Verified the collision with nano beam scheme with Piwinski angle∼10. Although
the luminosity was still much less than the design or achieved at KEKB, no
fundamental limitations are found. The highest luminosity 56/nb/s was recorded
during Phase 2 [170]. An experimental verification of coherent beam-beam
instability [171] also assures the understanding of the beam-beam effect.

• The upgrade of the injector several new components: RF gun, positron target,
and positron damping ring was basically successful [172].

• The mitigation of e-cloud in the LER has well suppressed the blowup of the
vertical beam size up to 1 A of the stored beam [173].

The key toward the design luminosity is higher stored current with smaller β∗s.
Both the stored currents and β∗s are still far from the design. Table 10.14 shows
that the achieved β∗y is much longer than the length of the interaction area, σ ∗x /θx . It
means that the merit of nano-beam scheme has not been obtained yet. One possible
obstacle for higher current and smaller β∗s is the robustness of superconducting
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final focus quadrupoles [174] against quenches due to beam losses. Quenches of
those magnets have been seen in the Phase 2 commissioning both for the stored and
injected beams.

10.5 Tevatron—HERA—LHC

Karl-Hubert Mess · Peter Schmüser

10.5.1 Three Steps in the Evolution of Superconducting
Accelerator Magnets

The first particle accelerator approaching the TeV energy range was the proton-
antiproton collider Tevatron at the Fermi National Accelerator Laboratory. Much
pioneering work was done at Fermilab, and many of the successful design and
construction principles of the Tevatron dipole and quadrupole magnets have been
adopted at the electron-proton collider HERA and the Large Hadron Collider
LHC (CERN). The superconducting coils used in these accelerators show great
similarities. They are wound with high precision from a multistrand cable containing
many thousand fine niobium-titanium filaments in a copper matrix. The coils have
a helium-transparent insulation and are confined by nonmagnetic clamps (often
called collars). The clamps are assembled from precision-stamped stainless-steel
or aluminum-alloy laminations and serve three purposes: they define the exact coil
geometry, they exert a large prestress on the coils to prevent conductor motion
during excitation of the magnet, and they take up the huge magnetic forces at large
fields. Interesting differences, however, have evolved in the layout of the iron yoke.
The Tevatron magnets are “warm-iron” magnets with a yoke at room temperature
while the HERA and LHC magnets feature a “cold-iron” yoke inside the liquid
helium cryostat.

In the beginning of the HERA project two different design lines were followed.
Our group at DESY constructed and built 6 m long prototype dipoles of the “warm-
iron” type which were basically copies of the Tevatron dipoles. These magnets
were made with tooling suitable for series production and performed very well,
the design field of 5.2 T was exceeded and excellent field quality was achieved. In
parallel, an industrial company (Brown Bovery in Mannheim) designed and built
two “cold-iron” prototype dipoles following a concept developed at Brookhaven
National Laboratory. Here the coil was surrounded with epoxy-fibreglass form
pieces and then directly mounted in an iron yoke which served as the clamping
structure. Also the BBC dipoles showed remarkable performance. They exceeded
the design field by an ample margin, however the field quality became poor for
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fields above 4 T owing to saturation effects in the nearby iron yoke.2 With the
aim in mind of combining the virtues of both design lines, while avoiding the
relative drawbacks, the idea was conceived to take the well-proven aluminum-
collared coil of the first design line and put an iron yoke immediately around the
collars. Our main motivation was magnet safety in case on a quench (breakdown of
superconductivity).

Quench protection is an important task in any large superconducting (sc) magnet
system. Accelerator magnets have slim coils with a small copper-to-superconductor
ratio. They are definitely not cryostable (cryostability means that the copper in the
cable is able to carry the full current). If a HERA dipole quenches it is mandatory
to ramp down the current of 5000–6000 A with a time constant of less than a
second to prevent overheating and possible destruction of the coil. The protection of
a single magnet is straightforward: if a quench is detected the coil is connected
to a dump resistor via a thyristor switch and the current decays exponentially
I(t) = I0 exp (−t/τ ). The stored magnetic energy is dissipated in the dump resistor.

In an accelerator this simple solution is not possible since the magnets in a long
string are connected in series. In HERA this string is a 45◦ arc comprising 52
dipoles and 26 quadrupoles. Current leads from the sc coils to the room-temperature
environment are only installed at the ends of the string but not at individual magnets.
Owing to the large inductivity of the 54-magnet string a long decay time constant
τ ≈ 20 s must be chosen in order to limit the induced voltage against ground
potential to less than 1000 V. The quenched coil would burn up during such a
slow current decay, hence an electric bypass must be provided. Here the great
advantage of a cold iron yoke comes in: it is easy to provide such a bypass by
mounting a superconducting cable, reinforced with a copper bus bar, in a groove at
the outer rim of the yoke. The bypass conductor is connected to the main current
conductor via a “cold” silicon diode inside the liquid helium cryostat.3 The diode
has a threshold voltage of about 1 V at liquid helium temperature, hence the current
flow through the bypass is zero as long as the magnet coil is in the superconducting
state (during particle accceleration the ramp speed must be chosen so low that
the inductive voltage stays well below the 1 V threshold). However, a quenched
coil develops rapidly a resistive voltage exceeding 1 V, and then the main current
switches automatically over to the bypass. The Tevatron possesses an active quench
protection system which is more complicated and shall not be discussed here.

Potentially dangerous are quenches at localized spots in the coil. If the normal
zone does not propagate fast enough along the coil it may happen that the stored
magnetic energy is dissipated in the vicinity of the quench origin leading to
local overheating. To avoid this, so-called “quench-heaters” are installed which are
electrically heated when a quench has been detected. Their task is to spread the
normal zone over the entire coil. Figure 10.14 shows that a warm-iron magnet may

2It has found out later in the LHC and RHIC projects that the detrimental effects of iron saturation
can be alleviated by punching a suitable hole pattern into the iron yoke laminations.
3The cold diode concept was invented and thoroughly investigated at BNL.
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Fig. 10.14 Simulation of temperature rise in a dipole after a quench at a localized spot. Plotted is
the maximum temperature in the coil as a function of coil current. It is assumed that the quench
heaters fail and that the current is ramped down exponentially with a time constant of 17 s. Three
magnets types are considered: the warm-iron HERA prototype dipole, the cold-iron BBC dipole
without a cold diode, and the cold-iron BBC dipole with a cold diode. In the first two cases
the bypass is provided by two curent leads from the superconducting cable in the liquid helium
container to the room-temperature environment, a normal-conducting cable and a thyristor switch
outside the cryostat. Adapted from a DESY Internal Note January 1984 by K.H. Mess and P.
Schmüser

heat up to quite dangerous temperatures if the quench heaters fail, while the cold-
iron magnet equipped with a cold diode and a superconducting bypass remains in a
safe temperature regime.

The HERA-type magnet offers several more advantages. The cryostat can be a
simple steel vessel which is easier to fabricate and less expensive than the very slim
stainless-steel cryostat needed in the warm-iron magnet. The coil must be accurately
centered with respect to the yoke to avoid field distortions and asymmetry forces. In
the HERA design a precise centering is achieved by a tongue-groove combination
in the collar and yoke laminations. In contrast to this, coil centering in a warm iron
yoke requires many adjustable supports which constitute a considerable heat load
on the cryogenic system.

The successful HERA magnet design has had a considerable impact on the
layout of the LHC magnets.4 The elegant twin-aperture magnet can be realized
with this concept. The two counterrotating proton (or heavy ion) beams are guided
and focused by two nearby sc coils of opposite polarity which are mounted in a
common iron yoke. This yoke can be made rather slim since most the magnetic flux

4The evolution of the twin-aperture LHC magnets is described in an article by Lucio Rossi, CERN
Courier October 2011.
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of one coil returns through the aperture of the neigbouring coil and not through the
iron. Another novel feature of the LHC magnets is the cooling by superfluid helium
which extends the achievable field into the 9 T regime. A significant cost reduction
is achieved by the fact that only one cryostat system is needed for both particle
beams. The compactness of the magnets was very important for the installation in
the tunnel, it would have been extremely demanding if not impossible to mount two
separate proton storage rings in the narrow LEP tunnel.

The elegance and cost-effectiveness of LHC becomes obvious in comparison
with the Superconducting Super Collider SSC project which was promoted in the
USA in the 1980s. Here two counterrotating 20 TeV proton beams were planned
to be accelerated and stored in two separate rings equipped with magnets of an
improved Tevatron design. This “conservative” approach turned out far more costly
than the innovative LHC solution. The SSC was cancelled in 1993 for budget
reasons.

10.5.2 HERA Experience and the Design of Future
Lepton-Hadron Colliders

The scientific results from HERA on quantum chromo-dynamics (QCD) are an
essential pillar of our present understanding of the nature of strong interactions.
These insights are of critical importance for the interpretation of the measurements
of particle production processes at the Large Hadron Collider (LHC) at CERN.
There are, however, very interesting phenomena and physics questions that were
raised by the HERA experiments but remain unanswered as of today:

• How does QCD lead to the rich and complex structure we observe in nuclei?
• How are quarks and gluons and their spins distributed in nucleons and nuclei?
• Why do protons and neutrons have spin 1/2?
• How does the increase of gluon density with decreasing gluon fractional

momentum x saturate?
• What is the distribution of partons that seed the new form of matter discovered

at RHIC, the quark-gluon plasma?

The U.S. Nuclear physics community has formulated a physics program that
addresses these questions in a White Paper [175]. This physics program is based
on an Electron Ion Collider (EIC), which can provide collisions between polarized
electrons and ions ranging from polarized proton to Uranium over a wide range
of center of mass energies 29–140 GeV with a high luminosity in the order of
1034 cm−2 s−1. There are two designs for an EIC under development in the U.S.,
one by Thomas Jefferson National Accelerator Facility, called JLEIC [176], and one
by Brookhaven National Laboratory, called eRHIC [177]. Both designs are based on
intersecting storage rings.
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The experience gained at HERA with high luminosity lepton proton collisions,
beam dynamics, various enabling technologies, the electron storage ring spin
dynamics, and the control of collective effects have a tremendous impact on the
design of these machines, in particular, the layout of the interaction regions.

HERA beam dynamics performance is used to benchmark computer codes
needed to develop the EIC designs. HERA operational experience is extremely
important for designing the complex interaction regions with unprecedented detec-
tor acceptance, assessing detector backgrounds induced by the beams and their
mitigation. The design of the magnets which were developed for the HERA
interaction regions have been carried over for the design of other colliders, such
as BEPC-II, KEKB, ILC, LHeC, and eRHIC. Some beam dynamic phenomena
observed in HERA directed the attention of the EIC designers to specific aspects
of electron ion collisions.

The examples in the following sections illustrate the positive impact of the HERA
design and operational experience on other colliders and in particular to the Electron
Ion collider eRHIC.

10.5.2.1 Lepton-Hadron Beam-Beam Interactions

The concept of lepton proton collisions in HERA was to adjust the the strength of
the beam-beam force for each beam such as this beam would collide with a beam of
its own species. A typical beam-beam strength in terms of incoherent beam-beam
tuneshift for e+ − e− collisions was xex,y � 0.03. For Hadron, the strengths of
beam beam interactions was typically below x

p
x,y � 0.01. This succesful concept

was used successfully in other colliders such as KEKB and is also adapted at the
EIC design.

Occasionally, when the HERA beams were brought into collisions. an observa-
tion was made which is a concern for the electron ion collider. Under the influence
of strong beam-beam interaction, the electron beam can develop coherent transverse
oscillations. If this happens, the unstable motion of the electrons affects in turn the
hadron beam via the beam-beam coupling. The hadrons will start to oscillate as
well driven by the beam beam field of the unstable electron beam and the hadron
beam emittance will then filament in phase space and become diluted that way. The
effective beam size grows considerably and practically irreversely in the process
which quickly renders the beam unusable.

This phenomenon was observed only occasionally at HERA and its rare occur-
rence made it impossible to perform systematic studies. Furthermore the impact on
operations was very small and therefore, no resources have been invested to study
the effect in detail.

The experience with lepton proton collisions in HERA, raised a concern that
this effect would occur regularly in the EIC, because of significantly enhanced
beam-beam parameters per collision in the EIC. This triggered realistic beam-beam
interaction simulations for eRHIC. The beam-beam study was performed using the
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so-called strong, strong model, where each beam is described by a large number
of super-particles and the thin lens beam-beam lenses are split into many beam-
beam-lens slices. The individual particle’s trajectories are impacted by the collective
electro-magnetic forces induced by the particles of the opposite beam, respectively.
This consitutes a fully dynamical model of the beam-beam interactions. The result
of this study was that this effect indeed exists and would affect the performance of
the EIC if not avoided by a careful choice of the machine parameters. The threshold
in proton bunch intensity for this catastrophic instability is a factor of two above the
chosen eRHIC design values of proton bunch intensity [177].

10.5.2.2 Beam-Gas Backgrounds of the Colliding Beam Detectors

The experience with beam induced backgrounds at HERA is very important for the
design of the interaction regions and the collision detectors of the EIC or LHeC.

The combination of synchrotron radiation emitted by the electron beam in the
separator- and the focusing fields when entering the interaction region and the
corresponding strong sources of desorbed gases in the vicinity of the collision
detectors caused initially strong hadron-beam-gas induced detector backgounds.

These backgrounds improved slowly by conditioning the surfaces of masks and
absorbers by the presence of electron beam and scattered synchroton photons. Even-
tually a very high dynamical vacuum quality in the order of 1 nbar with full beam
intensity was achieved. This required a installation of a large pumping speed and
good vacuum conductance with integrated NEG pump in the IR quadrupole magnets
and Titanium supplimation pumps. The cold beam pipe of the superconducting IR
magnets (at a temperature of 80 K) acted as a cryopump and helped to improve the
vacuum. But once the surface was saturated, the magnes needed to be warmed up
and the accumulated gas gas molecules on the cold surfaces needed to be removed
from the IR vacuum system using turbo pumps. Each warm-up and cooldown cycle
marked a step in background improvement.

Another important lesson learned from HERA IR operations was that the vacuum
system must be designed such that IR vacuum leaks are unlikely and that venting of
the IR and detector vacuum for maintenance and repair purposes must be avoided
by design.

The analysis of HERA backgrounds [178] shows the importance of extremely
good vacuum quality in the beam vacuum chamber inside the central colliding beam
detector. This makes high vacuum pumping speed and high vacuum conductance
within the detector beam pipe mandatory. Techniques such as in situ bakeout and
NEG coating of the detector beam chamber might be unavoidable to overcome this
difficulty.

This experience is exploited in the design of the interaction regions of the EIC,
in particular at eRHIC. First background simulations indicate that difficult initial
background conditions as experienced in HERA can be avoided taking the lessons
learned into account.
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10.5.2.3 Hadron Beam Collimation

In lepton-hadron collisions with stong beam-beam interaction, the hadron beam
will develop tails in the tranverse particle distribution. The controlled removal of
these halo-particles is very important for low detector background and efficient data
taking.

A sophisticated collimation system and collimator optimization scheme was
implemented in HERA. It consisted of two stages of collimation, with one single
primary collimator per oscillation plane and two secondary collimators per plane. A
detailed and fully automated collimator adjustment procedure was developed which
provided in general good background conditions routinely.

The HERA collimation system and its operational optimization techniques are
being carried over to the eRHIC design version of the EIC.

Furthermore, high energy proton operation with the HERA-B [179] fixed target
in HERA, revealed that the wire target could be integrated in the existing collimator
system. It consitituted an excellent beam-edge spoiler target which significantly
increased the efficiency of the two stage collimation system and led to a significant
reduction of particle background in the detectors H1 and ZEUS.

Early simulations of halo particle backgrounds in HERA showed clearly, that the
halo must be removed far away from the detectors and local shields or masks will
only aggravate the background conditions for the colliding beam detectors [180].

Experience with HERA collimation system have been taken into account in the
elaborated LHC collimation system and are an important input for the design of the
collimation system of eRHIC.

10.5.2.4 Spin Polarization of the HERA Electron Beam

The good performance of the HERA electron spin in colliding beam operations at
the North and the South interaction points with three pairs of spin rotators in the
North, South, and East straight sections which provided a polarization of ≥50%
[181] was vital for the HERMES experiment [182] and augmented the physics
program of the H1 and ZEUS detectors [183]. This performance was achieved with
uncompensated detector solenoids in the North (H1), South (ZEUS) interaction
reagions. The spin tuning procedures developed for HERA which included the
system of harmonic bumps, and spin-matching of the straigth sections between the
rotator pairs, as well as the electron beam working point near the integer resonance
were important factors in this success.

The HERA experience constitutes an important reference point for designing the
EIC for high electron spin polarization. Spin physics is an important part of the EIC
physics program. Collisions between highly polarized electron and Hadron beams
with all combination of spin helicities enable an this physics program.

The spin matching techniques and the scheme of orbit optimization with
harmonic bumps which contributed to the success of the HERA spin program, are
being carried over to the eRHIC design to enable operation with highly polarized
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electron beams. As in HERA, an equilibrium polarization of at least 50% has been
shown to be achievable in eRHIC at the highest electron beam operation energy
of 18 GeV. This performance will enable to maintain a high level of average
polarization of �80% with the initial polization of the the electron beam of 85%
if the stored electron bunches are replaced every 6 min on average [177].

10.5.2.5 Lessons Learned from HERA Dynamic Aperture

The dynamic aperture optimization in the HERA electron ring after the year
2000 was accomplished with only two sextupole families for the correction of
chromaticity. Correction of higher order chromaticity which is due to the strong
contribution of the interaction region quadrupole magnets to the chromaticity and
the corresponding strong off-momentum distortion of the optical functions (beta-
beat) is necessary to confine the beam tune foot print and to avoid destabilizing
resonances.

The straight forward correction of off-momentum beta-beats with more families
of sextupoles was avoided thereby avoiding large peak strengths of the sextupole
magnets, which would have deteriorated the dynamic aperture. Instead, the hor-
izontal and vertical betatron phase differences between the North and the South
interaction points were chosen to be an odd integer of π /2. The off-momentum beta
beat caused by the low beta quadrupoles of one IR was intrinsically canceled by
the correponding beta beat of the other IR. This way, the nonlinear tuneshift with
momentum was minimized.

The HERA chromatic correction scheme [184] also suppressed the genera-
tion of driving terms of the higher order nonlinear synchro-betatron resonances
Qx + 3 cot Qs=integer which otherwise would have affected the beam stability
at the low tune values needed for high polarization operation.

Last but not least, the HERA chromatic correction scheme reduced the magnet
currents of the sextupoles circuits which would have been required using the multi-
family scheme. The HERA scheme is being carried over to eRHIC which is planned
to be operated with two collidng beam detectors as well. The eRHIC chromatic
correction scheme is an important constituent of the design which enables highest
luminosity values.

10.5.2.6 HERA IR Magnet Design

In order to achieve hightest luminosity, the HERA interaction regions have been
re-designed to allow for very small beta functions at the IP. The change was
implemented in the year 2000 and HERA operated with about 3.5 times the design
luminosity in the years 2004–2007.

This upgrade included accelerator magnets that were placed inside the colliding
beam detectors H1 and ZEUS, and in particular inside the solenoidal detector fields
of up to 5 T. Obviously, no magnetic steel was allowable inside the solenoid fields



640 K. Hübner et al.

of the detectors. Furthermore, the accelerator magnets should have minimum mass
to minimize the distorions of the trajectories of scattered particles, maximizong the
detector acceptance this way and avoiding introduction of strong scattering targets
insode the detector. Thus superconducting technology without steel collaring needed
to be used. The available space for these magnets was very limited, as the detectors
already existed and could not be modified. The magnets needed to be combinded
function to separate the lepton and the hadron beam and to start focusing the
electron beam as early as possible. The aperture of the magnet needed to be very
large to allow the synchrotron beam to pass through the entire detector and low-
beta quadrupole section. Furthermore, the aperture needed to provide space for the
envelopes of the separated beams.

To meet these requirements, a new type of superconducting magnet was devel-
oped by a collaboration of scientists from Brookhaven National Laboratory and
DESY [185]. The supercnducting magnet coil was produced by developing the 2-
D direct wind method used for the RHIC corrector magnets to 3-D geometry such
that the superconducting wire could be attached directly to the surface of a cylinder.
The magnet coil was wound directly on the beam pipe using a seven-strand NbTi
superconducting cable and the coil was stabilized with glass-fiber tape, a technique
carried over from the HERA multipole corrector coils.

High field quality of superconducting magnets requires high precision in the
manufacturing of the coil. For the HERA interaction region magnets, the precision
was achieved by combining the RHIC and HERA corrector coil technologies.

The coil was wound on a precision-machined cylinder which was coated
with epoxy. A computer controlled stylus placed superconducting wire with high
precision on the cylinder. It also transmitted ultra-sound waves to the wire, which
by means of friction melted the epoxy surface of the cylinder thereby fixing the
superconducting wire in its position. After winding the first layer of the coil, it was
complemented with GF spacers and fixed with glass-fiber tape under high tension
before the coil was vacuum impregnated with epoxy. The field of the first layer
was measured and compared with the calculated field for perfect wire position.
Discrepancies were corrected by modifying the definition of the second layer wire
positions correspondingly. After high precision machining the new surface, the
magnet was ready for the second layer of coil to be wound. This way, the magnet
achieved very high field quality of one unit of 10−4 at a radius of 25 mm with the
center set off by up to 20 mm.

The HERA IR magnets were operated with 4.5 K supercritical He. The perfor-
mance in routine operation was excellent.

The technique of the very successful HERA low beta quadrupoles was further
developed by BNL scientists and the technique has been successfully applied to
the low beta quadrupoles of the Beijing Electron-Positron Collider BEPC-II [186],
the KEK b-factory SuperKEKB [187] and designs for the interaction regions of
the International Linear Collider [188] have bee produced and prototyped. The
Fig. 10.15 shows a photograph taken during the winding of the low-beta quadruole
for superKEKB in September 2013. This technology is now quite mature and is used
for many of the advanced eRHIC interaction region magnets [177].
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Fig. 10.15 Winding of the superKEKB coil in September 2013 (Courtesy Brett Parker, BNL)

10.5.2.7 Conclusion

The accelerator and technical solutions as well as the operational proceedures
which enabled the successful operation of the HERA Lepton-Hadron collider are
an important resource for the design of future colliders, in particular for the design
of ring-based electron-ion colliders.

10.6 LHC Layout and Performance to Date

R. Bailey · J. Wenninger

10.6.1 Introduction

The Large Hadron Collider (LHC) [189] is a two-ring superconducting accelerator
and collider installed in a 27 km underground tunnel at CERN, on the Swiss-French
border near to Geneva. The tunnel was originally constructed for the Large Electron
Positron collider (LEP), which operated from 1989 to 2000.

The LHC has two high luminosity experiments, ATLAS and CMS, designed for
a peak luminosity of 1034 cm−2 s−1, one dedicated ion experiment, ALICE, and one
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Table 10.15 LHC basic beam parameters

Parameter Unit Injection Collision

Beam data

Proton energy GeV 450 7000
Relativistic gamma γ 479.6 7461
Number of particles per bunch 1.15 × 1011

Number of bunches 2808
Longitudinal emittance (4σ ) eVs 1.0 2.5a

Transverse normalized emittance μm rad 3.5b 3.75
Circulating beam current A 0.582
Stored energy per beam MJ 23.3 362
Peak luminosity related data

RMS bunch lengthc cm 11.24 7.55
RMS beam size at the IP1 and IP5d μm 375.2 16.7
RMS beam size at the IP2 and IP8e μm 279.6 70.9
Geometric luminosity reduction factor Ff – 0.836
Peak luminosity in IP1 and IP5 cm−2 s−1 – 1.0 × 1034

Peak luminosity per bunch in IP1 and IP5 cm−2 s−1 – 3.5 × 1030

aThe base line machine operation assumes that the longitudinal emittance is deliberately blown up
in the middle of the ramp in order to reduce the intra beam scattering growth rates
bThe emittance at injection energy refers to the emittance delivered to the LHC by the SPS without
any increase due to injection errors and optics mis-match. The RMS beam sizes at injection assume
the nominal emittance value quoted for top energy (including emittance blowup due to injection
oscillations and mismatch)
cDimensions are given for Gaussian distributions. The real beam will not follow a Gaussian
distribution but more realistic distributions do not allow analytic estimates for the IBS growth
rates
dThe RMS beam sizes in IP1 and IP5 assume a β-function of 0.55 m
eThe RMS beam sizes in IP2 and IP8 assume a β-function of 10 m
fThe geometric luminosity reduction factor depends on the total crossing angle at the IP. The quoted
number assumes a total crossing angle of 285 μrad in IR1 and IR5

experiment for B-physics, LHCb. The main parameters required to reach the high
luminosity for ATLAS and CMS are given in Table 10.15.

The high beam intensities required for a luminosity of L = 1034 cm−2 s−1

exclude the use of anti-proton beams and a single common vacuum and magnet
system for both circulating beams (as was done in the SPPbarS and the TEVATRON)
and implies the use of two proton beams. To collide two beams of equally charged
particles requires opposite magnet dipole fields in both beams. The LHC is therefore
designed as a proton-proton collider with separate magnet fields and vacuum
chambers in the main arcs and with common sections only at the insertion regions
where the experimental detectors are located.

There is not enough room for two separate rings of magnets in the LEP tunnel.
Therefore the LHC uses twin bore magnets which consist of two sets of coils and
beam channels within the same mechanical structure and cryostat.

The peak beam energy in a storage ring depends on the integrated dipole field
along the storage ring circumference. Aiming at peak beam energies of up to 7 TeV
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inside the existing LEP tunnel implies a peak dipole field of 8.33 T and the use of
superconducting magnet technology.

This presented quite a challenge; to make the most profitable use of the existing
tunnel and to obtain the highest possible bending strength by exploiting the well-
proven technology based on Nb-Ti Rutherford cables. To meet this challenge and
to find the cheapest solution compatible with the required performance needed a
substantial R&D program on magnets and associated technology. This was carried
out between 1988 and 2001 by CERN in close collaboration with other European
laboratories and European industry.

10.6.2 Layout

The basic layout of the LHC follows the LEP tunnel geometry and is depicted in Fig.
10.16. The LHC has eight arcs and straight sections, with dispersion suppressors in
between.

Fig. 10.16 Schematic layout of the LHC. Beam 1 (Blue) circulates clockwise. Beam 2 (Red)
circulated counter-clockwise
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10.6.2.1 The Straight Sections

Each straight section is approximately 528 m long and can serve as an experimental
or utility insertion. The two high luminosity experimental insertions are located at
diametrically opposite straight sections: the ATLAS experiment is located at point 1
and the CMS experiment at point 5. Two more experimental insertions, for ALICE
and LHCb are located at point 2 and point 8 respectively. These insertion regions
also contain the injection systems, for Beam 1 arriving from the SPS through the
transfer line TI2, and for Beam 2 arriving from the SPS through the transfer line
TI8. The injection kick occurs in the vertical plane with the two beams arriving at the
LHC from below the LHC reference plane. The beams only cross from one magnet
bore to the other at these four locations. The remaining four straight sections do not
have beam crossings. Insertion 3 and 7 each contain two collimation systems, for
momentum cleaning and betatron cleaning respectively. Insertion 4 contains two RF
systems: one independent system for each LHC beam. The straight section at point 6
contains the beam dump insertion where the two beams are vertically extracted from
the machine using a combination of horizontally deflecting fast-pulsed (’kicker’)
magnets and vertically-deflecting double steel septum magnets. Each beam features
an independent abort system.

The two beams share an approximately 130 m long common beam pipe along
the interaction regions (IR). The exact length is 126 m in IR2 and IR8 which feature
superconducting separation dipole magnets next to the triplet assemblies and 140 m
in IR1 and IR5 which feature normal conducting and therefore longer separation
dipole magnets next to the triplet assemblies. Together with the large number of
bunches (2808 for each proton beam), and a nominal bunch spacing of 25 ns, the
long common beam pipe implies 34 parasitic collision points for each experimental
insertion region (for four experimental IR’s this implies a total of 136 unwanted
collision points). Dedicated crossing angle orbit bumps separate the two LHC beams
left and right from the central interaction point (IP) in order to avoid collisions at
these parasitic collision points.

10.6.2.2 The Arcs

The arcs of the LHC are each made of 23 regular arc cells. The arc cells are 106.9 m
long and are made out of two 53.45 m long half cells each of which contains one
5.355 m long cold mass (6.63 m long cryostat) short straight section (SSS) assembly
and three 14.3 m long dipole magnets. The two apertures for Ring 1 and Ring 2 are
separated by 194 mm. The two coils in the dipole magnets are powered in series
and all dipole magnets of one arc form one electrical circuit. The quadrupoles of
each arc form two electrical circuits: all focusing quadrupole magnets in Ring 1 and
Ring 2 are powered in series and all defocusing quadrupole magnets of Beam 1 and
Beam 2 are powered in series. The optics of Beam 1 and Beam 2 in the arc cells is
therefore strictly coupled via the powering of the main magnetic elements.
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Fig. 10.17 The LHC arc cell layout

An LHC arc cell is also equipped with corrector magnets, which can be split into
two distinct categories (see Fig. 10.17).

• The lattice corrector magnets attached on both sides of the main quadrupole
magnets are installed in the Short Straight Section (SSS) cryostats.

• The spool-piece corrector magnets which are thin non-linear windings attached
directly on the extremities of the main dipoles.

Contrary to the main dipole circuits and the two families (QF and QD) of lattice
quadrupoles for which, in each sector, Ring 1 and Ring 2 are powered in series, the
arc corrector magnets can be adjusted independently for the two beams.

10.6.2.3 The Dispersion Suppressors

A dispersion suppressor is located at the transition between an LHC arc and a
straight section yielding a total of 16 dispersion suppressor sections. The aim of
the dispersion suppressors is threefold:

• adapt the LHC reference orbit to the geometry of the LEP tunnel;
• cancel the horizontal dispersion arising in the arc and generated by the separa-

tion/recombination dipole magnets and the crossing angle bumps;
• help in matching the insertion optics to the periodic solution of the arc.

A generic design of a dispersion suppressor uses standard arc cells with missing
dipole magnets. The LEP dispersion suppressor, which defines the geometry of the
tunnel, was made of 3.5 cells with a 90o phase advance, optimized to suppress the
dispersion. With the 2.5 times longer LHC dipole and quadrupole magnets, only two
LHC cells can be fitted in the dispersion suppressor tunnel.

10.6.2.4 LSS1 and LSS5

IR1 and IR5 house the high luminosity experiments of the LHC and are identical
in terms of hardware and optics (except for the crossing-angle scheme: the crossing
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Fig. 10.18 Schematic layout of the right side of IR1

angle in IR1 is in the vertical plane and in IR5 in the horizontal plane). The small
β-function values at the IP are generated with the help of a triplet quadrupole
assembly. At the IP, the two rings share the same vacuum chamber, the same low-
beta triplet magnets and the D1 separation dipole magnets. The remaining matching
section (MS) and the dispersion suppressor (DS) consist of double-bore magnets
with separate beam pipes for each ring.

Figure 10.18 shows the schematic layout of IR1.
Apart from the DS the insertions are comprised of the following sections, given

in order from the interaction point:

• A 31 m long superconducting low-β triplet assembly operated at a temperature
of 1.9 K and providing a nominal gradient of 205 T/m.

• A pair of separation/recombination dipoles separated by approximately 88 m.
The D1 dipole located next to the triplet magnets has a single bore and consists
of six 3.4 m long conventional warm magnet modules yielding a nominal field of
1.38 T. The following D2 dipole is a 9.45 m long, double bore, superconducting
dipole magnet operating at a cryogenic temperature of 4.5 K with a nominal field
of 3.8 T. The bore separation in the D2 magnet is 188 mm and is thus slightly
smaller than the arc bore separation.

• Four matching quadrupole magnets. The first quadrupole following the sepa-
ration dipole magnets, Q4, is a wide-aperture magnet operating at a cryogenic
temperature of 4.5 K and yielding a nominal gradient of 160 T/m. The remaining
three quadrupole magnets are normal-aperture quadrupole magnets operating at
a cryogenic temperature of 1.9 K with a nominal gradient of 200 T/m.

The triplet assembly features two different quadrupole designs: the outer two
quadrupole magnets are made by KEK and require a peak current of 6450 A to
reach the nominal gradient of 205 T/m, whereas the inner quadrupole block consists
of two quadrupole magnets made by FNAL and requires a peak current of 10,630 A.

The triplet quadrupoles are powered by two nested power converters: one 8 kA
power converter powering all triplet quadrupole magnets in series and one 6 kA
power converter supplying additional current only to the central two FNAL magnets.
The Q1 quadrupole next to the IP features an additional 600 A trim power converter.
The triplet quadrupoles are followed by the separation/recombination dipoles, D1
and D2, which guide the beams from the IP into two separated vacuum chambers.
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Q4, Q5, Q6, Q7, Q8, Q9 and Q10 are individually powered magnets. The aperture
of Q4 is larger to provide sufficient aperture for the crossing angle separation orbit.
Two absorbers protect the cold magnets from particles leaving the IP. The TAS
absorber protects the triplet quadrupole magnets and the TAN absorber, located in
front of the D1 dipole magnet, protects the machine elements from neutral particles
leaving the IP.

The matching section extends from Q4 to Q7 and the DS extends from Q8 to
Q11. In addition to the DS, the first two trim quadrupoles of the first arc cell (QT12
and QT13) are also used for the matching procedure. All insertion and DS magnets
are equipped with a beam screen [2]. The magnets left and right from the IP up to
Q7 inclusive are placed symmetrically with respect to the IP. The positions of Q8,
Q9 and Q10 left and right from the IP differ by approximately 0.5 m with respect to
the IP due to the limited space in the DS.

10.6.2.5 LSS2

The straight section at IR2 houses the injection elements for Ring-1 as well
as the ion beam experiment ALICE. During injection the optics must obey the
special constraints imposed by the beam injection for Ring-1 and the geometrical
acceptance in the interaction region (IR) must be large enough to accommodate both
beams in the common part of the ring with a beam separation of at least 10 σ .

Figures 10.19 and 10.20 show the schematic layout of IR2.

 

Fig. 10.19 Schematic layout of the left side of IR2

Fig. 10.20 Schematic layout of the right side of IR2
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Apart from the DS the insertions comprise the following sections, given in order
from the interaction point:

• A 31 m long superconducting low-β triplet assembly operated at 1.9 K and
providing a nominal gradient of 215 T/m.

• A pair of 9.45 m long superconducting separation/recombination dipole magnets
separated by approximately 66 m.

• Four matching quadrupole magnets. The first two quadrupole magnets following
the separation dipole magnets, Q4 and Q5, are wide aperture magnets operating at
4.5 K and yielding a nominal gradient of 160 T/m. The remaining two quadrupole
magnets are normal aperture quadrupole magnets operating at 1.9 K with a
nominal gradient of 200 T/m.

The triplet quadrupoles are powered in series and are followed by the separa-
tion/recombination dipoles D1 and D2, which guide the beams from the IP into two
separated vacuum chambers. Q4, Q5, Q6, Q7, Q8, Q9 and Q10 are individually
powered magnets. The aperture of Q4 is increased to provide sufficient aperture for
the crossing-angle separation orbit. The aperture of Q5 left of the IP is increased
to provide sufficient aperture for the injected beam. The injection septum MSI is
located between Q6 and Q5 on the left-side of the IP and kicks the injected beam
in the horizontal plane towards the closed orbit of the circulating beam (positive
deflection angle). The injection kicker MKI is located between Q5 and Q4 on the
left-hand side of the IP and kicks the injected beam in the vertical plane towards the
closed orbit of the circulating beam (negative deflection angle). In order to protect
the cold elements in case of an injection failure a large absorber (TDI) is placed
15 m upstream from the D1 separation/recombination dipole left from the IP. The
TDI absorber is complemented by an additional shielding element 3 m upstream of
the D1 magnet and two additional collimators installed next to the Q6 quadrupole
magnet. In order to obtain an optimum protection level in case of injection errors
the vertical phase advance between MKI and TDI must be 90◦ and the vertical
phase advance between the TDI and the two auxiliary collimators must be an integer
multiple of 180◦ ± 20◦.

The matching section extends from Q4 to Q7 and the DS extends from Q8 to
Q11. In addition to the DS, the first two trim quadrupoles of the first arc cell (QT12
and QT13) are also used for the matching procedure. All magnets of the DS are
equipped with a beam screen. The magnets left and right from the IP up to Q7
inclusive are placed symmetrically with respect to the IP. The positions of Q8, Q9
and Q10 left and right from the IP differ by approximately 0.5 m with respect to the
IP due to the limited space in the DS.

10.6.2.6 LSS8

IR8 houses the LHCb experiment and the injection elements for Beam 2. The small
β-function values at the IP are generated with the help of a triplet quadrupole
assembly. At the IP, the two rings share the same vacuum chamber, the same low-
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Fig. 10.21 Schematic layout of the right side of IR8

 

Fig. 10.22 Schematic layout of the left side of IR8

beta triplet magnets and the D1 separation dipole magnet. The remaining matching
section (MS) and the DS consist of double-bore magnets with separate beam pipes
for each ring.

Figures 10.21 and 10.22 show the schematic layout of IR8.
Apart from the DS the insertions contain the following sections, given in order

from the interaction point:
Three warm dipole magnets compensate the deflection generated by the LHCb

spectrometer magnet.

• A 31 m long superconducting low-β triplet assembly operated at 1.9 K and
providing a nominal gradient of 205 T/m.

• A pair of separation/recombination dipole magnets separated by approximately
54 m. The D1 dipole located next to the triplet magnets is a 9.45 m long single-
bore superconducting magnet. The following D2 dipole is a 9.45 m long, double
bore, superconducting dipole magnet. Both magnets are operated at 4.5 K. The
bore separation in the D2 magnet is 188 mm and is thus slightly smaller than the
arc bore separation.

• Four matching quadrupole magnets. The first quadrupole following the sepa-
ration dipole magnets, Q4, is a wide aperture magnet operating at 4.5 K and
yielding a nominal gradient of 160 T/m. The remaining three matching section
quadrupole magnets are normal aperture quadrupole magnets operating at 1.9 K
with a nominal gradient of 200 T/m.

• The injection elements for Beam 2 on the right hand side of IP8. The 21.8 m
long injection septum consists of five modules and is located between the Q6
and Q5 quadrupole magnets on the right-hand side of the IP. The 15 m long
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injection kicker consists of four modules and is located between the Q5 and Q4
quadrupole magnets on the right-hand side of the IP. In order to protect the cold
elements in case of injection failure a large absorber (TDI) is placed 15 m in
front of the D1 separation/recombination dipole magnet right from the IP. The
TDI is complemented by an additional shielding element between the TDI and
D1 magnet (placed 3 m in front of D1) (TCDD) and by two additional collimators
placed on the transition of the matching section left from the IP to the next DS
section.

In order to provide sufficient space for the spectrometer magnet of the LHCb
experiment, IP8 is shifted by 15 half RF wavelengths (3.5 times the nominal bunch
spacing ~11.25 m) towards IR7. This shift of the IP has to be recuperated before
the beam returns to the dispersion suppressor sections and implies a non-symmetric
magnet layout in the matching section.

10.6.2.7 LSS3 and LSS7

The insertion IR3 houses the momentum cleaning systems of both beams, while
IR7 houses the betatron cleaning systems of both beams. Particles with a large
momentum offset are scattered by the primary jaw of IR3. Particles with a large H, V
or combined H-V betatron amplitudes are scattered by the primary collimator jaws
in IR7. In both cases the scattered particles are absorbed by secondary collimators.

Figure 10.23 shows the schematic layout of IR7.
The dispersion suppressor extends from Q8 to Q11. In addition to the DS, the

first two trim quadrupoles of the first arc cell (QT12 and QT13) are also used
for the matching procedure. All cryo-magnets are equipped with a beam screen.
In IR3 and IR7, the underground galleries are not wide enough to house many
high current power supplies. Therefore, contrary to the layout of the other IR’s,
the DS quadrupoles (Q7, Q8, Q9 and Q10) are made of a MQ+MQTL assembly
(MQ + 2 MQTL at Q9) where the MQ’s magnets are powered in series with the
main arc quadrupoles. To avoid producing two kinds of MQ+MQTL assemblies,
the dispersion suppressors left and right from the IP are not mirror symmetric
with respect to each other. Instead, the DS quadrupole assemblies have the same
orientation in the dispersion suppressors left and right from the IP and the MQ
positions differ by approximately 0.5 m with respect to the IP in the two DS.

Fig. 10.23 Schematic layout of the right side of IR7
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The layout of the Long Straight Section between Q7L and Q7R is mirror
symmetric with respect to the IP. The right side of IR7 is shown in Fig. 10.23.
This allows the symmetrical installation for the collimators of the two beams and
minimizes the space conflicts in the insertion. Starting from Q7 left, the quadrupole
Q6 (made of six superconducting MQTL modules) is followed by a dog-leg
structure made of two sets of MBW warm single bore wide aperture dipole magnets
(two warm modules each). The dogleg dipole magnets are labeled D3 and D4 in the
LHC sequence with D3 being the dipole closer to the IP. The Primary Collimators
are located between the D4 and D3 magnets, allowing neutral particles produced in
the jaws to point out of the beam line, and most charged particles to be swept away.
The inter-beam distance between the dogleg assemblies left and right from the IP is
224 mm, i.e. 30 mm larger than in the arc. This increased beam separation allows a
substantially higher gradient in the Q4 and Q5 quadrupoles which are made out of
six warm MQW modules. The space between Q5 left and right from the IP is used
to house the secondary collimators at adequate phase advances with respect to the
primary collimators.

The Q4 and Q5 quadrupoles left and right from the IP are powered in series. The
warm dual-bore MQW quadrupole cannot be powered with different currents for
each magnet aperture because the field quality is degraded to an unacceptable level
even for a small imbalance in the field of the two apertures. The current must be
equal or of opposite value in the bores to provide a good field quality. In order
to obtain the required flexibility for the optics, two different kinds of powering
schemes are used for the Q4 and Q5 quadrupole units. The magnets are identical,
but in the MQWA type magnet the field is identical in both apertures, while in
the MQWB type magnet, the field is opposite for both apertures. Each Q4 and Q5
assembly is made of five MQWA and one MQWB module. The nominal gradient of
the MQWB unit is limited to 29.6 T/m while it can reach 35 T/m in the MQWA
unit. This powering scheme breaks the exact antisymmetry by 29% providing
enough flexibility to satisfy all the optics constraints. Again, Q5AL+Q5AR and
Q5BL+Q5BR respectively are powered in series. As a by-product, this freedom in
the straight section allows the trim strength needed in the DS to be limited so that
regular MQTL’s can be used.

In IR3, the most difficult constraint was to generate a large dispersion function
in the straight section. Since the layout of the DS cannot be changed in IR3 this
constraint means that the natural dispersion suppression generated in the DS is
over compensated. To this end Q6 and Q5 were moved towards each other by a
substantial amount, thus shrinking the space granted to the dog-leg structure D4-
D3. It was therefore necessary to add a third MBW element to D3 and D4 in IR3.
Apart from this IR3 and IR7 are identical.

10.6.2.8 LSS4

IR4 houses the RF and feed-back systems as well as some of the LHC beam
instrumentation.
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Fig. 10.24 Schematic layout of the right side of IR4

Figure 10.24 shows the schematic layout of IR4.
There are six superconducting quadrupole magnets in the straight section: Q5

Q6 Q7 on the left- and Q5 Q6 Q7 on the right-hand side of the IP. The outer dogleg
dipoles, D4, sit next to the Q5 quadrupole magnets on each side of the IP. The RF
cavities sit between the inner dogleg dipoles, D3. The layout of the DS, between Q7
and Q11, is identical to that in IR1 and IR5.

10.6.2.9 LSS6

IR6 houses the beam abort systems for Beam 1 and Beam 2. The beam extraction
from the LHC is done by kicking the circulating beam horizontally into an iron
septum magnet which deflects the beam in the vertical direction away from the
machine components to absorbers in a separate tunnel. Each ring has its own system
and both are installed in IR6.

Figure 10.25 shows the schematic layout of IR6.
In each of the dispersion suppressors up to six quadrupoles can be used for

matching. The total of 16 quadrupoles is more than necessary to match both β-
functions, the dispersion (both at the crossing point and in the arc) and adjust the
phases. Although this number of parameters seems considerable, their variation is
strongly limited by the aperture constraints which set limits on the β-functions and
the dispersion inside the insertion. Special detection devices protect the extraction
septum and the LHC machine against losses during the extraction process. The
TCDS absorber is located in front of the extraction septum and the TCDQ in front
of the Q4 quadrupole magnet downstream of the septum magnet.

Fig. 10.25 Schematic layout of the right side of IR6
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10.6.3 Performance

The LHC was first operated with beam for short periods in 2008 and 2009. In 2010
a first experience with the machine was gained at a beam energy of 3.5 TeV, and
moderate beam intensity of up to around 200 bunches of 1.1 × 1011 protons per
bunch (ppb). The reduced energy was chosen such as to minimize risks associated to
the quality issue of the soldering of the busbar cables in the magnet interconnections.
In 2011 the beam intensity was pushed to around 1400 bunches of 1.4 × 1011 ppb
while 2012 was dedicated to luminosity production with higher bunch intensities
1.6 × 1011 ppb and a beam energy of 4 TeV. A bunch spacing of 50 ns was used in
2011 and 2012 to minimize the complication of electron clouds. The first operation
period is commonly referred to as run 1. In early 2013 beam operation was stopped
for a 2-year long shutdown (LS1) to consolidate the magnet interconnections in view
of reaching the design beam energy. Many details on LHC operation during Run 1
may be found in [190].

Beam operation resumed in 2015 at 6.5 TeV following a dipole training
campaign of 169 quenches at the end of Long Shutdown 1 (LS1). The LHC
experiments expressed a strong preference for beams with 25 ns bunch spacing,
as opposed to the 50 ns spacing used in 2011–2012, as this would result in a too
high number of inelastic collisions per crossing (pile-up). On the machine side
25 ns beams pose additional challenges, e.g. the formation of electron clouds (e-
clouds) in the vacuum chamber and a higher number of fast loss events, named
Unidentified Falling Objects (UFOs). Given the number of new territories had to be
explored, 2015 was considered a re-commissioning and a learning year, dedicated
to preparing the machine for full luminosity production in 2016–2018. In 2016 the
machine performance was pushed for the first time above the design luminosity of
1034 cm−2 s−1, and by the end of that year the design had been exceeded by 40%.
This excellent performance was possible thanks to beams of much lower emittance
produced by the LHC injector chain, coupled to a reduced β∗ of 40 cm as compared
to the design value of 55 cm. In 2017 the performance could be pushed further
with more than twice the design luminosity with a further reduction of the beam
emittances and of β∗ to 30 cm. The performance in 2017 was so exceptional that the
luminosities of ATLAS and CMS had to levelled down to limit the event pile-up to
60. Figures 10.26 and 10.27 present the evolution of the peak and of the integrated
luminosity between 2011 and 2017. A summary of the main parameters is presented
in Table 10.16. Details on operation in LHC Run 2 up to and including 2016 can be
found in [191].

The remarkable performance of LHC during run 2 between 2015 and 2017
was achieved despite unexpected limitations. In 2016 the SPS beam dump was
damaged when high intensity LHC beams were dumped onto the block at 450 GeV,
developing a vacuum leak. Because it was not practical to exchange the dump during
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Fig. 10.26 Peak luminosity performance of the LHC in ATLAS and CMS between 2011 and 2017.
In July 2016 the LHC reached the design luminosity of 1 × 1034 cm−2 s−1

Fig. 10.27 Integrated luminosity delivered to the ATLAS and CMS experiments between 2011
and 2017

the run, the LHC beams were limited to 144 bunches during that year. This limitation
was lifted in 2017 when a new dump was installed in the SPS. Unfortunately, an
undetected vacuum pumping problem during the cool down of one LHC sector
brought another limitation for the 2017 run. A few liters of Air introduced by a
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Table 10.16 Performance reach in 2010 and 2011

Parameter Unit 2012 2016 2017 Design

Energy TeV 4 6.5 6.5 7
Bunch intensity 1010 16 11 12.5 11.5
Bunches per beam 1380 2556 2556 2802
Emittance μm 2.40 2.3 2.0 3.75
β∗ m 0.6 0.4 0.3 0.55
Luminosity 1 and 5 cm−2 s−1 7 × 1033 1.5 × 1034 2 × 1034 1 × 1034

vacuum pump issue condensed as ice on the vacuum beam chamber. In the presence
of very high intensity beams local losses would develop leading to beam dumps.
Fortunately, it was possible to restore operation of the LHC with a low electron
cloud variant of the 25 ns spacing LHC beam [192].
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Chapter 11
Application of Accelerators and Storage
Rings

M. Dohlus, J. Rossbach, K. H. W. Bethge, J. Meijer, U. Amaldi, G. Magrin,
M. Lindroos, S. Molloy, G. Rees, M. Seidel, N. Angert,
and O. Boine-Frankenheim

11.1 Synchrotron Radiation and Free-Electron Lasers

M. Dohlus · J. Rossbach

11.1.1 Synchrotron Radiation

11.1.1.1 Basic Properties of Synchrotron Radiation

It is well known from Maxwell theory that electromagnetic radiation is emitted
whenever electric charges are accelerated in free space. This radiation assumes quite
extraordinary properties whenever the charged particles move at ultrarelativistic
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speed: The radiation becomes very powerful and tightly collimated in space, and
it may easily cover a rather wide spectrum ranging from the THz into the hard X-
ray regime. When generation of such radiation is intended rather than being a side
effect, the charged particles are normally electrons, thus kinetic energies are then
typically in the multi-MeV range.

The theoretical treatment of synchrotron radiation starts traditionally from
retarded Lienard-Wiechert potentials [1], allowing quantitative determination of
radiation properties in detail:

φ (0, t) = q
4πε0

[
1

R
(

1−−→n ·−→β
)

]

t ′=t−R/c
,
−→
A (0, t) = q

4πε0c

[
−→
β

R
(

1−−→n ·−→β
)

]

t ′=t−R/c
.

(11.1)

Here, q is the accelerated point charge, ε0 is the dielectric constant, and
−→
R is the

distance vector from the charge to the observer, with the unit vector−→n = −→
R /R and−→

β = −→v /c the particle’s velocity −→v normalized to the vacuum speed of light c, see
Fig. 11.1. For simplicity, and without loss of generality, we assume the observer is
located at the origin at R = 0.

All quantities in Eq. (11.1) must be taken at the retarded time t ′ = t − R/c, i.e.
not at the time t of observation but at the time when a signal moving at speed c must

Fig. 11.1 Geometry of actual and retarded position of moving particle, and position of observer
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be emitted from the charge’s position in order to reach the observer at time t. This
latter fact is actually the origin for many peculiarities of synchrotron radiation.

The electric and magnetic fields are derived from Eq. (11.1) using

γ 2 = 1/(1 − β2),
−→
E = −∇φ − ∂

−→
A /∂t and

−→
B = ∇ ×−→

A :

−→
E (0, t) = q

4πε0

[
−→n −−→β

γ 2
(

1−−→n ·−→β
)3
R2

]

t−R/c
+ q

4πε0c

⎡

⎣
−→
n ×
{(−→

n −−→β
)
×−̇→β
}

(
1−−→n ·−→β

)3
R

⎤

⎦

t−R/c
.

(11.2)

and

−→
B = 1

c

[−→
n ×−→

E
]

t−R/c. (11.3)

While Eqs. (11.2) and (11.3) are well suited to calculate quantitatively the field
of a charge moving on a well-known path, some general properties of the field are
more conveniently determined from the equivalent expression Eq. (11.4) given in
[2]:

−→
E (0, t) = q

4πε0

[ −→
n

R2 +
R

c

d

dt

(−→
n

R2

)
+ 1

c2

d2

dt2
−→
n

]
. (11.4)

The first term describes the static Coulomb field, scaling with R−2. The second
term modifies the field direction of the Coulomb field such that, in case of a charge
moving at constant speed, the Coulomb field is NOT directed towards the retarded
position of the particle (as it might be suggested by the first term) but rather to the
instantaneous position of the charge just at the time t of observation. This will be
shown below.

All radiation is described by the third term, and since it contains a contribution
scaling with R−1, it is the dominant field at large distances from the source. Thus,
in order to consider properties of synchrotron radiation qualitatively, it is sufficient
to understand the behaviour of

−→
E rad (0, t) ∝

[
d2

dt2
−→n
]
. (11.5)

Since the unit vector −→n cannot change its length, one can see [2] that d2−→n /dt2
is always perpendicular to −→n , i.e. to the retarded position of the particle if observed

from a far distance. The fact that
−→
E rad (0, t) is perpendicular to −→

n is also seen
from the second term of Eq. (11.2) (describing the radiation in far zone) which
would yield zero if scalar multiplied by −→n . Together with Eq. (11.3) it is seen that
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the Poynting vector
−→
S =

(−→
E ×−→

B
)
/μ0 is parallel to −→n . It is thus immediately

clear that the radiation detected by the observer always seems to be originating from
the retarded position of the particle, i.e. the retarded position is the apparent origin
of the radiation, as it is intuitively expected when the speed of light is taken into
account.

Equation (11.5) suggests that one just has to inspect the acceleration of the charge
transverse to its apparent line of sight in order to understand the behaviour of the
electric field component. For example, it is thus easily seen that radiation from an
electron moving on a circular orbit is linearly polarized in the plane of the circle if
the observer is located in the same plane. If, however, the radiation is observed from
a position elevated out of this (say, horizontal) plane, one expects also a vertical
field component.

Since Eqs. (11.2) and (11.4) look so differently, it is useful to sketch how Eq.
(11.2) can be derived from Eq. (11.4): a key point is that Eq. (11.2) requires all
derivations to be taken with respect to the retarded time t ′ = t − R/c while Eq.
(11.5) contains derivatives with respect to the time of observation t. Explicitly, this
reads

−→
β = −d

−→
R

cdt ′
= −d

(
R−→n )
cdt ′

= − dR

cdt ′
−→
n − R

d−→n
cdt ′

. (11.6)

From t ′ = t − R/c it follows: dt ′/dt = 1 − (dR(t)/cdt ′)(dt ′/dt). Solving for dt ′/dt
yields: dt ′/dt = 1/(1 + dR/cdt ′).

Due to −→n ⊥ d
−→
n /dt ′ we get from Eq. (11.6): dR/cdt ′ = −−→n · −→β and thus

dt ′

dt
= 1

1 −−→
n · −→β

. (11.7)

For ultrarelativistic motion, and in particular in forward direction −→n ‖ −→β , dt’
and dt differ by a really large factor

1

1 − β
= 1 + β

1 − β2 ≈ 2γ 2 � 1 (11.8)

thus resulting in a huge compression of the time scale at which radiation properties
are observed compared to the one at which electron motion takes place. It should
be noted that this has nothing to do with any Lorentz transform but is rather a
property of relativistic Doppler shift. The particle position at the retarded time is
just a different point in space-time.
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With Eq. (11.7) in mind, Eq. (11.4) can be rewritten (note we write (nβ) for(−→
n · −→β

)
everywhere):

−→
E (0, t) = q

4πε0

1
R2

⎧
⎪⎪⎨

⎪⎪⎩

−→
n + 1

[1−(nβ)]3

[
−−→β +2

−→
β (nβ)−−→β (nβ)2+3−→n (nβ)

−6−→n (nβ)2+3−→n (nβ)3+3−→n (nβ)2−−→n β2−2
−→
β (nβ)

−2−→n (nβ)3+−→β β2+−→β (nβ)2
]

⎫
⎪⎪⎬

⎪⎪⎭

+ q
4πε0

1
cR[1−(nβ)]3

[
−→
n
(
nβ̇
)−−̇→β +−̇→β (nβ)−−→β (nβ̇)

]

︸ ︷︷ ︸
−→n ×
[(−→n −−→β

)
×−̇→β
]

.

(11.9)

It is interesting noting that not only the last line but also all expressions after

3−→n (nβ)3 in the curly bracket stem from the “radiation term” 1
c2

d2

dt2
−→
n .

After expanding−→n by [1−(nβ)]3

[1−(nβ)]3 , the curly bracket in Eq. (11.9) can be simplified

into { } = 1
[1−(nβ)]3

−→
n −−→β
γ 2 , completing the proof that Eqs. (11.2) and (11.4) are

equivalent.
In the following, we will restrict ourselves to properties of the radiation field−→

E rad described by the second term in Eq. (11.2) or by Eq. (11.5), which are
equivalent if the observation is made at sufficiently large distance R from the charge
(“far-zone approximation”), since in this case the contribution from the curly bracket
in Eq. (11.9) to Eq. (11.5) can be neglected:

−→
E (0, t)rad =

q

4πε0c

⎡

⎢⎢
⎣

−→n ×
{(−→n −−→

β
)
× −̇→

β

}

(
1 −−→

n · −→β
)3
R

⎤

⎥⎥
⎦

t−R/c

. (11.10)

It should be emphasised that there are indeed practical cases where this approx-
imation is not valid, e.g. if radiation from an undulator (see below) of length Lu is
observed from a distance not much larger than Lu [3].

In most experimental cases the time evolution of the electric field vector is not
observable but only the radiation power and its angular or spectral distribution.

In discussing properties of synchrotron radiation it is important to distinguish
the instantaneously emitted power (and its angular distribution) from the time
development of the power observed by an experimentalist fixed in the lab system.
While the first is described in terms of the retarded time t’, the latter is observed on
the time scale t, which makes a big difference for ultrarelativistic motion, see Eq.
(11.7). We point out again that this has nothing to do with a Lorentz transform.
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Radiation Power and Its Angular Distribution
The radiation power density is described by the Poynting vector

−→
S =(−→

E ×−→
B
)
/μ0 = ε0c

(−→
E rad

)2−→
n , where

−→
E rad is the far zone radiation field

given in observer time t according to Eq. (11.10). In the present section, we want
to refer the radiation power P in far zone to the motion of the electron (i.e. to an
emission time interval dt’), so we need to consider

dP
(
t ′
)

d�
= R2

(−→
S · −→n

) dt
dt ′

= R2
(−→
S · −→n

) (
1 −−→

n · −→β
)
. (11.11)

where dΩ is the solid angle element into which the power is emitted. Thus,

dP
(
t ′
)

d�
= q2

(4π)2ε0c

[
−→
n ×
{(−→

n −−→
β
)
× −̇→

β

}]2

[
1 −−→

n · −→β
]5 . (11.12)

This is the most general expression for the angular dependence of the energy loss
into radiation of an accelerated point charge in far-field approximation.

There are essentially two different acceleration mechanisms which need to be
distinguished: Acceleration v̇⊥ perpendicular to the direction of motion, usually
provided by a magnetic field Bext, and acceleration v̇‖ by an electric field Eext
parallel to the momentarily velocity.

The total radiation power due to v̇⊥ can be shown to be

Prad,⊥ = q2

6πε0c3 γ
4v̇2⊥ = q2c

6πε0
β4 γ

4

ρ2 . (11.13)

Here, � = ∣∣−→p ∣∣ / (qBext) is the bending radius of the particle with momentum−→
p

and charge q in presence of a magnetic field Bext directed perpendicular to −→p .
The total radiation power due to v̇‖ is, on the other hand,

Prad,‖ = q2

6πε0c3

(
γ 3v̇‖
)2 = q2c

6πε0

(
dγ

ds

)2

, (11.14)

with dγ /ds the acceleration due to the longitudinal electric field. In almost all
practical cases this radiation power is much smaller than the one generated in a
magnetic field of 1 T.

Thus, for the remainder of this paper, we restrict ourselves to acceleration due to
magnetic fields.

For circular accelerators the total energy loss Urad during one turn of the charged
particle due to synchrotron radiation is an important quantity. From Eq. (11.13) one
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calculates

Urad = 1

c

∫
Pradds = 2π�

c
Prad = q2

3ε0

γ 4

ρ
≈ 88.5 keV

(E0/GeV)4

ρ/m
, (11.15)

where the integral extends over all bending magnets. The last expression represents
the radiation loss in practical units in the case of electrons or positrons, with E0 the
particle energy. For simplicity is has been assumed that ρ is constant in all bending
magnets.

According to the γ 4-scaling of Eqs. (11.13) and (11.15), synchrotron radiation
constitutes a massive challenge on the construction of electron/positron syn-
chrotrons in the multi-GeV range. As an extreme example, in the electron-positron
storage ring LEP at CERN each particle lost approximately Urad = 2850 MeV per
turn when running at its maximum particle energy of E0 = 100 GeV, even though
the bending radius was as large as ρ = 3100 m.

On the contrary, emission of synchrotron radiation is a negligible effect for
hadrons in most practical cases.

In a magnetic field, the acceleration is always perpendicular to the velocity:
−̇→
β ⊥ −→

β . Then, Eq. (11.12) can be expressed in more practical units, reflecting
the geometry illustrated in Fig. 11.2:

dP
(
ϕ, θ, t ′

)

d�
= q2

(4π)2ε0c

∣∣∣∣
−̇→
β

∣∣∣∣
2

(1 − β cos θ)3

(

1 − sin2 θcos2ϕ

γ 2(1 − β cos θ)2

)

. (11.16)

The direction of observation −→n is expressed here in terms of the angles ϕ,θ as
illustrated in Fig. 11.2.

For ultrarelativistic particles, i.e. if 1 − β � 1, the denominators 1 − β cos θ
get very small around θ ≈ 0 such that the radiation is concentrated very much in the

direction of
−→
β .

Fig. 11.2 Geometry and
definition of parameters used
in Eq. (11.16)
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Fig. 11.3 Synchrotron radiation emitted by an ultrarelativistic charged particle is concentrated
into a narrow cone with opening angle 1/γ

Figure 11.3 illustrates the directivity of synchrotron radiation according to Eq.
(11.16) for two different particle energies.

It should be pointed out that the directivity of synchrotron radiation described
by Eq. (11.16) is an instantaneous property of emission, thus is depends only on the
local magnetic field strength in the very moment of emission. An observer located in
far distance may in fact observe field contributions stemming from several sections
of the electron’s trajectory. This will be discussed later.
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Fig. 11.4 Scenario of
synchrotron radiation
detection by a distant
observer

For γ � 1 and θ � 1 we get 1 − β cos θ ≈ (1 + γ 2θ2)/(2γ 2) and thus:

dP
(
ϕ, θ, t ′

)

d�
= q2

2π2ε0c

∣∣∣∣
−̇→
β

∣∣∣∣
2

γ 6

(
1 + γ 2θ2

)3

(

1 − 4γ 2θ2cos2ϕ
(
1 + γ 2θ2

)2

)

. (11.17)

Equation (11.17) illustrates even more that the emission is concentrated into a
cone of opening angle θ ≈ 1/γ with respect to the forward direction. A rigorous
calculation shows that the rms-opening angle is indeed exactly 1/γ [4].

For practical calculations it might be useful to replace

∣∣∣∣
−̇→
β

∣∣∣∣ by β2c/ρ ≈ c/ρ with

1/ρ = qB/p0 describing the bending radius �.
An observer in far distance sees a radiation field only during the short time when

the cone passes the observer’s aperture, see Fig. 11.4.
For an observer in the plane of deflection, the radiation field has only a non-

zero component Ex(t) in this plane, as can be understood easily from Eq. (11.5).
It is thus linearly polarized. Due to the strong retardation effect described by Eq.
(11.7), this time duration is indeed much smaller than the time Δt ′ ≈ (2/γ )(ρ/c) the
electron needs to cover an angle of 2/γ on its curved trajectory, namely shorter by
a factor 2γ 2. Thus one expects a radiation pulse duration Δt ≈ (2ρ)/(cγ 3). More
precisely, the time profile (in the plane of deflection) is illustrated in Fig. 11.5 [4]. It
consists essentially of a single spike with a characteristic duration 1/ωc. The “critical
frequency” ωc is defined by

ωc = 3

2

γ 3c

ρ
. (11.18)

11.1.1.2 Spectrum of Synchrotron Radiation from a Long Bending
Magnet

In most practical cases, a user of synchrotron radiation is interested in the spectral
properties rather than in time domain features. Since the user refers to radiation
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Fig. 11.5 Time profile of
radiation field experienced by
a distant observer

properties at the location of the observer, we have to investigate the expression

dP (ϕ, θ, t)

d�
= R2

(−→
S · −→n

)
= R2ε0c

(−→
E (t)
)2

(11.19)

instead of Eq. (11.11). P(t) = ΔW/Δt describes the amount of energy ΔW radiated
within the observer’s time intervalΔt. The total energy radiated per passage into the
solid angle dΩ is thus

dW

d�
= ε0cR

2

∞∫

−∞

∣∣∣
−→
E (t)

∣∣∣
2
dt. (11.20)

With the help of Parseval’s theorem, the r.h.s. of Eq. (11.20) can be turned into

frequency domain:
∞∫
−∞

∣∣∣
−→
E (t)

∣∣∣
2
dt =

∞∫
−∞

∣∣∣
−→
E (ω)

∣∣∣
2
dω. Here, the Fourier transform

of the electric field
−→
E (t) is used:

−→
E (ω) = 1√

2π

∞∫

−∞

−→
E (t)eiωt dt. (11.21)

The energy radiated into the solid angle dΩ and frequency interval dω is thus
given, in far field approximation, by

d2W

d�dω
= 2ε0cR

2
∣∣∣
−→
E (ω)

∣∣∣
2
. (11.22)
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The factor of 2 appears since
−→
E (t) is a real quantity, such that negative

frequencies are not considered. According to Eq. (11.10), this means that the
expression

−→
E (ω) = q

4πε0c
√

2π

∞∫

−∞
eiω(t−R/c)

−→
n ×
{(−→

n −−→
β
)
× −̇→

β

}

(
1 −−→

n · −→β
)3
R

dt (11.23)

needs to be evaluated. The term (t− R/c) appears in the exponent since all quantities
−→
n ,

−→
β ,

−̇→
β , R must be evaluated at the retarded time. It should be noted that, in

order the solid angle dΩ to be well defined in Eq. (11.20), the relevant part of the
trajectory should remain for all times within a volume of diameter much smaller
than R, e.g. in a circular accelerator.

For motion on a circle in a constant magnetic field, the result reads [1]:

d2W (θ)

d�dω
= 3q2

16π3ε0c
γ 2
(
ω

ωc

)2(
1 + γ 2θ2

)2
[
K2

2/3 (ξ)+
γ 2θ2

1 + γ 2θ2K
2
1/3 (ξ)

]
,

(11.24)

with the abbreviation

ξ = 1

2

ω

ωc

(
1 + γ 2θ2

)3/2
. (11.25)

K2
2/3 and K2

1/3 are Bessel functions of fractional order.
Equation (11.24) is of course not any more an instantaneous property but refers

to the average over the entire passage of the electron. The angle θ describes the
elevation of the observer with respect to that tangent to the circle of motion where
−→
n · −→β becomes maximum in Fig. 11.2 (corresponding to ϕ = 90◦).

It should also be noted that, although the integral in Eq. (11.23) extends from
minus to plus infinity, it does not consider the fact that the electron (normally)
performs multiple revolutions in the synchrotron, such that the radiation cone passes
the observer many times per second. This fact can be accounted for by multiplying
Eq. (11.23) by the revolution frequency which would turn the radiated energy per
passage into an average radiation power, and the spectrum would become a discrete
one.

The term with K2/3 describes the radiation polarized in the (horizontal) plane of
deflection (σ-polarization), while the K1/3 contribution is vertically polarized (π-
polarization). As mentioned before and inferred from Eq. (11.5), the π-polarization
has no intensity in the plane of deflection (θ = 0), while the horizontal polarization
has its maximum there. Both components have a rather broad spectral distribution
with a maximum close to ωc.
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Fig. 11.6 σ-polarization (left) and π-polarization (right) component of synchrotron radiation from
a bending magnet. The axis to the left describes the frequency normalized to the critical frequency
ωc, while in the plane perpendicular to ω/ωc, the directivity of intensity is depicted, with the angle
θ taken in normalized γ θ units. The intensity is in arbitrary units

According to Eq. (11.25), the functional dependence of d2W/(dΩdω) on ω and θ
is a universal one if these quantities are normalized to ωc and 1/γ , respectively.
Using such normalized variables, the frequency and angular dependence of the
polarization components are illustrated separately in Fig. 11.6. The vertical opening
angle decreases with rising frequency and is about ±1/γ around ω = ωc.

Since in most practical cases γ is very big and the opening angle is thus very
small, the angular dependence is often not resolved by users. Integration of Eq.
(11.24) over the vertical angle θ yields the spectral power density

dW

dω
=

√
3q2

4πε0c
γ
ω

ωc

∞∫

ω/ωc

K5/3(x)dx =
√

3q2

4πε0c
γ

(
dW

dω

)

norm
. (11.26)

Equation (11.26) summarizes both polarization components. Again, if the fre-
quency is normalized to ωc, the spectral power density can be expressed by the
universal function

(
dW

dω

)

norm
= ω

ωc

∞∫

ω/ωc

K5/3(x)dx, (11.27)

see Fig. 11.7 (note that, in contrast to Fig. 11.6, a double logarithmic scale is used).
For a discussion of the individual σ- and π-components see, for instance, [4].
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Fig. 11.7 Normalized power spectrum see Eq. (11.27) (solid line) and photon number spectrum
(broken line) of synchrotron radiation

Photon Distribution
Sometimes it is necessary to pay attention to the fact that synchrotron radiation is
emitted, as any electromagnetic radiation, in quanta (photons) of energy εγ = �ω,
where � is Planck’s constant. The spectral angular photon flux can be obtained from
Eq. (11.24), dividing by �:

d2Nγ

d� dεγ /εγ
= d2W

d� �dω
. (11.28)

Equation (11.28) calculates the number of photons Nγ emitted per unit solid
angle into a relative photon energy interval dεγ /εγ . Again it is noted that this
quantity refers to a single turn in the synchrotron.

The angular-integrated spectral photon spectrum corresponding to Eq. (11.26)
can be expressed in the form

dNγ

dω
=
√

3αγ

ωc

∞∫

ω/ωc

K5/3(x)dx, (11.29)

with the fine structure constant α = 1/137.036. This spectrum is also depicted in
Fig. 11.7.

Integrating Eq. (11.29) over all frequencies yields the total numberNγ of photons
emitted per electron per turn in the synchrotron:

Nγ = 5π√
3
αγ. (11.30)
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It is interesting to note that Nγ is typically about 100, i.e. it is a rather small
number, although the photon number spectrum diverges for ω→ 0, see Eq. (11.29)
and Fig. 11.7.

The mean photon energy is given by

〈
εγ
〉 = 8

15
√

3
�ωc. (11.31)

The considerable granularity in the emission process has quite some impact on
the electron beam parameters in electron storage rings [5].

11.1.1.3 Simple Means of Changing the Emission Spectrum

Users often don’t appreciate the spectrum of synchrotron radiation, either because
of its large frequency width or because it might not contain sufficiently high
frequencies for the particular application. In the latter case, the most straight forward
solution would be making use of the strong γ -dependence of Eqs. (11.24) and
(11.26) and increasing the electron energy. However, there are often considerable
technical limitations in this respect, in particular at electron storage rings operating
in the GeV regime.

Wavelength Shifters
As the synchrotron radiation spectrum is normalized to the critical frequency
ωc, according to Eq. (11.18) the spectrum can also be hardened by increasing
the magnetic field strength, thus reducing the bending radius ρ. To this end,
often superconducting magnets are applied. In order to restrict the subsequent
modification of the electron beam’s design orbit to a small section of the storage
ring, a sequence of dipole magnets is frequently used with zero net deflection
angle. Such an arrangement is called wavelength shifter. The radiation properties
are determined in the same way as for ordinary synchrotron radiation. Beyond
hardening the spectrum and increasing the flux, there is also some advantage in
terms of flexibility in the geometrical arrangement of radiation beam lines.

Short-Magnet Radiation, Edge Radiation
When discussing the characteristic time profile of synchrotron radiation it was
assumed in the context of Figs. 11.4 and 11.5 that the electron would propagate in
the magnetic field for sufficiently long time such that the radiation cone passes the
observer’s aperture in its entire angular extension of ±1/γ . To this end, the dipole
magnet must have a length of at least

Δlc ≈ cΔt ′ ≈ 2ρ

γ
≈ 2m0c

eB
. (11.32)

For electrons and magnetic fields in the B ≈ 1 T range, this results in a few
millimeters, which would be of little relevance in most cases. However, if B is
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much weaker, or if protons are considered (e.g. at LHC/CERN), the resulting time
profile of the radiation field is shorter than shown in Fig. 11.5 and assumed for
the calculation of the synchrotron radiation spectrum. As the time profile gets
shorter, its Fourier transform extends to higher frequencies, thus the spectrum
gets “harder”. In contrast to increasing B or γ , this hardening is, however, not
accompanied by increased flux as the instantaneous properties of emission depend
only on the local magnetic field strength which does not change by shortening the
magnet.

A spectrum hardening effect similar to short-magnet radiation takes place if the
magnetic field rises at the entry face of the magnet (or drops at the exit, respectively)
over a distance comparable to or smaller than given by Eq. (11.32). In such case,
the time profile of the radiation field exhibits a rising (or falling, respectively) edge
steeper than that seen in Fig. 11.5. As a consequence, the Fourier transform extends
to rather high frequencies. At high-energy proton synchrotrons this is being used to
extend the spectrum towards wavelengths which are easy to observe.

11.1.1.4 Wigglers and Undulators

Definitions
Undulators and wigglers provide a periodic magnetic field over a part of the
synchrotron’s circumference. In most cases, the magnetic field perpendicular to the
electron beam’s design orbit can be described by a pure sinusoidal—at least within
the small spatial area where the electron beam is present. If the field acting on the
electron beam has only one non-zero Cartesian component, the device is called a
planar undulator (or wiggler, respectively). The field close to the axis can then be
described by

By(z) = B0 sin (kuz) . (11.33)

Here, B0 is the field amplitude and ku = 2π /λu is the undulator wave number,
with λu the undulator’s period. The z-axis is along the electron beam’s initial design
momentum, and we have chosen arbitrarily the magnetic field to be in the vertical
y-direction.

Typically, the length Lu of these devices is a few meters, and the field integral

I1 =
Lu∫

0

By(s)ds (11.34)

is made zero such that there is no over-all deflection of the electron beam’s
trajectory.
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A key parameter is the undulator parameter

K = eB0λu

2πm0c
≈ (0.934B0/T) · (λu/cm) . (11.35)

As this quantity refers to electrons (or positrons), we have assumed m0 to be the
electron rest mass me in the last part of the equation. A device with K ≤ 1 is called
undulator, while wigglers exhibit values K > 1. Sometimes devices with K > 1 are
also called undulators if they are used in terms of radiation properties typical of
undulators, e.g. when observing the line spectrum in forward direction (see below).

Undulators and wigglers are realized in basically three varieties of technology:
iron-based electromagnets, permanent magnets and superconducting magnets. For
details, see e.g. [6].

Particle Trajectory
The equation of motion of an electron (with elementary charge −e) moving in
presence of the field of Eq. (11.33) reads in Cartesian components

ẍ = e

γme
By(z)· ż, and

z̈ = − e

γme

By(z)· ẋ. (11.36)

To first-order approximation, the periodic solution reads

x(t) ∼= K

βγ ku
sin (kuβct) , or x(z) ∼= K

βγ ku
sin (kuz) , and

z(t) ∼= βct. (11.37)

This motion is illustrated in Fig. 11.8.

Fig. 11.8 Periodic electron
motion (red) in a planar
undulator fabricated in hybrid
permanent magnet
technology. The magnet field
is indicated by green arrows
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It should be noted that, in order this periodic trajectory to happen, the electron
beam must enter the device on an orbit representing the appropriate initial con-
ditions. In addition, the undulator field must begin and end with a quarter-period
undulator section.

From Eq. (11.37) the maximum deflection angle can be calculated:

ϑmax ≈
(
dx

dz

)

max
= K· 1

γβ
≈ K

γ
. (11.38)

The maximum orbit excursion of the electron is

xmax ∼= K

γku
. (11.39)

Under many typical conditions, this results in only a few micrometers and is thus
much smaller than the typical electron beam diameter.

In Eq. (11.37) the longitudinal motion z(t)was described only to first order, not
taking into account its coupling to the transverse motion. A more precise, second
order calculation results in

z(t) = vzt − K2

8γ 2ku
sin (2ωut) , (11.40)

where the abbreviation ωu = βcku and the average longitudinal velocity

vz ≈ c

[
1 − 1

2γ 2

(
1 + K2

2

)]
≡ βc (11.41)

have been introduced. According to Eq. (11.40), the oscillatory motion in the
transverse plane translates into a small modulation of the longitudinal velocity
around vz. This average longitudinal velocity differs, as described by Eq. (11.41),
from c due to two effects: the factor 1 − 1/(2γ 2) ≈ β describes by how much
the electron’s total speed differs from c. The factor 1 + K2/2 describes the mean
additional longitudinal retardation due to the transverse velocity components.

Radiation Properties
Calculation of the radiation spectrum starts again from Eqs. (11.22) and (11.23),
however, now the oscillatory motion in the undulator field must be considered when
evaluating Eq. (11.23). Qualitatively, it should be clear from Figs. 11.4 and 11.9 that
the time profile of the wiggler radiation field (K > 1) should resemble the standard
dipole field case with the only difference that there will be a series of radiation
spikes, see Fig. 11.10. The radiation spectrum differs thus not very much from the
synchrotron radiation case but will beN times more intense with N being the number
of wiggler periods (see Fig. 11.11).

On the contrary, in the undulator case K ≤ 1, an observer will only see radiation
field within a small angle of approximately ±1/γ with respect to the forward
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Fig. 11.9 Emission of radiation cones along the oscillatory trajectory in an undulator or wiggler.
In this schematic, the wiggler case K > 1 is illustrated, where the deflection angles ϑ = K/γ are
larger than 1/γ

Fig. 11.10 Time profile of radiation field for wiggler (solid line) and undulator radiation (broken
line). Note that these two time profiles do not belong to the same undulator period, although they
have obviously the same fundamental period in time. The reason is that the slippage between the
longitudinal electron velocity and c is larger in the wiggler than in the undulator case

direction, and within this angle he will observe a continuous oscillatory field with N
periods. Fourier transform of this time profile results in a fundamental wavelength

λ1 = λu

2γ 2

(
1 + K2

2
+ γ 2θ2

)
, (11.42)

and higher harmonics λk = λ1/k. From symmetry consideration one can immedi-
ately understand that in forward direction θ = 0 there will be only odd harmonics.

The angular spectral energy distribution in forward direction (see Fig. 11.11) is
given by [4]

(
d2W
d�dω

)

θ=0
∼= q2N2K2γ 2

4πε0c
(

1+K2
2

)2

∑
k=2n+1 k2

(
sin
(
πN

ω−kω1
ω1

)

πN
ω−kω1
ω1

)2

×
∣∣∣∣∣
J k−1

2

(
kK2

4
(

1+K2
2

)

)

− J k+1
2

(
kK2

4
(

1+K2
2

)

)∣∣∣∣∣

2

.

(11.43)
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Fig. 11.11 Undulator spectrum in forward direction for γ = 1000 and N = 10 undulator periods.
The undulator parameter is K = 0.5 (top) and K = 2 (bottom). The undulator period is λu = 2 cm.
The vertical scales are in arbitrary units. The broken line in the lower diagram shows the spectrum
of synchrotron radiation for a magnetic dipole field equal to the peak field of the undulator, with
the vertical scale matched to the undulator spectrum arbitrarily

The sinc-function with argument πN(ω − kω1)/ω1 describes the spectral distri-
bution of the individual undulator harmonics. The total line width of harmonics k
is

Δω

ωk
≈ 1

kN
. (11.44)

The photon number spectrum radiated into the frequency interval �ω/ωk in
forward direction is given by

dNγ

d�
= αN2γ 2 Δω

ωk
k2 K2
(

1+K2
2

)2

∣∣∣∣∣
J k−1

2

(
kK2

4
(

1+K2
2

)

)

− J k+1
2

(
kK2

4
(

1+K2
2

)

)∣∣∣∣∣

2

.

(11.45)

α is again the fine structure constant.
As compared to the synchrotron radiation spectrum Eq. (11.24), undulator radi-

ation provides a spectral density in forward direction larger by some factor N2. One
factor N results from having a number of N undulator periods. The other factor N
stems from the fact that, due to interference, the radiation spectrum is concentrated
into narrow resonance lines. Thus, in forward direction, the field amplitudes add
up coherently, not the intensities. The total radiation energy increases with N as
expected.
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Sometimes, e.g. for spectroscopy applications, only the spectral contribution of
the undulator harmonics in forward direction is of interest. This radiation has a very
narrow opening angle:

σθ ≈
√

1 +K2/2

2γ 2kN
=
√

λ1

λukN
=
√

λk

Nλu
=
√
λk

Lu
. (11.46)

It is some factor of 1/
√
kN narrower than with synchrotron radiation.

Helical Undulators
A helical undulator generates a magnetic field vector following a helical orientation
like

−→
B hel ∼= B0

⎛

⎝
− sin kuz
cos kuz

0

⎞

⎠ . (11.47)

The resulting electron orbit is (appropriate initial conditions given) also a helix,
with velocity components

v⊥
c
= 1

c

√
v2
x + v2

y =
K

γ
, and

βz = 1

c

√
v2 − v2

x − v2
y =
√

β2 −
(
K

γ

)2

≈ 1 − 1

2γ 2

(
1 +K2

)
, (11.48)

which are both constant.
The major differences compared to planar undulators are:

(i) For calculation of the fundamental wavelength according to Eq. (11.42) one
needs to replace K2/2 by K2.

(ii) According to Eq. (11.5), the electric field vector of undulator radiation in
forward direction will also move on a perfect helix, thus this radiation will
be circular polarized, and it will consist of only the fundamental harmonics,
independent of the magnitude of K.

11.1.1.5 Radiation from Many Electrons

Brilliance
The emittance of a synchrotron radiation photon beam, i.e. the product of rms
opening angle σ ′γ and rms source size σγ is limited due to diffraction. For a perfect
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Gaussian optical mode, the minimum-emittance is achieved, given by [4, 7]

εγ = σ ′γ σγ =
λ

4π
. (11.49)

with the wavelength of radiation λ.
As the emittance of the photon beam can never be smaller than indicated by Eq.

(11.49), the very narrow opening angle of undulator radiation, Eq. (11.46), means
that photons radiated from an undulator have a rather large apparent source size.

If a radiating electron beam has an emittance εe smaller than given by Eq.
(11.49), the resulting radiation will be indistinguishable from radiation of a point
source, if the opening angle σ ′e of the electron beam is matched to the opening
angle of the radiation. A crude estimate for σ ′e is σ ′e ≈ √

εe/β, where β is the
magnet optics beta function. Thus, a comparison with Eq. (11.46) would result in
an estimated matched beta function≈Lu/4π . However, such a small value cannot be
kept constant within the undulator length if there are no further magnetic focusing
elements. A more appropriate value is thus somewhat larger [4]:

βmatch ≈ Lu

2
. (11.50)

It should be noted that these considerations apply for both transverse directions
x/y independently.

An electron storage ring providing an electron emittance

εe ≤ λ

4π
(11.51)

in both x and y is said to work at the diffraction limit. Designing electron storage
rings operating at (or close to) the diffraction limit is a difficult task, in particular
if the wavelengths of interest are very short, e.g. in the hard X-ray regime. In
tendency, this requires large ring diameters and sophisticated electron beam optics
arrangements. Quite some efforts in this direction are under way at several big
laboratories at the time of writing the present article.

In practice, Eq. (11.51) can often not be fulfilled. In this case, since both the
photon and electron distributions are Gaussian in good approximation, the effective,
combined distribution is given by a convolution and results in

%2 ≈ σ 2
γ + σ 2

e . (11.52)

This holds for both, transverse dimensions and opening angles, and applies again
for both transverse directions x/y independently.

Many experiments using synchrotron (or undulator) radiation rely on the possi-
bility to focus a small spectral fraction Δω/ω of the photon beam, selected e.g. by
a monochromator, onto a small spot at the experiment. The figure of merit for such
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experiments is the brilliance B:

B = (dn/dt) /
(

4π2%x%y%x ′%y ′dω/ω
)
. (11.53)

This quantity is also called brightness by some authors. dn/dt is the number of
photons per unit time, and Σx, etc., are the rms photon beam extensions in x,y
dimensions, convoluted in the spirit of Eq. (11.52).

In RF accelerators, electrons are arranged within bunches such that the peak
beam current is much larger than the average current. Thus, the instantaneous value
of brilliance during the very moment of bunch passage is much larger that its time
average.

Undulator beam lines at modern storage rings reach peak brilliance values up to
Bpeak ≈ 1025 mm−2 mrad−2 s−1 (0.1%)−1, see Fig. 11.12.
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Fig. 11.12 Peak brilliance values delivered by typical undulator beamlines at some state-of-the-
art synchrotron radiation storage rings. Values for FEL facilities are also shown. It should be noted
that some of the FEL facilities (FLASH, European XFEL) are driven by a superconducting linear
accelerator providing an electron bunch repetition rate larger by several orders of magnitude than
normal conducting ones, resulting in a correspondingly larger rate of photon pulses. This difference
is not visible in this figure of peak values but may be beneficial for several scientific applications
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Average brilliance values can exceed values Bavg ≈ 1021 mm−2 mrad−2 s−1

(0.1%)−1.
In case of a perfectly diffraction limited beam in both x/y directions, it is

concluded from Eqs. (11.49), (11.51), and (11.52) that Eq. (11.53) simplifies to:

B = 4 (dn/dt) /
(
λ2dω/ω

)
. (11.54)

Coherent Synchrotron Radiation
In sections “Basic Properties of Synchrotron Radiation” through “Wigglers and
Undulators”, emission by a point charge has been considered. In this case, the
intensity scales with the radiating charge q squared. In other words, if this quasi-
point charge consists of Ne electrons, the total power would be N2

e larger than the
power P0 radiated by a single electron.

In general, if radiation of many electrons is considered, we need to add up

first the electric field vectors
−→
E k of all electrons coherently before calculating

the intensity. In the following we restrict ourselves to the one-dimensional case,
where all electrons follow the same path, but just at different times (“pencil beam”).
In most cases, the transverse extension of the bunch does not alter the results
significantly.

In case of a pencil beam, the electric field contributed by any of the electrons
differs from the field of the others only in terms of the phase factor exp{iω(t− Rk/c)}
in Eq. (11.23), since, at time t, the electron with index k is located at a retarded
distance Rk while others will be located at a different distance. Calling these
individual phases differences ϕk, the power radiated by the ensemble scales like

P (ω) ∝ ∣∣E2
∣∣ =
(−→
E 1 +−→

E 2 + . . .
) (−→

E 1 +−→
E 2 + . . .

)∗

=
Ne∑

k,j

−→
E k

−→
E
∗
j ∝

Ne∑

k,j

e−i(ϕk−ϕj )

∝ Ne +
Ne∑

k �=j
ei(ϕk−ϕj ). (11.55)

How much of phase difference is introduced by a difference in longitudinal
position zk depends, of course, on the wavelength λ considered:

ϕk − ϕj = 2π

λ

(
zk − zj

) = k
(
zk − zj

) = ω

c

(
zk − zj

)
. (11.56)

If the longitudinal positions of electrons are random, the last term in Eq. (11.55)
cancels and the resulting power is given by

Pinc (ω) = NeP0 (ω) , (11.57)
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with P0 the power of a single electron. This contribution is called incoherent
radiation.

If, however, the charge distribution is non-random, we describe the longitudinal
charge distribution by a normalized density function ρ(z). This function determines,
when evaluating the double sum of phase factors in Eq. (11.55), how often each
phase difference value appears, so the double sum can be translated into a Fourier
transform of ρ(z). The expectation value of the power radiated by the ensemble is
then

P (ω) = NeP0 +Ne (Ne − 1)
∣∣Flong (ω)

∣∣2 P0 (ω) . (11.58)

Here,

Flong (ω) =
∞∫

−∞
ρ(z)ei

ω
c
zdz (11.59)

is the longitudinal form factor of the charge distribution inside the electron bunch.
The contribution

Pcoh (ω) = Ne (Ne − 1)
∣∣Flong (ω)

∣∣2 P0 (ω) . (11.60)

to the total radiation power is called coherent synchrotron (or undulator, respec-
tively) radiation. Due to the large number Ne of electrons in the bunch, Pcoh can
exceed Pinc by many orders of magnitude, even if the longitudinal charge profile
has only a small Fourier content at the wavelength of interest.

At storage rings, where the charge distribution can be described very well by a
Gaussian, with typical rms bunch length values of a few millimetres, Pcoh becomes
noticeable only at wavelengths in the far infrared. On the other hand, emission of
radiation is suppressed very effectively by shielding due to the vaccum chamber.
This happens, if in the vacuum chamber, which can be regarded as a curved
waveguide, is no propagating mode whose phase velocity matches with the particle
velocity. A typical parameter is the shielding wavelength 2π

√
h3/R that can be

calculated for a flat chamber of height h and curvature radius R [8]. Thus, coherent
synchrotron radiation is not observed at most storage rings, but it has been provoked
by arranging the storage ring parameters to achieve very short bunches [9].

The dramatic increase of radiation power can also be achieved if the longitudinal
charge density is modulated at the wavelength of interest. This is the physical basics
of the free-electron laser (FEL).

At linear accelerators much shorter bunches can be realized than at storage rings,
and longitudinal bunch profiles may exhibit a very rich internal structure at scales
down to the micrometer range, in particular at high-gain FEL facilities, where
bunch lengths in the few micrometer range are needed, see Sect. 11.1.2. At such
accelerators, infrared spectroscopy of coherent synchrotron radiation (or of optical
transition radiation) represents a powerful tool for electron beam diagnostics [10].
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11.1.2 Free-Electron Lasers

11.1.2.1 One Dimensional FEL Theory

The interaction of electrons with electromagnetic waves in an undulator of an FEL
is sketched in Fig. 11.8. Important aspects of the FEL process can be described in
a model, where electromagnetic fields do not depend on the transverse coordinates
x,y and the trajectories of particles with different transverse initial conditions are
just transversely shifted. This does not exclude transverse motion of particles.

For the description of the interaction of electrons with waves we need only three
types of state quantities. Two of them are particle coordinates in longitudinal phase
space: the ponderomotive phase ψ , see below and the relative energy offset η. A
third quantity Êx stands for the complex amplitude of the electric field of the plane
electromagnetic wave, and z, the length along the undulator axis, is the independent
coordinate. To simplify the FEL equations, we are not interested in oscillations with
the undulator period λu, but in the variation of our quantities from period to period
or in average versus one period. Therefore the FEL equations for a bunch with N
particles (of index ν) per period are in principle of the following type

d
dz
ψν = fψ

(
ψ1 · · ·ψN, η1 · · · ηN, Êx, z

)

d
dz
ην = fη

(
ψ1 · · ·ψN, η1 · · · ηN, Êx, z

)

d
dz
Êx = fE

(
ψ1 · · ·ψN, η1 · · · ηN, Êx, z

)
.

(11.61)

If the undulator parameters are z independent, and with some approximations
they can be written as

d
dz
ψν ∼ ην

d
dz
ην ∼ Re

{
Êx exp (iψν)

}

d
dz
Êx ∼ b = N−1∑ exp (−iψν) .

(11.62)

The first equation relates the relative position in the bunch (ponderomotive phase)
to the energy offset. This is just a linearized version of the equation of motion,
that describes that a particle with more energy (higher η) is deflected less by the
undulator, performs oscillations with smaller amplitude, has a shorter trajectory
through one period and increases its phase (longitudinal position) relative to a
particle without deviation from reference energy.

The second equation represents the change of particle energy caused by the
electromagnetic wave. This depends on the phase of the particle ψν relative to the

phase of the wave arg
(
Êx

)
and on the absolute amplitude

∣∣∣Êx

∣∣∣. This clarifies the

definition of the ponderomotive phase: ψν is �zν2π /λl with �zν the length shift
relative to a reference particle of reference energy (ηref = 0), and wavelength λl
into forward direction according to Eq. (11.42).
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The third equation assumes that only one spectral line (usually the fundamental
wavelength) is excited and is characterized by the amplitude Êx . This amplitude is
driven by the microbunching of the particle distribution with the same wavelength.
Therefore the Fourier coefficient of that wavelength, the bunching factor b, deter-
mines the increase of Êx . This approach of a resonant and slowly varying amplitude
(SVA) is used in most FEL programs (as in ALICE or GENESIS [11, 12]).

For a systematic presentation of FEL theory see [7, 13–16] and the literature
quoted therein.

11.1.2.1.1 Low-Gain FEL Theory

The low-gain approximation assumes that the electromagnetic wave amplitude does
not change during the passage of one electron bunch through the undulator. This
assumption may sound like a contradiction to the purpose of the FEL of amplifying
the intensity of a radiation field. The approximation makes it possible, however, to
estimate in a simple way the amount of amplification as a cumulated effect during
a single passage of the undulators. Therefore only the change of the ponderomotive
phase and of the particle energy are considered. This causes microbunching and a
net gain or loss of the particle energy. The microbunching can reach saturation if
the electromagnetic wave is strong enough or the undulator sufficiently long. The
net change of particle energy is an indirect method to calculate the change of field
energy by utilizing energy conservation. The gain function G = �I/I0 is the ratio
of the intensity change �I to I0, the intensity of the electromagnetic wave assumed
for low-gain theory. Strong bunching is not in contradiction to low-gain operation if
G is small, but it requires presence of a very large initial intensity. This is normally
accumulated over many round trips of the radiation within an optical cavity, with
low-gain amplification at each round trip. The technical realization of such a FEL
“oscillator” is thus based on the existence of an optical cavity consisting of low-loss
mirrors.

The light wave co-propagating with the electron beam is taken as a plane wave
Ex(z, t) = E0 cos (klz − ωlt + ψ0) with wavelength λl and wave number kl = 2π

λl
.

The motion of a particle in a planar undulator is described by Eqs. (11.37) and
(11.40):

x (z(t)) ≈ K
γku

sin (kuz(t))

z(t) ≈ vzt − K2

8γ 2ku
sin (2ωut) .

The transverse velocity is

vx(t) ≈ Kvz

γ
cos (kuz(t)) , (11.63)
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Fig. 11.13 Condition for sustained energy transfer from electron to light wave

and the time derivative of the electron energy is

mec
2dγ /dt = −ev · E = −eEx (z(t), t) vx(t). (11.64)

Sustained energy transfer from electron to light wave requires that the light
wave slips forward with respect to the electron by λl/2 per half period of the
electron trajectory, see Fig. 11.13. This is fulfilled if vzTu + λl = cT u, with
Tu = 2π /ωu ≈ λu/c. This is a condition for the average longitudinal velocity Eq.
(11.41) that relates the particle energy γ and undulator properties λu,K to the photon
wavelength

λl = λu

2γ 2

(
1 + K2

2

)
. (11.65)

It is the same wavelength as for the radiation of a single electron in forward
direction. (Compare Eq. (11.42) with θ = 0.) Slippages by 3λl/2, 5λl/2 . . . are also
permitted, leading to odd higher harmonics (λl/3,λl/5 . . . ) of the FEL radiation.
However slippages of 2λl/2, 4λl/2 . . . yield zero net energy transfer, hence even
harmonics are absent in FEL radiation.

To calculate the average derivative of electron energy, as it is required for the
FEL Eq. (11.62), we have to calculate the mean value of Eq. (11.64) in a time
interval of the length Tu. Supposed the resonance condition Eq. (11.65) is fulfilled,
the derivative of energy is a periodic function in time (with period Tu) and the mean
value is

〈dγ /dt〉Tu = −e E0vz

2γmec2 K̂ cosψ0, (11.66)

with

K̂ = K

[
J0

(
K2

4 + 2K2

)
− J1

(
K2

4 + 2K2

)]
. (11.67)
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We rewrite Eq. (11.66) for η(z) = (γ − γ r)/γ r with z = vt as independent
coordinate to get an equation of the required type:

dη

dz
= −e K̂

2γ 2mec2 Re {E0 exp (iψ0) exp (iψ)} . (11.68)

Additional to the wave phase ψ0 we consider the ponderomotive phase ψ which
is individual per particle. This reflects that an arbitrary particle can be shifted in time
relative to the “reference” particle with the trajectory x(t), z(t).

The slip �ψ = kl (vz ((1 + η) γr)− vz (γr )) Tu of the ponderomotive phase in
one undulator period due to η is caused by the energy dependency of the average
longitudinal velocity Eq. (11.41). Therefore the longitudinal dispersion is in linear
approximation

dψ

dz
= 2kuη. (11.69)

FEL Pendulum Equations and Gain Function
The particle dynamic in longitudinal phase space (ψ ,η) is fully determined by
Eqs. (11.68) and (11.69). They are formally equivalent to that of a mathematical
pendulum. The phase space trajectories of few particles is illustrated in Fig. 11.14.
The region of bounded motion is separated from the region of unbounded motion
by a curve called the separatrix. Initially the particles are evenly distributed on the
black line, but the endpoints are, in average, closer to the phase π /2. This illustrates
microbunching. In the right diagram for the initial condition η > 0, we see a loss
of the energy averaged over all particles. This net change of particle energy is an
indirect method to calculate the change of field energy and light intensity by utilizing
energy conservation.

Fig. 11.14 Phase space (ψ ,η) trajectories for 15 electrons of different initial phase (red) and
separatrix (blue). Left picture: electrons are initially on resonance energy. Right picture: electron
energy is initially above resonance energy
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The FEL gain function is defined as the relative increase in light intensity during

one passage of the undulator: G = (I − I0) /I0 =
∣∣∣Ẽx/E0

∣∣∣
2 − 1. The gain is

proportional to the negative derivative of the line-shape curve of undulator radiation
(Madey theorem) [17]

G(ξ) = −πe2K̂2N2
uλ

2
une

4ε0mec2γ 3
r

· d
dξ

(
sin2 ξ

ξ2

)

, (11.70)

with the detuning ξ = πNuη, ne the number of electrons per unit volume and Nu the
number of undulator periods.

Low Gain FELs
Low gain FELs like the infrared FEL at JLAB consist of a short undulator in an
optical cavity fed by a multi bunch source. Upon each bunch passage through the
undulator the light intensity grows by only a few per cent, but after very many round
trips a large average FEL beam power can be achieved, e.g. more than 10 kW in the
infrared FEL at JLAB [16, 18].

11.1.2.1.2 High-Gain FEL Theory

For wavelengths far below the visible it is not possible to build optical cavities. An
option is then making the undulator much longer, such that the gain during a single
passage becomes attractive and an optical cavity arrangement becomes obsolete. In
this case, the low-gain assumption |G| < < 1 cannot be made any more, meaning
that the stimulation and propagation of electromagnetic waves must be taken into
account. Results from LCLS (Linac Coherent Light Source, SLAC, Stanford, USA)
are shown in Fig. 11.15 [19].

Fig. 11.15 Exponential
growth and saturation of the
FEL power in LCLS at
λ = 0.15 nm as function of
active undulator length [19].
The progressing
microbunching is indicated
schematically
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Some important effects as microbunching, exponential growth and saturation
of the FEL power and even the start-up-from-shot-noise can be studied with
help of the one dimensional periodic model Eq. (11.62). The equations for d

dz
ψν

and d
dz
ην are the same as for the low gain case (Eqs. 11.68 and 11.69). The

stimulation of the electric field amplitude is calculated with help of the wave
equation.

Wave Equation
In one dimensional theory the electromagnetic field is described by a plane
wave. According to this approach the finite beam cross-section is extended to
infinity and each electron gets an infinite number of doubles in the expanded
volume. The point particles are replaced by 1D charge sheets. All quantities as
charge density, bunch current and electromagnetic fields are independent on the
transverse coordinates x, y. The radiation field obeys the 1D inhomogeneous wave
equation

[
∂2

∂z2
− 1

c2

∂2

∂t2

]
Ex (z, t) = μ0

∂jx

∂t
, (11.71)

where jx is the transverse current density resulting from the sinusoidal motion. We
make the ansatz

Ex (z, t) = Êx (z, t) exp [i (klz− ωlt)] (11.72)

with a complex amplitude function Êx (z, t). The microbunching effect is antici-
pated by assuming a small periodic modulation ĵ1 (z, t) of the longitudinal current
density

jz (z, t) = j0 (z− vt)+ ĵ1 (z, t) · exp

(
ikl

(
z + ẑ sin (2kuz)

β
− ct

))
,

(11.73)

with j0 (z− vt) the current density without microbunching and ẑ = K2/
(
8γ 2ku

)
.

Note that the exponential term describes the fast oscillation in time and space, while
Êx (z, t), ĵ1 (z, t) and j0 (vt) are slowly varying amplitudes (SVA). The variations
of SVA quantities in z and t are slowly compared to the λu respectively λl/c.
Therefore the longitudinal oscillation of the bunch (compare Eq. (11.40)) can be
neglected for SVA quantities but not for the exponential function. The transverse
current density is

jx (z, t) ≈ vx(z)

vz
jz (z, t) , (11.74)
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with vx(z) from Eq. (11.63). Combining Eqs. (11.71), (11.72), and (11.74) and
neglecting derivatives of SVA quantities compared to fast terms yields

(
∂
∂z
+ 1

c
∂
∂t

)
Êx (z, t) = − cμ0K

2γr
ĵ1 (z, t) cos (kuz) exp (ikuz) exp

(
ikl ẑ sin (2kuz)

)
.

On the right hand side appears the product of three functions that are z periodic in
λu respectively λu/2, but for the SVA approach we are only interested in variations
large compared to the undulator period. Therefore we average this product along
one undulator period and get

(
∂

∂z
+ 1

c

∂

∂t

)
Êx (z, t) = −cμ0K̂

4γr
ĵ1 (z, t) . (11.75)

Again the longitudinal oscillation is regarded by the modified undulator parame-
ter K̂ , Eq. (11.67).

Periodic Approach
The periodic approach is applicable if the initial bunch and electromagnetic stimu-
lation are sufficiently long in time, or more precisely if time variations are slowly
compared to coherence time Lcoh/c, with Lcoh the coherence length defined below
in Eq. (11.85). The time dependency in Eq. (11.75) is neglected Êx (z, t)→ Ẽx(z),
ĵ1 (z, t) → j̃1(z), j0 (z− vt) → j0 and only particles in one micro-period are
considered. We choose N electrons with start phases ψν in the range 0 ≤ ψ < 2π .
Then the modulation amplitude follows from Fourier series expansion

j̃1 = 2j0

N∑

ν=1

exp (−iψν) /N. (11.76)

The sum
N∑

ν=1
exp (−iψν) /N is called bunching factor.

Coupled First-Order Equations
Combining Eqs. (11.68), (11.69) and (11.75) one obtains a set of coupled first-order
equations

d
dz
ψν = 2kuην

d
dz
ην = − eK̂

2mec2γ 2 Re
{
Ẽx exp (iψν)

}

d
dz
Ẽx = −μ0cK̂

4γ j̃1

(11.77)

which, together with Eq. (11.76), describe the evolution of the phases ψn and
energy deviations ηn of the N electrons, as well as the growth of Ẽx(z) and j̃1(z).
Longitudinal Coulomb forces (“space charge forces”) are of minor importance in
short-wavelength FELs [14] and are neglected here and in Eq. (11.78) below.
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Third Order Equation
The main physics of the high-gain FEL is contained in the first-order Eq. (11.77) but
these can only be solved numerically. If the modulation current j̃1 remains small a
linear third order differential equation for the electric field can be derived (see e.g.
[7, 14, 20, 21]):

Ẽ′′′
x + 4ikuηẼ′′

x − 4k2
uη

2Ẽ′
x −

i
(√

3Lg0

)3 Ẽx = 0 (11.78)

with the 1D power gain length

Lg0 = 1√
3

[
4γ 3

r me

μ0K̂2e2kune

]1/3

. (11.79)

Exponential Gain and Saturation
The solution of Eq. (11.78) is of the form Ẽx(z) = ∑3

j=1Aj exp
(
αj z
)
. For

the special case η = 0 (electrons are on resonance energy) one finds α1,2 =(
±1 + i/

√
3
)
/
(
2Lg0
)
, α3 = −i/

(√
3Lg0

)
. In case of laser seeding (see below)

with an initial field E0, all amplitudes are equal, Aj = E0/3. The light power
stays almost constant in the “lethargy regime”, 0 ≤ z < ~2Lg0, but then it grows
exponentially (see Fig. 11.16)

P(z) ∝ exp (2 Re [α1] z) ≡ exp
(
z/Lg0

)
. (11.80)

The Eq. (11.77) yield the same result as Eq. (11.78) in the lethargy and
exponential gain regimes but describe FEL saturation in addition. The saturation

Fig. 11.16 FEL power as a
function of z/Lg0 in a seeded
FEL (blue) and a SASE FEL
(red). Solid curves: numerical
integration of coupled
first-order Eq. (11.77). Dots:
analytic solution of
third-order Eq. (11.78)
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power is

Psat ≈ ρPb, (11.81)

where Pb the electron beam power, and ρ is the dimensionless FEL (Pierce)
parameter [21]

ρ = λu

4π
√

3Lg0
=
[
π

8

I0

IA

K̂2

γ 3
r Abk2

u

]1/3

. (11.82)

(I0 peak current, IA ≈ 17 kA Alfven current, Ab beam cross section). For short-
wavelength FELs ρ is typically of the order 10−4· · · 10−3.

FEL Gain-Function and Bandwidth
For a short undulator (length ≤Lg0), the high-gain FEL theory agrees with the low-
gain theory, but in long undulators strong differences are seen: the gain is much
larger and the gain-function approaches a Gaussian (Fig. 11.17). The high-gain FEL
acts as a narrow-band amplifier with an rms bandwidth [7]

σω/ω =
√
ρλu

z

9

2π
√

3
. (11.83)

Self-Amplified Spontaneous Emission (SASE)
SASE [20, 21] permits the startup of lasing without seed radiation. Intuitively speak-
ing, spontaneous undulator radiation produced in the first section of a long undulator
serves as seed radiation in the remaining section. More precisely speaking, because
of the random electron distribution, the current contains a noise term which has a
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Fig. 11.17 FEL gain function G(η) plotted vs. η/ρ at two positions in a long undulator: left
z = 1Lg0, right z = 8Lg0. Red curves: high-gain theory. Blue dots/curve: low-gain theory (Madey
theorem)
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spectral component within the FEL bandwidth. The effective shot-noise power and
modulated current density are [7, 22]

Pn = ργmec
2σω/ (2π) , j̃1(0) ≈

√
eI0σω/Ab. (11.84)

The computed power rise for typical parameters of the soft x-ray FEL FLASH
(see e.g. [7]) is shown in Fig. 11.16. Saturation is achieved at an undulator length
Lu ≈ 20Lg0. The SASE bandwidth at saturation is σ sω/ω ≈ ρ. SASE radiation
exhibits shot-to-shot fluctuations in its output spectrum. The coherence length at
saturation is

Lcoh ≈ √
πc/σ sω = λl/

(
2
√
πρ
) ≈ 11

λl

λu
Lg0. (11.85)

For a bunch length Lb > Lcoh, the average number of spikes in the wavelength
spectra is M = Lb/Lcoh (assuming full transverse coherence). M can be interpreted
as the number of coherent modes of the FEL pulse. In the exponential gain regime
the normalized radiation pulse energy u = Urad/〈Urad〉 fluctuates according to the
gamma distribution [14]

ρM(u) = MMuM−1

Γ (M)
e−Mu, σ 2

u = 1/M. (11.86)

Phase Space and Simulation of Microbunching
The FEL dynamics resembles the synchrotron oscillations of a proton in a syn-
chrotron or storage ring. In the (ψ , η) phase space the particles rotate clockwise,
hence particles in the right half of an FEL bucket transfer energy to the light wave,
while those in the left half withdraw energy, see Fig. 11.18 and compare Fig. 11.14.
Equation (11.77) are well suited for modelling the microbunching. For z ≥ 12Lg0
pronounced microbunches evolve in the right halves of the FEL buckets and increase
the light intensity, while beyond 18Lg0 they move into the left halves and reduce it.
The FEL power oscillations in Fig. 11.16 are caused by this rotation in phase space.

Higher Harmonics
Close to saturation, the periodic sequence of narrow microbunches (see Fig. 11.18)
corresponds to a modulation current with rich harmonics contents. In a planar
undulator, odd higher harmonics will be amplified. The third (fifth) harmonic can
reach 1% (0.1%) of the fundamental power.

11.1.2.2 Three Dimensional Effects

The realistic description of high-gain FELs has to be based on a three-dimensional
(3D) theory, taking into account electron beam emittance and energy spread, and
optical diffraction. In idealized cases, e.g. a round beam with uniform longitudinal
charge density, an FEL eigenmode equation including all these effects can be
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Fig. 11.18 Evolution of the microbunch structure at z = 12Lg0, 14Lg0, 16Lg0, 18Lg0. Upper
subplots: distribution of particles in (ψ , η) phase space. Three FEL buckets are indicated by dashed
curves. Lower subplots: normalized charge density as function of ψ

developed [14, 23]. More realistic cases require sophisticated simulation codes such
as FAST [24], GENESIS [11] or GINGER [25]. These are indispensable for the
design of short-wavelength FELs.

3D Gain Length
The 3D gain length Lg is typically 30–50% longer than the 1D gain length
Lg0. According to [23] Lg can be expressed in terms of three dimensionless
parameters: Xγ = Lg04πση/λu (energy spread parameter), Xd = Lg0λl/

(
4πσ 2

r

)

(diffraction parameter, σ r rms beam radius) and Xε = Lg04πε/(βavλl) (angular
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spread parameter, ε emittance, βav average beta function).

Lg = Lg0 (1 +Λ) (11.87)

Λ = a1X
a2
d + a3X

a4
ε + a5X

a6
γ + a7X

a8
ε X

a9
γ +

+ a10X
a11
d X

a12
γ + a13X

a14
d X

a15
ε + a16X

a17
d X

a18
ε X

a19
γ

a1 = 0.45, a2 = 0.57, a3 = 0.55, a4 = 1, 6,
a5 = 3.0, a6 = 2.0, a7 = 0.35, a8 = 2.9,
a9 = 2.4, a10 = 51, a11 = 0.95, a12 = 3.0,
a13 = 5.4, a14 = 0.7, a15 = 1.9, a16 = 1140,
a17 = 2.2, a18 = 2.9, a19 = 3.2.

Gain Guiding
Gain guiding counteracts the diffractive widening of the FEL beam since most of
the light is generated in the central core of the electron beam [26]. Gain guiding
permits the FEL beam to follow slow, “adiabatic” motions of the electron beam and
is thus crucial for the tolerable deviation of the electron beam orbit from a perfectly
straight line in the long undulator of an x-ray FEL.

Transverse Coherence
The fundamental Gaussian mode TEM00 has its highest intensity on the beam axis
while higher modes extend to larger radial distances. The TEM00 mode grows
fastest along the undulator, owing to its superior overlap with the electron beam.
Near saturation it dominates and the FEL radiation possesses a high degree of
transverse coherence, as verified by double-slit diffraction experiments [27].

Seeding
FEL “Seeding” means to provide an initial electromagnetic wave at the entrance
of the undulator with the help of an external laser pulse of adequate wavelength.
Various seeding methods have been proposed to improve the longitudinal coherence
properties of SASE radiation, and to reduce the relative timing jitter between
pump and probe signals in time domain experiments aiming at femtosecond level
resolution. Direct seeding requires a coherent signal well above the shot-noise level.
In the VUV such signals may be obtained by high harmonic generation (HHG)
in a gas [28, 29]. At shorter wavelengths, self-seeding [30] may be applied: a
SASE signal, produced in a short undulator, is passed through a monochromator
and serves as narrow-band seed radiation in the main undulators following further
downstream. In a high-gain harmonic generation (HGHG) FEL [31], the electron
beam is energy-modulated in an undulator by interaction with a powerful laser.
A magnetic chicane converts the energy modulation to a density modulation. A
second undulator causes the density-modulated beam to emit coherent radiation
at a higher harmonic frequency. In an echo-enabled harmonic generation (EEHG)
FEL [32], a second modulator followed by a second chicane are inserted before
the radiator. The electron beam interacts twice with two laser pulses in the two
modulators. The longitudinal phase space distribution becomes highly nonlinear,
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leading to density modulations at a very high harmonic number initiated by a modest
energy modulation.

11.1.2.3 Technical Requirements

Very bright electron beams are required to drive ultraviolet and x-ray FELs. Higher
peak current and smaller cross sections reduce the gain length (see Eq. (11.82)).
High peak currents require longitudinal bunch compression, but the energy spread is
increased by this process (which affects the gain length through Xγ in Eq. (11.87)).
Very low-emittance beams can be generated by specially designed particle sources
with photocathode or with thermionic emission. The beam cross section in the
undulator can be reduced by stronger focusing (i.e., smaller βav), but the increased
angular spread will eventually degrade the FEL gain (through Xε in Eq. (11.87)).
The FEL design optimization is therefore multi-dimensional and beyond our scope
here. Typical requirements on electron beams are

I0 ≥ 1 kA, ση < ρ/2, ε ∼ λl/ (4π) . (11.88)

These requirements apply to the “slice” beam qualities defined on the scale of the
coherence length (see Eq. (11.85)). For harmonic generation FELs, the slice energy
spread should be much smaller than the ρ-parameter of the final amplifier because
the additional energy modulation imposed on the beam becomes the effective energy
spread there. Beam current, slice emittance and energy spread should be “flat”
along the bunch in order not to increase the final radiation bandwidth. However,
there are proposals for introducing, on purpose, some longitudinal variation of the
electron energy within the bunch to generate a controlled frequency chirp in the FEL
radiation pulse [33].

High-quality electron beams as described can be produced with linear accelera-
tors but not with storage rings, mainly due to synchrotron radiation effects.

11.2 Accelerators in Industry

K. H. W. Bethge · J. Meijer

11.2.1 Introduction

Accelerators in their earliest stages of development served exclusively as tools of
fundamental research; today they find application over a broad range of technical,
industrial and medical areas.
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One driving force of Ernest Lawrence for the development of the cyclotron was
a cancer illness of his mother. Thus the possibility of treating tumors by radiation
stands at the beginning of accelerator development.

Initially the application of accelerators in industry [34, 35] was, a by-product of
fundamental research. This was because it was not needed continuously and because
radiation safety requirements were in many cases too high to make industrial
application economical.

On the other hand the installation of accelerators in special industrial laboratories
or production lines does not find much publicity and therefore information about
these accelerators is hard to obtain.

Two main lines of machine installations have to be considered (a) electron
accelerators and (b) ion accelerators.

Additionally, the accelerators can be sub-divided into machines that analyze or
modify materials. Electron microscopes are a simple example related to analysis
of materials. In addition, there is Accelerator Mass Spectrometry (AMS) which is
used to analyse samples of specific species for their applicability particularly in the
pharmaceutical industry.

Some applications belong to different fields like the production of radioactive
probes for medical application, e.g., PET (positron emission tomography) or SPECT
(single photon emission computer tomography). Such probes are industrially pro-
duced in close consultation with medical consumers.

The industrial application of synchrotron radiation for photolithographic pro-
cesses is in general part of the cooperation between large research institutes with
suitable installations and relevant industrial partners: the beamtime is paid for by
the relevant industries.

11.2.2 Electron Accelerators

Electron accelerators for industrial applications [36] are classified by their energy,
focusing capability as well as by the obtainable dose. The large number of possible
applications in different industries are listed in Table 11.1 [35]. The electron
microscope is the classical low energy electron accelerator for analyzing samples.
Unfortunately, the Scherzer theorem forbids a defocussing symmetric lenses with
constant voltage. Electron microscopes with achromatic and aspherical lenses are
very challenging. In the case of electron beam processing, the incident energy
determines the maximum material thickness and the electron beam current and
power determine the maximum processing rate.

The purpose of electron irradiation is the transfer of energy doses to produce
neutral or positive charged radicals which react very rapidly with other chemical
compounds. Spin correlation plays the important role particularly for neutral
radicals. Thus the processes listed in Table 11.1 become production processes in
the different branches of industry [36]. The energy transfer rate is nearly constant
over a large energy range between 500 keV and several MeV, thus a homogeneous
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Table 11.1 Possible applications of electron accelerators in industries [35]

Industries Processes Products

Chemical Crosslinking Polyethylene
Petrochemical Depolymerisation Polypropylene

Grafting Copolymers
Polymerisation Lubricants

Alcohol
Electrical Crosslinking Building

Heat-shrink Instrument
Memory Telephone wires
Semiconductor Power cables
Modification Insulating tapes

Shielded cable splices
Zener diodes
ICs, SCRs

Coatings Curing Adhesive tapes
Adhesives Grafting Coating paper products

Polymerization Wood/plastic composites
Veneered panels
Thermal barriers

Plastics Crosslinking Food shrink wrap
Polymers Foaming Plastic tubing and pipes

Heat shrink memory Molded packing forms
Flexible packing laminates

Rubber Vulcanization Tire components
Green strength Battery separators
Graded cure Roofing membrane

Health Sterilization Medical disposals
Pharmaceutical Polymer modification Membranes

Powders and ointments
Ethic drugs

Pollution Disinfection Agricultural fertilizers
Control Precipitation Safe stack gas emission

Manomer entrapment Ocean-life nutrients form
Sludge OSHA and EPA compliances
Pulp Depolymerization Rayon
Textiles Grafting Permanent-press textiles

Curing Soil-release textiles
Flocked and printed fabrics

Aerospace Curing, repair Composite structures

IC integrated circuit, SCR silicon controlled rectifier (thyristor), OSHA Occupational Safety &
Health Administration, EPA Environmental Protection Agency
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production of defects like point defects in semiconductors is possible. In comparison
to ion beam related defects, radiation damages produced byelectrons are loosely
connected, thus avoiding extended defects.

The electron irradiation of polymers produces a substantial fraction of radicals
(charged or neutral) which react strongly with other polymers, monomers or addi-
tional substances. The processing of polymers by electron bombardment fulfills the
demands of modern industrial production e.g. the compatibility with environmental
requirements. This is particularly the case for all processes which include the curing
of adhesive coatings. Furniture, cloth production and paper industries have adopted
electron beam processes. Electron beams of lateral dimensions of 1 m or more
are incorporated into production lines [36]. In many of these processes the need
to remove dangerous fumes can be avoided.

The vulcanization process in the rubber industry proceeds under electron beam
treatment without the addition of sulfur. The applied doses range from 30 to 50 kGy.

For curing of coatings, adhesives, ink on paper, plastic and metal substrates low
energy accelerators (75–300 keV) are used. Such materials consist of oligomers
(acrylated urethane polyesters, acrylated epoxies and polyethers) and monomers
(trimethylolpropane triacrylate) to provide fluidity before curing. The radiation
technique avoids the use of volatile solvents, thus helping to reduce pollution.
Comparatively low doses of less than 50 kGy are used.

High energy accelerators (up to 10 MeV) are used to cure fiber-reinforced
composite materials reducing processing time and the costs. Doses of 150–250 kGy
are needed to obtain a combination of polymerization and crosslinking. These
composite parts are now being used in automobiles and aircrafts.

The insulation of electrical wires as well as the production of jackets on multi-
conductor cables by radiation crosslinking was one of the first commercial applica-
tions. Materials used in this application are, e.g., polyethylene, polyvenylchloride,
ethylene-propylene rubber, polyvenylidene fluoride and ethylene tetrafluoroethylene
copolymer. Besides the creation of radicals, the electron beam can be used to create
defects in crystals. One of the applications is the change or creation of the color of
gemstones e.g. to create fancy diamonds. The electron beam in combination with
a heat treatment changes the diamond color from yellow over green to red. These
modified diamonds must be declared as “treated” to distinguish them from very
rare colored natural diamonds with extreme high worth [37]. In the semiconductor
industry, electron radiation is used to produce defects. These defects induce a
life time reduction of charge carriers and allow a fast switching of electron high
power devices [38]. This procedure is known as life-time killing and became very
important for the production of high power devices e.g. for automotive or energy
industrial products.

Radiation crosslinking stabilizes the initial dimensions of products and imparts
the so-called “memory” effect. If the material is heated the original resistivity is
maintained. Examples of commercial products using this effect are encapsulations
for electronic components or exterior telephone cable connectors.

Low doses (30–50 kGy) of electron beam radiation are applied to automobile
tires before assembling the different components.
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Fig. 11.19 Doses for
electron irradiation [35]

Very high doses in the range 500–1000 kGy are needed to degrade polytetraflu-
oroethylene, which can be ground into fine particles or powder to be used as an
additive to grease, engine oil, printing inks, coatings and thermoplastics.

Polypropylene and other polymers can be degraded by irradiation in air. This
effect increases the melt flow and decreases the melt viscosity, which improves
extrusion processes. By blending irradiated polymer with unirradiated material the
desirable mechanical properties can be obtained. The doses for these processes
range from 15 to 80 kGy.

An overview of applied doses is shown in Fig. 11.19.
The treatment of stack gases can be performed with electron beam radiation

according to the reaction:

SO2 + NOx + 3/2·H2O + O2 + NH3
electron irradiation−−−−−−−−−−→ (NH4)2SO4 + NH4NO3

The flue gas concentration of SO2 and NOx are reduced by adding oxygen and
ammonia to a large extent depending on the applied energy dose. High-energy
electron beams (few MeV) can penetrate in air through a thin foil and they are
therefore applicable for medical applications. Low dose beams will be used to
treat tumors by direct radiation or by production of high energetic X rays. With
special structured filters a three dimensional irradiation is possible which reduces
the damage of the healthy tissue.

High energetic electron beams (5–10 MeV) with high dose rates are used for
sterilization of medical products and food e.g. spice. These kinds of machines
produce a huge radiation level and must be installed in a locked safety radiation
area. Typically, an endless treadmill is used to transport the items to the irradiation
area. The electron beam is scanned in air over a stripe with a width of some cms.

The majority of electron accelerators for chemical processes are electron linacs in
some cases as superconducting installations. Some special designed accelerators are
the superconducting “Helios” compact electron synchrotron (Oxford Instruments)
and the “Rhodotron” (Ion Beam Applications, Louvin-la-Neuve, Belgium).
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11.2.3 Ion Accelerators

The structure of condensed matter materials can be modified by adding additional
elements in order to achieve the special behavior required for a specific application.
For this purpose, the application of accelerators is ideal, and enables high selectivity
to be achieved in both the species of atoms to be implanted as well as their
kinetic energy which allows control of the desired composition, including depth
and thickness of the layers.

The application of accelerated ion beams in industry has two main directions,
one for the analysis of materials and the other for the modification and pro-
duction of materials. A new topic is the use of ion beams in medicine to treat
cancer by irradiation with protons or carbon ions. In contrast to electron beams
the energy transfer of heavy particles is concentrated at low kinetic energies
(Bragg peak) and allows a three dimensional control of the desired cell dam-
age.

11.2.3.1 Materials Modifications

The implantation of atoms into solid structures allows tailored changes in the
properties of materials to be achieved. Targets are metals, semiconductors and
insulators.

Tribological applications like the change of wear and friction are one of the
domains in that field. Particularly the modification of surface hardness, ductility and
lubrication effects are of interest. The implantation of nitrogen into metals and also
alloys producing hardening of the surfaces has improved dramatically the efficiency
of cutting tools.

Magnetic properties of materials have been modified by ion implantation [39].
The ion implantation into ceramics has started another industrial application
[40].

In semiconducting materials, ion implantation is one of the most important pro-
cesses for producing integrated electronic circuits. Mainly the basic semiconductors
consisting of pure silicon and germanium are doped by elements of the third and fifth
group to produce suitable acceptors and donors for transistor functions. Whereas for
logic devices low energy implantation down to a few eV is important, the production
of high power devices requires ion energies up to several MeV.

The profiles of implanted species are superior to those achieved by previously
used diffusion processes. Ion implantation, however, produces radiation damage
in the sample material which needs an annealing process in every case to pro-
duce functional electronic devices. Three dimensional ICs can be produced by
a sequence of implantation and annealing if the necessary insulating layers can
be provided. In many cases these layers are also produced by ion implanta-
tion.
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Fig. 11.20 Present and
future high energy
implantation [35]

The implantation can be used not only for elemental semiconductors, but also
for compound semiconductors as GaAs, InP or superlattices. Figure 11.20 shows
diagrammatically the whole field as dose dependent on ion energy [34]. To increase
the performance of high power devices high energy ion beam irradiation is also used
to reduce the charge carrier life time. In contracts to the common used life-time
killing with electron beams, the damage area of ions is concentrated at the Bragg
peak. This allows the reduction of the carrier concentration without a changing of
the main electrical specification of the device.

Accelerators used for that work are van de Graaff accelerators, dynamitrons and
in increasing number also RFQs. In all these types of accelerators the controllability
of the ion energy is one of the major advantages.

11.2.3.2 Analysis of Materials

The analysis of materials uses many methods of the original nuclear research
work, originally developed mainly for basic research. In many laboratories the
RBS (Rutherford Back Scattering) is applied. The principle and one schematic
spectrum are shown in Fig. 11.21. Ions impinge with energy Eo on the sample,
which is composed of the species AA and AB. After scattering they leave the sample
with energy E1 and are than energy analyzed. A typical spectrum is shown in the
lower part of Fig. 11.21. According to the kinematics for each element an upper
energy is measured which indicate the elements on the surface of the sample. With
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Fig. 11.21 Schematic view
of a RBS spectrum [39]

increasing penetration the energy loss of the incoming and outgoing particles has
to be considered. Important quantities are the sensitivity, the mass resolution and
also the depth resolution. They all depend on the available parameters such as
the mass and energy of the projectile, and the energy resolution of the detector
as well as on the cross section of the scattering process. In most cases 4He with
energies 0.5 MeV < E < 2.5 MeV are used as projectiles. The Coulomb repulsion
is sufficient for the analysis as Rutherford scattering. At energies E > 2.5 MeV
Rutherford scattering is applicable for higher masses, however, if the energy of the
α-particles is high enough Non-Rutherford scattering and the influence of nuclear
reactions has to be taken into account. In these cases the cross sections have to be
determined experimentally.

The sensitivity for low target masses is limited due to the underlying spectrum
from the heavy substrate. The mass resolution is optimal for lower target masses,
poor for heavier species and can also be limited by intrinsic detector resolution. For
increasing beam energy the mass resolution improves linearly.

The depth profiling is dependent on the energy loss factor which incorporates
the energy loss of the incoming and outgoing particles. Small energy loss factors
result in large profiling depth, but limited resolution. The resolution is limited at
high energy by the energy loss factor and at lower energies by an increasing energy
straggling.

At high energies with broad resonances in the excitation functions the limitations
are similar to the conventional backscattering.

Many other ions are suitable for RBS like 12C, 16O, 19F or 35Cl with energies
>5 MeV. The beam energy has to be so chosen, that Rutherford cross sections
can be applied. In some cases screening corrections are required particularly for
heavy target species. Increased beam energy cancels potential increase in sensitivity
arising from higher Z1. It is less sensitive for lighter species than conventional
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backscattering due to increase in cross section. Mass separation improves with
increasing beam energy. An increasing energy loss factor compared to light ions
leads to shallower profiling depths and superior potential depth resolution. All target
species heavier than the beam ion may be analyzed simultaneously.

The most frequently applied detector is the surface barrier detector. In some
installations time-of-flight detectors are used.

A further well established method is ERD (Elastic Recoil Detection) which is
also called Forward Recoil Spectrometry (FRES). In this process heavy projectiles
are used to measure the content of hydrogen. For that method an accelerator with
sufficiently high energy is required.

A general review of the methods of backscattering analysis is given e.g. by J.A.
Leavitt et al. in [41].

Many nuclear reactions are used for the analysis of materials. In particular, those
reactions which exhibit resonances in their excitation functions. By varying the
energy of the projectiles to excite these resonances and exploit their enhanced cross
sections, materials samples can be scanned with higher sensitivity.

A very special method of analysis is the charged particle activation analysis. In
Table 11.2 [42] for a few particles, their energy and the reactions used are listed.

Table 11.2 Reactions for activation analysis [39]

Incident ion Energy [MeV] Reaction Sampling depth

p 10–30 (p,n) 100 μm to few mm
(p,2n)
(p,pn)
(p,α)

d 3–20 (d,n) 10 μm to 2 mm
(d,2n)
(d,p)
(d,α)

t 3–15 (t,n) 10 μm to 100 μm
(t,p)
(t,d)

3He 3–20 (3He,n) few μm to 100 μm
(3He,2n)
(3He,p)
(3He,α)

α 15–45 (α,n) 10 μm to some 100 μm
(α,2n)
(α,3n)
(α,p)
(α,pn)
(α,αn)
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11.2.4 Accelerator Mass Spectroscopy

Many methods and also facilities which were developed for solving basic scientific
questions have also found their way into the applications. One of these methods
is the Accelerator Mass Spectrometry (AMS). It was developed for the measuring
of very small ratios of radioisotopes to stable isotope concentrations by detecting
atoms, rather than by detecting their radioactive decay. The samples which contain
the isotopes under investigation are incorporated in the ion source either in gaseous
form or as solid material in a sputter source. One characteristic isotope is 14C,
which has a half life of 5760 years, and is used for age determination in many
organic substances. Trees, e.g., incorporate also 14C as long as they live. From
the analysis of the amount of remaining 14C the age of a piece of wood can be
determined.

Tracing the radioactivity in organic substances can also determine e.g.
metabolism or the paths of drugs and medicine. By measuring the concentration
of the parent ions in beams, rather than their detecting radioactive decay products,
AMS can determine values within the low 10−16 range for the ratio of 14C/12C.
The accuracy is of the order of 0.3%. The measurements need much less time
than detecting the radioactive decay products, an important factor in industrial
application.

For industrial applications particularly compact instruments have been developed
[42, 43].

As example—in Fig. 11.22 the installation of VERA (Vienna Environmental
Research Accelerator) [42]—as a quite universal installation is shown. In this
installation the measurement of negative as well as positive ions is possible.
Particularly for the detection of 14C the measurement of negative ions is important.
The mass difference of 14C and 14N is so small that a magnetic separation of both
is impossible, but since nitrogen forms no negatively charged ions 14C appears as a
very pure line in the spectrum.

Therefore the detection of 14C allows the analysis of pharmaceuticals which is
one of the dominant industrial applications of AMS.

11.2.5 Conclusion

The present experience has shown that accelerators with energies below 100 MeV
fulfill the needs of industrial applications because electron and ion beams can steer
fabrication processes in much smaller areas compared to conventional methods.
Particularly the well-defined energies and doses are essential for tailoring layered
structures in some cases also with isolating layers.
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11.2.6 Accelerator Suppliers

National Electrostatics Corp., Middleton, Wi, USA
High Voltage Engineering Europa B.V., Amersfoort, NL
Ion Beam Applications S.A., Louvain-la-Neuve, B

11.3 Accelerators in Medicine: Applications of Accelerators
and Storage Rings

U. Amaldi · G. Magrin

Electron and hadron accelerators are widely employed in the production of
radionuclides—used in diagnostic and brachytherapy—and in teletherapy i.e. in
the formation of radiation beams directed from outside the body towards tumours
and malformations. In this section these two topics are discussed in a historical
perspective by describing both, the status of the art and the challenges that
accelerator developers have to face today to meet the highest standards in nuclear
diagnostic and cancer therapy.

11.3.1 Accelerators and Radiopharmaceuticals

11.3.1.1 History

The years that followed the invention of cyclotron by Ernest Lawrence were very
prolific in defining what would be later known as nuclear medicine. In 1932,
Lawrence, Stand and Sloan were able to produce, with their new 27-in. cyclotron,
a proton beam of 4.8 MeV. In 1934 two important discoveries influenced the
future use of that accelerator, alpha-induced radioactivity by Frédéric Joliot and
Iréne Curie [44] and the neutron-induced radioactivity by Enrico Fermi [45]. Those
discoveries convinced Lawrence to fully employ its accelerated proton, deuteron,
neutron, and alpha particle beams for the production of artificial isotopes.

The medical exploitation of the newly radionuclides was clear in Ernest
Lawrence’s mind when in 1935 he called his brother John, a medical doctor
from Yale school of Medicine, to join him in Berkeley to study the use of the new
radioisotopes. Although the mainstream activity was nuclear research, a number
of cyclotron-produced radionuclides was used for health applications in studies of
physiology in animals and humans. The medical applications of radioisotope—
radiotracing, endotherapy, and diagnostic—were defined at that time.

Radionuclides have the same chemical and physiological characteristics of the
stable elements, so, when a radio-labeled organic compound is supplied to the
organism, it follows the normal metabolism. From the mid 1930s, radionuclides
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were supplied to animals and humans and traced, with Geiger counters, in the
internal organs following the physiologic uptake. Today the same concept is used in
sophisticated diagnostics procedures as Single Photon Emission Computer Tomog-
raphy (SPECT)—also called ‘scintigraphy’—and Positron Emission Tomography
(PET). Since the pioneering years, the challenge was to find the right radioisotope
that, as part of a molecule, would enter in the physiological processes and would
be preferably taken by a specific organ. The right isotopes must be chosen for
their half-life and decay type, both compatible with the physiology of the processes
investigated, the detection procedure, and the radiation protection of the patient.

Radio Phosphorus-32 (beta-emitter with half-life of 14.3 days), made from the
27-in. cyclotron was used as a tracer to study the absorption and metabolism of
phosphorus so that the cellular regeneration activity could be followed over several
weeks [46]. In 1936 John Lawrence gave for the first time Phosphorus-32 to a
leukemia patient beginning the therapeutic use of artificial radionuclides [47].

In 1936 radioactive Sodium-24 (half-life of 15 h), obtained at the Berkeley
cyclotron bombarding ordinary sodium with deuterium, was one of the first
artificial radioisotopes applied in physiology to study transport and uptake in
animal and humans and to determine the speed of absorption on the circulatory
system. Radioactive sodium was first given to treat leukemia patients by Hamilton
in 1937 [48].

In those years radionuclides were also used to study the transfer of traceable
elements and compounds across the cell membrane. Today cytopathology and
molecular biology are using radiotracers to study cellular diseases and physiology.

Larger cyclotrons were produced in the late 1930s at Berkeley, Harvard, and
Leningrad. Berkley’s 60-in. accelerator built in 1939 was used by Ernest Lawrence
to produce radioactive gasses (nitrogen, argon krypton, and xenon) that were used
to study the decompression sickness suffered by the aviators of the Second World
War. The 81mKr gas is still used after 80 years in some studies of lung ventilation
and functionality.

At the time of the first experiments in humans, the effects of X-rays on healthy
biological tissues were known and avoiding overdose of ionizing radiation was a
concern. It is important to mention that in 1936 John Lawrence, comparing identical
doses of X-ray and neutrons [49], recognized different biological effects giving one
of the earliest contribution to the knowledge of radiation qualities in correlation with
internal and external radiotherapy and with radiation protection.

The isotope 131 of Iodine was selected by Joseph Gilbert Hamilton because its
half-live of 8 days was considered to be the optimal time to treat the thyroid and
avoid side effects to the patients. The radionuclide was isolated from a sample of
tellurium bombarded with deuterons and neutrons from the 37-in. cyclotron. From
1941 Iodine-131 was used in diagnostic of thyroid functionality and, from 1946,
in cancer therapy. In the 1950s Iodine-131, ingested as a liquid solution, became a
common treatment. Commercially producer in nuclear reactors, it dominated for 40
years the market of radiopharmaceuticals for cancer treatment and it is still widely
used today.

György Hevesy gave a decisive impulse to the studies with radiotracers of human
metabolism and physiological processes. He carried on a program, supported by
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private funding, to introduce Sodium-24, Phosphorus-32, Cobalt-60, Technetium-
99, and Iodine-131 into medical practice. In 1941 the first cyclotron fully dedicated
to production of radionuclides for medical purposes was built at the Washington
University of St Louis and used for the production of radionuclides for diagnostic
and internal radiotherapy.

In the years that followed, the production of neutron-generated radioisotopes
was moved to more efficient nuclear reactors. Nevertheless a number of cyclotron
facilities, fully dedicated to medical applications, were built with the purpose of
continuing the research of new products. In the 1950s, the use of Thallium-201 as
tracer for cardiac flow revitalized the use of medical cyclotrons. Thallium-201 is
produced via Lead-201 generator obtained in cyclotron from protons or deuterons
beams.

In the late 1960s, a turning point that drastically transformed the medical
application of cyclotrons was the idea of developing the radiochemistry labs inside
the cyclotron facility, possibly close to the clinics where they were the patients
were injected. Organic molecules containing short-living positron-emitting isotopes
could be immediately transformed in pharmaceutical products and distributed in the
facilities of the region to be used within few hours. The most important product was
the Flourodeoxygloucose, FDG, made for the first time in 1976 with Fluorine-18, a
positron emitter with a half-live of 110 min [50]. FDG was developed by a scientific
collaboration of the Brookhaven National Laboratory, the US National Institute of
Health and the University of Pennsylvania with the purpose of studying the brain
metabolism.

Since then, FDG radiochemistry has evolved to fast and efficient production
processes and today it is used in 75% of PET medical imaging [51]. The applications
include diagnoses of brain diseases like epilepsy and dementia, examination of heart
functionality, and detection of evolution of many different tumours.

New radiopharmaceuticals labeled with short half-lives positron emitters (in par-
ticular Fluorine-18 and Carbon-11) are still studied and developed today. Although
Oxygen-15 is not commercially used for PET due to the fast decay time of 2 min,
the Company Ion Beam Applications (IBA), built a 3 MeV deuterium cyclotron
dedicated to the production of Oxygen-15 labeled gasses [52].

11.3.1.2 Accelerator for Radioisotope Production

Today the number of cyclotrons used for medical purposes, officially registered by
the last IAEA survey published in 2006, is 262 [53]. The real number is certainly
higher and it is increasing continuously by approximately 50 units per year, mainly
because of new small PET accelerators. A survey made in 2010 combining inputs
of production of the four major manufacturers already estimated in 671 the number
of cyclotrons in operation [54].

The technology of cyclotrons has advanced in parallel to the development of
PET. In the 1970s The Cyclotron Company (TCC) [55] studied the acceleration
on negatively charged hydrogen (H−). The extraction of the beam is in this way
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simplified since it can be obtained with a thin stripping foil conveniently positioned
on the beam trajectory. In the foil all electrons are stripped leaving the protons,
positively charged, deviate to the opposite direction under the effect of the magnetic
field. The result is a clean extraction with efficiency very close to 100%. The
elimination of beam loss (of the order of 25% with normal extraction) drastically
reduces the activation of the cyclotron components simplifying the maintenance,
the regular inspection, and the decommissioning. A remarkable characteristic of
these cyclotrons is the possibility of obtaining simultaneous multiple beams making
partial extraction with additional more foils.

In recent years several companies entered into the production of cyclotrons,
machines that are stable, reliable, and can run continuously for days with limited
supervision and maintenance requirements. The accelerators design has been
adapted to the radiopharmaceutical request that is mainly concentrate on PET prod-
ucts. The cyclotrons dedicated to production of Fluorine-18, Carbon-11, Nitrogen-
13, and Oxygen-15, have abandoned the versatile characteristics of the traditional
machines and are made to accelerate only a specific ion (typically H−), run at low
energy (20 MeV and below), and at relative low current (approximately 100 μA).

Commercial cyclotrons characteristics are chosen taking into account the half-
life of the radionuclides they produced. For the optimal logistics the cyclotrons
should be homogeneously distributed in the territory with a large number of
small cyclotrons, 10 MeV and 20 MeV, to fulfill the requests of FDG and other
radiopharmaceuticals made on 18F, 11C, 13N, 15O, and a sparse distribution of
cyclotrons with wider range of energy, 30 MeV or 70 MeV, able to produce all
PET and SPECT radioisotopes used in research and in less common diagnostic (Fig.
11.23). Some of the higher-energy accelerators have the possibility of changing the

Fig. 11.23 Examples of two commercial cyclotrons. (a) The self-shielded 7.8 MeV cyclotron
GENtrace produce by General Electric (courtesy of GE Healthcare) for common PET radioiso-
topes. (b) The 30 MeV cyclotron Cyclone 30 produced by IBA for a variety of PET and SPECT
radioisotopes (courtesy of IBA SA)
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energy moving the stripping foil along the cyclotron radius to adapt to the different
nuclear reactions.

The commercial cyclotrons available today are presented here in two lists,
Table 11.3 describes the cyclotrons in the range between 10 and 20 MeV, which
correspond to the vast majority of machines today in operation for PET applications;
Table 11.4 describes the cyclotrons with energies of 22 MeV and above for a more
general use.

Besides cyclotrons, other particle accelerators have been considered for medical
applications. Studies for low energy, high current accelerators have been financed in
the 1980s, by the Star Wars program of the US Department of Defense. RFQ accel-
erators have been designed to obtain beam intensities of hundreds of milliampere at
energies below 10 MeV. In the framework of the same program a 3.7 MeV, 750 μA
Tandem Cascade Accelerator was designed, realized, and put into operation by

Table 11.3 Characteristics of commercial cyclotrons for range energies 10–20 MeV (from [53,
56, 57])

Company Model Description

Advanced Cyclotron
Systems, Inc.

TR 14 11–14 MeV H−, 100 μA

TR 19 14–19 MeV H−, 300 μA
Advanced Biomarkers
Technology

BG-75 7.5 MeV H+, 5 μA

Best Cyclotron System, Inc. 15 15 MeV H−, 400 μA
China Inst. Atomic Energy CYCCIAE14 14 MeV H−, 400 μA
D.V. Efremov Institute CC-18/9 18 MeV H−, 9 MeV D−, 100 μA
EuroMeV Isotrace 12 MeV H−, 100 μA
General Electric Healthcare MiniTrace 9.6 MeV H−, 50 μA

PETrace 16.5 MeV H−, 8.6 MeV D−, 100 μA
Ion Beam Applications Cyclone 3 3.8 MeV D+, 60 μA

Cyclone 10/5 10 MeV H−, 150 μA, 5 MeV D−,
Cyclone 11 11 MeV H+, 120 μA
Cyclone 18/9 18 MeV H−, 9 MeV D−, 150 μA

Japan Steel Works BC168 16 MeV H+, 8 MeV D+, 50 μA
BC1710 17 MeV H+, 10 MeV D+, 60 μA
BC2010N 20 MeV H−, 10 MeV D−, 60 μA

KIRAMS Kirams-13 13 MeV H+, 100 μA
Oxford Instrument Co. OSCAR 12 12 MeV H−, 60 μA
Scanditronix Medical AB MC17 17.2 MeV H+, 8.3 MeV D+, 60 μA 12

MeV 3He++, 16.5 4He++, 60 μA
Siemens Eclipse 11 MeV H−, 2 × 60 μA
Sumitomo Heavy Industries HM 7 7.5 MeV H−, 3.8 MeV D−

HM 10 9.6 MeV H−, 4.8 MeV D−
HM 12 12 MeV H−, 6 MeV D−, 60 μA
HM 18 18 MeV H−, 10 MeV D−, 90 μA
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Table 11.4 Characteristics of commercial cyclotrons for energies of 22 MeV and above (from [53,
56, 57])

Company Model Description

Advanced Cyclotron
Systems, Inc.

TR24 24 MeV H−, 300 μA

TR30/15 30 MeV H−,1000 μA/15 MeV D−, 160
μA

Best Cyclotron System, Inc. 35p 15–35 MeV H−, 1000 μA
70p 70 MeV H−, 700 μA

China Inst. Atomic Energy CYCCIAE70 70 MeV H−, 750 μA
Ion Beam Applications Cyclone 30 30 MeV H−, 1500 μA/15 MeV D−

Cyclone 70 30–70 MeV H−, 2 × 350 μA
35 MeV D−, 17.5 MeV H2

++, 70 MeV
He++, 50 μA

Cyclone 235 240 MeV H−
Japan Steel Works BC2211 22 MeV H+, 11 MeV D+, 60 μA

BC3015 30 MeV H+, 15 MeV D+, 60 μA
KIRAMS Kirams-30 15–30 MeV H−, 500 μA
Scanditronix Medical AB MC30 30 MeV H+, 15 MeV D+, 60 μA

MC32NI 15–32 MeV H−; 8–16 MeV D−, 11–23
MeV 3He++, 15–31 4He++, 60 μA

MC40 10–40 MeV H+, 5–20 MeV D+, 13–53
MeV 3He++, 10–40 4He++, 60 μA

MC50 18–52 MeV H+, 9–25 MeV D+, 24–67
MeV 3He++, 18–50 4He++, 60 μA

MC60 50 MeV H+, 60 μA
K130 6–90 MeV H−, 10–65 MeV D−, 16–173

MeV 3He++, 20–130 MeV 4He++, 60
μA

Sumitomo Heavy Industries AVF series 30, 40, 50, 70, 80, 90 MeV H+, 60 μA
Ring Cyclotron 400 400 MeV H+ (K = 400), 60 μA
Ring Cyclotron 540 240 MeV H+ (K = 540), 60 μA
C235 240 MeV H−, 60 μA

Science Research Laboratory in Massachusetts for the production of Nitrogen-13,
Oxygen-15, and Fluorine-18 for PET [58]. Today, AccSys Technologie proposes a
linear proton accelerator for PET isotope productions. This RFQ accelerates protons
to 3 MeV with a current of 150 μA. The energy can be upgraded to 10.5 MeV
coupling the RFQ to a Drift Tube Linac (DTL). The system is suitable for supplying
PET radioisotopes to a single diagnostic centre.

11.3.1.3 The Radionuclides Used in Nuclear Medicine

In the world the request of radionuclides for imaging is constantly increasing.
Multimodality scanning systems have been favorably accepted by the medical
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doctors. The leading companies report that 35% of the SPECT scanners produced
are sold combined with Computed Tomography (CT). In the same way the request of
PET/CT and PET/MRI systems that combine metabolic and morphological imaging
is stably increasing and so is the demand of positron emitter radionuclides. In the
years to come many factors will contribute to define the role of accelerators in the
commercial production of medical isotopes. Unforeseen events as the shortage of
Molibdenum-99 described at the end of this section can weaken a situation that was
considered stable. The primary role of reactors, to which it is ascribed approximately
80% of the medical radioisotope production, can be diminished by downsides as
the rigidity of a centralized production, the risk of incident in nuclear power plant,
and the problems connected to radioactive waste. These drawbacks are strongly
reduced with radioisotope production based on accelerators and this can play in
their favor.

Today PET imaging is certainly the largest medical use of the cyclotron
radioisotopes. IAEA reports in its 2006 survey that 75% of the cyclotrons are
dedicated to FDG [53]. Concerning SPECT, some radioisotopes for (gamma- and
gamma/beta-emitters) are produced only with cyclotrons (Iodine-123, Indium-111,
Gallium-67, Cobalt-57) some others, as Copper-67 and Rhenium-186, are produced
both with cyclotrons or reactors.

Immuno-positron emission tomography is an imaging technique that, using
radio-labeled monoclonal antibodies, allows tracking and quantifying their dis-
tribution in the body, and can be applied to imaging of human malignancies.
Zirconium-89 has a primary role in immunoPET being used in most of the diagnoses
based on radioactive antibodies [59]. Its favorable characteristics are a half-life of
3.3 days which allows a manageable production and distribution, and the favorable
decay mode where the unavoidable gamma rays have energies well distinguishable
from PET photons. Finally Zirconium-89 production, via proton-neutron reaction in
Yttrium-89, is optimal at energies of 14 MeV, widely available in cyclotron facilities
[see Table 11.3].

Radiopharmaceuticals for therapy represent only 5% of the total production [60],
nevertheless the research in the field of cancer targeted radionuclide treatments is
active and the role of cyclotrons is becoming more and more important. The isotopes
that better conform to the therapy are those that decay transferring locally all their
energy. The favorable decay products are alpha particles, beta particles and Auger
electrons. The optimal radionuclide is selected based on essential characteristics,
which are (i) the possibility to associate it to molecules or, in case of radio-
immunotherapy, to monoclonal antibody, with affinity to tumour cells, (ii) the right
decay time to allow the kinetics and avoid overdose, (iii) the availability of the
product in reliable quantities, and (iv) the affordable cost. The research is trying to
balance these demanding needs and the number of radionuclides under examination
is getting large.

Alpha-particles emitters are Astatine-211, produced with the reaction
209Bi(4

2He,2n) by 28 MeV alpha particle beams, and Bismuth-212, obtained from a
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Actinium-225 generator produced with the reaction 226Ra(p,2n) by 22 MeV protons.
Bromine-77, an Auger-electron emitter produced with either alphas (27 MeV) or
protons (in various possible reactions starting at the energy of 13 MeV), is a good
candidate for its simple association with physiological molecules. Among the beta
emitters, Renium-186 is favorably regarded since, it belongs to the same chemical
family of Technetium and therefore it can follow similar the chemical process well
establishes for 99mTc.

Brachytherapy with radioactive seeds is an established way of endoradiotherapy
based almost exclusively on reactor-produced radionuclides. One exception is
Palladium-103, an Auger-electron emitter produced in reasonable quantities by
18 MeV cyclotrons.

Interest is rising in endoradiotherapy based on pre-therapeutic PET dosimetry.
Two radioisotopes of the same element can be used for complementary proposes.
First the pre-therapeutic positron emitter is injected to trace the physiological uptake
of the element and then the therapeutic isotope is administered to the patient
according to the dose estimation. Isotope pairs of Copper and Scandium (β+ emitted
from 64Cu or 44Sc used for PET imaging, β− emitted from 67Cu or 47Sc used for
therapy) are considered for these procedures [61].

It is important to underline the steering role played by the medical com-
munity in determining the future of diagnostic, with SPECT and PET, and of
endoradiotherapy, which is today only a marginal segment. Medical doctors—
who today use preferably one diagnostic modality, SPECT, and one radionuclide,
Technetium-99m—with their future orientations will influence the development
on new tools than could complement or substitutes the existing one. A challenge
is also the complexity of transforming an effective radioisotope to an approved
pharmacological product. The most important factors to consider are the availability
and cost of the raw material, the access to accelerators or reactors with appropriate
energy and fluxes, the existence of fast radiochemistry, and the logistic to delivery
the radioisotopes on time before they decay.

To address the needs of the research of new medical applications, and also to
partially take over the aging accelerators, some dedicated facilities have been put
in place worldwide. Among others (i) ARRONAX in Nantes, financed by French
regional and National authorities and the European Union, that hosts a cyclotron
for H− (up to 70 MeV, 350 μA protons), H2

+, D−, and He++; (ii) LANSCE in
Los Alamos, USA, that produces from 2005 medical radioisotopes from a high-
current 100-MeV proton linear accelerator; (iii) the PEFP center in South Korea,
a facility based on a 20 mA proton linear accelerator (an RFQ followed by two
Drift Tube Linacs to energies of 20 MeV and 100 MeV) for medical and industrial
applications.

A motivation for studying new applications of accelerators came from the
worldwide shortage of Molybdenum-99, the generator of Technetium-99m. The
production dropped to about 50% of the market needs for 16 months between
2009 and 2010. Commercial Molybdenum is a fission product of highly enriched
uranium target produced almost exclusively in five reactors that are old and need
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continuous maintenance. Each year 30 millions diagnostic studies, 80% of all
medical scans that use radioisotopes, are made with Technetium-99m (6 h half-life)
from a Molibdenum-99 generator (66 h of half-life).

The shortage of Molybdenum-99 stimulated several initiatives for finding alter-
native solutions and the use accelerator was considered for the production of
either Molybdenum-99 or directly Technetium-99m. If, from one side, a single
accelerator facility is unable to compete in production with large reactors, on the
other side it allows a better distributed production with advantages for the logistics,
the possibility of producing directly technetium-99m for locally distributed end
users, and undisputable environmental benefits. The accelerators considered for
different productions processes are electrostatic accelerators, electron linacs, and
cyclotrons.

Two Canadian initiatives were established to produce Technetium-99m trough
the reactions 100Mo(p,2n)99mTc [62]. The projects use existing cyclotrons available
for positron emission tomography (PET) from General Electric (130 μA, 16.5 MeV)
and Advance Cyclotron Systems, Inc. (300 μA, 19 MeV) and the productions
should start in 2017. The clinical trial which compared reactor- and cyclotron-
produced Technetium-99m was concluded in 2017 receiving the approval from
Health Canada.

Some project plan to substitute reactor-generated neutrons with accelerator-
generated neutrons. To reach the capabilities of a reactor production, the neutron rate
should exceed 1014 neutrons per second. The concept developed by the company
Shine is based on the fusion of deuteron and tritium for producing neutrons (and
helium). The electrostatic accelerated deuterons (300 keV, 60 mA) are directed
toward a tritium target. The resulting neutrons (5·1013 neutrons per second) cross
a natural uranium target for neutron multiplication and irradiate a low enriched
uranium target producing, among other fission products, Molybdenum-99. The first
facility is in construction phase.

The company NorthStar is developing a facility for the production of
Molybdemum-99 from photo-nuclear reactions 100Mo(γ,n)99Mo using electron
linacs. Two accelerators (40 MeV, 3 mA each) direct the electron beams from
opposite sides to a Molybdenum-100 target where the bremsstrahlung photons are
created. The production is expected to start in 2017 [63].

Another project linked to TRIUMF is the development of a high-current electron
linac (50 MeV, 100 mA) for the generation of photons that, directed to a target of
Uranium-238 produce Molybdenum-100 from photo-fission.

Electron linacs for the generation of neutrons are foreseen in different project
from Shine (35 MeV, 0.6 mA), and Niowave (superconductive 40 MeV, 2.5 mA).
The generated neutrons irradiate a target containing a solution of depleted uranium.

Several other ways of using accelerators for production of Molibdemun-100
or Technetium-99m have been proposed and are still under study and develop-
ment [64].
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11.3.2 Accelerators and Cancer Therapy

11.3.2.1 History

Conventional Therapy
The roots of brachytherapy (discussed in section 11.3.1.3) and teletherapy date
back to the discoveries of X-rays and radium made by Roengten and the Curies
in the years 1895–1897. X-ray tubes and gamma-ray sources were soon employed
in medical or technological uses. Teletherapy with X-ray photons was performed to
cure superficial tumours few years after the discovery.

The first electron linac was built in 1947 at Stanford by Bill Hansen and his group
for research purposes [65] and was powered by a klystron produced by Varian. Soon
after, this new tool superseded all other electron/photon sources. Also in 1947, in
England, Fry and collaborators build a 40-cm linac that accelerated electrons from
45 to 538 keV [66].

In the years that followed, those two groups and others, in particular the group
of John Slater at MIT, studied the parameters of the irises to improve the power
efficiency of the structure and to adapt the traveling wave parameters of wavelength
and phase velocity. Around 1950 megavoltage’ tubes were built and, complementing
the ‘cobalt bombs’ entered clinical practice. The positive surprise was that, due
to the longer ranges of the electrons—put in motion by the gammas of the beam
mainly through the Compton effect—these ‘high-energy’ radiations had a much
better sparing of the skin.

In those years a process was initiated to adapt the complex machines developed
for research purposes to the clinical environment and to the treatment needs. After
a short season in which the X rays of energy larger than 5 MeV were produced
with medical ‘betatrons’, electron linacs, running at the by-now standard 3 GHz
frequency, became the instrument of choice. Varian in 1960 produced for the first
time a linac that, mounted on a gantry, rotated around the patient and in 1968 the
first medical machine based on standing-wave acceleration.

From the side of the traveling-wave accelerators, further studies have improved
the efficiency and the start up time of the radiation so that today both designs are
still used in medical linac: the two major manufacturers, Varian and Elekta (see
Table 11.5) produce accelerators the first based on standing-wave and the second on
travelling-wave. The average accelerating fields are in the range 10–15 MV/m.

In 2017 about 12,000 [67] linacs are installed in hospitals all over the world and
in the developed countries there is one linac every 200,000–250,000 inhabitants. It
is interesting to remark that all the electron linacs used to treat patients are close, as
far as the overall length is concerned, to the 27 km circumference of LHC.

About 50% of all tumour patients are irradiated as exclusive treatment or
combined with other modalities so that radiotherapy is used every year to treat about
20,000 patients on a Western population of 10 million inhabitants. On average, 40%
of the patients who survive 5 years without symptoms have been irradiated.
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Table 11.5 A selection of commercial electron linacs for radiotherapy

Company Complete system
Acceleration
characteristics

Maximum
photon energies

Tumour
conformation

AccuRay Cyberknife® Standing-wave,
X-band

6 MV Computer-
controlled
robotic arm

Elekta AB Versa™ Traveling-wave,
diode injection,
S-band

18 MV 80 multileaf
collimator

Siemens
Medical
Solutions

Artiste™ Standing-wave, triode
injection, S-band

18 MV 82 multileaf
collimator

AccuRay TomoTherapy® Standing-wave,
S-band

6 MV 64 multileaf
collimator

Varian
Medical

HyperArc™ Standing-wave, triode
injection, S-band

20 MV 120 multileaf
collimator

This enormous development has been possible because of the advancements
made in computer-assisted treatment systems and in imaging technologies, such
as CT imaging, PET scans, MRIs. The most modern irradiation techniques are
the Intensity Modulated Radiation Therapy (IMRT), which uses 6–12 no coplanar
and non-uniform X-ray fields, and the Image Guided Radiation Therapy (IGRT),
a technique capable of following tumour target which moves, mainly because of
patient respiration.

Varian is the worldwide market leader with more than 50% of the share of
electron linac for radiotherapy. One of its last development, HyperArc, is an
irradiation system in which the uniform prescribed dose is delivered in a single
revolution of the gantry. The times are drastically reduced thanks to the computer
assisted continuous variation of the beam intensity and the use of a multileaf
collimator that adapts the irradiation fields to the requirement of the treatment
planning.

Cyberknife produced by Accuray (USA) is an original development in which a
robotic arm substitutes the gantry to support the accelerator. To reduce dimension
and weight, a X-band, 6 MV linac is chosen. The resulting pencil beam can penetrate
and aim to the tumour with the optimal direction to spare the organs at risk.

In helical TomoTherapy a narrow x-ray beam constantly irradiates the tumour
while rotating around the patient and, at same time, produces an image of the
patient organs. The combination with the movement of the couch creates the helical
irradiation which is modulated in intensity and collimated by a multileaf system to
conform to the requirements of the panning. In 2011 the company TomoTherapy
has been bought by Accuray.

The so-called MRI-guided radio therapy, i.e. the simultaneous combination of
radiation therapy treatment and MRI scanning, has been performed for the first time
by the company ViewRay. The system based on a 6 MeV linac, employs a MRI
with 0.35 T magnets. A similar system which combines a 1.5 Tesla MRI and a
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7 MeV linac, was developed and built by a collaboration between Elekta, Philips,
and several clinics from Europe and North America [68]. The advantages of MRI
scanning are the capability of identifying movements of soft tissue and organs,
which are not detectable with other imaging media, and the absence of ionizing
radiation exposure. Today the average frame rate during dynamic acquisitions is of
the order of 10–20 frames per seconds with spatial resolution of the order of 2 mm.

The major companies producing electron linacs for photon therapy and the
characteristics of some of the most advanced models are listed in Table 11.5.

It must be mentioned that, because of the increase risk due to the non-negligible
production of photoneutrons, the use of the 16–20 MV photons is limited to the
cases for which the size of the patient and the depth of the tumour require it. In
normal conditions 6–8 MV energies are employed.

Neutron Therapy
At variance with the case of conventional radiotherapy, the use of atomic nuclei
to treat cancer has benefited of a long series of accelerator developments, which is
still continuing today. This is the reason for which we focus, in this second Part, on
hadron accelerators.

‘Hadron therapy’ (‘hadronthérapie’ in French, ‘hadronentherapie’ in German,
‘adroterapia’ in Italian, ‘hadroterapia’ in Spanish) is a collective word which covers
all forms of radiation therapy which use beams of particles made of quarks:
neutrons, protons, pions, and ions of helium, carbon, neon, silicon, and argon
have been used for treating cancer. Furthermore, lithium and boron ions, as well
as antiprotons have been investigated as potential candidates. ‘Hadron therapy’,
‘particle therapy’, ‘ion-beam therapy’, ‘heavy ion therapy’ and ‘light ion therapy’
are other terms often used to indicate the same procedure, and every performing
facility has its favorite term.

The first hadrons used for treatment purposes are the neutrons. The time
progression in implementing neutron therapy was so fast that is astonishing today.
The neutron was discovered by James Chadwick in 1932. Soon after, Ernest
Lawrence and his brother John were experimenting with the effects of fast neutrons
on biological systems. Following a paper by Gordon Locher [69], who in 1936
underlined the therapeutic potentialities of both, fast and slow neutrons, at the end
of September 1938, the first patient was treated at the Berkeley 37-in. cyclotron.
The first study on 24 patients, which used single fractions, was considered a success
and led to the construction of the dedicated 60-in. Crocker Medical Cyclotron. Here
Robert Stone and his collaborators (Fig. 11.24) treated patients with fractionated
doses using fast neutrons. The tuning of the dose to control the tumour and prevent,
at the same time, the complication of the normal tissue was still developing. The
dose given to healthy tissues was too high, so that in 1948 the program was
discontinued [70].

Neutron therapy was revived in 1965 by Mary Catterall at Hammersmith Hospital
in London and later various centres were built where fast neutrons were used for
many years. In particular in the 1970s radiation oncologists of Chicago worked with
Robert Rathbun (Bob) Wilson, Fermilab Director, to build the ‘Neutron Therapy
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Fig. 11.24 Robert Stone is watched by John Lawrence while aligning a patient in the neutron
beam produced by the 60-in. cyclotron

Facility’ at Fermilab based on the injector linac [71]. At Michigan University, Henry
Blosser built for the Harper Hospital a proton cyclotron rotating around the patient.

The worldwide effort for high-current 40–60 MeV proton cyclotrons was large.
However, at present, this technique is rarely used. The reason is the poor depth-
dose distribution of fast neutron and the fact that, all along the path, the biological
effects, due mainly to highly ionizing protons put in motion by the neutrons, are
difficult to determine and tissue-dependent. As discussed in the following, carbon
ion beams are a much better solution to deliver doses being highly ionizing particles,
i.e. particles which have energy losses (Linear Energy Transfers—or LET—in the
medical parlance) much larger than the electrons put in motion by X rays.

Thermal and epithermal neutron are also used in Boron Neutron Capture Therapy
(BNCT). This cancer treatment is based in two subsequent procedures, first the
injection of the boron carrier, conceived to be absorbed preferably by the tumour,
and second the irradiation of the patient with low energy neutrons. Alpha particles
resulting from the reaction 10B(n,42He)7Li release all their energy close to the point
where they are originated affecting the tumour cells.

Proton Therapy
The use of protons in teletherapy was proposed in 1946 by Bob Wilson [72], who
was asked by Lawrence to measure, at the Berkeley Cyclotron, proton depth-dose
profiles. Describing the significant increase in dose at the end of particle range,
the so-called Bragg peak, which had been observed 40 years before in the tracks
of alpha particles by W. Bragg, Wilson recognized in his paper the advantages in
treating tumours. The Bragg peak—which can be ‘spread’ with modulator wheels—
can be used to concentrate the dose sparing healthy tissues better than with X-rays.
It is interesting to remark that in his paper Wilson discussed mainly protons but
mentions also alpha particles and carbon ions.
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In 1954, the first patient was treated at Berkeley with protons, followed by helium
treatment in 1957 and by neon ions in 1975 [73]. In these treatments—as in most
of the following facilities—the beam was distributed over the target volume using
‘passive’ shaping systems, like scatterers, compensators, and collimators that were
adapted from the conventional photon therapy. The first treatments consisted of
irradiation to stop of the pituitary gland from producing hormones that stimulated
some cancer cells to grow. Between 1954 and 1957 at Berkeley, under the leadership
of Cornelius Tobias, 30 pituitary glands and pituitary tumours were treated with
protons [74].

In 1957 the first tumour was irradiated with protons at the Uppsala cyclotron
by Börje Larsson [75], but the facility that made the largest impact on the
development of proton therapy is certainly the 160 MeV Harvard cyclotron, which
was commissioned in 1949 (Fig. 11.25).

The Harvard staff got interested in using protons for medical treatments only after
proton therapy was started at both, LBL and Uppsala. In 1961, Raymond Kjellberg,
a young neurosurgeon at Massachusetts General Hospital in Boston, was the first to
use the Harvard beam to treat a malignant brain tumour.

The results obtained for eye melanoma—by Ian Constable and Evangelos
Gragoudas of the Massachusetts Eye and Ear Hospital—and for chordomas and
chondosarcomas of the base of the skull [76]—by Herman Suit, Michael Goitein and
colleagues of the Radiation Medicine Dept of Massachusetts General Hospital—
convinced many radiation oncologists of the superiority of protons to X rays in
particularly for tumours that are close to organs at risk. In 2002, when the cyclotron
was definitely stopped, more than 9000 patients had been irradiated and the bases
were put in place for the following development of the field. The competences
developed in Boston were soon transferred to the new hospital-based facility of
the Massachusetts General Hospital, now called “Francis H. Burr Proton Therapy

Fig. 11.25 Picture of the just
completed Harvard cyclotron.
Many years later Norman
Ramsey was awarded the
Nobel prize, together with
Wolfang Paul
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Table 11.6 The pioneers of proton therapy

Facility Country Years in operation

Lawrence Berkeley Laboratory USA 1954–1957
Uppsala Sweden 1957–1976
Harvard Cyclotron Laboratory USA 1961–2002
Dubna Russia 1967–1996
Moscow Russia 1969–
St. Petersburg Russia 1975–
Chiba Japan 1979–2002
Tsukuba Japan 1983–2000
Paul Scherrer Institute Switzerland 1984–

These facilities, that today are out of operation except for the centres Moscow, St. Petersburg, and
PSI, treated together 10,200 patients

Center”, which is equipped with the first commercial accelerator for therapy—built
by the market leader, IBA.

Soon after the start-up of the Harvard facility other nuclear physics laboratories
in USSR and Japan assigned horizontal beams of their research facilities to proton
therapy. As shown in Table 11.6 in 1984 the Paul Scherrer Institute, Switzerland, did
the same. This facility has been fundamental to the progress of proton therapy with
its pioneering realizations of the gantry to change the angle of the beam penetration
and the active scanning [77], the technique that, avoiding passive elements, moves
the pencil beam in three dimensions painting the tumour with Bragg spots (a
short description of active scanning is provided in the following paragraph on dose
distribution).

Not by chance the first hospital-based centre was built at the Loma Linda Uni-
versity (California), where the determination of James Slater lead to the agreement
with Fermilab in 1986, to design and built the 7-m-diameter synchrotron which
accelerates protons to 250 MeV.

A smooth conversion from a physics laboratory to a hospital facility took place
in Japan. The University of Tsukuba started proton clinical studies in 1983 using
a synchrotron constructed for physics studies at the High Energy Accelerator
Research Organization (KEK). A total of 700 patients were treated at this facility
from 1983 to 2000. In 2000, a new in-house facility, called Proton Medical Research
Center (PMRC), was constructed adjacent to the University Hospital. Built by
Hitachi, it is equipped with a 250 MeV synchrotron and two rotating gantries [78].

Light Ion Therapy
Ions heavier than protons, such as helium and argon, came into use at Berkeley in
1957 and 1975, respectively. At the old 184-in. cyclotron 2800 patients received
treatments to the pituitary gland with helium beams: the lateral spread and range
straggling being much smaller than in the proton case described before.

About 20 years later, argon beams were tried at the Bevalac in order to increase
the effectiveness against hypoxic and otherwise radioresistant tumours, i.e. tumours
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that need deposited doses 2–3 times higher if they are to be controlled with either
photons or protons (radiation oncologists speak of ‘Oxygen effect’). But problems
arose owing to non-tolerable side effects in the normal tissues. After the irradiations
of some 20 patients, Cornelius Tobias and collaborators decided to use lighter
ions, first silicon for 2 patients and then neon, for 433 patients. Only towards the
end of the program it was found that the neon charge (Z = 10) is too large and
undesirable effects were produced in the traversed and downstream healthy tissues
[79]. The Bevalac stopped operation in 1993 and, at the conclusion of this first phase
of hadrontherapy, almost 3600 patients have been treated worldwide with pions,
helium ions or other ions.

The larger effects that ions have with respect to the ones produced by cobalt-
60 gammas of identical dose is quantified by introducing the ‘RBE’ (Relative
Biological Effectiveness). RBE depends upon the cell type, the radiation used
(particle, energy, dose) and the chosen effect. For a given cell type and effect RBE
varies with the LET of the ionizing particles. Only at the beginning of the 1990s
carbon ions (Z = 6) were chosen as the optimal ion type. Indeed light ions produce
a radiation field which is qualitatively different from the ones due to either photons
or protons and succeed in controlling also radioresistant tumours.

The carbon choice was made in Japan by Yasuo Hirao and collaborators of
the National Institute of Radiological Science, NIRS [80], who proposed and built
HIMAC (Heavy Ion Medical Accelerator in Chiba) in the Chiba Prefecture (Fig.
11.26).

In 1994, under the leadership of Hirohiko Tsujii, the facility treated the first
patient with a carbon-ion beam of energy smaller than 400 MeV/u, corresponding to
a maximum range of 27 cm in water. By the end of 2015 about 10,500 patients have

Fig. 11.26 HIMAC features two large synchrotrons, injected by a Alvarez linac, and three
treatment rooms for a total of two horizontal and two vertical beams
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been treated and it has been shown that many common tumours otherwise difficult
to cure (e.g. lung and liver) can be controlled [81, 82].

In 1987 in Europe an important initiative was launched to create a full-fledged
European light-ion therapy centre. The characteristics of the needed hadron beams
were defined in a series of expert meetings. EULIMA, the European Light Ion
Medical Accelerator project, financed by the European Commission, was led by
Pierre Mandrillon and involved many European laboratories and centres. The
European therapy synchrotron was never built but instead national-based projects in
Germany and Italy were pushed through giving to the radiation oncologists facilities
similar to the HIMAC at Chiba and the Hyogo Ion Beam Medical Center.

In 1993 Gerhard Kraft and colleagues obtained the approval for the construction
of a carbon ion facility at GSI (Darmstadt), later called the “pilot project”. Hadron
therapy started in 1997 and, at the time of the closure in 2009, 440 patients
[83] were treated with carbon-ion beams. The medical and technical competences
were both used to build the Heidelberg Ion-Beam Therapy Center (HIT), which
started operation in 2009 [84] and transferred to Siemens Medical, which built the
HIT treatment rooms. The main new features of the GSI pilot project where: (i)
the active ‘raster’ scanning system [85]; (ii) the sophisticated models and codes
that take into account the biological effects of each irradiated sub-volume in the
treatment planning system; (iii) the in-beam PET system which determined ‘on-line’
the location and shape of the irradiated volume by detecting the β+ radioactivity
produced by the incident carbon ions, mainly 11C and 15O [86–88].

11.3.2.2 The Bases of Cancer Radiation Therapy

The absorbed dose due to a conventional beam of photons has a roughly exponential
absorption in matter after a slight initial increase. For instance, the highest dose for
beams having a maximum energy of 8 MeV, is reached at a depth of about 2–3 cm
of soft tissue and the dose is about one third of the maximum at a depth of 25 cm.
Because of this non-optimal dose distribution, the unavoidable dose given to the
healthy tissues represents the limiting factor to obtain the best local control of the
pathology in conventional radiation therapy. In this connection, it has to be remarked
that even a small increase of the maximum dose can be highly beneficial in terms of
tumour control.

The radiation is given to the patient balancing two opposing goals, deliver a
sufficient dose to control the tumour and spare the normal tissue from dose levels
that could cause complications. To increase the dose to the tumour and not to the
healthy surrounding organs it is essential to ‘conform’ the dose to the target. In order
to selectively irradiate deep-seated tumours with X-rays, radiation oncologists use
multiple beams from several directions (portals), usually pointing to the geometrical
centre of the target. This is achieved by using a mechanical structure containing
the linac which rotates around a horizontal axis passing through the isocentre
(‘isocentric gantry’). The already mentioned IMRT makes use of up to 6–12 X-



11 Application of Accelerators and Storage Rings 725

Fig. 11.27 Comparison of depth dependence of the deposited dose for each radiation type, with
the narrow Bragg peak at the end. For monoenergetic beams, the carbon peak is three times
narrower than the proton beam, a feature which is not represented in this schematic drawing

ray beams; the beams may be non-coplanar and their intensity is varied across the
irradiation field by means of computer-controlled multi-leaf collimators [89].

The depth-dose curves of proton and light ion beams are completely different
from those of X-rays, because these charged particles give the highest dose near
the end of their range in the Bragg peak, just before coming to rest. Figure 11.27
illustrates how hadrons are more suitable to treat deep-seated tumours as they can
be used to target profound regions preserving the more superficial healthy tissue.

In order to reach depths of more than 25 cm in soft tissues—necessary to treat
deep-seated tumours—proton and carbon ion beams must have an initial energy not
lower than 200 MeV and 4500 MeV (i.e. 375 MeV/u), respectively. In practice, the
standard maximal energies are 230 MeV for protons and 400 MeV/u for carbon
ions, which correspond to a 32 cm and 27 of water range, respectively. The minimal
energies, used for shallow tumours, are 60 MeV and 100 MeV/u respectively.

For this reason sizeable particle accelerators are needed in hadron therapy. These
machines are not demanding in terms of output current since 2 nA and 0.2 nA
are sufficient for treating patients with protons and carbon ions, respectively, when
active spreading systems are used. Higher currents are needed for ‘passive’ delivery
systems in which the beam is reduced in energy with a variable absorber, spread by
multiple scattering with two ‘scatterers’ and transversally shaped with collimators.
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Cyclotrons have to produce 10–20 times larger currents. In fact the machine
output energy is fixed and absorbers of variable thickness have to be inserted in
a 15–20 m long Energy Selection System which reduces the energy to the treatment
requirements. In the process of beam degrading, down to the minimal required
energies, and re-shaping a large fraction of particles is lost.

As mentioned above, carbon and other light ions have a larger RBE with respect
to X-rays and protons. The physical and radiobiological arguments of this can be
summarized as follows. In a cell, a carbon ion leaves about 24 times more energy
than a proton having the same range. This produces—very close to the particle
track—a dense column of ionization, especially near the Bragg-peak region of the
track, causing many ‘Double Strand Breaks’ and ‘Multiple Damaged Sites’, when
crossing the DNA contained in the cell nucleus. In this way, the effects on the cell
are qualitatively different from the ones produced by sparsely ionizing radiations,
such as X-rays and protons. In addition, the biological effect of carbon ions is less
dependent of the oxygenation of the target and therefore their use is indicated against
hypoxic and otherwise radio-resistant tumours.

Due to the much more complex DNA damage, the RBE values of the light ions at
the Bragg peak can be about three times larger than the one for X-rays and protons.
In the slowing down of an ion in tissue this effect becomes important when LET
becomes larger than about 20 keV/μm. For carbon ions this happens in the last
5 cm of their range in water.

11.3.2.3 Cyclotrons and Synchrotrons in Hadron Therapy

Proton Therapy
The first facilities that treated patients with protons and ions were based on existing
accelerators built for fundamental research in nuclear and particle physics: LBL at
Berkeley (USA); GWI in Uppsala (Sweden); JINR in Dubna (Russia); PMRC-1 in
Tsukuba (Japan); UCL, in Louvain La Neuve (Belgium); MPRI-1 in Indiana (USA)
60 MeV protons at Chiba (Japan). Moreover pions where used at TRIUMPH and
PSI (SIN at that time) in the periods 1979–1994 and 1980–1993, respectively. The
clinical results have shown that pions are not superior to protons and light ions
neither to obtain conformal dose volumes nor in the treatment of radioresistant
tumours.

The proton therapy facilities running in the world are listed in Table 11.7. The
data are extracted from PTCOG online database [90] and the data on the number of
patients are updated to December 2015.

Table 11.7 includes three centres producing 60–70 MeV proton beams which
are exclusively used for the treatment of eye tumours and malformations. The most
recent facilities in the table are hospital-based, in the sense that they feature an
accelerator built specifically for medical purposes and have more treatment rooms so
that several hundred of patients can be treated every year. The companies which have
built the accelerators and the high-tech parts of these centres are: Optivus (USA),
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Table 11.7 Proton therapy facilities in operation [90]

Centre Country Acc.a

Max.
energy
[MeV]

Beam direct.b

(del. method)c Start date
Total
patients

ITEP, Moscow Russia S 250 H(P) 1969 4368
St. Petersburg Russia S 100 H(P) 1975 1386
CPT, PSI,
Villigen

Switzerland C 250 2G(A),H(P) 1984 5458

Clatterbridge England C 62 H(P) 1989 2813
J. Slater PTC,
Loma Linda

USA, CA S 250 3G,H(P) 1990 18,362

CPO, Orsay France C 230 G,H(P) 1991 7560
CAL/IMPT, Nice France SC 230 G,H(P) 1991 5478
NRF—iThemba
Labs

South Africa C 200 H(P) 1993 524

UCSF-CNL, San
Francisco

USA, CA C 60 H(P) 1994 1839

TRIUMF,
Vancouver

Canada C 72 H(P) 1995 185

HZB, Berlin Germany C 250 H(P) 1998 2750
NCC, Kashiwa Japan C 235 2G(P,A) 1998 1560
JINR 2, Dubna Russia C 200 H(P) 1999 1122
PMRC 2,
Tsukuba

Japan S 250 2G(P,A) 2001 4502

MGH Francis H.
Burr PTC, Boston

USA, MA C 235 G,H(P,A) 2001 8358

INFN-LNS,
Catania

Italy C 60 H(P) 2002 350

Shizuoka Cancer
Center

Japan S 235 3G,H(P) 2003 1873

WPTC, Wanjie,
Zi-Bo

China C 230 2G,H(P) 2004 1078

UFHPTI,
Jacksonville

USA, FL C 230 3G,H(P,A) 2006 6107

MD Anderson
Cancer Center,
Houston

USA, TX S 250 3G,H(P,A) 2006 6631

KNCC, IIsan South Korea C 230 2G,H(P) 2007 1781
STPTC,
Koriyama-City

Japan S 235 2G,H(A) 2008 2797

RPTC, Munich Germany C 250 4G(A),H(P) 2009 2725
ProCure PTC,
Oklahoma City

USA, OK C 230 G,H,OB(P) 2009 2079

Chicago Proton
Center,
Warrenville

USA, IL C 230 G(A),H(P),OB(P) 2010 2316

(continued)
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Table 11.7 (continued)

Centre Country Acc.a

Max.
energy
[MeV]

Beam direct.b

(del. method)c Start date
Total
patients

Roberts PTC,
UPenn,
Philadelphia

USA, PA C 230 4G(P,A),H(P) 2010 3376

HUPTI, Hampton USA, VA C 230 4G(P),H(P) 2010 1399
MPTRC, Ibusuki Japan S 250 3G(A,P) 2011 1654
Fukui Prefectural
Hospital PTC,
Fukui City

Japan S 235 2G(A,P),H(P) 2011 646

IFJ PAN, Krakow Poland C 230 G(A),H 2011 128
PTC Czech r.s.o.,
Prague

Czech Republic C 230 3G(A),H 2012 780

ProCure Proton
Therapy Center,
Somerset

USA, NJ C 230 4G(A,P) 2012 1892

WPE, Essen Germany C 230 4G(A),H 2013 366
Nagoya PTC,
Nagoya City,
Aichi

Japan S 250 2G(A),H 2013 1095

S. Lee Kling
PTC, Barnes
Jewish Hospital,
St. Louis

USA, MO SC 250 G(P) 2013 270

SCCA ProCure
Proton Therapy
Center, Seattle

USA, WA C 230 4G(A,P) 2013 844

UPTD, Dresden Germany C 230 G(A) 2014 106
APSS, Trento Italy C 230 2G(A),H 2014 92
Hokkaido Univ.
Hospital PBTC,
Hokkaido

Japan S 220 G(P) 2014

Aizawa Hospital
PTC, Nagano

Japan C 235 G(P) 2014 1

Scripps Proton
Therapy Center,
San Diego

USA, CA C 250 3G(A),2H 2014 400

Willis Knighton
PTCC,
Shreveport

USA, LA C 230 G(A) 2014 151

Provision Center
for Proton
Therapy
Knoxville

USA, TN C 230 3G(A) 2014 856

Samsung PTC,
Seoul

South Korea C 230 2G(P) 2015 4

(continued)
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Table 11.7 (continued)

Centre Country Acc.a

Max.
energy
[MeV]

Beam direct.b

(del. method)c Start date
Total
patients

The Skandion
Clinic, Uppsala

Sweden C 230 2G(A) 2015 1431

Chang Gung
Memorial
Hospital, Taipei

Taiwan C 230 4G(A,P) 2015

Ackerman Cancer
Center,
Jacksonville

USA, FL SC 250 G(P) 2015 140

Mayo Clinic
PBTC, Rochester

USA, MN S 220 4G(A) 2015 186

Laurie Proton
Center of Robert
Wood Johnson
Univ. Hospital,
New Brunswick

USA, NJ SC 250 G(P) 2015 50

St. Jude Red Frog
Events PTC,
Memphis

USA, TN S 220 2G(A),H 2015 1

Texas Center for
Proton Therapy,
Irving

USA, TX C 230 2G(A),H 2015 1

Tsuyama Chuo
Hospital,
Okayama

Japan S 235 G(P) 2016

Mayo Clinic
Proton Therapy
Center, Phoenix

USA, AZ S 220 4G(A) 2016

Orlando Health
PTC, Orlando

USA, FL SC 250 G(P) 2016

Maryland PTC,
Baltimore

USA, MD C 250 4G(A),H(A) 2016

UH Sideman CC,
Cleveland

USA, OH SC 250 G(P) 2016

Cincinnati
Children’s PTC,
Cincinnati

USA, OH C 250 3G(A) 2016

Beaumont Health
Proton Therapy
Center, Detroit

USA, MI C 230 G(A) 2017

aCyclotron (C), Synchrotron (S), Synchrocyclotron (SC)
bGantry (G), horizontal (H), oblique (OB)
cActive pencil-beam scanning (A), Passive beam spread (P)
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Fig. 11.28 An Ion Beam Applications (IBA) proton therapy centre featuring two gantries and a
fix-beam room (insert at the bottom left). The magnetic channel, called ESS (Energy Selection
System), is needed to reduce the 230 MeV proton energy produced by the cyclotron (insert at the
bottom right) to lower energies, down to 70 MeV (with courtesy of IBA SA)

IBA (Belgium), Varian/Accel (USA/Germany), Hitachi (Japan), and Mitsubishi
(Japan).

A centre by IBA, which is the market leader of protontherapy, is shown in Fig.
11.28.

The PTCOG is the organization, which associates experts from the technical and
the clinical sectors in the field of hadron therapy. In its website [90] statistics on
patients and the information about new proton and carbon-ion centres are updated
with data from the companies and the clinics. By summing the numbers of all the
centres in operation and out of operation one obtains that the number of patients
treated with protons until the end of 2015 exceeded 131,000.

The most recent figures show that 39 new proton therapy centres are in
construction and should start operation within 2020 while 24 more centres are
planned. The geographical areas of major expansions are the USA with nine new
centres under construction, China with seven, UK with six, and Japan with four.
Proton therapy will be performed for the first time in Danemark, the Netherland,
and Slovak Republic, and, outside Europe, in India, Saudi Arabia, Singapore, and
Taiwan. Centres are planned to be built for the first time in South America (at the
Instituto de Oncologia Angel Ruffo Hospital, Boenos Aires, Argentina), in Australia
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(at the Australian Bragg Centre for Proton Therapy and Research in Adelaide), and
in North Africa (at the Children’s Cancer Hospital Foundation, Cairo, Egypt).

Carbon-Ion Therapy
As far as carbon ions are concerned, the situation is summarized in Table 11.8.
It is worth remarking that all these centres have the possibility of treating patient
with both, carbon-ion and proton beams, so that it the name ‘dual centres’ are
more appropriate than ‘carbon-ion centres’. Several centres opted to use in clinic
exclusively carbon ions in particular in Japan where the number of proton therapy
facilities is large and well distributed in the territory.

NIRS promoting role has continued after the first experience of HIMAC and
its activity was instrumental in the development and consolidation of carbon-ion
therapy in Japan. Starting in 2004, NIRS was involved on the design of a new
compact carbon-ion synchrotron. The new machine, that was employed for the
first time in Gumna, is adapted to the medical use accelerating carbon ions up to
400 MeV/u and has a circumference of 63 m, more than two times smaller than
HIMAC accelerator which was conceived for silicon ions up to 800 MeV/u [91].
Mitsubishi is commercializing the accelerator offering a complete turn-key solution
as implemented in Saga-HIMAT. The centre Kanagawa i-ROCK is the result of the
partnership of NIRS and Toshiba.

Table 11.8 Carbon-ion and dual facilities in operation

Centre Country Acc.a

Max.
energy
[MeV/u]

Beam directionb

(scanning
method)c

Treatment
start

Total
patients

HIMAC, Chiba Japan C 800/u H,V,G (A,P) 1994 10,769
HIBMC, Hyogo Japan p, C 320/u H,V (P) 2002 2366
IMP-CAS,
Lanzhou

China C 400/u H (P) 2006 213

HIT, Heidelberg Germany p, C 430/u 2H,G (A) 2009 2086
GHMC, Gunma Japan C 400/u 3H (P) 2010 1909
CNAO, Pavia Italy p, C 480/u 3H,V (A) 2012 591
Saga-HIMAT,
Tosu

Japan C 400/u 3H,V,OB (P) 2013 1136

SPHIC, Shanghai China p, C 430/u 3H (A) 2014 1498
MIT, Marburg Germany p, C 430/u 3H,OB (A) 2015 0
Kanagawa
i-ROCK,
Yokohama

Japan C 430/u 4H,2V (P) 2015 0

MedAustron,
Wiener Neustadt

Austria p, C 430/u 2H,V (A) 2016 67

The data are extracted from PTCOG online database [90] and the statistics on patients are compiled
basing on update of December 2015 and form direct information. All accelerators are synchrotrons
aAccelerated protons (p), accelerated carbon ions (C)
bHorizontal (H), vertical (V), oblique (OB), gantry (G)
cActive pencil-beam scanning (A), Passive beam spread (P)
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Not linked to NIRS developments is the synchrotron-based facility of HIBMC
in Hyogo, which was developed by Mitsubishi and is in operation since 2001. This
was the first clinical centre featuring dual modality, protons with energy between
70 MeV and 230 MeV and carbon ions between 70 MeV/u and 320 MeV/u.

Today the five carbon-ion therapy centres in operation in Japan treat, combined,
more than 2000 patients each year, with a total at the end of 2016 of 18,000
treatments [92].

Built by Siemens Medical, the centre of HIT in Heidelberg applies the com-
petences developed by GSI for its pilot project including the active scanning
capabilities. This is the first dual centre featuring a gantry. Its construction has been
a real challenge since it weighs 600 tons and consumes, at maximum energy, about
400 kW. The dual centre of Magburg was initiated as the second centre of Siemens
Medical, and, when the company withdrew from hadron therapy it was bought by
Marburger Ionenstrahl-Therapiezentrum which recommissioned and started treating
patients in 2015.

In 1996 the Proton Ion Medical Machine Study (PIMMS) [93] was initiated at
CERN with the participation of TERA Foundation (Italy), MedAustron (Austria),
and Oncology 2000 (Czech Republic) to study a proton and carbon-ion accelerator
for the therapy. The project of the high-tech part of the Centro Nazionale di
Adroterapia Oncologica (CNAO)—shown in Fig. 11.29—is due to the TERA
Foundation [94] which in 2002 obtained the financing of the centre by the Italian
Health Minister. The synchrotron, features a unique ‘betatron core’ to obtain a
very uniform extracted beam. The centre, built in Pavia, treated the first patient
with protons in 2011, a year later, treated the first patient with carbon ions. The
MedAustron centre built in Wiener Neustadt, uses the synchrotron design of CNAO
and treated the first patient with proton beams in December 2016.

A new carbon-ion therapy facility is under construction in China (HITFil,
Lanzhou). A dual center will be operational starting in 2018 in South Korea
(KIRAMS, Busan). By the year 2020 two more carbon-ion centres will be oper-
ational in Japan, in the cities of Osaka and Yamagata. All these centers are based on
synchrotrons.

Dose Distribution Systems
In order to maximize the outcomes of the therapy, the optimal hadron accelerators
systems should deliver a biological equivalent dose defined with an uncertainty
lower than 5% to tumour volumes that varies from few cubic milliliters up to 2 L
preserving as much as possible the healthy surrounding tissue. The desirable dose
rate is 2 grays/min/L, where 1 Gy = 1 J/kg.

Till the end of the last century, in all facilities, except PSI, the conformation
of the dose to the tumour was realized with ‘passive’ dose delivery systems,
using individually machined collimators, boluses, and passive absorbers to spread
longitudinally the Bragg peak. With this technique, which is still widely used, the
same spread out Bragg peak applies to the whole transversal section of the tumour,
so that large volumes of healthy tissue, that surrounds the tumour, are exposed to
the same dose as the tumour tissues.
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Fig. 11.29 Above. CNAO has been built in Pavia by the CNAO Foundation in collaboration with
INFN, the Italian National Institute for Nuclear Physics. To reduce the overall dimensions, the
7 MeV/u linac (built by GSI) is placed inside the 25 m diameter synchrotron. Below, MedAustron
built in Wiener Neustadt (© Kästenbauer/Ettl.): the same synchrotron structure of CNAO hosts
sources and the linac in a separate room, not visible in the picture

Modern system have been develop to minimize the over dosage of the healthy
tissue. The spot scanning technique developed for protons by PSI and the raster
scanning technique developed for carbon ions by GSI operate dividing the whole
region to be treated in sub-volumes of the order of few cubic millimeters (named
voxel from volume cells), directing beams with reduced transversal section (pencil
beams) toward them, and delivering a dose that is varying from one position to
the next. To further minimize the dose to healthy tissue the radiation is directed
to the patients from several directions (typically three). These techniques, which
have various practical realizations, are collectively called ‘active dose spreading
systems’.

The accelerating systems that realize such treatments require the highest beam
stability, the possibility of changing promptly and frequently beam intensity and
energy eider acting on the acceleration or using passive Energy Selection Systems
with rapidly moving absorbers.

A recent development that resulted from the common effort of NIRS and HIMAC
is the implementation of fast active spot scanning system. The fast beam scanning
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speed of 100 mm s−1 allows a high repetition rate of the scanning spots so that
a ‘volumetric multipainting’ of the tumour target is achievable. One-liter tumour
volume at a rate of 100 Hz can be repainted by the pencil beam several times in
few minutes reducing the statistical uncertainty in the delivered dose by a factor√
n (where n is the number of re-paintings) and minimizing any local accidental

under-dosage or over-dosage. This method also improves the synchronization of
the irradiation with the breathing movements. A second development concerns the
superconductive gantry. The structure, studied for carbon-ion beams up to 430
MeV/u, has a radius of 5.5 m and a wait of approximately 200 tons, comparable
with normal-conductive proton therapy gantries and sensibly lighter than the 600
tons gantry built in Heidelberg.

The ultimate goal is the treatment of moving organs, a challenge that is more
critical in hadron therapy than in conventional therapy because of the dose is con-
centrated in the Bragg peak. In this case the accelerating system and beam delivering
system require a feedback that, based on on-line movement detection, adapt in few
milliseconds the beam characteristics to the three dimensional movements of the
target.

11.3.2.4 Present and Future Challenges

There is still space for improving the dose delivery, for instance, the active dose
delivery systems for protons and carbon ions have been used for a small part of the
patients treated with protons or ions. In spite of the fact that most new centres are
featuring ‘active’ scanning systems and some of the existing centres are upgrading
to them, the implementation in the clinical practice has been for many years quite
slow.

As far as the accelerators and transfer lines are concerned, two main lines of
research have to be intensively pursued:

• systems which actively scanned are able to follow the tumours which are subject
to movements,

• accelerator and delivery systems which are lighter, smaller, more efficient, and
less power consuming than the present cyclotrons

Fast Cycling Accelerators to Follow Moving Organs
In conventional radiotherapy various techniques have been introduced to determine
in real time the position of an irradiated tumour which moves, for instance, because
of the respiration cycle and to deliver the dose following these movement in IGRT.
In this case computer controlled multileaf collimators are used. In hadron therapy
the tumour position can be detected with the same methods and a better follow-
up can be obtained by rapidly moving the Bragg spot so to compensate for three-
dimensional movements.

In the transverse plane the active scanning of tumours with hadron pencil beams
is obtained by adjusting two perpendicular magnetic fields located many meters
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upstream of the patient. The time needed to move the beam transversally, following
the indication of a precise feedback system, is of the order of milliseconds.

Due to the respiration cycle, the target organs can also move longitudinally,
i.e. in the direction of the beam. A good example of the problems concerning the
movements is a rib which enters the irradiation field of a lung tumour. In cyclotrons
and synchrotrons the time needed to change the energy, and thus the depth of the
Bragg peak, is of the order of 1 s because of the delay necessary either to move
energy absorbers (in cyclotrons) or to change the energy (in synchrotrons). An
accelerator with an energy cycle of the order of a few milliseconds would allow
a longitudinal follow-up of the tumour similar to the transversal one.

In synchrotrons, the beam is delivered to the treatment rooms only for fraction
of the machine time. Ramping up and down the magnets after the extraction of the
beam and waiting for the magnetic field to stabilize are time-consuming operations.
Few seconds are needed in this procedure and to reduce this dead time the centre
of HIT studied a system in which probes for the measurements of the field in the
magnet were inserted on the feed-back loop of the regulation of the magnetic fields
in the elements of synchrotron and beam lines. The result was an overall increase
in efficiency of 24% and a reduction of the time between two successive extractions
to approximately 1 s. If such time intervals are still not compatible with movement
compensation, nevertheless the improved efficiency has important impacts on the
facility, since a larger number of patients can be treated and the cost per treatment
decreases [95].

NIRS and HIMAC optimized the efficiency of their extraction system allowing
to extract of multiple energies, during a single machine cycle [96]. It is important to
remind that, in a treatment based on active scanning, the first layer irradiated is the
deepest, and then step by step all other layers. The number of particles accelerated
to certain energy in general exceeds the total number needed for irradiating the
corresponding layer at the planned dose. The beam not used is dumped and this
corresponds also to a waste of time. At NIRS, a system was studied to avoid
beam dumping using the synchrotron to decelerate and use the remaining beam
to the next more superficial layer. The process takes approximately 100 ms and,
since the procedure can be repeated several times within the same beam cycle, the
optimization of the irradiation time is consistent. Similar techniques are feasible to
compensate tumour movements.

Recently two new fast cycling accelerators—particularly suited for the move-
ment compensation and repainting of moving organs—have been considered: high
frequency linacs and Fixed Field Alterenating Gradient (FFAG) accelerators.

Since 1993 the linac approach is pursued by the TERA Foundation with the
choice of using the same frequency (3 GHz) employed in the construction of
electron medical linacs [97]. Since the acceleration of very low velocity protons (and
carbon ions) is problematic, it was proposed to use as injector a commercial 30 MeV
cyclotron. The cyclotron-linac complex has been dubbed ‘cyclinac’. Between 1998
and 2003 a TERA, CERN, INFN collaboration built and tested a 3 GHz 1-m long
side-coupled standing-wave structure which accelerated protons from 62 to 74 MeV
[98] and could stand gradients as large as 27 MV/m, corresponding to surface
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Fig. 11.30 This design of CABOTO (CArbon BOoster for the Therapy in Oncology) features a
150 MeV/u superconducting isochronous cyclotron followed by a 5.7 GHz standing-wave linac
powered by seventeen 12 MW klystrons (courtesy of TERA Foundation)

electric fields larger than 150 MV/m. In parallel an all-linac solution was studied by
L. Picardi and collaborators [99] which has been adopted for the TOP-IMPLART a
proton-therapy facility under development at the Laboratories of Enea, in Frascati,
Italy. The 150 MeV linac will be installed in the IFO Hospital, in Rome.

In the last years various cyclinacs have been designed: for proton therapy a 15-m
long linac could be used to accelerate the protons between 30 MeV and a maximum
of 230 MeV. A second cyclinac design is based on a superconducting cyclotron
that accelerates carbon ions C+6 (and H2

+ molecules) to 150 MeV/u (Fig. 11.30)
with a 300–400 Hz repetition rate [100]. The linac is subdivided in modules, which
interspaced with permanent magnetic quadruples are so short that the beam energy
can be continuously varied in a couple of milliseconds between the cyclotron energy
and the maximum by varying the output power of the klystrons.

Fixed Field Alternating Gradient (FFAG) accelerators have been proposed as
fast cycling accelerators for hadron therapy since the magnetic fields of the ring
are constant in time—as in a cyclotron—and the frequency of the accelerating
electric field can vary up to 500–1000 Hz. The many bending magnets are arranged
in triplets: the central magnet bends the circulating beam inwards while the two
external ones bend it outwards. During acceleration the orbits maintain the same
oscillating shape but increase in average radius so to remain inside the wide vacuum
chamber and find stronger and stronger deflecting fields. In the recent ‘non scaling’
FFAGs the orbits of increasing radius do not maintain the same shape so that the
full excursion requires bending magnets which are radially smaller than in classical
‘scaling’ FFAGs. It has to be noted that in every case beam extraction at different
energies needs fast kickers [101].
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A 150 MeV FFAG has been built in Japan for high-current applications [102]
and low-current uses of non-scaling FFAGs in proton therapy have been proposed
[103, 104].

In the case of carbon ions, due to the high magnetic rigidity of the beam, a
solution with three concentric non-scaling FFAG machines has been studied [105].
In this case there is the added complication of the many injection and extraction
systems which are needed in multi-ring facilities. This and other arguments are
discussed in a recently published comparison between linacs and FFAGs for hadron
therapy [106].

Compact Accelerators and ‘Single Room’ Facilities
An important line of development concerns what are now known as ‘single room’
proton facilities. The rational can be best appreciated by browsing Table 11.9 which
has been constructed by using the results of the epidemiological studies performed
in Austria, France, Italy and Germany in the framework of the EU funded network
ENLIGHT [107]. They can be summarized by saying that in the medium-long
term about 12% (3%) of the patients treated with high-energy photons would be
better cured with fewer secondary effects if they could be irradiated with proton
(carbon ion) beams. The table presents the number of treatment rooms needed for
a population of 10 million people living in a developed country. The estimated
numbers of rooms turn out to be in the easy to remember proportions 1:8:82. Since
a typical hadron therapy centre has 3–4 rooms, the above figures tell that a proton
(carbon ion) centre would be needed every about 5 (40) million people.

For proton therapy this shows the way to a flexible and patient-friendly solution:
instead of a multi-room centre with its large building, one should develop single-
room proton accelerator/gantry systems, constructed on a relatively small area
(approximately 500 square metres) attached to existing hospital buildings homo-
geneously distributed in the territory. It is worth remarking that the overall cost of
a full proton (dual) centre with three treatment rooms is of the order of 100 MAC
(200 MAC). Single-room proton therapy facilities, which cost approximately 25 MAC
[108] are strategic for the future expansion of proton therapy in existing clinical
facilities where cost and size is the most important factors.

Single room facilities are offered by Mevion, IBA, Varian, Sumitomo and other
companies. Two lines of developments have to be considered: compact accelerators

Table 11.9 Estimate of the number of X ray and hadron treatment rooms

Radiation
treatment

Patients per
year in 107

inhabitants

Av. number
of sessions
per patient

Sessions/d in
1 room
(d = 12 h)

Patients/y in
1 room
(y = 230 d)

Rooms per
10 million
people

Relative
ratio

Photons 20, 000 30 48 370 54 82

Protons
(12%)

2400 24 36 345 7.0 8

C ions (3%) 600 12 36 690 0.87 1
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MEVION S250 IBA Proteus ONE 

(with courtesy of IBA SA)

Varian ProBeam

Fig. 11.31 Single-room facilities commercialized by MEVION, IBA, and Varian

followed by short magnetic channels and accelerators which rotate around the
patient.

A very high field 15-tons niobium-tin superconducting 250 MeV synchrocy-
clotron was developed by Mevion Medical Systems Inc. in collaboration with
the Massachusetts Institute of Technology (MIT) and the Massachusetts Medical
Hospital. Mevion S250 is the firstly constructed system based on the concept
of single-room facility which treated the first patient in December 2013. The
accelerator is mounted directly on the 190◦ isocentric gantry (Fig. 11.31a) with a
superconductive coils producing a 8.7 T central magnetic field. The first version of
the system which featured a passive beam delivery system has been updated to a
‘pencil beam’ system for active scanning.

The Proteus ONE system of IBA consists of a compact 230 MeV superconduct-
ing synchrocyclotron, named S2C2. The energy selection system is mounted on the
220◦ isocentric gantry (Fig. 11.31b). In September 2016 the Lacassagne Centre in
Nice treated the first patient with S2C2 accelerator.

The single-room system ProBeam of Varian system combines a 250 MeV
cyclotron—the first commercial superconductive accelerator developed for proton
therapy used at PSI since 2007—and the 360◦ gantry (Fig. 11.31c).



11 Application of Accelerators and Storage Rings 739

Fig. 11.32 TULIP (Turning
LInac for Proton therapy)
all-linac solution (courtesy of
Mohammad Vaziri—TERA
Foundation)

A proposed system is the high-frequency proton linac rotating around the
patient—according to a scheme named TULIP and patented by TERA [109] which
is based on the same 5.7 GHz linac designed for CABOTO (Fig. 11.32).

An original development concerns laser-driven ion beams and is based on protons
accelerated by illuminating a thin target with powerful (1018–1020 W/cm2) and short
(30–50 fs) laser pulses. When the laser pulse hits the target—with thickness of the
few micrometers—electrons are violently accelerated producing an electric field of
the order of teravolt per meter which draws behind the protons for the surface of
the target itself. The phenomenon has been studied experimentally reaching proton
energies of more than 10 MeV with promising results [110]. The energy spectrum is
continuous and computations show that, using proper combination of target shapes
and laser power, a 3% energy spread can be obtained [111]. The advantages of
a laser-driven system are that the ion beams can be generated very close to the
patient and that optical elements can substitute the cumbersome and heavy beamline
elements including the gantries. The most relevant challenge is probably the short
pulse duration which is linked to the unknown biological effects of the high dose
rates, the impossibility of controlling the beam intensity during the irradiation,
and the potential risk of overdose. An important issue is also linked to very low
repetition rate of few hertz which would extend the irradiation to unacceptable
time. The implementation process is complex and still several years are foreseen
to create, around the laser-driven 200 MeV proton beam, the whole infrastructures
for a therapy facility [112].
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11.4 Spallation Sources

M. Lindroos · S. Molloy · G. Rees · M. Seidel

11.4.1 Introduction

Spallation is a nuclear process in which neutrons at different energies are emitted
in several stages following the bombardment of heavy nuclei with highly energetic
particles. In this chapter we limit ourselves to the description of the accelerator that
drives spallation sources. For a more detailed discussion of the spallation process
itself, the target, the moderators and the physics at such facilities see (for example)
[113]. However, it is worth noting that there are other ways to produce neutrons
with accelerators, for example photo-fission induced by an intense electron beam.
The spallation process is the most practical and feasible way of producing neutrons
for a reasonable effort (or simply cost) of the neutron source cooling system, see
Table 11.10. Research reactors also require fissile material handling, potentially a
major constraint for both handling and licensing.

Spallation sources come in at least three types: short pulse sources (a few μs),
long pulse sources (a few ms) and continuous sources. In general, synchrotrons or
accumulator (compressor) rings provide short neutron pulses, linear accelerators
provide long neutron pulses, and cyclotrons provide continuous beams of neutrons.

Pulsed neutron sources are more efficient in their use of neutrons than continuous
sources, in a majority of all applications, according to a survey performed for
the Autrans meeting in 1996 [115]. The time-of-flight of the neutrons—readily
measured from a pulsed source—allows us to determine the neutron speed and
energy. Additional tools are needed to select or determine the neutron speed in a

Table 11.10 The number of fast neutrons produced per joule of heat energy where the energy in
joule is taken as heat produced over energy consumed [114]

Fission reactors ~109 in ~50 litre volume
Spallation ~1010 in ~1 litre volume
Fusion ~2 × 1010 in huge volume
Photo neutrons ~109 in ~0.01 litre volume
Nuclear reaction (p, Be): ~108 in ~0.001 litre volume
Laser induced fusion ~104 in ~10−9 litre volume
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Fig. 11.33 The instant neutron flux at different research facilities plotted as a function of time

standard research reactor source. For example, a pulsed structure can be achieved
by chopping a continuous beam with a shutter. Consequently many of the neutrons
are then lost. Figure 11.33 plots the instantaneous neutron flux at different facilities
as a function of the year of their completion. It is not possible to extract the average
neutron flux from the figure without detailed knowledge of the time structure of the
different facilities. However, the future European Spallation Source (ESS) will be
the first spallation source with a time average neutron flux as high as that of the most
intense research reactors.

The spallation cross section for protons on heavy nuclei increases as a function
of proton energy up to several tens of GeV [116]. Nonetheless it is generally agreed
that a kinetic proton energy between 1–3 GeV is optimal for practical target and
moderator designs, and in order to keep the shielding requirements reasonable.

The first spallation source, ZING-P, based on a synchrotron, was built and
operated at the Argonne National Laboratory. It provided a short pulse well suited
for Time-Of-Flight (TOF) techniques at the “instruments” (experiments). Spallation
sources at Argonne were superseded by the Intense Pulsed Neutron Source (INPS),
by the KEK Neutron Science Center (KENS) in Japan, and by the ISIS neutron
facility at Rutherford in UK. These synchrotron based spallation facilities were
recently exceeded in power by J-PARC, at Tokai in Japan.

The first linear accelerator used to provide protons for a spallation source −
the Los Alamos Meson Physics Facility (LAMPF) in the USA − later became the
Los Alamos Neutron Science Center (LANCSE). The highest power Spallation
Neutron Source (SNS) in Oak Ridge combines a full energy linear accelerator
with an accumulator ring to provide very high intensity short pulses of neutrons
to the instruments. The European Spallation (ESS) source will provide even higher
intensities, but is developing instruments able to use longer linac pulses directly for
spallation, avoiding the need for a costly and performance-limiting accumulator ring
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[117]. Synchrotrons and accumulators, alike, have a intensity limits due to space
charge effects that introduce tune spreads and cause beam instabilities, resulting in
significant beam losses.

11.4.2 The Linear Accelerator

For many spallation-based sources, a good choice of technology for the acceleration
of the proton beam is a linear accelerator (linac). These very complex machines are
conceptually quite simple—a beam of H+ ions or protons is generated by a source
and passed through a series of accelerating structures on its way to the spallation
target. Since the spallation process means that the time structure of the neutron
pulses will match that of the proton beam, the requirements of the experiments
directly dictate the time structure of the proton current, and thus the high-level
design of the linac.

11.4.2.1 High-Level Machine Design

Typically the specifications given by the experiments are the following.

• The desired repetition rate of the facility, usually less than 120 Hz.
• The duty factor or the length of the neutron pulses.
• The beam power on target; either average or maximum.

Given these parameters, the accelerator designers then begin sketching out the
specifications of the design.

Kinetic Energy and Current
The maximum beam power on target constrains the maximum energy and current
of the proton beam, and engineering capabilities will place additional limitations on
these quantities. For example, the spallation target may have an energy threshold
beyond which it will no longer survive.

As mentioned previously, the optimal beam energy for a spallation target system
is in the range 1–3 GeV, and so an accelerator designer is likely to pick an energy in
this range. From this, the required beam current is easily derived.

After this, these parameters will be optimised in an iterative way. Engineering
limitations will first be reached in either the power transmission capabilities of the
couplers on the accelerating structures, or the acceleration gradients required within
the cavities. Once these have been determined, the designer can iteratively tweak
the beam energy and current in order to balance the performance requirements of
the cavities.

RF Frequency
Due to unavoidable losses in the generation and transmission of the RF, the installed
capability will need to be more than a factor of two larger than the beam power. The
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high power nature of these machines means that one of the largest cost drivers will
be the power sources for the accelerating RF. In order to save cost it is advisable to
take advantage of already-designed components, and thus RF frequencies previously
adopted by other facilities.

Typically this results in acceleration RF whose frequency is an integer multiple
of 176.105 MHz or 201.5 MHz.

Since it is possible to achieve higher acceleration gradients with higher frequen-
cies, the self-force (i.e. space charge) of the beam at the lower energy regions of
the machine mean that the strong focusing that results from high frequencies can
be problematic. It can therefore be optimal to use multiple acceleration frequencies,
with that in later sections of the linac being a multiple of two or four of the low
energy acceleration.

11.4.2.2 Linac Layout

A linac is laid out as a series of consecutive stages of acceleration. The following
sections each provide some detail on the most common technologies.

Proton Source
The ion source for a long pulse spallation source delivers protons rather than H-
ions, since there is no need to inject into an accumulator ring using charge exchange
injection (see section on synchrotrons). Proton sources can be implemented using
various techniques. For example, compact Electron Cyclotron Resonance (ECR)
sources such as VIS [118] and SILHI [119] are well suited to the task, delivering
continuous proton beams of up to 100 mA. The diverging beam leaving the source
has to be transported and matched to RFQ, usually using Einzel lenses or solenoids
in the Low Energy Beam Transport (LEBT). The LEBT has to be designed carefully
because it defines the beam quality throughout the rest of the linac [120].

Radio Frequency Quadrupole
Modern proton sources typically output a continuous beam of protons, however it
is not possible to directly accelerate such a CW current. The structure immediately
following the proton source must be one that compresses the current into a series
of bunches at the fundamental frequency of the accelerating RF. In the majority of
linacs a Radio Frequency Quadrupole (RFQ) performs this job.

An RFQ is a resonant cavity loaded with four vanes or rods in such a way that
the beam experiences a quadrupolar electrical field that strongly confines the size
of the beam. These vanes or rods are modulated in such a way that the beam
also experiences longitudinal forces. Initially these forces are tuned so that the
continuous current will begin to coalesce into a series of bunches at the frequency
of the accelerating RF.

As the beam proceeds further through the RFQ, the modulation of the vanes/rods
will be adapted so that there will be an acceleration force in addition to the focusing
terms. This will be increased throughout the length of the RFQ in a way that
preserves the quality of the beam, while keeping the structure to a reasonable length.
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For a given frequency the four-vane structure is the most power efficient, for
low current applications 4-rod structures may be cheaper to build. Currents of up to
100 mA can be handled with a single RFQ in the frequency range of 80–400 MHz,
while higher currents require beam from two parallel RFQs to be combined in a
funnelling section that operates at half the frequency of the main linac.

Drift Tube Linac
Once the beam has reached an energy of approximately 3 MeV, the efficiency of
the acceleration provided by an RFQ will drop to a level where it would be optimal
to use an alternative method of acceleration. In high-power proton linacs, a Drift
Tube Linac (DTL) is often chosen to succeed the RFQ due to its high efficiency, and
well-understood design principles.

A DTL is a large RF cavity through which the beam passes, absorbing power
from the accelerating field. The time taken for the beam to traverse this structure is
normally many tens of RF periods, and so metallic drift tubes are added to shield the
beam from the decelerating phase of the RF. The drift tubes must then be designed
to have the correct length and location for the beam to see the correct amplitude and
phase of the accelerating fields.

The DTL accelerates the bunched beam from the RFQ to energies between
50 and 100 MeV [121]. The accelerating efficiency of DTLs drops at energies
above 50 MeV and therefore a change of structure is required. The problem is
that the physics & engineering effort required to build a more efficient structure
costs more than any potential operational savings while increasing the risks. The
normal conducting alternatives are Separated DTLs (JPARC), Side Coupled DTLs
(Los Alamos and SNS), and Cavity coupled DTLs (LINAC4). Transverse focusing
is achieved by permanent or electromagnetic quadrupoles housed inside the DTL
drift tubes and/or between RF cavities.

Intermediate Energy Acceleration
In the energy range between approximately 100 MeV and 500 MeV, there tends to
be a split in the technologies chosen for beam acceleration.

For machines with a duty cycle of more than a few percent, the ohmic losses
due to the finite resistance of the metallic cavities is a significant driver of the
operational costs of the accelerator. For this reason, these machines tend to choose
superconducting structures in order to increase the fraction of the RF power
that accelerates the beam. Despite the running cost of the cryogenic facility,
superconducting facilities with significant duty cycles will cost substantially less to
operate than room-temperature machines. An emerging alternative to higher energy
DTL-variants is the superconducting spoke cavity technology. Spoke resonators
have a large transverse and longitudinal acceptance and are mechanically very stiff,
reducing their sensitivity to microphonics and to Lorenz force detuning compared
to elliptical resonators in this energy range.

For machines whose duty cycle is less than this cut-off, the long time taken
for filling the superconducting cavities with RF before beam arrival becomes
significant, thereby degrading the efficiency. For these machines, the higher RF
power costs are easily outweighed by the removal of the large cryogenic facility.
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These linacs tend to favour the alternatives mentioned in the previous section—
separated DTL’s, Side-Coupled DTL’s, and Cavity-Coupled DTL’s.

Superconducting Structures
In the high-energy part of the linac, superconducting technology tends to dominate,
however care must be taken to set the energy at which the linac transitions to
superconducting cavities at a point that properly balances costs and benefits.

Due to several decades of R&D by the ILC community, elliptical cavities are
a very good choice for these structures. The complex manufacturing processes are
very well understood, and the design is very robust to mechanical disturbances.

High-energy efficiency requires that each RF structure is designed to have an
accelerating mode with a very high Quality Factor (Q). Consequently, each Higher
Order Mode (HOM) also tends to have long damping time, with a significant risk
that its amplitude will still be at a high level when the subsequent pulses arrives.
Thus, it is necessary to consider a scheme to damp HOMs. In general two solutions
are available to the accelerator designer.

One solution is to mount one or more HOM couplers in locations where it is
expected that the more destructive parasitic fields will have large amplitudes. These
ports couple HOM power into an external load, dramatically shortening the decay
times of the modes. It is common for accelerating structures to join multiple resonant
cells into a single cavity structure. In this case, it is possible (as shown in Fig.
11.34) that the amplitude of a particular HOM may be negligible in the region of
the extraction coupler, while remaining high in the body of the cavity. This is an
inherent weakness of the multiple-cell structure, and care should be taken in the
design of the cavity to ensure that such “trapped modes” do not couple well to the
beam.

An alternative HOM damping solution is to include low Q, lossy, material around
the beam pipe between one cavity and the next, in order to induce losses in any
field that extends into this volume. This is implemented in a region where the
amplitude and losses of the fundamental accelerating field harmonic are negligible.
Nonetheless, a reduced fundamental Q is an unavoidable consequence of these
designs.

Fig. 11.34 Field magnitude for a particular dipole HOM oscillation within a five-cell accelerating
cavity
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HOM couplers typically have an inductive and a capacitive component, such
that there is a very sharp rejection at the frequency of the accelerating mode.
Although the addition of this filter successfully limits the impact on the accelerating
efficiency of the cavity, the requirement for a non-zero capacitance between the
central conductor and the cavity wall strongly increases the risk of a resonant
cascade of electrons being field-emitted from the metallic surfaces. This would
severely limit the successful operation of the cavity.

It has been shown [122] possible to instrument the signals excited on HOM
couplers, to act as a diagnostic device measuring the 4D transverse location of the
bunch (with position and angular resolutions of 4 μm and 140 μrad in FLASH),
as well as to measure the phase of the bunch with respect to the accelerating RF
(with a resolution of 0.08◦ at 1.3 GHz in FLASH). A determination of the cavity-
cavity transverse alignment using the excited HOMs has also been demonstrated.
The ability to instrument every accelerating cavity in this way is a major advantage
to the HOM coupling scheme.

11.4.3 Rapid Cycling Accelerators for Short Pulse Spallation
Neutron Sources

Accelerator schemes proposed for short pulse spallation neutron sources include:

1. Charge exchange injection from a pulsed H− linac to a fast cycling synchrotron
2. Charge exchange injection from a pulsed H− linac to a pulsed compressor ring
3. Direct proton injection from a pulsed proton linac to a fast cycling synchrotron
4. Direct proton injection from a pulsed proton linac to a pulsed compressor ring
5. Direct proton injection from a pulsed proton linac to a fast cycling FFAG ring

11.4.3.1 Charge Exchange Injection from a Pulsed H− Linac to a Fast
Cycling Synchrotron

A rapid cycling proton synchrotron (RCS) was the basis of a first, short pulse
source for neutron scattering research. It was proposed by J Carpenter in 1972, and
developed at ANL as the IPNS. The 450 MeV, 6.4 kW 30 Hz RCS source continued
successfully for 26 years [123] and other sources soon followed. In Japan, KENS
was developed at KEK, with a spallation target fed from their 20 Hz, 500 MeV,
3.5 kW proton RCS. ANL then studied higher power sources, but next came ISIS at
RAL, (1979–1984) with a 70 MeV H− linac and a 50 Hz, 800 MeV, 160 kW, RCS,
[124], exceeding the beam power of the IPNS by a factor of 25.

There followed a Central European Initiative for a spallation source in 1993–
1994, involving detailed feasibility studies [125] at both Vienna and CERN. Austron
proposed to use a 0.13 GeV, H− linac with a 1.6 GeV, 213 m circumference, proton
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RCS to deliver neutron target beam powers of 205 (410) kW, at 25 (50) Hz. Despite
the extent of the study, the project was not approved.

Now, Japan’s Proton Accelerator Research Complex, J-PARC [126] has a 3 GeV
RCS for a spallation neutron source as a part of a larger facility. The initial phase had
a 25 Hz, 0.18 GeV, H− linac with a 25 Hz, 3 GeV RCS, for a 0.5 MW beam power,
but the H− linac energy has been raised to 0.4 GeV to double the beam power. The
348.3 m circumference RCS has three superperiods, and uses novel, MA (magnetic
alloy) loaded cavities for its harmonic number 2, RF system.

A RCS based, spallation source, the CSNS, is being built in China. It has a
81 MeV, H− injector linac and a 25 Hz, 120 kW, 1.6 GeV, proton synchrotron
[127]. Later linac energies of 134 and 230 MeV will allow beam powers of 240 and
500 kW, respectively. The 41.5 m long H− linac has a 324 MHz, RFQ and DTL. An
initial hybrid lattice of doublet straights and FBDB arc cells has been replaced by
an all triplet lattice.

ISIS experience showed the importance of reliable 50 Hz, ion sources, long-life
H− stripping foils, RF shields for ceramic vacuum chambers, glass bonding for
ceramic sections, low loss fast extraction, and quick release for flanges and water
fittings. H− charge exchange injection is a key issue and includes painting smooth
beam distributions, reducing proton foil traverses (to limit foil temperatures), col-
lecting foil stripped electrons, and locating a momentum and a betatron collimation
system, allowing hands-on and “active” maintenance, for improved reliability and
availability. Anti-correlated is preferred to correlated painting, as the latter produces
some large amplitude protons in both transverse planes, which may be lost via
coupling. Every fifth, RCS pulse is now diverted, at 10 Hz, to a new target station,
which has become a major development.

A sub-tunnel within a main ring tunnel may reduce air activation near the
collectors. Fractional loss design levels are set at ≈10−3 at collimators and 10−4

elsewhere in the ring, with the latter leading to a beam loss of <1 W/m. A RCS needs
rectangular vessels to avoid vertical loss of any un-trapped beam, which spirals
to protective momentum collectors, set in a high, normalized dispersion region.
Rectangular vessels also aid transverse halo collection. Betatron collectors may be
in three adjacent straights, with three long secondary units placed at 17◦, 90◦ and
163◦, transverse, betatron phase shifts after a primary scatterer.

Beam density limitations due to Liouville’s Theorem are circumvented in charge
exchange injection. Two designs are available for low-loss H− injection systems for
RCS rings. In one, the merging of the H− ions and the circulating protons occurs
at a ring dipole and, in the other, at the centre of an orbit chicane of four fixed and
eight variable dipoles, in a very low dispersion region (SNS scheme) [128]. The
former does not need an injection chicane, or an injection septum unit, or horizontal
painting magnets, but it is not as flexible as the latter for longitudinal painting.

Both injection schemes aim to scrape the H− beam (~±10σ) in the input line
at ±5σ and set the beam centre at 5σ (~5 mm) from the adjacent, stripping foil
edges. Input steering errors (of one polarity) result in some H− ions missing the foil.
Partially stripped Ho atoms appear in a range of quantum states [129] and, together
with unstripped H− ions, diverge from the protons in the region’s bend field, and
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Fig. 11.35 Lattice for a
0.8–3.2GeV RCS, ISIS
upgrade
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traverse a second stripper and septum extraction unit(s) to exit the ring. Atoms with
low principal quantum number, n, remain as Ho up to the second foil, while atoms
of high n strip rapidly and are accepted as protons. Graphs of Ho lifetime versus
field show “gaps” between n = 4 and 5 and between n = 5 and 6 states. A “gap”
may be chosen by optimum choice of the region’s field.

An upgrade study for ISIS [130] has considered a 0.8–3.2 GeV RCS, fed either
from the ISIS ring for a 1 MW source at 50 Hz, or from a new 800 MeV H− linac
for a 2 (or 5) MW source at 30 (or 50) Hz. The injection is in an arc dipole as shown
schematically in Fig. 11.35. The ring has been designed with five superperiods, each
with arcs of triplets and straight sections of doublets (one pair of which is back to
back). The lattice has been designed to minimize peak stored energy in the bend
magnets and provide sufficient straight section space for economic cavity and RF
system designs. In comparison with an all triplet lattice, it has 20 quadrupoles less,
20 m more of straight sections and ~67% less, total dipole stored energy.

11.4.3.2 Charge Exchange Injection from a Pulsed H− Linac to a Pulsed
Compressor Ring

Charge exchange injection from a pulsed H− linac to a pulsed compressor ring
was considered for a short pulse, 5 MW, European Spallation Source (ESS) shortly
after the success of ISIS [131]. The study was overtaken in the USA, where it was
decided to build a similar source, the SNS, at Oak Ridge. Injection was similar
to that proposed for the RCS rings. SNS parameters were set at a 1.4 MW beam
power at 60 Hz and 1 GeV, with a later upgrade to 3 MW at 1.3 GeV. Operating
experience at the SNS [132] soon identified problem areas for future high power
short pulse sources. These included the beam losses in the H− linac following
intra-beam scattering, and during H− charge exchange injection in the compressor
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ring. Use of a H− linac injector for a compressor ring or RCS now needs to be
re-evaluated and other schemes also considered.

11.4.3.3 Direct Proton Injection from a Pulsed Proton Linac to a Fast
Cycling Synchrotron

In a new scheme, a proton linac replaces the H− linac and a ring with only one type
of lattice cell is assumed, as a H− injection insertion isn’t needed. A more stable,
higher current, lower emittance linac beam is realised and intra-beam and injection
stripper losses are avoided. The RCS, compressor or FFAG ring is fed directly from
the proton linac, using a two plane, multi-turn injection scheme, as proposed for a
heavy ion fusion research project in 1998 [133]. Direct proton injection is similar for
all three rings. A tilted, corner, electrostatic septum unit is set at a long drift section
centre point. The septum wires have an effective 1 mm thickness and are at a 40–60◦
angle, θ, to the horizontal. Control of closed orbits at the septum is via vertical and
horizontal bump magnets. Correlated painting is used, with closed orbits reduced
during injection to reach the design emittances.

Basic parameters are input beam and ring emittances, angle θ, ring betatron tunes,
Twiss parameters, space charge levels, and positions and directions, at the septum
output, of the incoming beam centre and the ring’s closed orbit. The ring lattice
parameters may be kept constant during the injection or varied, to minimise injection
beam losses. Evolution of beam distributions under the non-linear space charge
forces, during and after injection, was simulated in the study [133]. Emittances were
found to continue to grow after injection and evolve towards a stationary state so, to
avoid loss, the late beam-septum separations were increased. A maximum number
of turns injected without loss, for F = 10–20, and (εh εv)ring and (εh εv)inj the
respective products of ring and injected emittances, was found to be approximately:
Ninj = (1/F) (εh εv)ring/(εh εv)inj.

Ring circumference and straight sections must be large enough to achieve the
required injected beam. RAL studies [134] have compared combined function,
DFD and FDF triplet, and dFDFd and fDFDf, pumplet lattice cells. Magnets d
and D provide vertical focusing (horizontal defocusing) and f and F give opposite
focusing. Doublet cells are avoided as beam waists aren’t at an injection straight
centre. RCS pumplet cells are similar to those proposed for FFAGs [135], but their
fields are linear and their magnets all have positive bends. The bending radii are thus
larger and magnetic fields much reduced. For equal bending and corrector lengths,
triplet and pumplet cells have the same length. Pumplets are preferred as the Twiss
parameters are lower and hence the magnet apertures smaller. Ring designs use only
one type of pumplet lattice cell (dFDFd or fDFDf), and a low dispersion in the
injection straight section is advantageous.

An ISIS upgrade considers replacing the present ring by a large emittance, 0.6–
1.8 GeV pumplet RCS. A fDFDf cell is preferred to a dFDFd as it has lower β(h)
values and dispersion. The 12 cells have a 26.0 m mean and a 12.5 m bend radius,
and a 0.686 T maximum on-axis magnetic field. Assumed is a 70% chopped, 0.1 A
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linac proton beam, of 3 (π) mm mr, full un-normalised (y, x) emittances, F = 20,
two-plane painting, a 450 (π) mm mr, ring vertical acceptance, and 150 and 300
(π) mm mr, respective, full un-normalised (y, x) ring emittances. These allow 75
10+12 protons to be injected in 172 μs over 250 turns, at a peak space charge tune
shift ≈0.23 and a 1.08 MW beam power. ISIS second harmonic cavities may be
used at a h = 2, frequency range of 2.91–3.45 MHz.

11.4.3.4 Direct Proton Injection from a Pulsed Proton Linac to a Pulsed
Compressor Ring

A compressor ring and a RCS may be compared for the case of direct proton
injection and equal beam powers. The compressor ring requires a higher energy,
longer, more costly proton linac injector, a little larger ring circumference, slightly
smaller ring acceptances, and a simpler, lower power radio frequency system. A
detailed cost estimate for both linacs and rings is needed in order to determine the
choice.

11.4.3.5 Direct Proton Injection from a Pulsed Proton Linac to a Fast
Cycling FFAG Ring

FFAG accelerators have non-linear fields and focusing, defined by B = Bo (1 +
x/ro)K

, with x and r the distances from the ring centre and K = ρ r (B′/B ρ) =
ρ r Kv. They may be non-scaling or scaling (NSFFAG or SCFFAG) [134, 135],
with the former more common for higher beam energies. Two types have been
considered for a 26.0 m radius ISIS upgrade. One, proposed by S. Machida [136],
has a novel type of DF spiral lattice cell and construction of a model magnet cell is
under study.

The second, by G.H. Rees [134], has 12 [O f(+) o D(–) o F(+) o D(–) o f(+)
O] pumplet cells, where the non-linear magnets, d & D, give vertical focusing
(horizontal defocusing), the f & F provide opposite polarity focusing, straight
sections are O and o and bend directions are (+) or (–), with (–) the reverse
bends.

Ring closed orbits needed for direct, multi-turn, proton injection into the FFAG
are influenced by the non-linear main fields. Injection orbit bumps reduce the ring
periodicity below that set by the number of lattice cells, and the design must ensure
the beam dynamic aperture is not reduced during the injection.

FFAG-RCS differences include the former’s lower chromaticities and beam-size
dependent tune shifts and the latter’s lower injection dispersion. Errors in FFAG’s
non-linear magnets are harder to correct than those in RCS’s linear magnets. A
RCS has the advantage of no reverse bends so, in the case of equal outer radii,
room temperature magnets, it may have a higher energy and beam power than a
FFAG. It may also include trim quadrupoles, sextupoles and octupoles to adjust
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the respective tunes, chromaticities and tune spreads, and so aid in obtaining beam
stability.

11.4.4 High Intensity Cyclotrons

Cyclotrons have a long history in accelerator physics and are used for a wide
range of medical, industrial and research applications [137]. First cyclotrons were
designed and built by Lawrence and Livingston [138] back in 1931. The cyclotron
is a resonant accelerator concept with several properties that make it well suited for
the acceleration of hadron beams with high average intensity.

As a circular accelerator the cyclotron repetitively uses the same accelerating
resonators and radio frequency (RF) sources, thereby utilizing these expensive
components in an effective and economical way. Cyclotrons allow continuous
injection, acceleration and extraction of a beam. Neither RF frequency nor magnetic
bending field must be cycled. The continuous wave (CW) operation results in
low bunch charges, which leads to moderate space charge effects in comparison
to pulsed accelerator concepts. Basic components of a separated sector cyclotron,
suited for high intensity operation, are the bending magnets in sector shape, RF
resonators for beam acceleration and the injection/extraction elements. The Fig.
11.36 shows the layout of the PSI Ring cyclotron [139, 140] as an example of a
high intensity, separated sector cyclotron.

Fig. 11.36 The PSI Ring cyclotron generates a 1.4 MW proton beam at 590 MeV kinetic energy
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During the course of acceleration the revolution time of the beam must be kept
constant in order to ensure synchronicity with the accelerating RF voltage. At
relativistic energies this is achieved by raising the average magnetic bending field in
proportion to the relativistic γ factor towards larger orbit radii. This positive slope
of the bending field as a function of radius would result in a loss of vertical focusing
if the field was uniform azimuthally. Sufficient focusing is achieved due to the
azimuthally varying field strength in sector magnets and intermittent gaps (Thomas
focusing [141]), and by the introduction of spiral magnet shapes that enhance the
edge focusing effect of the bending magnets.

In practice the strength of vertical focusing is typically just sufficient for
operation, but weak in comparison with alternate gradient focusing. In the PSI
Ring cyclotron the number of vertical betatron oscillations per turn is slightly
smaller than 1 which reflects the weak focusing properties of the cyclotron magnet
lattice.

The key for the acceleration of a high intensity beam in a cyclotron is a clean
extraction with small losses. In the PSI cyclotron the extraction is realized by
deflecting the beam with an electrostatic element whose 50 μm tungsten electrode
has to be placed between last and second last turn. Particles in the beam halo
may hit this electrode, are scattered out of the beam and are lost in the extraction
beamline. According to practical experience losses of the order of 100 W can be
accepted with respect to this major loss mechanism in the PSI facility. The highest
activation levels in the extraction beamline typically amount to 10 mSv/h. All efforts
to optimize the accelerator towards higher beam powers are focused on lowering
the particle density in the beam tails and maximizing the turn separation at the
extraction point. One dominating effect generating beam tails is the longitudinal
space charge force which increases the correlated energy spread inside the bunch.
The bending fields transform the energy spread finally into transverse beam tails that
may interact with the extraction electrode. As Joho has shown [142], the strength
of this effect scales quadratically with the time the beam needs to be accelerated,
i.e. with the number of turns. In addition turn separation at the extraction of the
cyclotron scales inversely with the number of turns. Thus in total the losses caused
by longitudinal space charge scale with the third power of the turn number. Because
of this strong scaling it is very beneficial to realize the highest possible accelerating
voltages. For a cyclotron designed purposely for high intensity beams the achievable
radius increment per turn is an important design criterion. Under the condition of
constant revolution frequency the turn separation can be expressed in the following
way:

ΔR = R

γ
(
γ 2 − 1

)
Ut

m0c2 . (11.89)

Here R is the orbit radius and Ut the energy gain per turn. Thus the ideal high
intensity cyclotron exhibits a large diameter, provides a large energy gain per turn
and accelerates to moderate energies ≤1 GeV, since for large γ the turn separation
decreases very fast.



11 Application of Accelerators and Storage Rings 753

An alternative way to realize a clean extraction is charge stripping with a thin
foil. In this case incompletely stripped ions are accelerated in the cyclotron, for
example H− or H2

+. At the extraction foil the ions change their charge and are
separated from the circulating beam by the action of the bending field. This scheme
is employed in the TRIUMF cyclotron to extract proton beams up to 520 MeV [143].
A disadvantage of this method is the non-negligible rate of stripping that occurs in
the bending field, causing losses and activation. The H2

+ molecule has a higher
binding energy in the ground state, resulting in significantly lower dissociation
probability. However, disadvantages are the lower charge to mass ratio requiring
stronger fields, and the complex extraction path across the centre of the cyclotron,
resulting from a reduction of the bending radius by a factor 2 after stripping.

Transverse space charge forces present a limitation for the maximum feasible
beam intensity. Above a certain charge density the repelling space charge forces
exceed the relatively weak vertical focusing forces in a cyclotron. With the PSI
concept the realization of cyclotrons for beam powers up to 10 MW seems feasible.

Classical cyclotron magnets represent rather heavy and complicated devices
since they need to cover a wide radius variation of the beam orbit. To ensure
the condition of constant revolution time the radial field shape must be precisely
controlled. Radially distributed trim coil circuits are used for fine tuning on the basis
of beam phase measurements. Modern cyclotrons like the RIKEN SRC employ
superconducting magnets [144, 145] to obtain higher bending strength. In view
of turn separation and efficient extraction it is generally not desirable to design
very compact high intensity cyclotrons with the help of superconducting magnets.
However, with a large radius the gained space can be used to maximize the installed
RF voltage.

For the production of MW-class beams the energy efficiency of the acceler-
ator systems is important. Cyclotrons with continuous RF generated by tetrode
amplifiers and utilizing copper resonators can reach a relatively high efficiency.
A comparison of different accelerator concepts suited for producing high intensity
proton beams is presented in [146]. At the PSI facility a fraction of 18% of the total
grid power is converted to beam power.

In Table 11.11 selected properties of three cyclotrons are listed.
In summary cyclotrons present an effective and relatively compact solution to

generate high intensity proton beams at energies below 1 GeV and beam powers of
a few MW.
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11.5 Heavy Ion Accelerators for Nuclear Physics

N. Angert · O. Boine-Frankenheim

11.5.1 Accelerator Facilities for Heavy Ion Nuclear Physics:
Background and Aims

Nuclear spectroscopy, reaction studies, and nuclear astrophysics using beams of
accelerated heavy ions have been research fields in nuclear physics since the middle
of last century. An especially interesting topic is the search for new super-heavy
elements (SHE) using fusion reactions between medium-mass ions, with energies
of 4–5 MeV/u (around the Coulomb barrier), and very heavy target nuclei. Such
studies have been conducted for many years now at LBL, Berkeley; GSI, Darmstadt;
JINR, Dubna; RIKEN, Saitama, and other laboratories [148]. Using the cold fusion
technique to produce super-heavy compound nuclei, the element chart has been
expanded up to element Z = 118 in recent years using actinide target nuclei
[149]. Today, a growing research community is conducting experiments in nuclear
spectroscopy, mass and life time measurements as well as in the nuclear chemistry
of super-heavy elements [150].

Since the mid-1980s the availability of medium-energy ion beams up to
100 MeV/u in a new generation of normal conducting sector cyclotron [151]
and superconducting cyclotron facilities [152] has provided access to radioactive
isotopes in unexplored regions of the nuclear chart, far from stable isotopes.
Fragmentation and fission of heavy projectile nuclei in thin light element targets
were used to produce fast exotic nuclei using the in-flight method. Light exotic
nuclei produced in this way such as 11Li have exhibited the new phenomenon
of neutron halos [153, 154]. In other exotic nuclei produced using this method,
changes have been detected in the neutron shell structure for large N/Z-ratios
shedding new light on nucleon-nucleon interaction. Precision studies of masses, life
times, and new decay channels have revealed interesting phenomena, extended the
understanding of nuclear forces, and raised new questions. In addition, experiments
with unstable nuclei have contributed to a better understanding of an increasing
number of observations in astronomy.

A new era in nuclear astrophysics has opened up with the rare-ion beam facilities
dedicated to the measurement of nuclear reactions involving post-accelerated short-
lived nuclides of particular relevance to astrophysics. Whereas at large facilities
such as RHIC and LHC the aim is to simulate the early state of the universe
in the laboratory, exotic beam facilities will increase our understanding of the
development of stars and the creation of heavy elements. It is estimated that more
than 8000 isotopes may remain bound, with only about a third of them having
already been identified. Nuclear behaviour is expected to change significantly in the
yet unexplored regions. Figure 11.37 shows, as an example, the landmark results
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Fig. 11.37 Landmark results from experiments with in-flight produced super heavy elements
(SHE), with exotic beams at the Synchrotron-FRagment-Separator facility (SIS-FRS), and at the
Experimental Storage Ring (ESR) at GSI Darmstadt. [Reprinted from Nucl. Phys. A 701 (2002)
259, H. Geissel, G. Muenzenberg, and H. Weick, Copyright (2002), with permission from Elsevier]

from experiments with in-flight produced super-heavy elements, exotic beams at
the Synchrotron-FRagment-Separator facility (SIS-FRS) and at the Experimental
Storage Ring (ESR) at GSI Darmstadt [155].

Another method of producing isotopes far off stability and which can deliver
higher phase-space density exotic ion beams is the ISotope On-Line technique
(ISOL) [156]. This method is to some degree complementary to the in-flight method.
ISOL uses intense proton or light-ion beams in the energy range from 20 to
1400 MeV to generate radioactive nuclei using spallation, fission, or fragmentation
reactions induced by the projectile in thick targets of heavy elements. Unstable
isotopes produced in this way have thermal kinetic energy. After effusing out of
the hot target into an ion source they are singly ionized and separated in a high-
resolution magnetic separator. Then they are either trapped for precision mass
measurements or nuclear spectroscopy in a Penning trap, for example, or further
ionised in a charge breeder and post-accelerated to low energies in the keV/u to
MeV/u range. The principles of the in-flight and the ISOL methods are shown in the
diagrams in Fig. 11.38.

To summarize: rare isotopes either stopped ones or those with very low energy
(0–100 keV) are used for precision measurements of masses, moments, and
symmetries. Re-accelerated isotopes (0.2–20 MeV/u) are used for detailed nuclear
structure studies, high-spin studies, and measurements of astrophysical reaction
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Fig. 11.38 Diagram of the in-flight production method for radioactive isotopes (left) and of the
ISotope On-Line (ISOL) production method (right). [Copyright ©, O. Kamigaito, IPAC’10, Kyoto
(2010), MOYBMH01, jacow.org (2010)]

rates. In-flight produced fast isotopes (>100 MeV/u) make possible the farthest
reach from stability to the limits of existence and to the shortest life times. Generally
speaking, with the expansion of nuclear physics research to areas far off stability
in the nuclear chart, the atomic nucleus has become a laboratory for studies
of fundamental interactions and symmetries at the interface of particle, nuclear,
atomic, and astrophysics. This program requires the availability of both stable beam
and radioactive beam facilities, along with the development of new experimental
techniques and instrumentation.

Also, new facilities dedicated to delivering high-intensity heavy ion beams are
needed to further extend the possibilities for synthesis and experiments involving
super-heavy elements. In addition, smaller accelerator facilities are needed to
develop and test new instruments, and to educate the next generation of scientists.

11.5.2 Accelerators

11.5.2.1 Introduction

In the last two decades exciting challenges in physics described above have
stimulated many laboratories to begin research with radioactive isotope beams
(RIB) in existing or expanded accelerator facilities. Progress in ion source and
superconducting accelerator technology has facilitated this development.

At present there are a number of small and large in-flight and ISOL facilities.
The larger ones are NSCL at Michigan State University (MSU); ISOLDE at CERN;
ISAC (I and II) at TRIUMF, Vancouver; SPIRAL1 at GANIL, Caen; RIKEN RIBF,
Saitama; and SIS/ESR at GSI, Darmstadt. Large facilities planned for the near future
are GSI-FAIR at GSI and FRIB at MSU [157].

SPES in Legnaro and SPIRAL2 at GANIL are facilities on the way to EURISOL,
which is still in the planning stage. The quest for and the study of super-heavy

http://jacow.org
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elements has been an ongoing effort at JINR, GSI, and RIKEN, in particular, but
other laboratories such as JYFL, Jyväskylä, have recently entered; others such as
SPIRAL2 plan to do so. In this article it is not possible to mention the complete
list of facilities. An overview of nuclear physics facilities, including the heavy ion
accelerators that exist worldwide, is given in the IUPAP Report 41 [157]. Indeed,
there has been something of a renaissance in low- and medium-energy heavy ion
accelerators in recent years.

The history of heavy ion accelerators, which began with the Berkeley cyclotrons
in the 1950s, is described by E. Wilson in Chap. 1.

11.5.2.2 Special Issues of Heavy Ion Accelerators and Storage Rings

Some specific issues must be considered when designing accelerators and storage
rings for heavy ions. These issues are not relevant for proton or light ion machines.
Ion sources are needed which can generate highly charged, intense ion beams
of accelerator-compatible beam quality for the full spectrum of elements, with
their varying physical and chemical properties. During the acceleration of partially
ionized, highly charged heavy ions, charge-changing processes occur, whether by
accident or design. Knowledge of the equilibrium ion beam charge after it passes
targets (strippers), and of the yield in the desired charge state after stripping, is
important when designing and optimising an accelerator layout. The high specific
energy loss and irradiation effects are much more important issues for heavy ions
than for light ones. Knowledge of charge-changing cross sections is important when
estimating beam transmission in synchrotrons and beam lifetimes in storage rings
for given vacuum conditions, as well as recombination processes during electron
cooling. In synchrotrons and storage rings, heavy-ion-induced gas desorption
processes are crucial with respect to intensity limits and lifetimes of ion beams.
The reference atom for the design of the large in-flight driver accelerators to be
described later is 238U. Therefore, the explanation of aspects specific to heavy ions
will mainly be confined to that element.

11.5.2.2.1 Ion Sources

The first ion sources used for multiply charged ions in accelerators were been
Penning ion sources. In the 1950s, the cold-cathode Penning type was developed
at Berkeley for ion beam production [158]. Later, the hot-cathode Penning ion
source, which provided higher ion-beam currents for medium-charged ions, was
the favourite choice both for linear and cyclotron heavy ion accelerators up to the
mid-1980s [159]. It was now possible to deliver beams of up to several 100 μA for
U10+ [160]. However, the source lifetime was limited by erosion of the discharge
electrodes. In addition, in view of the fact that beams from metallic elements were
produced by using the sputtering technique, the lifetime of sputter electrodes was a
limiting factor, too, along with rather high material consumption. This was a serious

http://dx.doi.org/10.1007/978-3-030-34245-6_1


11 Application of Accelerators and Storage Rings 759

drawback when beams from expensive isotope-enriched materials were needed in
super-heavy element research.

For the production of short-pulsed high-charge-state beams of light ions Laser
Ion Sources (LIS) were used, for purposes such as injection into the Synchropha-
sotron in Dubna beginning in the mid-1970s; now they are used for injection into
the Nuclotron [161]. Pulsed Electron Beam Ion Sources (EBIS) were used there for
medium-mass ion beams up to krypton [162]. Both low duty cycle ion source types
(LIS and superconducting EBIS) are now in use at the Nucletron based collider
facility NICA for high charge state light and heavy ions, respectively [163]. A
powerful superconducting EBIS is delivering intense beam pulses of highly charged
heavy ions up to uranium for the RHIC injector at BNL [164, 165]. EBIS-type
devices are also used as charge breeders at various ISOL facilities [166].

The most influential development on the field of heavy ion sources has been
the Electron Cyclotron Resonance Ion Source (ECRIS), which has replaced the
Penning type ion sources at most heavy ion accelerators over the years and
has substantially increased the capabilities of cyclotron-, linac-, and synchrotron-
facilities for research on the field of nuclear physics over the last decades. The
ECRIS concept evolved from plasma devices for fusion research and has been
investigated as a source for highly charged ions at several laboratories, such as
Grenoble, Jülich, Karlsruhe, Louvin-la-Neuve, Marburg, and Oak Ridge since
the 1970s. In the ECR ion source, a plasma-confining magnetic configuration is
generated by the superposition of an axial solenoid mirror and a radial hexapole
field. Energetic electrons are generated for the ionization process using electron
cyclotron heating by GHz microwaves in magnet field regions which meet the
electron-cyclotron-resonance condition for the plasma electrons.

R. Geller’s group in Grenoble developed this device by introducing hexapole
magnets to improve ion confinement to a compact efficient generator for highly
charged ions (Minimafios) [167, 168]. An ECRIS was used for the first time at an
accelerator for ion injection in CYCLONE at Louvain-la-Neuve begin of the 1980s
[169]. The first ECRIS used at a large-scale accelerator was installed at the CERN
facility. An ECRIS, operated with a 10 GHz klystron, delivered 40 μA oxygen 6+ in
pulsed mode for injection into the CERN PSB-PS-SPS complex in the mid-1980s
[167]. Other accelerator laboratories followed CERN’s lead. Figure 11.39 shows
LBL’s superconducting Versatile ECR ion source for NUclear Science (VENUS),
as an example of the third generation of ECR ion sources which are used at various
laboratories today [170]. These third generation ECR sources, such as SECRAL and
SECRALII at IMP (Lanzhou) [171], SuSI at NSCL/MSU (East Lansing) [172], the
RIKEN-SCECR at Nishina-Center (Wako) [173], and the KBSI-SCECR for RAON
(Deajeon) [174], are essential for the capabilities of existing and next generation
heavy ion accelerator facilities for Nuclear Physics.

Third-generation ECRIS devices with superconducting magnets and operated
with microwave generators for electron heating up to 28 GHz are the standard
now. Developments in the various laboratories and operating experience over many
years have led to steady improvements of performance. These ion sources can
deliver now beams of several mA of oxygen 6+. Record beam currents of more
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Fig. 11.39 Mechanical layout of the LBL VENUS ion source and cryogenic system. [The Physics
and Technology of Ion Sources, 2nd ed., ECR Ion Sources, 203. D. Leitner, C. Lyneis, Copyright
© (2004), Wiley-VHC Verlag]

than 400 μA have been reached for U31+ with VENUS [175], 680 μA for Bi31+
and 10 μA for Bi50+, respectively, with SECRAL [176]. In long term accelerator
operation typically about half of these record beam currents are used in order to have
stable operating conditions over days or weeks. Figure 11.40 shows a charge-state
spectrum for uranium achieved with VENUS, when operated in the high-current
mode for medium charge states.

For cyclotrons and superconducting linacs, the ECRIS is the ideal choice. It can
be operated at a duty cycle of 100%. It has no consumable electrodes; therefore, it
can run for weeks when operated with gaseous elements. For metal-ion production,
furnaces have been developed at many laboratories for a variety of elements up
to uranium (e.g. [177–180]) [175]. Material consumption is at least an order of
magnitude lower than for Penning ion sources, in the range of 10 mg/h or below, an
important issue if beams from enriched isotope materials are needed. For injection
into synchrotrons the pulsed afterglow mode can be used which provides higher
peak currents of very highly charged ions than the cw operation [181, 182]. A
survey on the progress, challenges, and experiences in intense highly charged ion
beam production and long term operation with the third generation ECRISs is given
in [176].

The impact of ECRIS on the ion-accelerator field is best illustrated by the
following example. For the Berkeley 88-in. cyclotron (K = 140) it was possible to
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Fig. 11.40 Spectrum of uranium charge states from the LBL VENUS in the high-current mode.
[Copyright ©, D. Leitner, S. Caspi, P. Ferracin, C.M. Lyneis, S. Prestemon, G. Sabbi, D. Todd, F.
Trillaud, HIAT’09, Venice, Italy, WE-10 jacow.org (2009)]

Fig. 11.41 The evolution of beam energies vs. element mass at the 88-in. (K = 140) cyclotron at
LBL from the mid-1980s, using the best Penning ion sources, up to the present using the third-
generation superconducting ECRIS of the VENUS type. [Courtesy of LBL Berkeley, C.M. Lyneis]

expand the mass range, for which energies of more than 5 MeV/u can be provided,
from argon (A = 40) in the 1980s using Penning ion sources to medium-mass ions
(xenon) using the normal conducting AECR-U ion source, and finally to uranium
(A = 238) using the superconducting VENUS (Fig. 11.41) [183]. There are many
cyclotrons worldwide with K ≥ 100, which can take advantage of the high charge-
states delivered by the ECRIS to reach beam energies in order to perform nuclear
physics experiments with heavy ions.

http://jacow.org
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ECRIS can also be used for charge breeding of ISOL-produced or stopped in-
flight-produced rare isotopes before post- or re-acceleration [184, 185].

Based on the experience and progress with third generation ECRIS in increasing
beam intensities of highly charged ions in the last decade, proposals to build
next generation ECRIS for microwave frequencies beyond 28 GHz have been
discussed since some years. The 1st fourth generation ECRIS is under construction
now at IMP, Lanzhou, to be operated at 45 GHz, with correspondingly higher
magnetic fields, based on Nb3Sn- instead NbTi- superconducting technology [186].
Expectations are to reach with that fourth generation two to three times higher beam
currents in the future.

With respect to the formation and transport of beams from ECR ion sources, one
has to bear in mind that the extraction system is placed in a region with a super-
position of stray fields from the axial coil and the radial hexapole field, affecting
beam formation and beam density distribution. In addition, beams with different
ion charge states have different emittances due to the magnet-field structure, the
production and confinement processes inside the source. The ion-current density is
not uniform within the beam [187–189]. In third generation ECRIS, with higher
magnetic fields and microwave frequencies, beam emittance and low energy beam
transport is an issue [176].

In contrast to cw-operated cyclotrons and superconducting linacs, synchrotrons
require injection at high peak currents within a brief period. Those peak beam
currents of highly charged ions can be delivered from laser ion sources, or by an
EBIS, or by an ECRIS along with an accumulator ring such as LEIR, which uses
fast extraction to provide the requested peak intensities for the LHC [190]. For
the FAIR synchrotrons, high-current short-pulse ion sources are used, which can
deliver many mA (e.g. 15 mA of U4+) of ions in a low charge state [191, 192].
After pre-acceleration and intermediate stripping in the injector linac (Unilac) the
charge state is reached (U28+) which is needed in the booster synchrotron SIS18
(section “Facility for Antiproton and Ion Research (FAIR) at GSI”).

11.5.2.2.2 Charge-Changing Processes

The design of the first stage of a heavy ion accelerator depends on the charge state
delivered from the ion source for the heaviest ion species to be accelerated (highest
A/q-ratio). In accelerator facilities for medium to relativistic energies (some 10–
1000 MeV/u), usually one or two strippers are needed to increase the charge state
of the ions for an efficient acceleration scheme. In a stripper target, the initially
charge-homogeneous beam splits up into several charge components. One gets a
charge state distribution centred on the equilibrium charge state. To optimize the
overall accelerator layout, it is important to know the ion and energy dependence of
the equilibrium charge states and the yield of the charge states as well.

Pioneering theoretical work on these processes was done by Bohr [193]. Bohr
assumed that a fast heavy ion passing a gas stripper retains the electrons which have
orbital velocities which are greater than the ion velocity (Bohr’s Criterion). This
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physically reasonable criterion has been proven to be a good first-order approx-
imation for estimating the charge states which can be reached. Semi-empirical
approximation formulas were developed later to describe the energy and target
dependence of the equilibrium charge and the width of charge-state distributions.
For the low energy range, that means for energies from about 1 to some 10 MeV/u,
the equilibrium charge state for heavy ions can be approximately described by a
simple parameterized formula of the type

1 − (q/ZP ) = C exp (−δβ/α) , (11.90)

with q = average charge state, ZP = nuclear charge of the ion, β = v/c, α = 1/137,
δ = Z

−γ
P , see among others [194, 195]. For the stripping data gathered for example

in the operation of the Unilac (GSI) over the years, this formula is used with
C = C∗ + 140/Z2

P ,C
∗ = 1.0285. Averaging the experimental data, γ-values of

0.56 for foil and 0.65 for nitrogen-gas-jet data have been calculated [196]. Foil
strippers deliver higher charge-states, because the higher collision frequency in
solid materials leads to higher electron loss probability [195], but also suffer from
degradation due to beam intensity. For the range of 0.2 ≤ q/ZP ≥ 0.8, which means
if the ion has a sufficient number of electrons with comparable binding energy, the
charge state distribution is roughly Gaussian in shape. The width of the Gaussian
curve is proportional to Z1/2

P (see e.g. [195]).
Simple exponential relations for the average charge begin to deviate from

measured data, and charge state distributions are no longer Gaussian-like in shape,
when the electron configuration of the ion approaches inner shells with large steps
in ionization energies. This was discovered in the case of bromine ions by C.D.
Moak et al. in 1967 when approaching the L-shell by the stripping process in the
energy range between 1 and 2 MeV/u [197]. Therefore, after estimations with simple
semi-empirical formulas, experimental data should be taken into account whenever
available.

For beams of energies in the range from 10 MeV/u to 80 MeV/u, the computer
program ETACHA was developed by Rozet et al. to calculate charge-exchange
cross-sections, charge-state evolutions in targets, and equilibrium charge-state
distributions for highly charged ions, taking into account the electronic structure of
inner shells [198]. Experimental results in this energy range can be found in [199],
for example.

An overview of theoretical and experimental results for Xe, Au, and U projectiles
impinging with kinetic energies from 80 to 1000 MeV/u on solid and gaseous targets
ranging from Be to U is given in [200]. The calculations are compared to data from
experiments carried out at the BEVALAC (LBL) and at the heavy ion synchrotron
SIS (GSI) and associated facilities. Measured equilibrium charge state distributions
for uranium in the energy range from 1 to 1000 MeV/u are shown in Fig. 11.42
[200].

For high intensity beams, gas or liquid strippers have advantages compared to foil
strippers concerning their durability. Gas strippers lead to much lower equilibrium
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Fig. 11.42 Measured
equilibrium charge state
distributions at different
energies for 238U behind foil
strippers. [Reprinted from
Nucl. Instrum. Meth. B 142
(1998) 441, C.
Scheidenberger, Th. Stöhlker,
W.E. Meyerhof, H. Geissel,
P.H. Mokler, B. Blank,
Copyright (1998) with
permission from Elsevier]

charge states due to the strongly reduced influence of density effects compared to
solid strippers [195]. Since electron capture cross sections of the heavy ions in the
low-Z gases are considerably suppressed, in particular hydrogen promises higher
equilibrium charge states as compared to nitrogen which is routinely used at the
UNILAC gas stripper [201].

In synchrotrons and storage rings, charge-changing reactions between beam ions
and the residual gas in the vacuum chamber can lead to the immediate loss of the
ion. These processes are not significant in linear and cyclotron accelerators, because
of the short acceleration path length there. However, in synchrotrons for partially
stripped ions and in storage rings, these processes can limit the intensity and life
time of the beam. In order to determine the lifetime, it is necessary to know the
charge-changing cross-sections for both the capture and the loss of electrons during
the interaction of the ions with the residual gases.

For practical purposes, the one-electron-capture cross-section σc, for example, is
usually estimated by applying a semi-empirical formula of Schlachter et al., derived
from experimental data in gases from H2 to Xe [202]. It describes most of the
experimental data for σc in the low- and medium-energy range within a factor of
two. For the electron-loss cross-section σl, simple semi-formulas cannot be found
for a comparable wide energy range.

In recent years methods calculating charge-changing cross-sections have been
developed taking into account the electronic structure of projectile ions and target
atoms. As an example calculated cross-sections of U39+ + Ar as a function of
the ion energy are shown in Fig. 11.43 in comparison with experimental data
[203–206]. Figure 11.43 shows quite well the general energy dependence of cross-
sections of partially ionized highly charged heavy ions: The probability of electron
capture saturates at very low velocities and decreases steeply at energies above a
few 100 keV/u. Loss cross-sections increase with increasing energy, pass through
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Fig. 11.43 Calculated cross sections (solid line) for electron capture (EC) and loss (EL) for
uranium 39+ ions in argon gas as a function of the collision energy [190, 191]. Experimental
single-electron capture and loss cross-sections (open symbols) are given to show their contribution
to the total cross-sections (solid symbols) [192, 193]. Solid curves: EC calculations using the
CAPTURE code, and EL calculations using the RICODE and DEPOSIT codes, respectively.
The DEPOSIT code is described in [190]. [Reprinted from Nucl. Instrum. Meth. B 269(12)
(2011) 1455, V.P. Shevelko, I.L. Beigman, M.S. Litsarev, H. Tawaras, I.Yu. Tolstikhina, G. Weber,
Copyright (2011) with permission from Elsevier]

a maximum at intermediate energies, and reach a lower nearly constant value at
relativistic energies.

For heavy gases, the cross-sections can be orders of magnitudes larger than for
helium or hydrogen, especially the capture cross-sections. This is important with
respect to the desorption of heavy gas molecules from vacuum chamber walls
induced by impinging heavy ions (see section “Heavy Ion-Induced Desorption”).
Cross-sections for electron capture and loss in the medium-energy range have been
measured at RIKEN [207].

Charge changing processes can also occur due to ion-electron recombination
during electron cooling of an ion beam. Significant recombination processes
under these conditions, that means near zero relative energy Erel = 0, are Radia-
tive Recombination (RR) and Dielectric Recombination (DR). Unexpectedly high
recombination rates have been observed in merged-beam experiments using a cold
dense electron target (ne = 4 × 108 cm−3) in an experiment with 6.3 MeV/u
U28+ at the GSI Unilac [208], indicating that the lifetime of a stored electron-
cooled U28+ beam would be only seconds. Later, in a series of experiments at
CERN’s Low Energy Antiproton Ring (LEAR) Pb53+ ions were stored and cooled
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Fig. 11.44 Beam decay rates 1/τ as a function of the electron cooler current for 4.2 MeV/u lead
ions with charge states 52+ to 55+ in LEAR [209]. The decay rate for an electron cooler current
of zero is determined by the residual gas pressure in the ring, which varies for the different runs.
[Data for the graph have been provided from CERN, C. Carli]

in preparation for further acceleration [209]. The recombination rates obtained
from the observed lifetimes of a few seconds were by far larger (by a factor
of about 50) than the calculated RR. Neighbouring charge states Pb52+ and
Pb54+/Pb55+ behaved quite differently and provided sufficient time for cooling
without extensive beam losses (Fig. 11.44). Experiments at the Test Storage Ring
(TSR) at the Max-Planck-Institut für Kernphysik (MPIK) in Heidelberg investigated
Au49+,50+,51+ ions with an energy of 3.6 MeV/u; these are isoelectronic with
Pb52+,53+,54+. In the TSR-experiments recombination rates were not determined
indirectly from lifetime measurements; rather, they were measured as a function of
the relative energy in the electron-ion-center-of-mass frame [210]. An extremely
sharp recombination peak was found for Au50+ at Erel = 0. The enhancement
factor was about 60 for Au50+ in comparison to RR theory. Obviously, for this
ion DR resonances dominate the recombination at relative energy zero. For Au49+,
the maximum recombination rate at Erel = 0 is lower by roughly a factor of
10.

Apparently, the huge recombination rates observed for Au50+ and Pb53+ are
caused by the individual electronic structure of these ions, which happens to support
dielectronic recombination resonances at very low relative energies, leading to much
shorter lifetimes under cooling conditions. Unfortunately, so far theory is not able
to predict DR rates for these complex multi-electron systems.
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11.5.2.2.3 Heavy Ion-Induced Desorption

During high-intensity, heavy-ion operation of several particle accelerators world-
wide, dynamic pressure build-ups of several orders of magnitude have been
observed. The pressure increase is caused by lost beam ions that impact the
vacuum chamber walls at a grazing angle. Ion-induced desorption, which has been
observed at BNL, CERN, and GSI, can seriously limit beam intensity and lifetime
in synchrotrons or storage rings, because mainly heavy gas molecules are desorbed,
resulting in large cross-sections for projectile charge changing processes. In the past
several years, experiments have been performed at several laboratories to study the
observed dynamic vacuum degradations; it is important to understand and overcome
this problem for present and future heavy ion accelerators [211]. The ion-induced
desorption yield is defined as

η = #desorped molecules

#incident ions
. (11.91)

Experimental studies of the desorption yield for energetic ions on stainless steel
at room temperature indicate a scaling law η ∼ (dE/dx)nel, where (dE/dx)el~Z2/A
is the electronic energy loss, Z is the charge number and A the mass number. In the
5–100 MeV/u energy range and for perpendicular incidence, n≈ 3 was obtained for
uranium ions. Unfortunately, the measured desorption yields at 100 MeV/u were
η ≈ 100 for uranium and η ≈ 4 for argon (Fig. 11.45) [212]. As a consequence,
uncontrolled beam loss must be minimized to avoid pressure bumps caused by
lost heavy ions. Ions lost due to collisions with the residual gas should hit only
low-desorption materials or dedicated collimators and catchers [213]. Vacuum
pressures in the range of 10−11 mbar and lower are required for highly charged and
partially ionized heavy ion beams in order to control these processes. Therefore, the
vacuum requirements and beam-loss collimation issues in high-intensity heavy ion
synchrotrons and storage rings differ greatly from those in proton facilities.

11.5.2.3 Ion Accelerator Facilities

In this article is not possible to describe all existing accelerator facilities for stable
or radioactive ion beams, or those under construction. A few examples have been
selected and described. The focus will be on facilities that are considered by the
scientific community especially important for heavy ion nuclear physics in the long
term, as described in the IUPAP Report 41 and the NuPECC Long Range Plan 2010
[157, 214]. The facilities described here have been categorized on the basis of the
main production methods for radioactive ions: In-flight and ISOL facilities.
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Fig. 11.45 Desorption yields for argon and uranium ions impacting stainless steel at a perpendicu-
lar angle, shown here as a function of the projectile energy. The solid lines represent the calculated
electronic energy loss (dE/dx)nel for argon and uranium to the power of n = 2.1 and n = 2.9,
respectively, adapted to the experimental values (left) [212]. [Reprinted with permission from J.
Vac. Sci. Technol. A 27(2) (2009) 245, H. Kolmus, A. Krämer, M. Bender, M.C. Bellachioma,
H. Reich-Sprenger, E. Mahner, E. Hedlund, L. Westerberg, O.B. Malyshev, M. Leandersson, E.
Edqvist, Copyright (2009), American Vacuum Society]

11.5.2.3.1 In-Flight Facilities

The in-flight method takes advantage of reaction kinematics to efficiently separate
short-lived nuclei, from the limits of stability to lifetimes in the μs range and even
to the level of a single ion. At medium and high energies (approximately several
10 to several 100 MeV/u), the radioactive isotope beams produced are forward-
directed at a velocity approaching beam velocity. Due to interaction with the target,
the emittance is larger than that of the projectile beam. Therefore, a large acceptance
separator system is needed for the fragment beam separation. The advantage of this
rare isotope-production process is its independence of chemical properties; it can be
used with isotopes from all elements.

In a new generation of in-flight facilities, powerful and versatile heavy ion accel-
erators, as projectile sources for the production of exotic nuclei, are combined with
large-acceptance electromagnetic separators and different high-resolution systems,
such as high-resolution spectrometers, storage rings, and ion traps. Post-acceleration
up to more than 10 MeV/u for stopped radioactive isotopes is also included to
obtain high-quality exotic beams at low energies. The different in-flight scenarios
are described in [215].

In the following sections, examples of large scale cyclotron-, synchrotron-, and
linear-accelerator facilities as the primary projectile source for in-flight-produced
nuclei are briefly described and discussed. The production targets, electromagnetic



11 Application of Accelerators and Storage Rings 769

separators, and experimental set-ups (ion traps, high-resolution spectrometers, etc.)
are not addressed here. However, storage rings and re- or post-accelerators are
included where they are part of the overall facility.

RIKEN Radioactive Isotope Beam Facility (RIBF)

The history of cyclotron accelerators at RIKEN Nishina Center, Wako, Japan, began
before World War II [216]. The era of heavy ion beams began in 1966 with a 160-cm
cyclotron. Work with radioactive ion beams began in 1986 when the RIKEN K540
Ring Cyclotron (RRC) [217] went into operation along with the Projectile Fragment
Separator (RIPS). A K70 AVF cyclotron was built for light ion injection [218] and
the existing variable-frequency linac (RILAC) [219] was used as injector for heavy
ions. The RILAC has been in operation since 1980 and has successfully accelerated
light ions to energies of 4 MeV/u and heavy ions to 0.8 MeV/u.

The RIKEN accelerator facility was expanded beginning in 1997 and became the
Radioactive Isotope Beam Facility (RIKEN RIBF). The aim of the expansion was
to improve experimental conditions for research with radioactive isotopes [220].
In the first phase of the expansion project, a new multi-stage acceleration system
was built based on the existing RIKEN accelerators RILAC/AVF and RRC. To
these were added three booster cyclotrons, the fixed-frequency Ring Cyclotron
fRC/K = 570 [221], the Intermediate Ring Cyclotron IRC/K = 980 [209], and
the Superconducting Ring Cyclotron SRC/K = 2600 [222]. Figure 11.46 shows a
schematic diagram of the facility, including the key parameters of the accelerator
stages. The main accelerator is the SRC, with six sector magnets. Figure 11.47

Fig. 11.46 Schematic diagram of the RIKEN RIBF showing the key parameters of the accelerator
stages (see article) [220]. The injectors RILAC, RILAC2, and AVF are used for different
acceleration modes of the four booster cyclotrons: RRC, fRC, IRC, and SRC. [Copyright ©, Y.
Yano, Cyclotrons’04, Tokyo, Japan, 18A1, jacow.org (2004)]

http://jacow.org
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Fig. 11.47 Picture of the RIKEN Superconducting Ring Cyclotron SRC [Copyright © RIKEN]

shows a picture of this facility. When these accelerators are combined in a cascade,
with strippers in between, all ions of all elements can be accelerated up to at least
70% of the speed of light. The accelerated stable ion beams pass a thin low-Z
target. Radioactive ion beams are produced there using projectile fragmentation and
sometimes in-flight fission as well. The beams are then selected in the following
BigRIPS spectrometer [223].

RIBF is operated in three different acceleration modes [224]. The first one uses
RILAC, RRC, IRC, and SRC to accelerate medium-mass ions. The beam energy
can be varied in a wide range below 400 MeV/u by varying the RF frequency of
the linac and cyclotrons. The second acceleration mode is the fixed-energy mode,
which uses the fRC between RRC and IRC. The beam energy from the SRC is fixed
at 345 MeV/u, due to the fixed frequency operation of the fRC. This mode is used
to accelerate heavy ions such as uranium and xenon. The third mode uses the AVF
cyclotron as the injector and two boosters, the RRC and SRC. This mode is only
used for light ions such as deuterons and nitrogen, also with variable RF frequency
in the SRC.

The RIKEN RIBF started operation in 2006 and has been used to accelerate
beams from the full mass range from deuteron to uranium. The design energy of
345 MeV/u for uranium was achieved in 2007. Since then, experimental studies
on rare isotopes have been carried out. For example, 45 new neutron-rich isotopes
were created in 4 days [225], halo structure and large deformation were found
in the medium-mass nuclei far from the stability line [226, 227], and decay half-
lives of very neutron-rich isotopes were measured to study cosmic r-process [228].
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Recently the main focus of accelerator development has been on improving the
heavy ion beam intensities by optimizing the accelerator tuning and by reducing
matching and transmission losses in the individual stages. Overall transmission for
light ions is now approaching 100%. Construction of a second linac for the RRC
(RILAC2) began in 2008, fed from a new superconducting 28-GHz ECR ion source,
to provide an independent choice of ion beams for rare isotope physics and super-
heavy element research [224].

GSI Accelerator Facility (Unilac, SIS18, ESR)

The accelerator facility at the GSI Helmholtzzentrum for heavy ion research, Darm-
stadt, Germany, (see Fig. 11.52 below), consists of the universal heavy ion linear
accelerator (Unilac), the heavy ion synchrotron SIS18 (Schwer-Ionen-Synchrotron,
18 Tm), and the Experimental Storage Ring (ESR, 10 Tm). Construction of the
Unilac started in 1970 [229, 230]. The first heavy ions were accelerated in 1975,
and uranium ions in 1976 [231]. The Unilac can deliver beams with energies
>12.5 MeV/u for all elements up to uranium. Upgrade measures were performed
for beam energy in the 1980s and for beam intensity in the 1990s [232]. The present
layout of the Unilac is shown in Fig. 11.48. The Unilac pre-stripper linac consists
of a 36-MHz IH-type RFQ and an IH-drift tube linac [235], followed by a nitrogen
gas-jet stripper and an achromatic charge-analysis system at 1.4 MeV/u [233]. The
high-current pre-stripper linac is fed from a Penning ion source for high-duty-cycle
(~25%) operation or from high current sources of the MEVVA or CORDIS type
for synchrotron injection (low-duty-cycle ~ 1%) [223]. In the low-duty-cycle mode,
ions with A/q-ratio up to 60 (U4+) can be accelerated there [236].

Switching between the different ion sources with up to 50 Hz enables the
acceleration of up to three different ion species; this way, experiments at the Unilac,
the SIS18, and in ESR can be performed with different ion species in parallel [237].

Fig. 11.48 Layout of the Unilac: The pre-stripper linac consists of a 36-MHz high-current IH-
type RFQ and an IH-drift tube linac, followed by a nitrogen gas-jet stripper and a charge-analysis
system at 1.4 MeV/u [233]. The post-stripper linac consists of four 10-m 108-MHz Alvarez drift-
tube sections (up to 11.4 MeV/u) and a chain of single gap cavities either for post-acceleration
(up to about 12.5 MeV/u for heavy ions) or for interpolation of the energy steps (from 2.6 to
11.4 MeV/u) of the Alvarez sections. In addition to the high current IH-pre-stripper linac, there is
a high-charge-state 1.4 MeV/u injector linac (108 MHz), equipped with an ECR ion source which
is used for direct beam delivery (e.g. of U28+-ions) without stripping into the Alvarez post-stripper
linac [234]. [Copyright © L. Dahl, HIAT’09, Venice, Italy, FR-01, jacow.org (2009)]

http://jacow.org
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Construction of the synchrotron storage ring facility [225] started in 1985; it
went into operation in 1990 [226, 227]. The synchrotron SIS18 delivers U72+ beams
(foil stripped after the Unilac at 11.4 MeV/u) at energies of up to 1 GeV/u; U92+-
ions (using stripping at 1 GeV/u and re-injection into the SIS18 via the ESR) are
delivered at energies of up to 1.4 GeV/u. Light ion beams (q/A = 1/2) can be
accelerated at energies of up to 2 GeV/u. Beam intensities currently range from
1010 ions (for heavy elements) to 1011 ions (for light elements) per synchrotron
cycle (1 Hz). The Unilac and the SIS18 will be used as the injector system in the
Facility for Antiproton and Ion Research (FAIR) (Fig. 11.52 below). Intensities are
being increased using a current upgrade program for injection in FAIR (see section
“Facility for Antiproton and Ion Research (FAIR) at GSI”).

Experiments with in-flight-produced isotopes are performed both at Unilac and
SIS18 energies. Super-heavy elements, produced with low-energy Unilac beams
using fusion reactions in very thin heavy targets, move forward with the center-
of-mass energy. They are analyzed in an electromagnetic separator (SHIP) before
being stopped in a detector, or investigated at rest in an ion trap, or separated
using chemical methods [148]. Fast radioactive isotopes produced by means of
the projectile fragmentation of SIS18 beams in a thin target are analyzed in
the FRagment Separator (FRS) [238]. The isotopes thus analyzed can either be
transferred to the ESR (Fig. 11.49) or used for investigations of nuclei with lifetimes
as short as microseconds in high-resolution spectrometers.

The nuclear fragments emerge from the fragmentation target with increased
momentum-spread in all phase spaces, but with comparable average velocities.
Therefore, many isotopes with the same magnetic rigidity may be injected into
the ESR, where all components of the mixed beam are phase-space-cooled to the

Fig. 11.49 Photo of the experimental storage ring (ESR) at GSI, a unique tool for studying in-
fight-produced radioactive ion beams with or without beam cooling, using stochastic and electron
beam cooling or the isochronous operation mode (see text). [Photo from GSI Helmholtzzentrum
für Schwerionenforschung, A. Zschau]
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same velocity, with extremely small velocity spread [239]. Therefore, the frequency
spectrum of the beam noise (Schottky spectrum) from the multi-component beam
stored in the ESR consists of clearly separated lines. The frequency differences
between the lines are determined only by the mass-to-charge ratio A/q. The
difference in the revolution frequency (or revolution time) between ions of varying
A/q ratios is given by

Δf

f
= −ΔT

T
= − 1

γ 2
t

Δ (A/q)

A/q
+
(

1 − γ 2

γ 2
t

)
Δv

v
. (11.92)

where γ t is the transition energy and Δv/v is the velocity spread in the ion beam;
the velocity spread can be reduced by stochastic or electron cooling. The best
results in terms of accuracy and resolution are achieved with electron cooling at
very low beam intensities, and when the number of total stored ions within a small
A/q-interval is below 1000 (this minimizes the counteracting effect of intra-beam
scattering (~q4/A2) on the cooling process). Figure 11.50 shows the equilibrium-
momentum spread as a function of the number of fully stripped uranium ions in the
ESR storage ring at GSI. Above a threshold of roughly 1000 ions, the equilibrium-
momentum spread is defined by the balance of intra-beam scattering and electron
cooling. Below this threshold, intra-beam scattering is suppressed because the beam
ions form a longitudinal string, in which the ions are no longer able to pass
each other. In this ordered state, the equilibrium is determined by the balance of
cooling and machine noise [240, 241]. For electron cooling, the precision of mass
measurements performed using the Schottky Mass Spectroscopy (SMS) is around
1 × 10−6 or better. The resolution power of this method is illustrated by Fig. 11.51,
which shows the separation of mass-resolved 52Mn isomers [155, 242].

The cooling times at high energies restrict the application of electron cooling
to nuclei with lifetimes of about 10 s. For shorter lifetimes, stochastic pre-cooling
must be applied to the “hot” beams, with typical time constants of roughly 1 s [243].

Fig. 11.50 Experimental
momentum spread plotted
against the number of stored
ions in the ESR for fully
stripped electron cooled
uranium ions at 360 MeV/u.
[Copyright © R. W. Hasse,
M. Steck, EPAC’00, Vienna,
Austria, TUOBF201,
jacow.org (2000)]

http://jacow.org
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Fig. 11.51 High-resolution
mass spectra of electron
cooled 52Mn ions at the
ground (right) and isomeric
(left) states in the ESR.
[Reprinted from Nucl. Phys.
A 701 (2002) 259, H. Geissel,
G. Muenzenberg, and H.
Weick, Copyright (2002),
with permission from
Elsevier]

Operation in the isochronous mode with γ = γ t makes possible the investigation of
short-lived nuclei with lifetimes of as little as few milliseconds [244].

For atomic and nuclear physics experiments with low energy, electron cooled
ion beams in 2012 the CRYRING storage ring was delivered from Stockholm to
GSI. Since 2017 the modified CRYRING is operational at GSI. In combination with
the ESR and later also with the new FAIR facility CRYRING is the only facility
world-wide that provides low-energy highly charged stable beams and beams of
rare isotopes with a free choice of the charge state, including bare ions [245].

Facility for Antiproton and Ion Research (FAIR) at GSI

With the new international Facility for Antiproton and Ion Research (FAIR), shown
in Fig. 11.52, the research possibilities in nuclear physics with radioactive ions
will be expanded considerably at GSI, and the range of accessible isotopes further
extended [246, 247]. However, this is only one part of the physics research to be
performed at the new facility. Hadron physics, the study of highly compressed
nuclear matter, and atomic physics will be additional fields of research [248].

The FAIR facility in the Modularized Start Version (MSV) [247] will consist of
six circular accelerators (SIS18, SIS100, CR, HESR, ESR and CRYRING), of two
linear accelerators (p-Linac, UNILAC) and of about 1.5 km of beam lines (see Fig.
11.52). The existing Unilac-SIS18 combination will be used as the injector for the
new superconducting synchrotron SIS100 (100 Tm), which will have five times the
circumference of the SIS18. For radioactive-isotope research much higher primary
beam intensities will be reached. To give one example, in the case of uranium U28+
will be accelerated both in the SIS18 and SIS100, without stripping after the Unilac
in order to avoid the related beam losses. In addition, the ramping and cycling rate of
SIS18 will be increased (2.7 Hz). The achievable energy for U28+ will be 2.7 GeV/u
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Fig. 11.52 Left: Layout of the existing GSI facilities with the accelerators Unilac, SIS18, the
Experimental Storage Ring ESR and the CRYRING storage ring. Right: Layout of the planned
new FAIR facilities, with the existing accelerators (Unilac and SIS18) acting as the injector system:
the diagram shows the new Superconducting Synchrotrons SIS100 (100 Tm), the Collector Ring
(CR), the Superconducting FRagment Separator (Super-FRS), the antiproton production target, the
additional proton-injector linac, and the High Energy Storage Ring (HESR) (see text). [Courtesy
of GSI Helmholtzzentrum für Schwerionenforschung, C. Pomplun]

and up to 11 GeV/u for fully stripped U92+ beams in the SIS100 [249]. With a new
70 MeV proton linac injector for the SIS18, intense proton beams with energies of
up to 29 GeV will be provided from the SIS100 for antiproton production [250].

The ion beam from SIS100 can either be transferred to different experimental
set-ups or be sent through a production target for fast radioactive-isotope beams.
Together with a new large acceptance fragment separator (SuperFRS) behind the
SIS100, it is expected that radioactive-isotope intensities will be reached that are
10,000 times the current level [251]. The SIS100 RF-system is also designed to
compress the accelerated heavy ion or proton beams into short bunches (to ~60 ns
in the case of heavy ions and to ~25 ns in the case of protons). That is required for
the production and subsequent storage and efficient cooling of “hot” rare isotope
and antiproton beams in the following CR cooler-storage ring [252]. The main task
of the collector ring (CR) is stochastic cooling of radioactive ions or antiproton
beams from the production targets. In addition, this ring offers the possibility for
mass measurements of short-lived ions, by operating in isochronous mode. For
research with high-energy antiprotons up to 14 GeV and with heavy-ions, a high-
energy storage ring (HESR) will be available, equipped with a high-energy electron
cooler (up to 8 MeV), a stochastic cooling system, internal target, and an associated
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Table 11.12 Key parameters and features of the synchrotrons and cooler/storage rings [247]

Ring Circumference [m] Energy [GeV/u] Specific features

SIS-100
Synchrotron

1083 2.7 for U28+, 29 for p Fast ramped (up to 4 T/s)
superferric magnets up to
2 T, extraction of short
(60 ns), single pulses of up
to 5 × 1011 U28+ and
4 × 1013 p (25 ns) or slow
extraction.

CR Collector
Ring

215 0.740 for A/Z = 2.7, 3
for antiprotons

Large aperture. Fast
stochastic cooling of
radioactive ion beams and
antiprotons. Isochronous
mode for mass
measurements of
short-lived nuclei.

HESR High
Energy Storage
Ring

575 14 for anti-protons,
heavy ions (50 Tm)

Stochastic cooling of
antiprotons up to 14 GeV.
Electron cooling up to
14 GeV. Internal pellet or
cluster target.

detector set-up [253]. The key parameters and features of the synchrotrons and
cooler/storage rings are given in Table 11.12.

The FAIR facility is presently under construction. The CRYRING storage ring
has already started its operation. The upgraded SIS18 will be available 2018. Start
of commissioning of the SIS100, the production targets and the storage rings CR
and HESR is expected for 2024/2025.

National Superconducting Cyclotron Laboratory (NSCL) at Michigan State
University (MSU)

The first superconducting cyclotron, the K500 (K = 500) was built and went into
operation at MSU in 1982 [254, 255]. A second cyclotron, the K1200, with greater
bending power and hence higher energy beams (K = 1200) was commissioned in
1988 [256]. It was capable accelerating fully stripped light ions with N = Z to
200 MeV/u and heavy ions to approximately 50 MeV/u, depending on the charge
state. At these energies it was possible to convert the primary beam into radioactive
secondary (sometimes called rare isotope) beams using projectile fragmentation or
projectile fission. The A1200 separator was constructed for cyclotron beam analysis
and for production and separation of radioactive fragment beams [257]. This device
allowed radioactive beams to be delivered to all experimental set-ups and made
possible a successful research program with radioactive-isotopes. The Coupled
Cyclotron Facility (CCF) was built to increase the intensities (by several orders of
magnitude) and energies for heavy ion beams. The project included an upgrade to
the K500 cyclotron and its use as an injector for the K1200 cyclotron, along with a
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Fig. 11.53 The NSCL coupled cyclotron K500+K1200 facility with the superconducting large-
acceptance A1900 fragment separator [246]. To show scale, the size of a person is shown near the
K500 cyclotron (Courtesy of NSCL, Michigan State University, B. Sherrill)

new A1900 fragment separator. The CCF went into operation in 2001 [258, 259].
The program is centered on experimentation with radioactive ion beams produced
by the A1900. Nearly 1000 different radioactive beams have been produced and
used for experiments at the CCF since its inception.

Figure 11.53 shows the MSU-NSCL accelerator facility with the superconduct-
ing A1900 fragment separator with a collection efficiency near to 100% as compared
to a few % for the A1200 system [260]. The maximum energy of this coupled
cyclotron facility is limited to 200 MeV/u for q/A = ½ by the focussing in the
K1200. Energies up to 80 MeV/u can be delivered for the heaviest ions. High
transmission efficiencies allow 0.7–1.0 kW beams to be routinely delivered for
experiments at the NSCL. Net beam transmission measured from just before the
K500 to extracted beam from the K1200 can be about 30% depending on the ion
used (factoring out the unavoidable loss due to the charge stripping foil in the
K1200) [261].

The facility is currently being expanded for the investigation of radioactive
isotopes at low energies; this will be done by stopping the in-flight-produced
isotopes in a cryogenic gas stopping system and re-accelerating them in a compact
linac (ReA3) [261, 262]. The ReA3 linear accelerator will provide low-energy
radioactive isotope beams of high beam quality. The stopped ions will be re-ionized
in an Electron Beam Ion Trap (EBIT), then re-accelerated in a room-temperature
RFQ and a superconducting linac built of λ/4-resonators (QWR). ReA3 beam
energies range from 0.3 to 6 MeV/u for A < 50 and up to 3 MeV/u for uranium. A
later upgrade to 12 MeV/u (ReA12) will be done by expanding the ReA3 linac with
QWRs. That will be carried out prior to completion of the FRIB project described
in the following section.
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MSU Facility for Rare Isotope Beams (FRIB)

The major new initiative in the US in radioactive beams is the Facility for Rare
Isotope Beams (FRIB). FRIB is a research facility for the creation and utilization
of radioactive isotope beams based on the concept of a high-intensity (400 kW)
and high-energy (200 MeV/u) heavy-ion linac. It will include the capability to
provide radioactive ion beams at all energies from thermal to nearly 200 MeV/u.
Originally, the Rare Isotope Accelerator (RIA) with 100 kW and 400 MeV/u beams
was proposed in 2003. In the years that followed an alternative design, FRIB, based
on a lower energy (200 MeV/u) but higher intensity (400 kW) heavy-ion driver linac,
was developed. Michigan State University was selected near the end of 2008 to build
FRIB and the project attained DOE Critical Decision 1, CD-1, in 2010 [263].

Figure 11.54 shows the overall layout and the topology of the FRIB facility
[264]. The heavy ion driver linac is fed by ECR ion sources. The low-energy
beam transport (LEBT), the RFQ structure, and the medium-energy beam transport
(MEBT) to the first section of the main linac are capable of transporting and
accelerating heavy ion beams containing more than one charge state, such as 33+
and 34+ for uranium. The linac segment 1 consists of two types of superconducting
quarter-wave resonators (QWR) operating at 80.5 MHz with βopt = 0.041 and 0.085
to increase uranium-beam energy to 17.5 MeV/u and higher for lighter ions [265].

A stripping section will be installed after linac section 1 to increase the charge
states of the ions and hence the acceleration efficiency. An isochronous charge

Fig. 11.54 Layout of the MSU FRIB project (Courtesy of FRIB, Michigan State University, B.
Sherrill)
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analysis system will make possible the selection of several charge states for further
acceleration. Additional RF-cavities will help to optimize the longitudinal matching
to linac section 2. This system will provide efficient acceleration of all beams.

The post-stripper linac will be built with two types of Half-Wave Resonators
(HWR) with βopt = 0.285 and 0.53 operating at a frequency of 322 MHz. The four
cavity types will be able to efficiently cover the full velocity range from β ~ 0.025
to β ~ 0.57 (E/A ≥ 200 MeV/u). Transverse focusing in the linac structures will be
performed using superconducting 9T solenoids. With this condition, linac sections
2 and 3 will be able to accept several charge states (e.g. five charge states from
77+ to 81+ for uranium), and hence most of the intensity of the stripped beam
charge state distribution for further acceleration. For purposes of hands-on machine
maintenance, the specification for uncontrolled beam loss has been set to 1 W/m.

The high-power beam will be transferred to RIB production target systems,
which are followed by a large-acceptance fragment separator with three stages
of separation. The experimental area will reuse the existing NSCL experimental
facilities. The fragments will be either transported to experimental set-ups for fast
radioactive beams or slowed down using a gas-stopping system. Stopped isotopes
can be investigated in traps or transferred to a charge breeder and then re-accelerated
to low or medium energies up to 12 MeV/u (ReA12) [262].

The cryogenic facility, ECR, and RF support facilities are located above the linac
tunnel, which according to plans will be about 13 m underground.

The project includes several upgrade options. Space will be left in the linac tunnel
to make possible the addition of cryomodules; this will allow the beam energy to be
upgraded to 400 MeV/u. In addition, the facility will include a path for a beam line
to an optional ISOL production area that might be added in the future. There will
also be space to add a light-ion injector and fast beam-switching system to make
simultaneous multiple use of the FRIB possible. Construction of FRIB started in
2014. The project should be completed by 2022, with a possible early completion
in 2021.

Cyclotron Facility at the Flerov Laboratory for Nuclear Reactions (FLNR)
Dubna

The Laboratory for Nuclear Reactions, now named Flerov Laboratory for Nuclear
Reactions (FLNR) in Dubna, Russia, was founded in the Joint Institute for Nuclear
Research (JINR) in Dubna in 1957 [266]. For more than 40 years, classical and
isochronous cyclotrons have been used there for the acceleration of heavy ions
for nuclear physics research and heavy ion beam applications. Two isochronous
cyclotrons (U400 and U400M) are used for heavy ion nuclear physics. The U400
(K = 625) has been in operation since 1978. In 1996 it was upgraded; the Penning
ion source was replaced by an ECR ion source [267]. The synthesis of super
heavy elements, predominantly using 48Ca-beams, was and is still the main research
approach there [268]. Steady improvement of 48Ca-beams allowed to successfully
synthesise new elements from Z = 114 to 118. A review of the discovery of super-
heavy nuclei at FLNR, JINR is presented in [149].
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Fig. 11.55 Layout of the Dubna Radioactive Ion Beam (DRIBsIII) facility at the Flerov Labora-
tory for Nuclear Research (FLNR). It shows from left to right the new DC280 cyclotron, the U400
cyclotron, the U400M, and the beam line (DRIBs gallery) for transport of RIBs from the U400M
to the U400 cyclotron, used for the acceleration of RIBS (see text). [Copyright © FLNR, JINR,
Dubna]

The U400M (K = 550) has delivered light ion beams in the energy range of
up to 50 MeV/u since the beginning of the 1990s. Originally, it has mainly been
used for the production of light radioactive isotopes such as 6He or 8He using the
ISOL method. These ions are transferred to an ECRIS for charge breeding, and
then transported with keV/u energies via a 120-m beam transport system to the
U400, where they are post-accelerated to MeV/u energies [269]. Upgrades of the
U400M in the past years allowed accelerating ions of very heavy elements e. g.
bismuth up to energies of 15 MeV/u [270]. A new cyclotron DC280 (K = 280) has
been built, which will be the main accelerator of a Super Heavy Element Factory in
the future, expected delivering first beams for experiments in 2018. Fed by normal
and superconducting (18 GHz) ECR-ion sources, it should provide ten times higher
beam intensities than the cyclotrons used so far for masses up to A = 50. The layout
of the FLNR accelerator complex is shown in Figs. 11.55 and 11.56.

Heavy Ion Research Facility in Lanzhou (HIRFL)

One new and rather versatile accelerator combination of cyclotrons and synchrotron-
storage rings is the Heavy Ion Research Facility in Lanzhou (HIRFL), China [271].
Its first stage consists of a superconducting ECR ion source, a compact sector-
focusing injector cyclotron (K = 69), and a main sector-cyclotron accelerator SSC
(K = 450). The SSC went into operation in 1988. The construction of a new heavy
ion synchrotron (CSRm) (with the SSC as injector), combined with a fragment
separator, and an experimental storage ring (CSRe) for maximum uranium beam
energies of 500 MeV/u, started in 1999; the facility went into operation in 2007.
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Fig. 11.56 Picture of the U400 cyclotron at the Flerov Laboratory for Nuclear Research (FLNR)
in Dubna, used for super-heavy element synthesis. [Copyright © FLNR, JINR, Dubna]

The synchrotron and storage rings are both equipped with electron-cooler devices.
The HIRFL facility is used for in-flight production of exotic isotopes at medium and
high energies, and other basic and applied science, as well (Fig. 11.57).

Other In-Flight Facilities

A number of other facilities exist which can or could produce radioactive isotopes
using the in-flight method. As can be concluded from Fig. 11.41, cyclotrons with K-
values ≥150 (this includes all superconducting cyclotrons) can, using modern ECR
ion sources, deliver sufficient beam energy for heavy ions. Again we refer to the
IUPAP Report 41 and the NuPECC Long Range Plan 2010 [157, 214].

11.5.2.3.2 ISOL Facilities

Two examples of ISOL facilities have been selected and will be described here;
both involve the post-acceleration of radioactive isotope beams. The first is the
ISAC facility at TRIUMF, Vancouver, which like ISOLDE at CERN uses a high-
energy proton beam to produce radioactive isotopes in a thick target. It has recently
been expanded, the existing linac post-accelerator being upgraded to achieve higher
energies. The second one, SPIRAL2 at GANIL, is an extension of the existing
in-flight/ISOL facility GANIL-SPIRAL. It involves an additional new powerful



782 M. Dohlus et al.

Fig. 11.57 Layout of the Accelerator facility at the Institute of Modern Physics (IMP) in Lanzhou.
[Copyright © IMP, Lanzhou]

medium-energy light ion linac driver to produce much higher intensities of exotic
isotopes than is currently possible, and which will make accessible new regions of
exotic nuclei.

ISAC at TRIUMF

TRIUMF has operated a 500 MeV H− cyclotron since 1974. The TRIUMF facility
(Fig. 11.58) was expanded in 1995 with the addition of a radioactive beam facility,
ISAC [272]. The radioactive species at ISAC are produced using the ISOL method
with a 500 MeV proton beam of up to 100 μA bombarding a thick target.
After production the species are ionized, mass-separated and sent to either a low-
energy area or pass through a string of linear accelerators to feed experiments at
higher energies. The first beams from ISAC, now named ISAC-I, were available
in 1998, while the first accelerated beams were delivered in 2001 to a medium-
energy area and used chiefly for nuclear astrophysics [273]. The TRIUMF ISAC-II
superconducting linac, proposed in 1999, was designed to raise the energy of
radioactive ion beams above the Coulomb barrier to support nuclear physics at
TRIUMF. The first stage of this project, Phase I, commissioned in 2006, involved the
addition of 20 MV of superconducting linac [274]. Phase II of the project consisting
of an additional 20 MV of superconducting linac was installed and commissioned
in 2010 [275].

Typically, 1+ beams are produced in the on-line source, but an ECR ion source
was installed in 2009 to act as a charge-state booster (CSB) to raise the q/A ratio of
low-energy high-mass beams so that they could be accelerated through the ISAC
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Fig. 11.58 The ISAC facility at TRIUMF showing the RFQ, DTL in ISAC-I and the two
installation phases of the superconducting heavy ion linac in ISAC-II. [Courtesy of ISAC/TRIUMF,
Vancouver, R. E. Laxdal]

accelerators. An off-line ECR ion source provides stable beams for accelerator
commissioning and tuning as well as for the science program.

The ISAC-I accelerator chain includes a four-vane split-ring structure RFQ
(35.4 MHz), which accelerates beams of A/q≤ 30 from 2 keV/u to 153 keV/u [276].
The post-stripper, a 106 MHz variable-energy drift tube linac (DTL), accelerates
ions of 2 ≤ A/q ≤ 6 to a final energy between 0.153 MeV/u and 1.53 MeV/u. The
variable-energy DTL is based on a unique separated-function approach with five
independent interdigital H-mode (IH) structures [277]. Both the RFQ and DTL have
been used since 2001 to reliably provide a variety of radioactive and stable ions.

The ISAC-II superconducting linac is composed of bulk niobium, quarter wave
resonators (QWR) for acceleration, and superconducting solenoids for periodic
transverse focusing, housed in several cryomodules. The Phase-I linac consists of
20 QWR housed in five cryomodules. The first eight cavities have a geometric
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Fig. 11.59 The ISAC-II Superconducting linac. [Courtesy of ISAC/TRIUMF, Vancouver, R. E.
Laxdal]

β = 0.057 and the remainder a geometric β = 0.071. The cavities operate at
106 MHz. The Phase-II upgrade also consists of 20 QWR; they are housed in three
cryomodules. These bulk niobium cavities have a geometric β = 0.11 and resonate
at 141.44 MHz. One 9T superconducting solenoid is installed in the middle of each
of the eight cryomodules in close proximity to the cavities. The ISAC-II SC-linac is
shown in Fig. 11.59 [278].

The performance of the SC-linac is quoted in terms of the peak surface field
achieved at a cavity RF power of 7 W. The Phase-I section has operated at
Ep = 33 ± 1 MV/m since 2006 with little sign of degradation. The Phase-II section
averaged Ep = 26 MV/m in the first 6 months of operation [279].

GANIL-SPIRAL2 Accelerator Facility

Construction of the cyclotron facility at the French national heavy-ion laboratory
(Grand Accelerateur National d’Ion Lourd GANIL) in Caen, France, started at the
end of the 1970s. It consisted of two compact cyclotrons C01 and C02, (K = 30
each) and two separated-sector cyclotrons CSS1and CSS2, (K = 380 each). The
facility went into operation in 1982. The first beams for experiments were delivered
in 1983 [280]. Using one of the compact cyclotrons as the injector for the CSS1 and
a stripper before CSS2, it can achieve ion energies of up to 95 MeV/u for light ions
and up to 24 MeV/u for uranium beams. Stable beams of intermediate energies
in the range of ≤1 MeV/u to 13 MeV/u are used after C01 or C02, and CSS1
for atomic physics, biology, and solid state physics. Upgrades to improve beam
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energies and intensities have been performed since mid-1980s, with the special
aim of improving the situation for exotic-beam experiments. This has been done by
introducing ECR ion sources, by modifying the injection systems into the C01/C02
injector cyclotrons, and by improving performance of components for the operation
with beam powers of up to several kW in and after the CSS2 [281, 283]. In-flight
technology was used to produce exotic beams [283].

Since 2001, when a fifth cyclotron, CIME, went into operation, the Isotope
Separation On-Line (ISOL) technique was also used to produce rare isotopes [284].
The exotic isotopes, which were produced in thick targets using high power ion
beams of up to 3 kW from the CSS2 cyclotron, were transferred into a charge
breeding ECR ion source, and post-accelerated in the compact cyclotron CIME
(K = 265). Depending on the isotope, energies in the range from 1.2 to 25 MeV/u
are delivered from CIME. These beams are transferred to the existing experimental
facilities. An overview of the existing GANIL-SPIRAL1 accelerator and experiment
facility displays Fig. 11.60 (right) [285]. A review on stable and radioactive beams
produced there is given in [286].

To improve the possibilities for heavy-ion nuclear physics research both for
stable and for radioactive ions an expansion of the GANIL facilities has been
proposed named SPIRAL2. The SPIRAL2 project at GANIL was approved in 2005
[287, 288]. This new facility will provide intense beams of neutron rich exotic
nuclei (10+6 to 10+11) by the ISOL method in the mass range from A = 60 to
A = 140. The facility will be composed of a flexible high power superconducting

Fig. 11.60 Layout of the existing GANIL-SPIRAL1 accelerators and the experiment facilities
(right), and of the new accelerator and experiment facilities under construction for SPIRAL2 (left):
the existing GANIL-SPIRAL1 facility builds on the two injector cyclotrons C01/C02 the two sector
cyclotrons CSS1 and CSS2 with stripper in between and the cyclotron CIME for acceleration of
exotic beams. SPIRAL2 is based on a new superconducting linear ion accelerator as particle source
for different production methods of radioactive isotopes (RIB) and stable ion beams. [Courtesy of
GANIL/SPIRAL2, Caen, T. Junquera]
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linear driver accelerator (5 mA/40 MeV deuterons, 5 mA/33 MeV protons, and
1 mA/14.5 MeV/u heavy ions with q/A = 1/3), a dedicated building for the
production of radioactive isotopes (RI), the existing cyclotron CIME for the re-
acceleration, and new experimental facilities. The high power deuteron beam is
directed on a carbon converter target, producing fast neutrons. The main process
for the production of the RI is based on the fast neutron induced fission in
uranium carbide targets. Figure 11.60 (left) [285] shows an overview of the GANIL-
SPIRAL2 facility [287, 289].

The new linac is composed of two families of 88 MHz superconducting QWR
(β = 0.07, β = 0.12), which permits the acceleration of the different ions and ener-
gies mentioned before. The basic principle of this design is to install the resonators
in separate cryomodules (one QWR per cryomodule in the β = 0.07 section and
two QWR per cryomodule in the β = 0.12 section). Between each cryomodule
beam focusing is performed by means of 2 room temperature quadrupoles with
short vacuum/diagnostics boxes in between to allow for flexible beam optics and
tuning.

Phase 1 of SPIRAL2 includes construction of buildings, which started in 2011,
installation of the driver linac, the high energy beam lines and first experimental
equipment in 2012. Proton beams were accelerated in the RFQ in 2015. The phase
2 contains the radioactive isotope production cave, low energy experiments for RIB
and the connection to GANIL/SPIRAL1 facilities. Construction is expected to start
in 2014. As a long term option a heavy ion source with q/A = 1/6 will be added to
the linac. It will accelerate heavy ions up to 8.5 MeV/u.

Other ISOL-Facilities

There is a number of additional accelerator facilities used for the production
of radioactive isotopes with the ISOL method building on different accelerator
combinations and using different production methods. Spontaneous fission products
from californium are used as radioactive isotope source in the frame of the CARIBU
project at Argonne, in order to reach new areas of the nuclide chart, and accelerated
in the superconducting linac ATLAS [290]. Upgrades are going on at existing ISOL
facilities as for example at the ISOLDE facility at CERN [291]. In the frame of
this article it is not possible to address more. Therefore, it is again referred to the
compendium of nuclear physics facilities included in the IUPAP Report 41 [157]
and in the NuPECC Long Range Plan 2010 [214].

11.5.2.3.3 Conclusions

Since about 20 years there is a growing worldwide demand for in-flight and in ISOL
facilities for the production of radioactive isotopes. Developments in the fields of
ion sources and superconducting accelerator technologies have facilitated access of
many nuclear physics laboratories to exotic beams. The new facilities will further
increase the production rates and the measurement precision for exotic ions.
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In-flight facilities have advantages in the field of nuclear physics, whereas ISOL
facilities have their strengths in the field of nuclear astrophysics [292]. A new
generation of in-flight facilities builds on very powerful driver accelerators covering
a broad range of light to heavy primary ion beams. For new and expanding ISOL
facilities with superconducting post-accelerators, target handling, charge breeding,
acceleration, and beam handling of radioactive ions are important issues. ISOL-
post-accelerators are operated typically in the same energy range as machines for
super-heavy element synthesis.
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Chapter 12
Outlook for the Future

C. Joshi, A. Caldwell, P. Muggli, S. D. Holmes, and V. D. Shiltsev

12.1 Plasma Accelerators

C. Joshi · A. Caldwell · P. Muggli

12.1.1 Introduction

The charge separation between electrons and ions that exists within an electron
plasma density wave can create large electric fields. In 1979 Tajima and Dawson first
recognized that the longitudinal component of the field of a so-called “relativistic”
wave (one propagating with a phase velocity close to c), could be used to accelerate
charged particles to high energies in a short distance [1]. The accelerating gradient
of such a plasma wave, Eo, can be approximated—assuming a total separation of
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electrons and ions in such a wave with wavelength λp = 2πc/ωp—as

Eo ≈ mecωp
e

,

Eo (eV/m) ≈ 96.2
√
no
(
cm−3

)
.

(12.1)

Here λp is the plasma wavelength, ωp =
√

4πe2no/me is the plasma frequency
and no is the background plasma density, c is the speed of light, me and e are the
mass and charge of an electron, respectively. The majority of plasma accelerators
have been operated at plasma densities 1014 cm−3 < no < 1020 cm−3 giving
109 < Eo(eV/m) < 1012. Such ultrahigh accelerating gradients are the principal
attraction of plasma accelerators.

In a laser-plasma accelerator (LPA), an accelerating structure is created as an
intense laser pulse propagates through the plasma driving an electron plasma wave
also known as a wake. Specifically it is the ponderomotive force, Fp, of the intense
laser that displaces the electrons from the heavier ions creating the charge separation
and accelerating wakefield. The ponderomotive force is related to El or Al, the
electric field and vector potential of the laser respectively via Fp ∝ ∇E2

l ∝ ∇A2
l .

Often the normalized vector potential of the laser driver, ao, is used to characterize
the strength or magnitude of the laser driver and subsequent wake that is driven. The
normalized vector potential of the laser is given by

ao = eAl

mec2 =
eEl

ωomec
� 8.6× 10−10λo (μm)

√
Io
(
W/cm2

)
, (12.2)

where Io is the focused intensity of the laser pulse, and λo and ωo are the vacuum
laser wavelength and frequency respectively. In laser wakefield accelerators, laser
intensities of 1017 < Io(W/cm2) < 1020 are commonly used. For ao ≈ 1 and laser
pulse duration on the order of half-a-plasma wavelength (typically 50–100 fs),
wakes with accelerating fields of approximately 100 GeV/m are produced in a
1018/cm3 density plasma. This gradient is more than three orders of magnitude
larger than the accelerating gradient in a conventional RF driven accelerator.

It was recognized in the 1980s that wakes in plasmas could also be driven by a
relativistic beam of electrons [2]. Given an intense enough beam of electrons, the
plasma is both created [3] and excited by the passage of the bunch. Recently, driving
the wake with a proton bunch has also been suggested [4].

In a beam-driven plasma wakefield accelerator (PWA), it is the space charge
force of a highly relativistic beam of particles which excites the wakefield. For such
a bunch, the electric field seen by the plasma electrons is in the transverse direction,
and the plasma electrons initially move away from the beam axis, while the more
massive ions remain effectively frozen. These transversely expelled electrons are
attracted back towards the beam axis by the space charge force of the ions, creating
a cavity with very strong electric fields. An appropriately timed witness bunch can
be placed in a region of very strong longitudinal component of the electric field of
this cavity and accelerated. See Fig. 12.1. The cavity also provides a radial force that
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Fig. 12.1 Schematic of the accelerating structures produced in a plasma in the case of (a)
electron beam-driven plasma wakefield accelerator and (b) laser wakefield accelerator (LWFA),
both operating in the blow-out regime. In this regime all the plasma electrons are expelled by
the electron beam or the laser pulse thereby creating a “cavity” containing only plasma ions. The
extremely nonlinear longitudinal electric field generated in both cases is shown as a black curve
in (a). In the LWFA case the laser spot size is matched to the plasma to produce a near spherical
ion cavity with radius Rb equal to the laser spot size. The blow-out regime is attractive because the
transverse focusing field increases linearly and the longitudinal accelerating field is constant with
radius from the axis

Table 12.1 This table summarizes the scaling laws for the three distinct LWFA regimes
characterized by the laser ao, normalized spot-size kpwo and longitudinal electric field amplitude
εLW (mecωp/e)

Regime ao kpwo εLW (Eo) kpLd kpLpd λW γ φ �W(mc2)

Linear <1 2π a2
o

ω2
o

ω2
p

ω2
o

ω2
p

ωpτ
′

a2
o

2π
kp

ωo
ωp

a2
o
ω2

o
ω2
p

1D Nonlinear >1 2π ao 4a2
o
ω2

o
ω2
p

1
3
ω2

o
ω2
p
ωpτ

′ 4ao
kp

√
ao

ωo
ωp

4a2
o
ωo
ω2
p

3D Nonlinear >2 2
√
ao

1
2
√
ao

4
3
ω2

o
ω2
p

√
ao

ω2
o

ω2
p
ωpτ

′ √
ao

2π
kp

1√
3
ωo
ωp

2
3
ω2

o
ω2
p
ao

Here kpLd and kpLpd are the normalized dephasing and pump depletion lengths respectively, λW
is the plasma wavelength, γ φ is the Lorentz factor associated with the phase velocity of the wake,
and �W(mc2) is the dephasing limited net energy gain in a single stage of a LWFA. τ

′
is the

characteristic laser pulse duration given approximately by τ ′ = 4
3

1
ωp

√
ao. This table has been

reproduced from [70]

keeps the witness bunch from expanding radially. A conceptual e−e+ linear collider
based on plasma acceleration envisions multiple plasma wakefield stages powered
by either a laser or a particle beam driver. Each stage adds typically 10 GeV to
the accelerating beam. Using a multi-TeV class proton beam as a driver, it may be
possible to accelerate an electron beam to energies of interest (TeV) in a single stage.
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12.1.2 Physical Concepts

We now discuss some of the important physical concepts in plasma accelerators.
These concepts will determine the necessary laser/beam and plasma conditions for
the efficient acceleration of electrons. Unless specified otherwise the expressions
given in this section are in the limit of small amplitude or sinusoidally varying
(linear) wakes.

12.1.2.1 Phase Velocity vφ

The phase velocity, vφ , of the accelerating wake structure is equal to the group
velocity of the driver. In the case of a LPA, vφ of the wakefield is equal to

vg = c
(

1 − ω2
p/ω

2
o

)1/2
of the laser pulse as it propagates through the plasma.

Often it is also useful to define a relativistic Lorentz factor of the wake γφ =
(

1 − v2
φ/c

2
)−1/2 � ωo/ωp. For a PWA driven by a highly relativistic electron

bunch vφ ≈ c.

12.1.2.2 Dephasing Length Ld

In a LPA, electrons that are accelerated by the wakefield can gain enough
energy as to move faster than the phase velocity of the accelerating wake
structure. The difference in velocity causes a relative slip in position between
the electron beam and the accelerating phase of the wakefield. Eventually the
electron beam will slip out of the accelerating phase and into the decelerating
phase of the wakefield and begin to lose energy. The length over which the
electron beam can gain energy from the accelerating phase of the wakefield is
known as the dephasing length, Ld. Within the wake, the accelerating phase
extends over approximately half a plasma wavelength and the dephasing length
is approximated by assuming that the velocity of the relativistic electrons
equals c. The dephasing length is then given by Ld = cλp/{2(c − vφ)}. This
length limits the maximum energy gain that an electron experiences in a
LPA.

In a PWA driven by an electron beam, where vφ ≈ c energy gain is not limited
by dephasing. However, in a proton driven PWA the dephasing between the drive
and witness bunch must be considered. The phase slippage between the drive and
witness bunch has been estimated as [5]

δ ≈ πL

λp

[
1

γf γi

]
, (12.3)
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where L is the distance traveled, and γ i and γ f are the initial and final Lorentz
factors of the particles in the driving bunch. With an initial proton energy of 1 TeV
and final energy of 0.5 TeV, it is nevertheless possible to have dephasing lengths of
many hundreds of meters.

In either LPA or PWA cases, it is conceivable to control the plasma wavelength
by adjusting the density of the plasma, thus in part or fully compensating for the
phase slippage.

12.1.2.3 Pump Depletion Length Lpd

In a LPA, the laser pulse is depleted of its energy as it excites the wake.
Additionally, laser light that is not coupled into driving the wakefield is lost due
to diffraction/refraction within the plasma. The depletion of energy from the laser
pulse limits the distance over which the laser remains intense enough to drive a
wakefield. The characteristic distance over which the laser pulse is depleted of
it energy is defined as the pump depletion length Lpd . In order to gain further
energy, two or more laser-plasma accelerator stages must be combined in series.
This is known as staging. In a PWA if γ f � γ i, then the pump depletion length is
approximately γ imc2/E−, where E− is the decelerating field of the wake.

12.1.2.4 Injection and Trapping

Once a plasma accelerator has been created, electrons can be injected into the
accelerator to gain energy. In a LPA, the background plasma typically provides
the source for injected electrons. In order to gain a significant amount of energy
these injected plasma electrons must be trapped by the wakefield. An electron is
considered to be trapped once it has gained enough energy to have a longitudinal
velocity equal to the phase velocity of the wakefield. After an electron is trapped it
can remain in the accelerating phase of the wakefield and continue to gain energy
until it travels a dephasing length. Next different methods of electron injection are
introduced.

In a PWA, a relativistic witness beam is injected at the appropriate phase with
respect to the drive beam in order to experience the accelerating phase of the
wakefield. Since both the witness beam and the wake propagate at c, there is no
relative phase slippage.

Self-Injection
In a thermal plasma, (such as those typically created using lasers with joules of
energy and pulse durations on the ps-ns time scale), some electrons in the tail of the
electron distribution function may have sufficiently high momentum so as to reside
on a “trapped-orbit”. This occurs when the electron velocity is equal to vφ in the
plasma wake potential.



802 C. Joshi et al.

In a cold plasma, plasma electrons from outside the wake can cross into or
be self-injected into the accelerating phase of the wake. If the wake amplitude is
large enough, these injected electrons can quickly gain enough momentum from the
accelerating field to move with the wake and become trapped [6, 7]. Self-injection
process can be facilitated in a density downramp [8] or at a sudden transition
between high and low density plasma regimes [9].

Downramp Injection
If the drive laser pulse or the particle bunch traverses across a plasma downramp
[9] some of the plasma electrons forming the sheath around the plasma ions of a
3D nonlinear wake (discussed later) can be injected into the wake. This happens
because the wavelength of the wake increase as the drive bunch goes from higher
to lower density causing some electrons to cross the sheath and gain sufficient
longitudinal velocity to move synchronously with the wake as they reach the back of
the wake. These electrons can also have a very small transverse emittance because
their transverse velocity is reduced to near zero by the strong defocusing field they
feel as they converge on the axis of the wake.

Colliding-Pulse Injection
In a LPA, if a second laser pulse is collided with the laser pulse that induces the
wake, then the ponderomotive force associated with the beating of the two pulses
can impart enough longitudinal momentum to the initially untrapped electrons
so that they are injected into the separatrix of the wakefield to be trapped [10,
11].

Ionization Injection
Electrons can be injected into a fully formed wake via ionization-trapping [12, 13].
A binary mixture of atoms is ionized by the field of the laser or space charge of
the driving bunch. The minority atoms in this mixture typically have a step in the
ionization potential such that the inner electrons are ionized close to the wake axis,
near the peak field of the laser pulse or beam driver. These electrons experience a
much greater wake potential so as to be trapped by the wake.

External Injection
In analogy to a conventional traveling wave accelerating structure, a witness beam
of electrons or other charged particles may be pre-accelerated and injected into
a plasma accelerating structure to increase their energy [14]. Within the wake
the magnitude of accelerating field varies with space. Therefore, to minimize the
difference in the accelerating gradient that is experienced, the injected electron
beam should ideally have a longitudinal length that is much less than the plasma
wavelength of the accelerator. For a plasma density of 1018 cm−3, λp ∼ 30 μm
(∼100 fs). Additionally, the external electron beam must be synchronized to the
accelerating structure such that it is injected into the correct accelerating and
focusing phases of the wakefield.
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12.1.2.5 Net Energy Gain �W

For a LPA, The net energy gain of an electron �W, can be estimated as

ΔW = eELWLacc =
(
ELW

Eo

)(ωp
c
Lacc

)
mc2. (12.4)

Here ELW is the local longitudinal accelerating field seen by the electron of the
wake, and Lacc is the distance over which the electron interacts with the accelerating
field.

12.1.2.6 Beam Loading

The accelerated particles can modify the wakefield in a process known as beam
loading [15, 16]. It can be understood as destructive interference between the fields
of the wake and fields of the accelerated particles. Beam loading places limitations
on the number of particles, the peak current, the energy spread and duration of the
accelerated particles. The plasma-accelerator can be optimized for one or more of
these parameters. The maximum number No of electrons that can be loaded into the
accelerating phase of the wake is [15]

No = 5 × 105 (E1/Eo) n
1/2
o

[
cm−3

]
S
[
cm2
]
, (12.5)

where S � π/k2
p is the cross sectional area of the wake. As N → No the

energy spread �γ /γ → 1. From energy conservation arguments the beam loading
efficiency scales as (N/No)(2 − N/No).

12.1.2.7 Drive Pulse Evolution

In a LPA, plasma can act as a lens to focus the spot size of the laser in a process
known as relativistic self-focusing [17]. Relativistic self-focusing of the laser pulse
occurs when the power of the laser pulse exceeds Pc, the critical power for self-
focusing given by

Pc(GW) � 17.4
ω2

o

ω2
p

. (12.6)

The laser pulse will continue to focus until all the electrons are expelled from
within the spot size of the laser and there is no longer a gradient in the index of
refraction in the radial direction. The ratio of the laser power, P, to Pc gives a good
indication of how strongly the laser pulse will be focused by the plasma.
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The laser pulse can also be compressed longitudinally in time by the density
gradient of a wake via photon acceleration and deceleration [18, 19]. If the laser
pulse width is on the order of λp the entire pulse will be compressed and this can
lead to an increase the laser intensity and ao [20]. However, if the laser pulse width
is much greater than a plasma wavelength, the laser pulse will be compressed within
each wake driving a laser-plasma accelerator in the self-modulated regime.

In a PWA, the particles in a symmetric drive pulse lose their energy to the wake
at a different rate. For ultra-relativistic electrons, the pulse shape of the drive beam
does not evolve longitudinally since there is insignificant relative motion between
the particles. But for a proton drive beam the spatial spread of particles d due
to momentum spread will induce a lengthening of the bunch. The effect can be
evaluated for vacuum propagation as

d ≈ L

2Δγ 2 ≈
(
σp

p

)
M2

pc
4

p2c2 L, (12.7)

where Mp is the proton mass, and p is the proton momentum. Given a 1 TeV proton
beam, a 10% momentum spread leads to a growth of ∼0.1 μm/m. Large relative
momentum spreads will still allow for long plasma acceleration stages provided the
drive beam is relativistic.

12.1.2.8 Guiding

The length of the accelerating structure can limit the energy gain of the particles. For
a LPA the length of the accelerator (assuming Gaussian optics) is approximately
equal to π times the Rayleigh length of the focused laser pulse, zR = πw2

o/λo,
where wo is the spot size of the laser. Often, in order to reach the intensities neces-
sary to drive large amplitude wakefields, the laser must be focused to a spot sizes
on the order of ~10 μm. This limits the accelerating structure length to ~1 mm and
subsequently severely limits the energy gain of electrons if the Ld is longer than this.

To overcome this limitation, a channel can be created that has an appropriate
radial plasma density profile such that the diffraction of the laser pulse is minimized.
This allows the spot size of the laser pulse to remain small, or ’guided’, over the
length of the channel that is much greater than a Rayleigh length. For a channel
with a radial parabolic electron density profile, a change in electron density
of Δn = 1/

(
πrew

2
o

)
is required to optical guide the laser pulse, where here

re = e2/mec2 is the classical electron radius. Two main methods have been used to
guide short laser pulses.

In the first method, an electrical discharge is struck across a tube, or capillary
containing hydrogen gas creating a plasma. The electron temperature close to the
capillary wall is lower than that near the center of the discharge. Therefore over a
short amount of time (~100 ns), hotter electrons located on axis of the discharge
will diffuse radially, creating an appropriate density channel that can guide a laser
pulse [21].
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A second method, known as self-guiding, relies on matching the ponderomotive
force of the laser, which expels the plasma electrons and drives the wake, to the
space-charge attraction force that the plasma ions exert on the expelled electrons.
When this is achieved, the radial plasma density profile of the wake that is created
has the appropriate shape and depth to minimize the diffraction of the laser pulse
[22, 23].

Both of these techniques have been used to extend the length of a laser-plasma
accelerator from hundreds of microns to centimeter scale lengths [24–26].

In a PWA, if the density-length product of the plasma is large enough, the electron
drive pulse can be guided by the transverse focusing force provided by the plasma
ions. If the beam density nb > no, the beam electrons can blow-out all the plasma
electrons creating an ion channel. In this blow-out regime, the beam envelope is
described by the differential equation [27]:

σ "
r +
[
K2 − ε2

Nr/γ
2σ 4

r (z)
]
σr(z) = 1, (12.8)

where K = ωp/(2γ )1/2c is the restoring force provided by the plasma ions or equiva-
lently the betatron wavenumber kβ = ωβ /c where ωβ is the betatron frequency. The
beam is said to be matched to the plasma if βbeam = 1/K = βplasma. In this case the
beam propagates through the plasma with a constant radius [28]. The matched beam
radius rb is found by letting σ "

r (z) = 0 in this equation giving rb = (εN/γ kβ )1/2. The
beam now propagates through the plasma until it is either pump depleted or its front
is slowly eroded away by finite emittance of the particles.

12.1.2.9 Head Erosion

In a LPA, the front portion of the laser pulse will diffract at a rate of some fraction of
c/ωp per zR unless the pulse is guided in a pre-formed plasma channel [23, 29]. This
head erosion will eventually limit the distance over which a wake can be excited.
Similarly, in a PWA, the head of the drive bunch propagates in a region of no
wakefield, so that the beam emittance will eventually erode the drive bunch [30].
A lower emittance drive beam can reduce head erosion as an obstacle limiting the
energy gain, thus extracting more energy from the bunch. Proton beams have larger
emittances than electron beams, therefore longer beams, lower plasma densities and
thus long plasma cells are envisaged for efficient energy extraction. Therefore strong
magnetic focusing of the proton drive bunch along the length of the plasma channel
is likely necessary.

12.1.2.10 Instabilities, Scattering, and Radiation Loss

Generally short laser/beam drivers are relatively immune to laser-plasma instabil-
ities because both the driver and the wake are continuously entering undisturbed
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plasma at ∼c. Nevertheless, there are two instabilities that can grow the emittance
of the beam being accelerated. These are laser and electron beam hosing instability
[31] and plasma ion motion [32].

In the hosing instability any transverse offset of the electron beam from the axis
of propagation of the wake or any head-to-tail tilt can grow. The growth rate depends
on the initial offset of a particular slice, how far the slice is from the front of the
bunch and how far the bunch has propagated into the plasma. In the nonlinear 3D
regime the instability involves a coupling of the centroid of the wake cavity and the
bunch. In plasma accelerators the ions are usually assumed to be immobile because
they are far more massive than the electrons. However if the accelerating bunch
density exceeds the plasma density by a factor (mi/me), the focusing force exerted
by the electrons on the plasma ions becomes so large that the plasma ions implode
inward toward the axis. This can locally alter the linear focusing force provided by
the plasma ions and affect the emittance of the accelerating electrons.

Coulomb scattering in the plasma can increase the emittance of the witness
bunch. In plasma accelerators, typical values of no will be in the range of
1014 − 1017 cm−3, and both the radiation length and the mean-free-path are orders
of magnitude larger than the expected plasma length on the order of 100 m. A 1 TeV
proton beam in Li vapor of density 1 × 1015 atoms/cm3 gives a transverse growth
rate of the proton beam of less than 0.01 μm/m due to multiple scattering, which is
small compared to the size of the drive bunch. Multiple scattering for high energy
electrons will also be small.

In addition to these instabilities, as particles are accelerated they will oscillate
transversely emitting betratron radiation. The energy lost to radiation per unit is
given by [33, 34]:

dWloss

dz
= 1

3
reγ

2
b ω

2
βK

2
w. (12.9)

Here K2
w = γbωβro/c is the effective wiggler strength of the ion column.

At extremely high energies, the betatron radiation loss rate will equal the rate
particles gain energy. This ultimately limits the maximum energy gain in a plasma
accelerator.

12.1.3 Beam Driven Plasma Wakefield Accelerators

12.1.3.1 Electron Beam Driven PWA

The basic concept of the plasma wakefield accelerator involves the passage of an
ultra-relativistic charged particle bunch through a stationary plasma. The plasma
may be formed by ionizing a gas with a laser or through field-ionization by
the Coulomb field of the relativistic bunch itself. This second method allows the
production of meter-long, dense (1016 − 1017cm−3) plasmas suitable for the PWA
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and greatly simplifies the experimental set-up. In single bunch experiments [35]
carried out with ultra-short electron bunches, the head of the bunch creates the
plasma and drives the wake. The wake produces a high-gradient longitudinal field
that in turn accelerates particles in the back of the bunch. The system effectively
operates as a transformer, where the energy from the particles in the bulk of the
bunch is transferred to those in the back, via the plasma wake. The physics is
unchanged if there are two bunches rather than a single bunch; energy from the
leading drive bunch is transferred to a trailing witness bunch. The maximum energy
which can be given to a particle in the witness bunch in a PWA is limited by the
transformer ratio, defined as

R = ΔWwitness
max

ΔWdrive
max

≤ 2 − Nwitness

Ndrive
, (12.10)

which is at most two for longitudinally symmetric drive bunches and an unloaded
wake (Nwitness � Ndrive) [36]. Here �Wmax is the change in energy of the particles
in the drive/witness beam and N is the number of particles in the witness/drive
beam. This upper limit can in principle be overcome by nonsymmetric bunches
[37]. Another option currently under study is to use an appropriately phased train of
bunches so that the wakefield is increased with each bunch [38]. According to linear
plasma theory [39], maximum accelerating field of the wake is given by [40]:

eElinear � 100
N

2× 1010

20

σz (μm)
ln

√
2.5× 1017

no
(
cm−3

)
10

σr (μm)
GeV/m, (12.11)

where N is the number of particles in the electron bunch and σ z is the bunch length,
and σ r is the spot size. Linear theory is valid when the normalized charge per

unit length of the beam, Λ = nb
no

(
kpσz
) � 2.5

(
N

2×1010

) (
20

σz(μm)

)
is less than 1.

Equation (12.11) indicates that generating large gradient wakefields requires short,
high density electron bunches. For high - the nonlinear equivalent of Eq. (12.11)
should be used [41].

In a PWA operating in the so-called blowout regime, a short but high-current
electron bunch, with density nb larger than the plasma density np, expels all the
plasma electrons from a region surrounding the beam as shown in Fig. 12.1.
The expelled plasma electrons rush back in because of the restoring force of the
relatively immobile plasma ions and thus generate a large plasma wakefield. This
wakefield has a phase velocity equal to the beam velocity (≈c for ultra-relativistic
beams). Since the electrons in the bunch are ultra-relativistic, there is no relative
phase slippage between the electrons and the wake over meter-scale plasmas.

When the wakes are in the blowout regime, shaped bunches can be used to
transfer a substantial amount of energy from the drive bunch to the wake and
optimize the energy extraction efficiency from the wake to the trailing bunch while
not further increasing its energy spread. It can be shown that particles in a trapezoid
shape drive bunch—with beam current increasing from the front to the back—loose
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energy at a near constant rate. A trailing bunch with a reverse shape can load
the wake in such a way that nearly all the particles gain energy at the same rate.
Significant beam loading will occur [42] when the loaded charge

Q(nC) > [(0.047mcp) /eEs] (1016/np (cm− 3)) 1/2(kpRb)4 (12.12)

Here, we take the normalized electric field eEs/mcp = kpRb/2 as the electric
field seen by the accelerating electrons, kp−1 is the plasma skin depth, and Rb is
the blowout radius of the wake.

12.1.3.2 Short Proton and Positron Beam Driven PWA

In contrast to plasma wakes driven by bunches of electrons, only limited investiga-
tions of the plasma wave excitation by a positively charged driver exist [42–46].
For a positively charged driver (such as a proton bunch or a positron bunch),
plasma electrons are attracted towards the axis of the driver, overshoot and setup the
accelerating wake structure [47, 48]. For positively charged drivers with nb/no � 1
the electric field distribution of the wake is the same as that for the negative driver
but shifted in phase. However, for a positively charged driver driver with nb/no
� 1 the wake behavior is significantly different than for a negatively charged
driver with the same beam density. Due to the radial symmetry, for the wakefield
driven by a strong positively charged driver (nb/no ≥ 1), there is an electron density
enhancement on-axis and effective increase of the local plasma frequency. As a
result, the proton or positron driver beams must be even shorter in order to excite the
plasma wake resonantly. However, given that protons can be accelerated to the TeV
regime in conventional accelerators it is conceivable to accelerate electron bunches
in the wake of the proton bunch up to several TeV (e.g., in the wake of a Large
Hadron Collider (LHC) proton beam) in a single plasma stage.

12.1.3.3 Long Proton Beam Driven PWA

Proton bunches available today are in principle very interesting to drive wakefields
because, besides being relativistic, they also have a large population and thus carry
large amounts of energy (10s to 100s of kJ). A proton bunch can therefore drive
wakefields over a very long single plasma and lead to very large energy gain of
a witness bunch. It was shown through simulations [4] that a 10 GeV electron
bunch injected into wakefields driven by a 100 μm-long, 10 kA, 1 TeV proton
bunch can reach an energy of ~0.5 TeV in a single plasma, only ∼300 m-long. This
corresponds to an average accelerating gradient larger than 1 GeV/m in a plasma
with density of 6 × 1014 cm−3. We note here that in these simulations the proton
bunch length σ z is shorter and the width σ r is narrower than the wakefields period
λp, a condition necessary to effectively drive wakefields. These two conditions are
usually expressed as kpσ z ≤ 1 and kpσ r ≤ 1.
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Proton bunches produced for example by the CERN Super Proton Synchrotron
(SPS) or Large Hadron Collider (LHC) are long: σ z∼6–12 cm.

Compression of proton bunches produced by these synchrotrons is in principle
possible [49]. However, it would first require means to impart a %-level correlated
energy chirp along the already high-energy bunch. Second, the magnetic compressor
(chicane) would have to be rather long (km), again because of the high energy of
the particles. Therefore, producing short proton bunches such as the one used in the
simulations of [4] remains a challenge.

Matching the plasma density to the long SPS proton bunch (kpσ z ∼= 1) would
mean using a low density plasma (∼1011cm−3) and driving low amplitude wake-
fields (~10s of MV/m range from E0 in Eq. 12.11).

However, proton bunches can be focused to small transverse sizes (e.g., σ r = 200
μm). Choosing the plasma density to reach kpσ r ∼= 1, leads to a much larger
plasma density (7 × 1014cm−3) and also much larger possible accelerating field
(E0 ~ 2.5 GV/m, Eq. 12.11). This choice of kpσ r ∼= 1 means kpσ z � 1 since
σ z � σ r. Such bunches are subject to a symmetric transverse self-modulation
process [50]. The self-modulation process transforms the long continuous bunch
into a train of short bunches separated by the wakefields period. The short
bunches are formed by the action of the periodically focusing/defocusing transverse
wakefields. The train can then resonantly drive wakefields to amplitudes on the order
of the 2.5 GV/m predicted by Eq. 12.11. Furthermore, the process can be seeded,
so that it becomes a well-controlled, seeded self-modulation (SSM) process [51].
In this case the beam-plasma system is turned into an amplifier of seed wakefields,
with well determined final fields amplitude and phase. The process is also weakly
sensitive to variations of the input bunch parameters (±5%) [52]. The SSM process
makes it possible to deterministically inject an electron bunch where wakefields
reach their peak amplitude and into the range of accelerating and focusing phase
of the wakefields (corresponding to region ∼λp/4 long), a large number of periods
(∼σ z/λp) behind the seed point [53]. Simulation results show that with this scheme,
electrons can be accelerated to multi-TeV energies in a plasma a few km-long [54].

12.1.4 Laser-Driven Plasma Accelerators

12.1.4.1 Plasma Beat Wave Accelerator (PBWA)

Two co-propagating long (cτ � λp) but moderate intensity (ao < 1) laser beams
with frequencies ω1 and ω2 can resonantly excite a relativistic plasma wave when
ω1 − ω2 ∼= ωp [55]. Here τ is the pulse width of the laser pulse. For a square pulse,
the amplitude of the plasma wave grows linearly in time and eventually saturates due
to change in plasma frequency caused by relativistic mass increase of the plasma
electrons. For laser pulses with ao � 1, the maximum wave amplitude is given
by E1/Eo = (4ao1ao2/3)1/3 and occurs when ω1 − ω2 = ωp(1 − (ao1ao2)2/3/8). The
relativistic plasma wave is prone to modulational instability [56], and mode coupling
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[57]. For linear wakes, electrons need to be externally injected for acceleration [58,
59].

12.1.4.2 Self-Modulated Laser-Wakefield accelerator (SM-LWFA)

An accelerating wakefield can be driven by a single long laser pulse (cτ > λp) via
the Raman forward-scattering (RFS) instability [60] if ωo > 2ωp and the laser power
P∼= Pc the critical power for relativistic self-focusing. In this process the laser pulse
amplitude is modulated atωp by the creation of frequency sidebands atωo ±ωp. The
spatiotemporal gain for RFS instability [61] has been estimated as G= eg(2πg)−1/2,
where g is given by

g = ao√
2

(
1 + a2

o

2

)(
ω2
p

ω2
o

)
ωo

c

√
xφ, (12.13)

where x is the length of the plasma, and φ/c is the time over which the plasma
experiences a constant laser intensity. The normalized plasma wave amplitude is
δn/no = αnG, where αn is the initial wave amplitude associated with the thermal
noise of the plasma. When αnG ≈ 1 the wave amplitude becomes large enough to
self-trap and accelerate electrons [62, 63].

12.1.4.3 Laser Wakefield Accelerator (LWFA)

A laser wakefield accelerator (LWFA) is a laser-plasma accelerator which is created
directly by the ponderomotive force of a single short (cτ ∼ λp), intense laser
pulse. With the advent of Ti:sapphire laser systems, such ultra-short, ultra-intense
laser pulses are readily available. An advantage of using such short laser pulses to
drive an accelerating wake is that they are relatively immune to most laser-plasma
instabilities. Additionally, these short, intense laser pulses can drive wakefields with
large amplitudes, that are capable of self-trapping and accelerating electrons to high
energies [64–67]. As a result of this, laser wakefield accelerators are the focus of the
majority of current laser-plasma accelerator research. Next, details on a few specific
regimes in LWFA research are presented.

12.1.5 LWFA Regimes

12.1.5.1 Linear Regime

The wake induced by a short laser pulse (cτ ∼ λp) is said to be in the linear regime
if δn/no < 1, where δn is the change in electron density associated with the wake.
Laser drivers with modest intensities ao < 1 and P/Pc ≤ 1, excite wakefields in the
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linear regime. In the linear regime the electron density response and the longitudinal
electric field of the wake vary sinusoidally. The transverse and longitudinal fields are
π /2 out of phase with one another. Thus there is a quarter wavelength region where
the fields are both accelerating and focusing for the particles.

12.1.5.2 Nonlinear Regime

A nonlinear wake is created when electron density perturbation of the wake is on
the order of or greater than the background plasma density (δn/no � 1) and the
longitudinal accelerating field of the wake becomes larger than Eo. Such nonlinear
wakes are typically created by using a laser driver with an ao � 2 or with a
beam driver with nb/no � 1 and a kpσ r � 1. A characteristic of a nonlinear wake
is a “saw toothed” shape longitudinal electric field profile. Additionally, the plasma
wavelength of a nonlinear wake increases as the ao of the laser (wake amplitude)
is increased. A nonlinear wake is said to be in the 1D regime if the normalized
laser pulse spot is broad, i.e., kpwo � 1. However, when kpwo ∼ 1, and ao > 1 one
approaches the 3D-nonlinear regime.

The electron density response and corresponding fields of nonlinear wakes driven
by laser pulses in 3-D regime are difficult to study analytically. To gain a better
understanding in this regime, particle in cell (PIC) codes have been used to model
the LWFA in this regime. Early work in this regime focused on simulating and
developing scalings to describe the dynamics of a singular nonlinear wake driven in
the so called bubble regime by a laser pulse with an ao ≥ 2ωo/ωp [68, 69]. More
recently a nonlinear regime in which a laser pulse with an 2 ≤ ao ≤ 2ωo/ωp is
used to drive a periodic nonlinear wake, in the so called blowout regime, has been
studied with simulations, a phenomenological theory and experimental investigation
[23, 25, 26, 41, 70–73]. In both the bubble and blowout regimes, the ponderomotive
force of the laser pushes out all the electrons from within the first period of the wake
creating an ion bubble into which background plasma electrons are self-injected,
trapped and accelerated.

An advantage of operating in the blowout regime is that there exits a matched
self-guiding condition, in which the intensity, spot size and pulse width of the
laser pulse are matched to the plasma density, such that the driven wake serves to
minimize the diffraction of the laser pulse [70]. This allows a strong and stable wake
to be sustained over tens of Rayleigh lengths and can increase the interaction length
between trapped electrons and the accelerating field of the wake. The matched self-
guiding condition is valid when the laser ao � 2 and cτ ∼ λp/2. When these
conditions are met, the matching condition is given by

kpwo � kpRb = 2
√
ao, (12.14)

where Rb is the blowout radius of the spherically shaped wake. Remarkably, even
when the spot size and or pulse width are not precisely matched to the plasma
density, the laser pulse evolves within the plasma towards the matched spot size
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and pulse width, via relativistic self-focusing and longitudinal pulse compression
[67, 72, 73].

Simulations indicate that in the blowout regime self-trapping of background
electrons will occur for large amplitude wakefields when the normalized blowout
radius kpRb ≈ 4 − 5.

12.1.5.3 Scaling Laws

The scaling laws for a LWFA in the regimes which were discussed above are now
presented.

12.1.6 Status

12.1.6.1 LWFA and PWA

The development of laser-plasma accelerators has closely followed the progress
of high-power, short pulse lasers [74]. Prior to 1990, laser-plasma accelerator
experiments focused primarily on the PBWA [14] or SM-LWFA concepts [54,
56]. These demonstrated the existence of greater than many GeV/m gradients and
acceleration of self-injected as well as externally injected electrons [14, 69]. The
accelerated particles typically had an exponentially falling energy spectrum [57].
In the mid 1990s, the chirped pulse amplification (CPA) scheme was implemented
using titanium-sapphire as a gain medium and enabled the development of terawatt-
class, sub-100 fs laser systems. Such short pulses (cp) were ideal for exciting wakes
in underdense plasmas. Through better control of plasma density and length, and
laser pulse parameters, electron bunches with a significant charge and relatively
narrow (¡20%) energy spread were observed [58–60]. The electron beam energy
spread and charge were controlled further by employing the colliding pulse injection
technique [10, 11]. The CPA technique has extended the peak power reach of the
Ti-sapphire lasers to multi-petawatt (PW) levels. For instance at Lawrence Berkeley
National Laboratory (LBNL) a petawatt laser facility became operational as part of
the Berkeley Lab Laser Accelerator (BELLA) project [74]. Using a plasma-channel
to extend the acceleration distance, narrow energy electron bunches with energy up
to 4.3 GeV have been observed [24] at LBNL. Similar peak power laser facilities
have either come on line (for instance at GIST (Korea)) or expected to soon be
operational in several institutes worldwide. Most of the LPA experiments are being
conducted using the highly nonlinear 3D (sometimes called the blow-out or bubble)
regime using either self-injected or ionization injected charge into the plasma
wake. For example electrons were accelerated to beyond 1.4 GeV using ionization
injection into a LPA operating in the nearly matched, self-guided blowout regime
[70]. At present, several groups are exploring this regime to obtain electron beams
for the generation of betatron and undulator radiation [71–73]. In past few years
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much effort has been devoted to controlling the charge, minimizing the transverse
emittance and energy spread of electrons created from laser wakefield accelerators
[74]. New techniques for beam injection such as downramp injection [74] and
transverse collide pulse injection [74] have been proposed for generating electron
beams with sub 100 nm transverse emittances. Possible applications for such beams
might be fifth generation light sources (ultra compact XUV and X-FELs) and high-
energy electron therapy of cancerous tumors. As in the past, continued progress
in this field will be tied to progress in making lasers more reliable, efficient and
cheaper. Additionally, to extend the interaction between the electron beam and the
LPA progress must be made in making reproducible, meter-scale plasma sources.

Experiments on beam-driven PWA have been going on at Argonne National
Laboratory (ANL) [75], Fermilab [76], KEK [77], Brookhaven National Laboratory
(BNL) [78] and at SLAC [79]. New facilities such as FLASHForward at GSI,
Germany are being commissioned. With the exception of the SLAC experiments,
all other work has hitherto used modest energy electron beam (¡100 MeV) to study
both acceleration and focusing effect of plasmas on beams. Experiments at SLACs
FFTB facility were initially carried out using 28 GeV electron and positron beams.
These used 4 ps long beams containing more than 10 kA current to systematically
study beam propagation, focusing, betatron radiation emission, and acceleration in
meter-scale, laser-ionized plasmas [80, 81]. These were followed by experiments
that used a sub-50 fs beam to both produce the plasma via tunnel ionization and
excite the wakefield in much denser, meter-scale vapor columns. The front portion
of the bunch was used to excite the field while the particles in the back of the same
bunch were used to sample to accelerating wake. An example of data on changes
in electrons energy in the above mentioned PWA experiment at SLAC is shown
in Fig. 12.2. Most of the initially 28.5 GeV electrons in the pulse are seen to lose
energy but electrons in the back of the same pulse are accelerated by the wake as
its electric field changes sign. The energy gain is seen to increase with distance.
When the electron beam energy was increased to 42 GeV some electrons were seen
to gain more than 42 GeV in just 85 cm, implying that a gradient of 50 GeV/m was
sustained throughout the plasma [82].

In 2006 the FFTB facility was replaced by a new experimental facility called
FACET for Advanced Acceleration research [83]. Between 2019 and 2016 FACET
provided electron and positron capability with a driver beam-witness beam structure
so that high gradient acceleration of a significant number of charged particles with
a narrow energy spread could be demonstrated. The drive and witness beams were
only about 50 fs long and were separated by about 300 fs. In order to preserve its
narrow energy spread the witness beam had to beam-load the wake so that particles
in the witness beam flattened the electric field of the wake thereby experiencing
a nearly uniform accelerating field. With this loading, the energy contained in the
wake is efficiently transferred to the accelerating particles. In a landmark experiment
carried out at FACET, it was shown that the efficiency of transferring drive bunch
energy to the core of the accelerated bunch was up to 30% [84]. In a follow up
campaign an energy gain of 9 GeV for a bunch containing 30 pC of charge with a
5% energy spread in a 1.2 m long plasma was observed [85]. Using the energy and
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Fig. 12.2 Changes in
electron energy in the PWA
experiment at SLAC
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the spot size changes experienced by different slices of the drive bunch itself, the
PWA cavity in the nonlinear blowout regime was shown to have a longitudinal and
transverse field structure that in principle will accelerate electrons without emittance
growth, as long as the electrons (to be accelerated) are matched in and out of the
plasma with minimal energy spread [86].

The plasma wake produced by an electron bunch cannot be used to accelerate a
positron beam when the wake is in the nonlinear blow out regime because the plasma
ions strongly defocus the positrons. Until recently it was not very clear how efficient
positron acceleration at a high gradient could be carried out using highly nonlinear
plasma wakes. Experiments at FACET showed that a certain positron beam current
profile can lead to a loaded wake where the longitudinal electric field reverses sign
(from decelerating to accelerating) in the middle of the single drive bunch [87]. This
happens because the presence of the positrons pulls in the plasma electrons towards
the axis. These plasma electrons can cross the axis in the middle of the drive bunch.
Most of the electrons overshoot and set up a bubble like wake cavity but a significant
fraction of the electrons are confined by the back of the positron beam close to the
axis. This flattens the wake shape by beam loading [87]. A significant amount of
positron charge can now be accelerated at the same electric field gradient producing
a well-defined narrow energy spectrum. The energy extraction efficiency is similar
to the electron bunch acceleration case described above.

In 2016, FACET ceased operation to make way for the LCLS II facility that
will occupy the first 1 km space of the original SLAC linac tunnel. A new
facility for advanced accelerator research, known as FACET II, is being constructed
between the LCLS II linac and the LCLS linac. Together with the BELLA laser the
FACET II facility [88] will arguably be the backbone of research facilities for short
drive pulse driven plasma accelerator research for the next decade. The foremost
physics challenge is the generation of collider quality transverse and longitudinal
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emittance bunches and identifying the factors that cause emittance growth in plasma
accelerators [88]. Transverse emittance growth may occur as a result of the hosing
instability and also ion motion [31, 32]. Even if the electrons have a very small
emittance inside the wake, such a beam must be extracted and matched either
to another plasma acceleration stage or to conventional magnetic optics [89–91]
to avoid emittance growth. Longitudinal emittance will depend on how small the
energy spread of the beam can be, which in turn depends on optimizing the beam
loading to give a constant accelerating field. Continued development of diagnostic
techniques to visualize the fields of the highly nonlinear wake and the injected
electrons is also needed. Issues of generating asymmetric emittance flat beams and
spin polarized beams are still open questions. Creative solutions for the generation
and acceleration of collider quality positron bunches using plasmas are needed. In
the near future it is highly likely that a single stage of LWFA and a PWA will produce
10 GeV bunches with a percent level energy spread and a high efficiency.

12.1.6.2 Proton-Driven Plasma Wakeeld Acceleration

The AWAKE experiment at CERN studies the driving of plasma wakefields with
proton bunches [53, 90, 91]. AWAKE uses the (6–12)cm-long bunch delivered by
the SPS with (1–3)×1011, 400 GeV protons focused to a transverse rms size of
σ r = 200 μm. The plasma density is chosen so that the accelerating field can reach
∼1 GV/m, i.e.: n0 > 1014 cm−3 corresponding to λp < 3 mm. Since the proton
bunch is long when compared to the wakefield period, the experiment relies on the
seeded self-modulation (SSM) process [51] to reach these wakefield amplitudes.

A 10 m-long rubidium source was developed to produce a column of vapor with
a very uniform density (δnRb/nRb < 0.2%) and with sharp density ramps (<10 cm) at
the entrance and exit [92]. A 450 mJ, 100 fs laser pulse propagating within with the
proton bunch creates a sharp ( < 100fs), relativistic ionization front that seeds the
SSM process. With full ionization of the only electron of the rubidium atom outer
shell, the plasma density longitudinal profile is identical to that of the rubidium
vapor. The plasma radius is on the order of 1 mm. The plasma density is adjustable
from 1 × 1014 to 10 × 1014 cm−3.

The occurrence of the SSM on the proton bunch is observed with three
diagnostics [51]: a two-screen method [93], the time resolved emission of the optical
transition radiation (OTR) emitted by the protons [94], and spectral analysis of the
coherent transition radiation (CTR) emitted by the bunch train [95].

Preliminary experimental results obtained recently show clear evidence of the
occurrence of SSM [51]. These results also show that the SSM leads to stable
excitation of wakefields and that the process corresponds to the amplification of the
seed wakefields with a final phase that is very weakly dependent on the variations
of the bunch initial parameters. This was also shown in numerical simulations [52].
Excitation of seed wakefields was demonstrated with a low energy electron bunch
[96].
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First acceleration experiments of low energy electrons (∼15 MeV) externally
injected into the wakefields are currently underway. In these experiments the
electron bunch is purposely made longer than the plasma period in order to ease
the temporal synchronization requirements between the witness electron bunch and
the wakefields. Numerical simulation results show that a fraction of these electrons
could emerge from the plasma with an energy in the GeV range and with a finite
final energy spread (δE/E ∼ 10%) [90].

Future experiments will use a short witness electron bunch (σ z < λp) that will
load the wakefields in order to minimize the final the energy spread and at the same
time preserve the emittance of the a large fraction of the bunch population [97] while
gaining a few GeVs of energy.

The application of the proton-driven plasma wakefield accelerator is to fixed
target experiments and to a possible very high energy electron/proton collider
[98]. Electron/proton collision applications ease the requirements on the accelerated
electron parameters since proton beams are not focused as tightly as beams of an
electron/positron collider and do not require production of a high quality positron
beam. Also, electron/proton collisions are used to study QCD physics in which
interaction cross-sections tend to increase and not decrease with collision energy.

Self-modulation experiments with low energy electron bunches are also per-
formed at DESY-Zeuthen [99].

12.2 Muon Collider

S. D. Holmes · V. D. Shiltsev

Both e+e− and μ+μ− colliders have been proposed as possible candidates
for a lepton collider to complement and extend the reach of the Large Hadron
Collider (LHC) at CERN. The physics program that could be pursued by a
new lepton collider (e+e− or μ+μ−) with sufficient luminosity would include
understanding the mechanism behind mass generation and electroweak symmetry
breaking; searching for, and possibly discovering, super symmetric particles; and
hunting for signs of extra space-time dimensions and quantum gravity. However,
the appropriate energy reach for such a collider is currently unknown, and will only
be determined following initial physics results at the LHC. It is entirely possible
that such results will indicate that a lepton collider with a collision energy well in
excess of 1 TeV will be required to illuminate the physics uncovered at LHC. Such
a requirement would require consideration of muons as the lepton of choice for such
a collider.

The lifetime of the muon, 2 μs in the muon rest frame, is just long enough
to allow acceleration to high energy before the muon decays into an electron, a
muon-type neutrino and an electron-type antineutrino (μ− → e−νμνe). However,
constructing and operating a muon based collider with useable luminosity requires
surmounting significant technical challenges associated with the production, cap-
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ture, cooling, acceleration, and storage of muons in the required quantities and with
appropriate phase space densities. Over the last decade there has been significant
progress in developing the concepts and technologies needed to produce, capture,
cool, and accelerate muon beams with high intensities of the order of O(1021)
muons/year. These developments have established a multi-TeV Muon Collider (MC)
in which μ+ and μ− are brought to collision at high luminosity in a storage ring as
a viable option for the next generation lepton-lepton collider for the full exploration
of high energy physics in the era following the LHC discoveries.

Muon colliders were proposed by Budker [100] in 1969 and later conceptually
developed by a number of authors and collaborations (see comprehensive list
of references in [101]). Figure 12.3 presents a possible layout on the Fermilab

Fig. 12.3 Schematic of a 4 TeV Muon Collider on the 6 × 7 km FNAL site
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Table 12.2 The parameters of the low- and high-energy Muon Collider options

Parameter Higgs factory Low E High E

Center-of-mass energy [TeV] 0.126 1.5 6
Luminosity [cm−2 s−1] 0.005·1034 4.5·1034 7·1034

Number of bunches 1 1 1
Muons/bunch [1012] 2 2 2
Circumference [km] 0.3 2.8 6.3
Focusing at IP β∗/σ z [mm] 25/5 10/10 10/5
Beam energy spread dp/p (rms) [%] 0.003 0.1 0.10
Ring depth [m] ~10 13 ~150
Proton driver pulse rate [Hz] 30 12 15
Proton driver power [MW] ≈4 ≈4 ≈2
Transverse emittance εT [π μmrad] 300 25 25
Longitudinal emittance εL [π mmrad] 1 72 72

site of a MC that would fully explore the physics responsible for electroweak
symmetry breaking. Such a MC requires a center-of-mass energy (

√
s) of a few

TeV and a luminosity in the 1034 cm−2 s−1 range (see Table 12.2 for the list of
parameters). The MC consists of a high power proton driver based, e.g., on the
“Project X” SRF-based 8 GeV 2–4 MW H− linac [102]; pre-target accumulation
and compressor rings where very high intensity 1–3 ns long proton bunches are
formed; a liquid mercury target for converting the proton beam into a tertiary muon
beam with energy of about 200 MeV; a multi-stage ionization cooling section that
reduces the transverse and longitudinal emittances and creates a low emittance
beam; a multistage acceleration (initial and main) system—the latter employing
Recirculating Linear Accelerators (RLA) to accelerate muons in a modest number
of turns up to 2 TeV using superconducting RF technology; and, finally, a roughly
2-km diameter Collider Ring located some 100 m underground where counter-
propagating muon beams are stored and collide over the roughly 1000–2000 turns
corresponding to the muon lifetime.

12.2.1 Technical Motivations

Synchrotron radiation (proportional to the fourth power of the Lorentz factor γ 4)
poses severe limitations on multi-TeV e+e− colliders, namely they must have a
linear, not circular, geometry. Practical acceleration schemes then require a facility
tens of kilometers long. Furthermore, beam-beam effects at the collision point
induce the electrons and positrons to radiate, which broadens the colliding beam
energy distributions. Since (mμ/me)4 = 2× 109, all of these radiation-related effects
can be mitigated by using muons instead of electrons. A multi-TeV μ+μ− collider
can be circular and therefore have a compact geometry that will fit on existing
accelerator sites, and may be significantly less expensive than alternative machines.
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The center-of-mass energy spread for a 3-TeV μ+μ− collider, dE/E < 0.1%, is
an order of magnitude smaller than for an e+e− collider of the same energy.
Additionally, the MC needs lower wall plug power and has a smaller number of
elements requiring high reliability and individual control for effective operation
[103].

An additional attraction of a MC is its possible synergy with the Neutrino Factory
concept [104]. The front-end of a MC, up to and including the initial cooling
channel, is similar (perhaps identical) to the corresponding Neutrino Factory (NF)
front-end [105]. However, in a NF the cooling channel must reduce the transverse
emittances (εx, εy) by only factors of a few, whereas to produce the desired
luminosity, a MC cooling channel must reduce the transverse emittances (vertical
and horizontal) by factors of a few hundred and reduce the longitudinal emittance εL
by a factor O(10). Thus, a Neutrino Factory could offer the opportunity of a staged
approach to a Muon Collider, and also the opportunity of shared R&D.

12.2.2 Design Concepts

Since muons decay quickly, large numbers of them must be produced to operate
a muon collider at high luminosity. Collection of muons from the decay of pions
produced in proton-nucleus interactions results in a large initial phase volume for
the muons, which must be reduced (cooled) by a factor of 106 for a practical collider.
Without such a cooling, the luminosity reach will not exceed O(1031 cm−2 s−1), a
substantial limitation on the discovery reach of the MC. The technique of ionization
cooling [106] is proposed for the μ+μ− collider [107, 108]. This technique is
uniquely applicable to muons because of their minimal interaction with matter.

Ionization cooling involves passing the beam through some material absorber
in which the muons lose momentum essentially along the direction of motion
via ionization energy loss, commonly referred to as dE/dx. Both transverse and
longitudinal momentum are reduced via this mechanism, but only the longitudinal
momentum is then restored by reacceleration, leaving a net loss of transverse
momentum (transverse cooling). The process is repeated many times to achieve a
large cooling factor. The energy spread can be reduced by introducing a transverse
variation in the absorber density or thickness (e.g., a wedge) at a location where
there is dispersion (a correlation between transverse position and energy). This
method results in a corresponding increase of transverse phase space and represents
in an exchange of longitudinal and transverse emittances. With transverse cooling,
this allows cooling in all dimensions. The cooling effect on the emittance is
balanced against stochastic multiple scattering and Landau straggling, leading to
an equilibrium emittance.

Theoretical studies have shown that, assuming realistic parameters for the
cooling hardware, ionization cooling can be expected to reduce the phase space
volume occupied by the initial muon beam by a factor of 105–106. A complete
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Fig. 12.4 Cooling-channel section. Muons lose energy in lithium hydride (LiH) absorbers (blue)
that is replaced when the muons are reaccelerated in the longitudinal direction in radio frequency
(RF) cavities (green). The few-Tesla superconducting (SC) solenoids (red) confine the beam
within the channel and radially focus the beam at the absorbers. Some representative component
parameters are also shown (from [101])

cooling channel would consist of 20–30 cooling stages, each stage yielding about a
factor of 2 in 6D phase space reduction—see Fig. 12.4.

Such a cooling method seems relatively straightforward in principle, but has
proven quite challenging to implement in practice. One of the main issues is
breakdown suppression and attainment of high accelerating gradients in normal-
conducting RF cavities immersed in strong magnetic fields. The International Muon
Ionization Cooling Experiment (MICE [109]) at RAL (UK) was set to test an
ionization cooling channel cell consisting of a sequence of LiH absorbers and
201 MHz RF cavities within a lattice of solenoids that provide the required focusing
in a 200 MeV muon beam [110]. The initial results indicate anticipated significant
emittance reduction O(10%) in the “no re-acceleration” configuration [111] and,
therefore, can be considered as the first experimental proof of the ionization cooling
concept.

12.2.3 Technology Development

Multi-MW target R&D has greatly advanced in recent years, and has culminated
in the Mercury Intense Target experiment (MERIT [112]) which has successfully
demonstrated a Hg-jet injected into a 15 T solenoid and hit by an intense proton
beam from the CERN PS. A high-Z target is chosen to maximize π± production.
The solenoid radially confines essentially all the π± coming from the target. The
Hg-jet choice avoids the shock and radiation damage related target-lifetime issues
that arise in a solid target. The jet was viewed by high speed cameras which enabled
measurement of the jet dynamics. MERIT results suggest this technology could
support beam powers in excess of 4 MW. More advanced solutions for multi-MW
targets are under considerations, too, such as granular waterfall targets [113].



12 Outlook for the Future 821

Significant efforts are presently focused on high gradient normal conducting
RF cavities operating in multi-Tesla magnetic fields as required in the bunching,
phase rotation, and cooling channel designs. Closed 805 MHz RF cells with thin
Be windows have initially shown significant reduction of maximum RF gradient in
a 3 T field—12 MV/m vs. 17 MV/m specified. Further R&D as part of the U.S.
based Muon Accelerator Program (MAP) has experimentally demonstrated some
50 MV/m gradients in the RF cavities with high pressure hydrogen gas [114] and in
the Be-coated vacuum cavities [115].

Several self-consistent concepts based on different technologies have recently
emerged for the MC six-dimensional cooling channel which plays a central role
in reaching high luminosity. To achieve the desired mixing of transverse and
longitudinal degrees of freedom, the muons must either pass through a series
of wedge absorbers in a ring [116] or be put onto a helical trajectory, e.g., as
in a “Helical Cooling Channel” [117] or a “FOFO-snake” [118]. The design
simulations of the channels are not yet complete and the main challenges are
attainment of sufficiently large dynamic apertures, taking into account realistic
magnetic fields, RF cavities and absorbers, optimization of the B-fields in RF
cavities and technological complexity. The design of the final cooling stages is
particularly challenging as it requires very high solenoid fields (up to ~30 T have
been considered [119]). The final MC luminosity is proportional to this field.
High-field superconducting magnets for the collider ring and for the cooling have
been actively developed [120], including feasibility studies of a high temperature
superconductor (HTS) option for the 25–50 T final cooling solenoids [121].

A Recirculating Linac with SC RF cavities (e.g. 1.3 GHz ILC-like cavities) is
a very attractive option for acceleration of muons from the low energies emerging
from the cooling sections to the energy of the experiments. The recirculating linac
offers small lengths and low wall plug power consumption but requires small beam
emittances.

Recently, realistic collider ring beam optics has been designed which boasts
a very good dynamic aperture for about dP/P = ± 0.5% and small momentum
compaction [122, 123]. The distortions due to the beam-beam interaction will need
to be studied as well as practical issues of the machine-detector interface.

Representative performance parameters for a multi-TeV Muon Collider are
given in Table 12.2. These parameters are based on the design concepts described
above and represent reasonable extrapolations of technologies currently under
development. The luminosities displayed are appropriate for the physics research
programs that would be undertaken at such a facility [124–127].

12.2.4 Advanced Muon Collider Concepts

In the last few years several advanced muon collider concepts were proposed.
An alternative low emittance muon source based on near-threshold production of
muons in the reaction e+e− → μ+μ− was considered in [128]. The scheme
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relies on availability of high intensity beam of 45 GeV positrons hitting solid,
liquid or crystal target of Be, C or diamond. The resulting emittance of the muon
beam is very small and allows direct acceleration with extensive ionization cooling.
Synchrotron radiation of high-energy muons channelling in between crystal planes
results in very small emittances, too, and opens opportunities for crystal-based muon
colliders. Given natural advantages of muons, such as absence of nuclear interaction
characteristic of protons and greatly reduced synchrotron radiation compared to
electrons, the muons are particle of choice for ultra-high gradient acceleration in
crystals, originally proposed in [129]. Such colliders with gradientsO(0.1–1 TeV/m)
can potentially reach c.o.m energies hundreds of times higher than in the LHC
collisions, though, by necessity, with lower luminosities due to practical limits
on the facility total electrical power consumption O(100 MW) [130]. Of course,
significant R&D is needed to demonstrate feasibility of the channelling acceleration
in crystals or, as a first step, in carbon nanotubes [131].
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Chapter 13
Cosmic Particle Accelerators

W. Hofmann and J. A. Hinton

13.1 Introduction

In the century since the measurements of Victor Hess [1]—considered as the
discovery of cosmic rays—the properties of cosmic rays, as they arrive on Earth,
have been studied in remarkable detail; we know their energy spectrum, extending to
1020 eV, their elemental composition, their angular distribution, and we understand
the basic energetic requirements of cosmic ray production in the Galaxy. The energy
density of cosmic rays in the Galaxy is known to be comparable to the energy
density in Galactic magnetic fields and in the thermal energy of interstellar gas,
hence cosmic rays play a non-negligible role in shaping the evolution of galaxies.
Charged cosmic-ray particles are strongly deflected in the few μG interstellar
magnetic fields—the radius of curvature of aZ = 1 particle in astronomical distance
units of parsec is given byRgyro,pc ∼ EPeV/BμG (1 parsec (pc) = 3.1×1016 m = 3.26
light years). Therefore, except for energies in the 1020 eV range, cosmic rays cannot
be traced back to their sources, the cosmic particle accelerators. Much of the current
effort goes into identifying and quantitatively describing cosmic accelerators, with
supernova remnant shocks as the likely dominant source of Galactic cosmic rays.
Properties of cosmic particle accelerators can be studied and inferred in two
ways: on the one hand based on the characteristics of local cosmic rays, as they
arrive—more or less isotropically—on Earth; this is subject of Sect. 13.2, with
a discussion of acceleration mechanisms given in Sect. 13.3. On the other hand,
cosmic rays propagating through the Galaxy and in particular cosmic particle
accelerators can be imaged using neutral particles and radiation created during the
acceleration process and during propagation through the interstellar medium (ISM),
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with synchrotron radiation in the radio and X-ray regimes, high-energy gamma
rays, high-energy neutrinos, and neutrons. So far, most information is obtained
from electromagnetic probes, as discussed in Sect. 13.4. The small interaction cross
section makes detection of high-energy cosmic neutrino sources challenging; only
recently, the first detection was reported. Neutron decay limits their range. The
flux on Earth of various high-energy cosmic messengers used to explore cosmic
particle accelerators is illustrated in Fig. 13.1. The following discussion will mostly
concentrate on Galactic particle populations and those particle accelerators which
plausibly contribute to cosmic rays observed on Earth. For further details, we refer
to reviews such as [2] on cosmic rays in the Galaxy, [3, 4] on supernovae as Galactic
cosmic ray sources, [5] on cosmic rays above the knee, [6, 7] on ultra-high-energy
cosmic rays, and [8, 9] on very high energy gamma ray astronomy to explore cosmic
particle accelerators.
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Fig. 13.1 Illustration of the flux of various cosmic messengers expressed as the rate per loga-
rithmic energy interval EdN/dE = dN/d ln(E). For diffuse and close to isotropic fluxes, a
solid angle of 1 sr is used. Indicated are the diffuse all-particle cosmic-ray flux resp. the proton
flux (black), the antiproton flux (red), the flux of cosmic e± (blue), the flux of extragalactic
diffuse gamma rays (EGDG, green), and the high-energy neutrino flux (magenta). Also shown
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source (NGC 253) (red dashed). Event numbers per spectral interval � ln(E) = 1 are obtained by
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13.2 Cosmic Ray Properties and Implications for Cosmic
Ray Sources

Certain properties of cosmic particle accelerators can be inferred from the cosmic
ray spectrum measured on Earth, from the elemental composition of cosmic rays,
from any anisotropies in their arrival directions, and also from the yield of electrons
and antiparticles—positrons and antiprotons–among cosmic rays. The interpretation
of data, however, assumes that cosmic rays measured on Earth are reasonably
representative for cosmic rays in the Galaxy, and that one is able to disentangle
effects reflecting properties of cosmic ray sources from those arising from cosmic
ray propagation from their sources the Earth, over kpc distances.1

13.2.1 Cosmic Ray Spectrum

At lower energies, up to at most to 1014 eV, cosmic ray properties have been
studied by space-based instruments, or instruments carried by giant balloons into
the upper atmosphere, equipped with magnetic spectrometers or calorimeters for
momentum/energy determination, with time-of-flight systems, transition radiation
detectors and/or Cherenkov detectors for velocity determination, and with ionisation
measurements for determination of the charge state. Examples of such instruments,
illustrating the different techniques employed, include PAMELA [10], AMS [11],
TRACER [12], CALET [13] and DAMPE [14]. While direct detection in space
frequently provides superior performance, in particular regarding the measurement
of elemental and isotopic composition, the steeply-falling energy spectrum of
cosmic rays, coupled with at most m2-scale detection areas and—in case of
magnetic spectrometers—limited bending power, restricts the energy range of these
detection systems. Starting at 1012 to 1013 eV, ground-based instruments take over,
using the Earth’s atmosphere as an absorbing medium and detecting the particle
cascade created when a high-energy particle interacts in the atmosphere. Instruments
detect either the shower particles reaching the ground—with an effective detection
area determined by the size of the detector array, which can be as large as 3000 km2

for the Pierre Auger Observatory [15]—or image the cascade by focusing onto
a photosensor array the light emitted by shower particles in the atmosphere. The
forward-beamed Cherenkov light illuminates areas of ∼105 m2 on the ground and
is readily detectable for showers beyond 1011 eV; the isotropically emitted air
fluorescence light—imaged e.g. by the Auger fluorescence telescopes [16] and the
Telescope Array instrument [17]—allows detection over multi-km distances and
provides detection areas in excess of 107 m2, but only in the energy range above

11 kpc = 1000 pc ≈ 3300 light years; the distance from the Sun to the centre of the Galaxy is about
8 kpc.
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Fig. 13.2 Cosmic ray energy
spectrum above 1012 eV,
presented as a spectral energy
distribution E2 dN/dE =
E dN/d log(E) representing
the energy contained per
logarithmic energy interval
(from [6]). The inset shows
the variation of elemental
composition—〈lnA〉—with
energy, from [31]. While the
absolute value of 〈lnA〉 is
depends on the model used to
interpret the air shower data,
the pattern of change—from
‘light composition’ to ‘heavy’
then back to ‘light’ and again
‘heavy’ persists
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1017 to 1018 eV. Identification of primary particles is achieved via the longitudinal
and transverse development of the air shower, the radial distribution of shower
particles on the ground, and the ratio of nucleons, electrons and muons among
shower particles. Compared to detection in space, cosmic-ray identification power is
dramatically reduced, allowing essentially to distinguish light from heavy elements,
and nuclei from electrons. Examples of air-shower arrays include KASKADE
[18], optimised for measurements of cosmic ray composition, the Tibet array
[19], optimised for low energy threshold, and the large LHAASO array under
construction in China [20].

The cosmic ray energy spectrum shown in Fig. 13.2, compiled from numerous
measurements using different techniques, is a mostly featureless power-law spec-
trum, dN/dE ∼ E−Γ , ranging from GeV energies to 1020 eV, covering over 30
orders of magnitude in flux, with the power-law index Γ varying at the “knee” from
about 2.7 below 1015 eV to about 3 for energies from 1016 eV to 1018 eV, to flatten
again at the “ankle” between 1018 eV to 1019 eV, and cutting off around 1020 eV.
Below about 1010 eV, the spectrum is modulated by the solar wind; at these energies
particles do not penetrate into the inner Solar system. Newer measurements indicate
another spectral break in the 1011 eV to 1012 eV range, with a change in proton and
Helium spectral indices [21–23]. The power-law shape, with its lack of features and
characteristic energies in the spectrum, indicates that cosmic rays are of non-thermal
origin. The local energy density in cosmic rays is dominated by lower-energy
particles and amounts to about 1 eV/cm3. Different mechanisms are discussed
for the origin of the slight changes in spectral index: a harding of the spectrum
can indicate the emergence of a new component/a new source of cosmic rays, a
steepening the peak energy of accelerators, in particular if accompanied by a shift
towards heavier composition, since the peak energy of accelerators will usually scale
with the chargeZ of the accelerated nuclei. Changes in spectral slope can, however,
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also indicate a change of cosmic ray propagation, i.e. of the energy-dependent
diffusion coefficient. The spectral hardening observed at the ankle by 1019 eV is
most easily explained as the emergence of a new component of cosmic rays, with a
harder spectrum. Most models aiming at explaining the overall cosmic ray spectrum
assume such a transition from Galactic sources to extragalactic sources in the 1017

to 1019 eV range (e.g. [24]). The steepening of spectra at the “knee” could be caused
by a cutoff in the acceleration mechanism, characterising the upper end of the energy
range of Galactic cosmic particle accelerators. A cutoff in the cosmic ray spectrum
around 1020 eV—the Greisen-Zatsepin-Kuzmin (GZK) cutoff [25, 26]—has been
predicted as a result of pion production by ultra-high-energy protons interacting with
the cosmic microwave background radiation, limiting the range of protons beyond
1020 eV to about 100 Mpc or less (e.g. [27]). While early results questioned the
existence of the GZK cutoff, both Auger [28, 29] and Telescope Array (TA) [17]
have with much improved statistics established a cutoff in the spectrum of ultra-
high-energy cosmic rays (UHECR). The energy of the cutoff is consistent with the
GZK cutoff, indicating that most sources of UHECR are located at distances beyond
100 Mpc, but data are also well reproduced in terms of more nearby sources with a
rigidity-dependent cutoff in the acceleration mechanism [30].

The cosmic-ray spectrum measured on Earth reflects the source spectrum
(averaged over the lifetime of each source and over the population of sources),
modified by factors arising from the energy-dependent propagation from sources
throughout the Galaxy to Earth. Cosmic ray composition measurements discussed
below have proven particularly useful in disentangling the two contributions.

13.2.2 Cosmic Ray Composition, Cosmic Ray Propagation,
and Cosmic Ray Energetics

Lacking directional information, clues regarding the origin of cosmic rays (beyond
those from shape of the energy spectrum) have been drawn mainly from the
elemental composition (see e.g., reviews [2, 32]). In the GeV energy range, cosmic-
ray chemical composition resembles the composition of solar-system material, with
hydrogen and helium nuclei as dominant components (see Fig. 13.3). For some
elements and isotopes, there are, however, marked differences between cosmic-
ray composition and solar-system composition. This concerns e.g. boron (Z=5),
which is suppressed by more than five orders of magnitude relative to carbon
(Z=6) in the solar system, but is (within a factor of a few) equally represented
among cosmic rays. The reason for this is that boron is not produced directly in
stellar nucleosynthesis, but can easily be produced by spallation of heavier cosmic-
ray nuclei interacting with interstellar gas. From the boron to carbon ratio, it is
inferred that GeV cosmic rays arriving at the Earth have traversed about 10 g/cm2

of interstellar medium (ISM) (e.g. [33]), with the amount of target material traversed
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decreasing roughly as R−0.5 for higher rigidities R (defined as momentum/unit
charge). Radioactive secondary nuclei, such as 10Be with its half-life of about a
million years, are also detected among cosmic rays and can be used to estimate the
residence time of cosmic rays in the Galaxy: the observed 10Be/9Be ratio implies
a typical age of GeV cosmic rays reaching the Earth in the 107 year range, with a
trend towards lower ages at higher energy. Both the grammage traversed by cosmic
rays and in particular the residence time, which is much larger than the time of
about 105 years required to cross the entire Galaxy on a straight path, indicate that
cosmic rays are trapped inside the Galaxy and propagate diffusively away from
their sources, due to frequent deflection in interstellar magnetic fields. However, the
combination of the age and the grammage traversed implies that cosmic rays spend
a significant fraction of their lifetime outside the Galactic disc with its typical gas
density of 1 atom/cm3. This has lead to the development of “leaky box” models or
diffusion models (see Fig. 13.4), where cosmic rays do not escape the Galaxy when
leaving the disc with its scale height of O(100 pc), but continue diffusive motion out
to distances of several kpc from the disc, with the possibility of returning into the
disc (for overviews see e.g. [2, 34]). Measurements of Galactic magnetic fields, via
synchrotron emission or rotation measures (e.g. [35]), indeed indicate that particle-
confining fields extend well beyond the height of the Galactic disc. For diffusive
propagation, <r2> = 2Dt . The diffusion coefficient D depends on the scale and
degree of turbulence of Galactic magnetic fields, both poorly known. Assuming
particles escape the system when reaching a halo height h above the disc, a particle
will escape after a time of order T ∼ h2/2D. With h much larger than the disc scale
height b, and a gas density in the halo which is negligible compared to the density ρ
in the disc, the grammage traversed is X ∼ cTρ(b/h) ∼ h/D. From the residence
time and the grammage, or by directly comparing element ratios with model
calculations, the halo height h and the diffusion coefficientD can hence be inferred;
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2h

2bDisk region with CR sources and gas

Box boundary: escape or partly reflecting

Diffusion coefficient:
Simplest models assume same
diffusion for disk and halo

Halo region

Fig. 13.4 “Leaky Box” cosmic-ray propagation models [34]. Cosmic-ray sources are located
in the gaseous disc of the Galaxy, but diffuse propagation continues into the kpc-sized halo.
Depending on the specific model, particles are assumed lost when reaching the halo boundary,
or are partially reflected back

depending on model details, halo heights of a few kpc, up to 10 kpc, and energy-
dependent diffusion coefficients of D(E) of order 1028Eα

GeV cm2/s are obtained,
with α in the range from 0.3 to 0.6; α = 0.5 is often used as a representative
value. This value of D corresponds to an rms propagation distance of cosmic rays
of dpc ∼ 0.3t1/2

year at GeV energies; the diffusive approximation, however, holds
only for reasonable large time and spatial scales, corresponding to many gyro radii
and distances much larger than the coherence length of magnetic fields. Since the
average spectrum of cosmic rays in the Galaxy is given by the source spectrum
multiplied by the average residence time T (E) ∼ 1/D(E), the average source
spectrum has to be harder than the observed spectrum, Γsource ≈ ΓCR + 0.5. For the
interpretation of cosmic rays spectra and composition, initial analytical models (e.g.
[34]) have increasingly been replaced by numerical simulations such as GALPROP,
allowing the inclusion of specific assumptions regarding the distribution of cosmic
ray sources, of material in the Milky Way, and of energy loss and re-acceleration
processes, see e.g. [2] for an overview and references. Beyond the effects of cosmic
ray spallation products and radioactive decay, differences between solar system
composition and cosmic ray composition are observed which seem to depend on the
ionization potential or the volatility of elements (e.g. [36]), and which are attributed
to the efficiency with which elements are injected into the acceleration process.

Assuming that cosmic rays more or less uniformly permeate the Galaxy, as
confirmed by gamma-ray observations (see Sect. 13.4) and that they are not a
temporary or local phenomenon, leaky box-models allow constraints to be placed
on the energy requirements of Galactic cosmic-rays: to sustain the flux of cosmic
rays in the Galaxy and its halo with a volume V of a few 1067 cm3, a typical
energy density ρ ≈ 1 eV/cm3 and a typical escape time T ≈ 107 year, an
energy input of ρV/T ≈ 1041 erg/s needs to be provided by Galactic cosmic
particle accelerators [37]. Only a few percent of this energy is dissipated in form
of ionization and radiative or adiabatic losses; over 95% of the energy leaves the
Galaxy into intergalactic space [38].
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At higher energies, cosmic-ray composition is determined from ground-based
measurements of the electron and muon content of air showers—heavy primaries
have a higher fraction of muons—or from the depth of the shower maximum in
the atmosphere, which is sensitive to the interaction cross section of the primary,
which scales with mass numberA roughly as the A2/3, see e.g. [31]. As they are not
sensitive to individual species, results are often presented in terms of the mean of
log(A) and tend to be rather sensitive to the algorithms used to model the air shower
(see e.g. [18, 31]), and inconsistencies between models and data are seen [29, 39].
Nearly all measurements, however, show a change from a dominantly light (H, He)
composition up to the knee, to a heavy composition above the knee (see Fig. 13.2,
and also Fig. 13.11 below), and while the knee is clearly seen in showers initiated
by light elements, no change in the slope of spectra of heavy primaries is evident up
to 1017 eV. Well beyond the knee, at energies of few 1018 eV, studies of the height
of shower maximum again suggest a light composition, with a transition to a heavy
composition at a few 1019 eV [40, 41], although details remain under discussion
[42]. A common interpretation is in terms of two components, a Galactic component
and an extragalactic component, the latter dominating above 1017 to 1018 eV, each
component with a cutoff in the acceleration mechanism at fixed particle gyro radius
(i.e. rigidity), corresponding to a peak energy which scales with the nuclear charge
Z. In this scenario typical Galactic accelerators are required to reach an energy in
the range of a few Z × 1015 eV (e.g. [43]).

13.2.3 Cosmic Ray Anisotropy

The diffusive propagation of all but the very highest energy cosmic rays, with a gyro-
radius much smaller than the scale of the Galaxy, destroys almost all directional
information in cosmic rays; nevertheless, cosmic rays will on average flow away
from their sources, resulting in small anisotropies.

The arrival directions of cosmic rays are indeed almost uniform on the sky, with
(dipole) anisotropies at the 10−3 level at energies below 0.1 PeV, an indication of
a minimum in anisotropy in the 0.1–1 PeV range, and an increase up to 10−2 at
higher energies (see e.g. [2, 44]). The phase of the anisotropy—i.e. the direction
of maximum intensity—varies with energy. Effects which might cause anisotropies
include [34]: (a) a diffusive flow of cosmic rays governed by gradients in cosmic
ray density ρ, with a resulting anisotropy of order 3D∇ρ/cρ; since the cosmic ray
density likely decreases with galactocentric radius, an outward flow results at the
location of the Solar System. A density gradient and hence flow might also be caused
by single nearby cosmic-ray sources, in which case the magnitude and direction
cannot be predicted a priori. Given that the diffusion coefficientD(E) increases with
energy, density-gradient related anisotropies are expected to increase with energy.
(b) Anisotropies of order (Γ +2)(v/c) caused by the motion of the Earth relative to
the cosmic-ray rest frame (the Compton-Getting effect [45]). Cosmic-ray energies
are also Doppler-shifted, for power-law spectra with index Γ the anisotropy hence



13 Cosmic Particle Accelerators 835

depends on the spectral index, but not on the energy. Compton-Getting anisotropies
could be caused by the 220 km/s motion of the Sun around the centre of the Galaxy,
and/or—an order of magnitude smaller—by the orbital motion of the Earth around
the sun. (c) Anisotropies arising from special magnetic field configurations near
the Earth or sun, or from modulation by the solar wind. Such anisotropies should
decrease with increasing rigidity (i.e. energy) of particles, but large-scale structures
such as the heliotail caused by the motion of the sun relative to the local interstellar
medium, possible extending beyond 1000s of AU,2 could influence particles beyond
multi-TeV energies. Decomposition of anisotropies into the different components is
difficult also because most ground-based detectors measure the variation of rates
along right ascension, for a fixed viewing direction, i.e., whereas the declination
dependence is usually not measured directly. The observed energy dependence
is non-trivial to explain and may include partial compensation between different
contributions. In a study of a sample of simulated spiral galaxies and their cosmic-
ray sources, most realisations show larger anisotropies than measured, and a uniform
increase with energy [46]. The minimal anisotropy in the sub-PeV range can also be
interpreted as evidence that the cosmic-ray “gas” co-rotates with the Galaxy [47]—
quite plausible given that cosmic rays couple via magnetic fields to the interstellar
plasma.

At TeV energies, anisotropies of a few 10−4 on smaller angular scales (few
10◦) are observed [48, 49]. The origin of these small-scale anisotropies is not well
understood; explanations e.g. assume field lines connecting a cosmic ray source
and the solar system [50], but the effect may also simply reflect the local concrete
realisation of the turbulent magnetic field within the cosmic ray scattering length
[51].

13.2.4 Electrons and Antiparticles Among Cosmic Rays

Electrons and antiparticles among cosmic rays play a special role, since their “nat-
ural” yields are quite low and hence their fluxes are most sensitive to contributions
from “exotic” sources such as annihilation of Dark Matter particles. Contrary to
cosmic ray nuclei, electrons and positrons suffer significant energy losses, mostly
from synchrotron radiation, with an energy loss timescale of O(105 year/ETeV).
Combined with typical diffusion coefficients D(E), this implies that electron and
positron sources need to be within a distance of dpc ≈ 500/E1/4

TeV from Earth. Unlike
cosmic ray nuclei, electrons and positrons therefore act as probes of local sources.
While electrons are assumed to be accelerated together with nuclei in cosmic ray
sources, antiparticle yields—antiprotons and positrons—were traditionally modeled
as arising exclusively from nuclear interactions during cosmic ray propagation,
resulting in highly suppressed yields.

2AU = Astronomical Unit, the mean Sun-Earth distance of ≈ 1.5 × 1011 m.
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Antiproton yields have been measured up to energies of 1011 eV. The antiproton
to proton ratio rises with energy up to about 2×10−4 around 10 GeV, and then levels
off, in good agreement with expectations for secondary antiprotons (e.g. [52]).

The cosmic-ray electron spectrum is illustrated in Fig. 13.5. The spectrum falls
steeper than the spectrum of nuclei, with an index Γ ≈ 3, and steepens further at
around 1012 eV. The flux of cosmic-ray electrons at 1012 eV is about 0.1% of that
of cosmic ray nuclei. The spectrum can be modeled by assuming that cosmic-ray
sources accelerate electrons and nuclei in a ratio of about 1:100 at a given energy;
with increasing energy, and hence shorter electron range, fewer and fewer sources
contribute, resulting in both a steeper spectrum and increasing uncertainty in the
predicted flux due to the stochastic distribution of sources (see e.g. [57]).

Recent measurements, however, reveal deviations from this picture for the elec-
tron (plus positron) flux (see Fig. 13.5), and in particular for the positron/electron
ratio (Fig. 13.6). Beyond the range of solar modulation, the electron flux is predicted
to decrease slightly faster than E−3; the data suggest an additional component
appears in the energy range between about 100 GeV and 1 TeV, before the flux
cuts off. A similar, but much more dramatic effect is seen in the electron/positron
ratio, which increases beyond 10 GeV, rather than continue to drop as predicted
for secondary production of positrons. This feature, first detected by PAMELA
[58] and Fermi [59], and studied with high statistics using AMS-02 [56], gives
rise to considerable speculation regarding its origin (e.g. [60]). Both the electron
yield and the positron/electron ratio can be described by assuming an additional,
charge-symmetric source of electrons and positrons, with a (propagation-modified)
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Fig. 13.6 Positron fraction, Ne+/(Ne− + Ne+ ), as a function of energy, as measured by AMS-02
(from [56])

spectrum which rises faster than E3 up to a few 100 GeV, and cuts off at about
one TeV [60]. Dark matter annihilation of particles in the TeV mass range can
account for the shape of the spectra, but would require enhanced annihilation rates
compared to typical models, and annihilation modes which produce only leptons
but no baryons; most conventional dark matter annihilation models predict the
positron excess to be associated with an excess in antiprotons, which is not seen.
An alternative explanation is provided by electrons escaping from nearby pulsars,
or, more specifically, pulsar wind nebulae [61] (see also Sect. 13.4), although results
regarding very low diffusion coefficients for cosmic-ray electrons disfavor this
interpretation somewhat, making it difficult for electrons from known pulsars to
reach the Earth [62].

13.2.5 Astronomy with Ultra High Energy Cosmic Rays

Due to the strong deflection of cosmic rays in Galactic and extragalactic magnetic
fields, astronomical imaging of their sources is impossible over most of their energy
range. Only at energies of several 1019 eV deflections for Z = 1 ultra high
energy cosmic ray (UHECR) particles are predicted to become small enough—a few
degrees—that particles can be traced back to their sources. The arrival directions
of the highest-energy cosmic rays are essentially isotropic (see Fig. 13.7), but
indications of correlations with astrophysical objects start to emerge. In the Auger
data, the most significant over-density of UHECR lies roughly in the direction of
Centaurus A, the closest AGN at 3.8 Mpc distance; the statistical significance of
this fact is about 3σ after accounting for the number of trials [29]. Arrival directions
also correlate with the distributions of starbust galaxies, and of gamma-ray AGN, at
the 3−4σ level [29]. The 7-year Telescope Array data [17] exhibit at energies above
1019.2 eV a 3.7σ post-trial enhancement around RA = 9 h 16 min, Dec = 45◦. The
interpretation of these data is not obvious. One possibility is that few sources are
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Fig. 13.7 Left: Arrival directions of Auger events (red points in the South hemisphere) and
Telescope Array ones (black crosses in the Northern hemisphere) above 1019 eV in equatorial
coordinates. Right: Excess significance sky map smoothed out at a 15◦ angular scale. From [63]

responsible for UHECR, emitting a mixture of light and heavy nuclei; the protons
among those particles create the detected directional enhancements whereas the
heavier nuclei are strongly deflected and are responsible for a uniform background,
with similar spectra in both hemispheres. Verifying or disproving such a scenario
requires particle-by-particle mass identification and increased statistics, both goals
of next-generation UHECR experiments.

13.3 Particle Acceleration Mechanisms and Supernova
Shocks as Cosmic Accelerators

A few general conditions can be imposed regarding sources of Galactic cosmic rays.
To sustain the flux of cosmic rays in the Galaxy, an energy input of ≈ 1041 erg/s by
Galactic cosmic ray sources is required (see Sect. 13.2), and a spectrum extending at
least up to ≈ Z× 1015 eV with an average source spectral index in the range Γ ≈ 2
to 2.4. In addition, if cosmic accelerators use regular or turbulent magnetic fields to
confine particles, the acceleration region has to have a size at least equal to the gyro
radius of particles, Rgyro,pc ∼ EPeV/BμG [7]. Figure 13.8 illustrates that there are
astrophysical objects which fulfil this condition up to energies of 1020 eV, but not
much beyond.

In Sect. 13.3.1 below we focus on the most established mechanism, diffusive
shock acceleration, and in particular the well-studied case of supernova remnants.
Note however, that acceleration associated with magnetic reconnection is now
increasingly discussed, in particular in the cases of objects with relativistic bulk
motions such as in the jets of active galaxies.
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Fig. 13.8 The maximum energy attainable in a cosmic accelerator depends on the product of
magnetic field strength B and size L [7]. The condition that the gyro radius of a particle of
charge z is contained in the acceleration region yields Emax ∼ zBL. For shock acceleration,
see Sect. 13.3.1, one finds that the actually reachable Emax is lower by a factor of O(βs), the shock
speed in units of the speed of light. The lines corresponds to a maximum energy of 1020 eV, for
z = 1 and βs = 1 (dashed) or βs = 1/300 (full). Potential sources range from very compact,
high-field objects such as gamma-ray bursts (GRB) or neutron stars via the parsec-size supernova
remnants (SNR) to the extended low-field intergalactic medium (IGM). From [5] and [7]

13.3.1 Shock Acceleration in Supernova Remnants

As sources of Galactic cosmic rays, supernova explosions were suggested very early
as a suitable source [64], providing both sufficient energy—1051 erg kinetic energy
per explosion, or 1042 erg/s for a supernova rate in the Galaxy of 1/30 year—as
well as a plausible acceleration mechanism—first order Fermi acceleration (see e.g.
[65, 66] and further references given in [3, 4]), the appropriate spectral index Γ ≈ 2
and a peak energy around 1015 eV (see Fig. 13.8).

In a supernova explosion, stellar material of up to a few solar masses is ejected
with initial speeds of up to 104 km/s or βsh = vsh/c ∼ 0.03, and creates a shock
where the ambient interstellar medium is compressed and piled up. While the piled-
up ambient material slows down the ejecta, speeds remain supersonic for time scales
of order 104 years (e.g. [67]). Shocks with high Mach number are characterized by
a compression ratio r = (γ + 1)/(γ − 1) = 4, governed by the adiabatic index
γ = 5/3 of the compressed monatomic gas. Charged particles which cross the shock
in either direction find themselves in a medium moving with velocity ≈ vsh relative
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Fig. 13.9 Cartoon of cosmic-ray acceleration at shock fronts, viewed in the rest frame of
the shock. In this frame, interstellar medium material streams into the shock with the shock
propagation speed vup = vsh, is compressed by a factor r and streams out with vdown = vsh/r .
Charged particles can be scattered across the shock front and back. Particles will on average
propagate a distance λ ≈ D/vsh upstream before they are swept back through the shock. The
lower part of the diagram illustrates how flow velocity varies across the shock for the case that
the energy in accelerated particles is negligible (“test particle case”, dashed line) and for the case
where the shock is modified by the cosmic-ray pressure, see text for details

to the medium on the other side of the shock (Fig. 13.9). Particles are scattered
off anisotropies in the magnetic field and isotropised in the new medium, with an
average increase in energy �E/E of O(βsh). In their diffusive motion, particles
can cross the shock front multiple times, their energy growing as E ∼ (1 + k)n,
where n is the number of crossing cycles and k = (4/3)(1 − 1/r)(vsh/c); here
(1 − 1/r)vsh is the difference in flow speed before and after the shock and the
factor 4/3 arises from averaging over shock crossing angles. Since, viewed in the
rest frame of the shock, material is inflowing (“upstream”) with speed vsh and
outflowing (“downstream”) after shock compression with speed vsh/r , in the long
run particles tend to be carried into the downstream region, with a probability of
order 4βsh/r not to return to the shock at each cycle (cβsh/r is the downstream
flow speed and hence loss rate, c/4 the angle-averaged shock crossing speed and
hence rate of initiating another cycle). Given the gain per cycle and the loss
probability per cycle, the energy spectrum of accelerated particles can be calculated
as dN/dE ∼ E−Γ with Γ = (r + 2)/(r − 1). The time per acceleration cycle
is governed by the diffusion coefficient D. Maximum magnetic field turbulence
�B/B ∼ 1 implies that the mean free path of relativistic particles, between
scattering off field inhomogeneities, is of order of the gyro radius. In this so-called
‘Bohm diffusion’ regime, a more detailed calculation gives D = Rgyroc/3. The
cycle time �T can be estimated to be 4D(1 + r)/(vshc) ≈ (20/3)(Rgyro/vsh) (for
r = 4). With a gain per cycle of order �E ≈ βshE, the resulting acceleration rate is
hence dE/dt ≈ �E/�T ∼ Eβ2

sh/Rgyro ∼ β2
shB, of order 0.05β2BμG PeV/year.

The maximum achievable energy is governed by the age of the system, by energy
losses (in particular radiation losses of electrons), and by the scale λ of the upstream
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diffusion length of particles, λ ≈ Rgyro/3βsh (determined from the balance between
the upstream medium flow speed vsh and the diffusion speed vDiff = D∇ρ/ρ ≈
D/λ), which has to be small compared to the size of the supernova remnant to give
particles a chance to return to the shock. The age-limited peak energy is given by
[4] as Emax(age) ≈ 0.5T3v

2
sh,8BμGf

−1 TeV where T3 is the remnant age in kyr,

vsh,3 is the shock speed in units of 103 km/s and f parametrizes diffusion effects,
with f ≈ 1 for Bohm diffusion. Injection efficiency, peak energy and particle
acceleration rate also depend on the angle of the average magnetic field relative
to the shock front. For heavier nuclei, the acceleration rate and peak energy scale
with their charge Z, reflecting the reduced gyro radius for a given energy.

The acceleration process is predicted to be highly efficient, converting as much
as 50% of the kinetic energy of the ejecta into non-thermal particles. This high
efficiency makes the process non-linear (e.g. [68, 69] and further references in [4]);
the accelerated cosmic ray currents induce turbulent magnetic fields—determined
under certain assumptions as high as 300 μG (e.g. [70])—which in turn reduce
the gyro radius and the diffusion coefficient D and increase the speed of particle
acceleration. A shock precursor of scale λ develops since the in-streaming gas
reacts to the upstream cosmic-ray pressure, reducing the compression ratio at the
subshock, see Fig. 13.9. On the other hand, since the shock now compresses a
mixture of normal gas with γ = 5/3 and relativistic cosmic ray gas with γ = 4/3
upstream of the shock, the total compression ratio increases up to r = 7 and the
spectrum of accelerated particles becomes harder, up to dN/dE ∼ E−3/2. This
hardening of spectra affects mainly the highest-energy particles, with gyro radii of
order λ, which probe both the shock precursor and the subshock (see Fig. 13.10).

Strictly speaking, the calculated spectral index Γ = (r + 2)/(r − 1) applies
to the particles swept downstream and confined inside the remnant. The exact
mechanism of cosmic-ray escape from supernova shocks into the upstream region
is not well understood; it is usually assumed that the time-integrated spectrum of
particles released from the remnant reflects the spectrum of accelerated particles,
but that particles of highest energy are released early, and those of low energy late
in the lifecycle of the remnant [71]. The escaping cosmic rays represent a current
that generates turbulent magnetic fields outside the remnant, reducing the diffusion
coefficient in the upstream region, thereby enhancing the rate of particle crossing of
the shock front, and speeding up the acceleration process [72].

Cosmic ray spectra measured at the Earth result from the superposition of
many sources, up to distances comparable to the scale height of the halo, and are
essentially stationary, despite the stochastic nature of the sources. At any given time
thousands of supernovae will contribute to the cosmic rays on Earth; an individual
supernova will cause a change in cosmic ray intensity over a volume of only about
100 pc in radius; beyond that the energy density of it’s cosmic rays falls below the
1 eV/cm3 level of the cosmic ray sea. The spectrum of cosmic rays on Earth is given
by the source spectra multiplied by the average residence time T (E) ∼ 1/D(E)
in the Galaxy, qualitatively explaining the difference between the source spectral
index Γ ≈ 2 and the observed cosmic ray spectral index Γ ≈ 2.7. The knee
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Fig. 13.10 Spectra of particles accelerated in a simulated supernova remnant shock, at a given
time during the evolution of the remnant, as a function of momentum in units of the proton mass
× c. The density in momentum space, p4f (p), is shown, for relativistic particles equivalent to
E2dN/dE. The ‘TP’ curve refers to the test particle case, where the energy carried by cosmic
rays is modest compared to the kinetic energy of ejecta; in this case, the thermal distribution
of unaccelerated protons extends into a power law with index Γ = 2. For efficient acceleration
(‘NL’), the shock is modified due to cosmic-ray pressure and the local spectral index of accelerated
particles varies from Γ > 2 at low energy to Γ < 2 at high energy, with details depending on the
efficiency η governing the rate of particle injection into the acceleration process. From [69]

in the cosmic ray spectrum is then associated with the peak energy of particles
in the acceleration process; heavier nuclei of charge Z can be accelerated to Z-
times higher energies than protons and dominate beyond the knee. With plausible
parameters, supernova remnant-based models can reproduce the observed spectrum
and variation of composition across the knee, see Fig. 13.11.

Shocks, and particle acceleration in shocks, can occur in all situations where
non-relativistic or relativistic outflows exist with Mach numbers greater than unity;
examples include stellar winds, Galactic outflows, winds driven by pulsars, or jets
emerging from the vicinity of black holes driven by matter accretion. Shocks can
also arise in collisions or from the infall of matter, e.g. during structure formation
in galaxies and galaxy clusters. Less well understood than supernova shocks are
relativistic shocks with βsh ≈ 1, here particles can gain significant energy in one
or few shock crossings, but crossing the shock becomes increasingly difficult (e.g.
[74]).
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Fig. 13.11 Predicted cosmic ray spectra and change of composition—〈log(A)〉—with energy
for ten simulated spiral galaxies populated with supernova remnants, with plausible acceleration
parameters. The model includes an assumed extragalactic component which takes over at highest
energies. From [73]

13.3.2 Pulsars as Particle Sources

An alternative mechanism for particle acceleration are neutron stars (or generally,
rotating compact objects) with large magnetic fields, acting as unipolar inductors
building up large electric fields and radiating Poynting flux.

A pulsar (a rotating magnetised neutron star) created in a supernova explosion
radiates energy because its magnetic moment is misaligned by an angle α with
respect to its rotation axis. The pulsar rotational energy E = I�2/2 ≈ 2 ×
1052/P 2

ms erg serves as an energy source; here I ≈ 1045 cm2g is the pulsar moment
of inertia and Pms is the rotation period in ms, with typical pulsar birth periods of
order tens of ms. Assuming energy loss through dipole radiation, energy is radiated
at a rate Ė = IΩ̇Ω ≈ (8π/3μ0c

3)B2
s R

6Ω4 sin2 α ≈ 4× 1043B2
12P

−4
ms sin2 α erg/s,

causing the pulsar to spin down, with Ω̇ ∼ Ω3. Here, R ≈ 10 km is the pulsar
radius and B12 is the surface field in units of 1012 G. In case other dissipation
mechanisms contribute, such as outflowing winds of particles, Ω̇ is parametrized
as Ω̇ = −KΩn, where n is the braking index, n = 3 for dipole radiation.
Measured values for n range from 2 to 3. Integrating the Ω̇(Ω) relation, one obtains
Ė(t) = Ė0/(1+t/τ )−(n+1)/(n−1) for the general case, or Ė(t) = Ė0/(1+t/τ )−2 for
dipole radiation, with τ as the characteristic spin-down time. For dipole radiation,
τ ≈ (3μ0c

3I)/(16πR6B2
s sin2 α Ω2

0 ) ≈ 15P 2
0,ms/(B

2
12 sin2 α) years; in the time

up to t = τ , the pulsar loses half of its rotational energy, with the energy output
diminishing like 1/t2 for t >> τ .

In the near field, the rotating pulsar magnetic field with a surface strength in the
1012 G range creates electric fields with voltage drops of order 1017B12/P

2
ms volt.

Electrons and positrons are generated by pair cascades near the pulsar surface
and are accelerated until currents short-circuit the fields. Inside the light cylinder,
r < Ω/c, where the magnetic field and the currents co-rotate with the neutron
star, particles either near the polar cap of the pulsar or in the ‘outer gap’ close
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to the light cylinder create beams of radiation swept across the sky by the pulsar
rotation, see [75, 76]. In the far field, magnetic fields spiral up and cause a Poynting
flux of electromagnetic energy. By a mechanism, which is yet to be understood in
detail (e.g. [76]), this Poynting flux drives a particle wind, effectively converting
much of the radiated energy into particle kinetic energy. It is usually assumed that
the particle wind is dominated by electrons and positrons, but a component of
nuclei extracted from the pulsar surface cannot be excluded. In the pulsar wind,
reconnection of opposite magnetic field lines can provide a mechanism for energy
release and particle acceleration [77]. The particle wind, initially assumed to be
spherical [78, 79] but in more recent models concentrated in the equatorial plane,
ends in a standing wind termination shock where the pressure of the wind is
balanced by the ambient pressure; the termination shock is visible in high-resolution
X-ray images of pulsars (see e.g. [80]). In the termination shock, particle velocities
are randomised, particles are accelerated and emerge in a subsonic flow, creating
a large and expanding magnetised bubble filled with high-energy electrons and
positrons, see e.g. [78, 79, 81]. Pulsars are hence cosmic sources of high-energy
electrons and positrons, possibly of nuclei, and of a complex mix of pulsed and
beamed as well as of more or less steady and isotropic radiation spanning the range
from radio to gamma rays, as elaborated in Sect. 13.4.3. However, since not all
supernova explosions result in pulsars and since their initial rotational energy is
usually much smaller than the kinetic energy released in a supernova explosion, the
contribution of pulsars to overall cosmic-ray energetics should be modest.

13.4 Probing Cosmic-Ray Sources and Propagation Using
Gamma-Rays and Neutrinos

For energies below E ∼ hZeBISM ∼ 1018 eV to 1019 eV (see e.g. [82]) cosmic
ray protons are strongly deflected when propagating in the Galaxy on scales of
the Galactic halo height h in typical interstellar fields BISM; their arrival direc-
tions therefore carry almost no information on their source locations. Directional
messengers are therefore required to study Galactic cosmic-ray sources. Strong
interactions of cosmic ray protons and nuclei with target protons and nuclei in the
interstellar medium (ISM) lead to pion production and hence gamma-ray, neutrino
and secondary electron and positron signatures (for a detailed description, see e.g.
[83]). The following discussion will focus largely on the well-explored gamma ray
signatures. Protons or nuclei with power-law spectra of index Γp generate gamma-
ray spectra with Γγ ≈ Γp, and a cutoff in proton spectra translates into a (smoother)
cutoff in gamma-ray spectra about a decade in energy below the cutoff in primary
spectra. For a typical ISM density, n, of 1 hydrogen atom per cm3 the energy loss
timescale for relativistic protons is (f σpp n c)−1 or a few 107 years, comparable
to or—in particular at high energy—longer than their residence time in the Galaxy.
The fraction f of the primary energy lost in a typical collision (“inelasticity”) is
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∼0.5 of which ≈ 1/3 goes into the gamma-ray channel. Overall, about 1% of the
energy injected into relativistic hadrons in the Galaxy in the end emerges in photons
[38]. Inside, or in the vicinity of cosmic accelerators, particle density is strongly
enhanced and the objects are visible as gamma-ray sources, assuming that sufficient
amounts of target material (interstellar gas) are present. The intensity and extent of
the gamma-ray or neutrino emission depends the distribution of target material, on
whether accelerated particles are efficiently confined within the accelerator, and on
how quickly particles diffuse away after escaping from the acceleration region (see
Sect. 13.2.2) and merge into the cosmic-ray “sea”.

For cosmic electrons and positrons, ionisation, bremsstrahlung, synchrotron
radiation and Inverse Compton (IC) scattering of ambient radiation fields compete
as energy-loss processes [84, 85]. For the highest energy electrons, at TeV energies
and above, synchrotron and IC emission dominate and synchrotron X-rays and IC
gamma-rays can be used as effective tracers of electron acceleration and propaga-
tion. The targets for IC scattering are typically the cosmic microwave background
radiation (CMBR), starlight, and reprocessed starlight remitted in the far infrared,
with typical energy densities of order 1 eV/cm3. The typical lifetime of a high
energy electron in the ISM is 5 × 105(B/5 μG + Urad/(eVcm−3))−1(E/TeV)−1

years, much shorter than propagation time scales in the Galaxy. Radiative losses
modify the energy spectra of very-high-energy electrons, introducing—for burst-
like injection—an age-dependent cutoff in the electron spectra at the energy where
the lifetime corresponds to the source age, at Ecut,TeV ≈ 3 × 105/Tyear, or—for
continuous injection—increasing the spectral index Γe by one unit, since at high
energy only electrons injected within a period corresponding to the electron lifetime
survive [86]. Electron spectra with power-law index Γe generate power-law IC and
synchrotron spectra with index (Γe + 1)/2, and a cutoff energy Ec in electron
spectra translates into cutoffs Eγ,TeV ≈ 10E2

c,TeVEph,eV for IC gamma rays (in
the Thomson regime where Ec,TeVEph,eV ∼< 1), where Eph is the typical energy
of the target photons, and EX,eV ≈ 0.01Ec,TeVBμG for X-rays. With the rapid
energy loss, emission by electrons is usually concentrated relatively close to the
sites of acceleration. Figure 13.12 gives an example spectral energy distribution for
emission dominated by energetic electrons.

Gamma-ray detection at high energies is based on pair-production and sub-
sequent electromagnetic cascading. The most sensitive satellite-based gamma-ray
detector currently operating is the Fermi Large Area Telescope (LAT), which has
≈1 m2 detection area and ≈2.5 steradian field-of-view (FoV). The LAT combines a
silicon-strip tracker for directional reconstruction and a 8.6 radiation-length thick
calorimeter for energy determination [90]. The angular resolution achievable is
strongly energy dependent: improving from 5◦ at 100 MeV to 0.25◦ at 10 GeV,
where photon statistics become very limited for most sources. The most sensitive
ground-based approach (see e.g. [9] for a review) is the Imaging Atmospheric
Cherenkov Technique (IACT), which uses the Cherenkov light produced by elec-
tromagnetic cascade electrons and positrons in the atmosphere to establish the
properties of the primary gamma-ray; the gamma-ray direction is determined
by imaging the cascade, the gamma-ray energy is derived from the Cherenkov
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Fig. 13.12 The spectral energy distribution E2dN/dE of the Crab Nebula, with its synchrotron
and Inverse Compton (IC) components. The inset illustrates the full spectral range from radio to
gamma rays [87], the main figure shows the steady-state gamma-ray flux from the nebula (blue
solid symbols), the pulsed emission from the vicinity of the pulsar (red open symbols), and the
brightest flare observed from the nebula so far (black solid symbols). Data from Fermi (squares),
MAGIC (triangles), VERITAS (circles) and HESS (stars) are shown. Adapted from [88, 89]

light yield. The technique is in principle applicable for photon energies above
∼5 GeV, where the Cherenkov yield becomes significant. Current instruments
HESS, MAGIC and VERITAS are sensitive from ∼20–50 GeV to ∼50 TeV, have
∼4◦ field-of-view and collection areas at TeV energies of ∼105 m2. The direc-
tional precision achievable from the ground is limited by shower fluctuations
to ≈0.01◦/(E/1 TeV)−0.6 [91], with about 0.1◦ (and ≈15% energy resolution)
achieved for current instruments [8]. Compared to Cherenkov telescopes, ground-
level detection of shower particles allows large field-of-view and duty cycle, at the
expense of higher energy threshold and reduced sensitivity and energy resolution
[9]. The HAWC instrument, combining a high-altitude location at 4200 m asl.
with the calorimetric detection of shower particle energy flow using large water
Cherenkov detectors, instrumenting 60% of its 22,000 m2 array area, has for the
first achieved gamma-ray detection performance competitive with current IACTs
[92].

At this time, over 3000 sources of GeV gamma rays have been detected using the
space-based instruments Fermi [93] and AGILE, and well over 200 sources of TeV
gamma rays [94] are seen with ground-based instruments, showing the abundance
and indeed ubiquity of cosmic particle accelerators. Around one half of the TeV
sources are of extragalactic nature, half or slightly more are associated with our
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Fig. 13.13 Reconstructed arrival directions of observed IceCube neutrino events with estimated
muon energies above 200 TeV, in equatorial coordinates. The marker color indicates the energy.
The solid gray line indicates the galactic plane and the dashed black line the supergalactic plane.
Reproduced from [96]

Galaxy. Of the Galactic TeV gamma ray sources, a handful are SNR where shells
are resolved, a similar number are clearly associated with SNR but not resolved,
about two dozen are associated with pulsars and their pulsar wind nebulae, and for
the remaining 15–20 sources the identification is unclear, either because of a lack
of counterparts or because multiple potential counterparts exist. Despite the much
larger number of GeV sources, the number of well-identified Galactic objects is
similar, with pulsars, identified by their pulsed emission, as the dominant class of
Galactic GeV emitters.

For hadronic sources similar fluxes are generated in gamma-rays and neutrinos
(see e.g. [83]). Neutrino telescopes primarily sensitive above ∼1 TeV now exist,
with the best sensitivity reached by the IceCube detector beneath the South Pole.
IceCube has for the first time detected astrophysical neutrinos [95, 99], emerging at
energies beyond 100 TeV, from the strong background of atmospheric neutrinos. The
neutrino flux appears to be of diffuse nature (see Fig. 13.13), and no consensus exists
regarding its exact origin. No localized very-high-energy cosmic neutrino source
has yet been detected [97]; a detection would provide completely unambiguous
identification of hadronic accelerators and allow high-density environments, from
which TeV photons may not emerge, to be probed. The KM3Net collaboration [98]
is building a larger detector in the Mediterranean sea with greater sensitivity and
the potential for detection of neutrino sources in the inner parts of the Galaxy, and
IceCube is studying options for a tenfold increase of detection volume [96].
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13.4.1 Diffuse Gamma Ray Emission: Tracing Cosmic Rays
in the Galaxy

The Galactic cosmic rays interact with the material, radiation fields and magnetic
fields in and around the Galaxy to produce broad-band diffuse emission. This diffuse
emission peaks in the gamma-ray band due to strong contributions from π0 decay,
inverse Compton scattering and bremsstrahlung. Diffuse emission dominates the
GeV sky (see Fig. 13.14) and provides a means to test the distribution and energy
spectrum of cosmic rays in the Galaxy. Probing cosmic rays in this way requires
an understanding of the distribution of gas and radiation fields in the Galaxy;
historically the opposite has often been the case, with the gas distribution in the
Milky Way being estimated from gamma-ray observations. The main components
of the Galactic diffuse emission are, however, clear: π0 decay and bremsstrahlung
emission from interactions with molecular material with a scale-height in the disc
of ∼50 parsecs, and with a more diffuse atomic component, plus a very extensive
halo generated by inverse Compton scattering on Galactic radiation fields.

The diffuse GeV γ -ray emission suggests that the ISM is permeated with cosmic
ray electrons, protons and nuclei, occupying a much greater volume than the
Galactic disc (consistent with the picture presented in Sect. 13.2.2). In the outer parts
of the Galaxy, where it is easiest to measure, this “sea” of cosmic rays has spectral
properties similar to those measured at the Earth. The emissivity (gamma-ray flux
per hydrogen atom, proportional to the cosmic-ray density) is seen to be roughly
constant from the location of the sun up to ∼14 kpc from the Galactic Centre [101].
This relative uniformity suggests that the radial distribution of acceleration sites in
the Galaxy is flatter than that of identified SNRs or pulsars.

Fig. 13.14 The gamma-ray sky above 1 GeV energies as measured using the Fermi-LAT, plotted
in Galactic coordinates [100]
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Diffuse Galactic gamma-ray emission has also been detected at TeV energies:
from the outer parts of the Galaxy, with the wide field-of-view shower-particle
detector Milagro [102] and in the Galactic Centre region with HESS [103]. The level
of emission seen is well above the extrapolation of the cosmic ray “sea” emission at
lower energies and suggests the existence of recently injected cosmic rays and/or
unresolved cosmic ray sources. The diffuse emission seen with HESS from the
∼100 pc radius Central Molecular Zone is correlated with the distribution of target
material, illuminated by cosmic rays diffusing away from the Galactic Centre and
hence suggesting a π0-decay origin of the emission, with the central supermassive
(3 × 106M$) black hole Sgr A0 as likely candidate for the origin of these cosmic
rays. The local density of TeV cosmic rays at the centre of the Galaxy is enhanced
by an order of magnitude compared to local cosmic rays.

Diffuse emission is seen with Fermi from beyond the Milky way, in satellite
galaxies such as the Large and Small Magellanic Clouds and Local Group galaxies
such as Andromeda. The gamma-ray fluxes seen from these objects support the
idea that the energy input into cosmic ray acceleration is proportional to the star
formation rate, with this trend continuing to more distant starburst galaxies, which
are undergoing phases of enhanced star-formation [104–106].

A completely unexpected discovery were the Fermi bubbles—kpc-size emission
regions of GeV gamma rays above and below the Galactic Centre, with relatively
sharp boundaries, indicating confined populations of high-energy particles well
beyond the Galactic disc and near halo [107–109]. Similar-shaped radio features
hint at the presence of (primary or secondary) electrons. The origin of the Fermi
bubbles is under discussion; possibilities discussed include (a) a Gyr-old stellar wind
driven by star formation in the Galactic Centre region, similar to the outflows seen
in starburst galaxies such as M82 or NGC 253, carrying cosmic rays along which
then interact in the thin medium above and below the disc, (b) earlier jet activity of
the supermassive hole at the Galactic Centre, or (c) in-situ acceleration of electrons
by plasma-wave turbulence [108, 110, 111].

13.4.2 Supernova Remnants Viewed in Gamma Rays

As described in Sect. 13.3.1, the idea that supernova remnants (SNR) accelerate
the majority of the Galactic cosmic rays has been with us for half a century,
until relatively recently, however, the level of experimental support for this idea
was relatively modest. Radio emission from the shells of SNRs was attributed to
GeV electrons, but evidence for the acceleration of very-high-energy particles, in
particular protons and nuclei, was essentially absent. Observations in the X-ray
band from the 1990s onwards have established the presence of synchrotron emission
from >100 TeV electrons in these objects. These observations also indicate the
presence of enhanced magnetic fields [70], and for some objects “missing energy”
is evident when comparing expected shock heating of the gas to measured thermal
X-ray emission [70, 112]. A likely form for this missing energy is a population of
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cosmic-ray protons and nuclei, which may also be responsible for the amplification
of magnetic fields in the SNR shell, via cosmic ray driven instabilities—the positive
feedback process that leads to an increase in the efficiency and maximum energy of
cosmic ray acceleration, provided that conversion of shock kinetic energy to cosmic
rays occurs with a significant efficiency [113].

Detection of very-high-energy gamma rays from SNR was proposed in [114]
as a test of cosmic-ray origin; the gamma-ray flux from interacting protons was
predicted to be F(>E) cm−2 s−1 ≈ 9 × 10−11θE−1.1

TeV ESNR,51d
−2
kpcncm−3 , where θ is

the efficiency of energy conversion, ESNR the kinetic energy in the explosion in
units of 1051 ergs, d the distance in kpc, and n the ambient density in hydrogen
atoms per cm3. With θ assumed as 0.1 or larger and ESNR and n typically of order
unity, supernova remnants within a few kpc were predicted to be bright enough for
detection with air-Cherenkov instruments.

The subsequent discovery of resolved TeV emission from the shells of SNRs
with H.E.S.S.—RX J1713.7−3946, RX J0852.0−4622, RCW 86 and SN 1006—
(e.g. [8]) can be seen as the direct and definitive proof that very-high-energy
particles are accelerated in the shells of SNR.

Figure 13.15 shows keV X-ray and TeV gamma-ray images of the nearby Galac-
tic SNR RX J1713.7−3946 [117], the best-studied gamma-ray remnant. However,
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Fig. 13.15 The radio to gamma-ray spectral energy distributions E2dN/dE of three archetypal
Galactic supernova remnants of increasing age: Tycho’s SNR [115, 116], RX J1713.7−3946 [117],
W 51 [118, 119] and W 44 [120]
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Fig. 13.16 Spectrum of
primary particles required to
reproduce the wide-band
gamma ray and X-ray spectra
of RX J1713.7−3946,
assuming either dominant
emission by a population of
accelerated protons, or of
electrons. From [117]
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there is still significant debate regarding the nature of the parent particle populations.
The close resemblance of the X-ray and gamma-ray images, taken a factor 109 apart
in energy, has been taken as implying a common parent population, i.e. electrons
with spectra extending to ∼100 TeV, with the observed TeV emission arising from
Inverse Compton scattering rather than from proton interactions. This picture is
supported by the spectral shape of the gamma-ray emission, see Fig. 13.15; in the
GeV energy range, the spectral index of gamma rays is Γ ≈ 1.5, as expected
from an electron population with the canonicalE−2 energy spectrum resulting from
shock acceleration, whereas proton interactions should result in a gamma-ray index
Γ ≈ 2. These data do not exclude efficient proton acceleration in this SNR; in the
low-density environment, protons may simply not find enough targets to create a
gamma-ray flux which is competitive with the flux produced by an energetically sub-
dominant, but much more efficiently-radiating population of accelerated electrons.
This is illustrated in Fig. 13.16, which shows the spectrum of primary particles that
reproduce the measured wide-band gamma ray spectrum: either about 6× 1049 ergs
are required in protons above 1 TeV (assuming a target density of 1/cm3), or only
about 1047 ergs in electrons.

Other gamma-ray detected SNRs have dramatically different spectra; this may
be due to a combination of the environment and evolutionary stage of the system.
TeV emission is for example seen also from extremely young Galactic SNRs
such as Tycho’s SNR and Cassiopeia A, although the angular resolution of TeV
instruments is insufficient to resolve their shells. These objects are firmly associated
with historically observed supernova and are bright X-ray and radio sources.
Figure 13.15 shows the spectral energy distribution of Tycho’s SNR [116], which
exhibits a spectral softening at a few hundred GeV. The maximum energy to
which a particle can be accelerated inside an SNR shell is very likely time-
dependent, and determined by the shock velocity and magnetic field strength. Very
young SNRs with fast shocks and strong magnetic fields may accelerate extremely
high energy particles (up to PeV) which can escape ahead of the shock at later
times [71], leading to a decrease in the maximum or break energy with time. In
addition, the presence or absence of dense target material (in the form of molecular
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gas) in the neighbourhood of the SNR will affect the balance between inverse
Compton emission and Bremsstrahlung and π0-decay emission. The nature of the
environment depends strongly on the nature of the explosion. Type Ia supernova
occur in evolved systems, with the explosion occurring far from the birth place of
the star and typically far from molecular gas clouds. The majority of core-collapse
supernova explosions occur inside massive stellar clusters, born from molecular
clouds, but where powerful stellar winds have already redistributed the molecular
material to produce a highly non-uniform density environment.

Emission correlated with the distribution of target material, rather than following
the emission seen in radio or X-rays, would be a clear sign for a hadronic origin of
gamma rays, and is seen for several Galactic SNRs (see e.g. [121]), all of which
are significantly older than the ∼1000 year age of RX J1713.7−3946. W 51 is
an example of this class of object: as for RX J1713.7−3946 it is thought to be
the remnant of the core-collapse of a very massive (>8M$) star but its age is
estimated to about 104 y and it is clearly interacting with dense molecular material.
The spectrum of W 51 is rather steep at TeV energies (Fig. 13.15), with the peak
energy output in the GeV domain [118], in marked contrast to RX J1713.7−3946.
The centroid of the GeV and TeV emission is also consistent with the point of
interaction of the SNR with gas clouds rather than the centre of the remnant. Both
these facts point to a hadronic origin of the gamma-ray emission, with 5 × 1050

ergs of cosmic rays present in the SNR [118], consistent with the picture that a
significant fraction of the energy of a typical SNR goes into the acceleration of
cosmic ray protons and nuclei. The steep spectrum of the emission suggests that
particles with TeV energies may already have escaped the SNR. Hadronic origin
is also demonstrated for remnants such as W 44 and IC 443, where spectra show a
clear pion-decay feature—a break in spectral index at about the pion mass [120],
which is not expected in spectra from the inverse Compton process.

There is now compelling evidence that SNRs are effective accelerators of both
electrons and nuclei, but due to uncertainties on the population and evolution of
particle-accelerating SNRs one cannot yet confidently conclude that they are the
dominant sources of the Galactic cosmic rays.

13.4.3 Pulsars and Pulsar Wind Nebulae

The newly-formed neutron stars left behind in some types of supernova explosion
are generally rapidly rotating and highly magnetised. The rotational energy of such
pulsars is converted into pulsed emission (primarily and gamma-ray energies) and
into an ultra-relativistic outflow of electron-positron pairs, see Sect. 13.3.2. The
termination shock where this wind is halted by external pressure is thought be a site
of acceleration up to very high energies. After the shock the direction of particle
motions become randomised and synchrotron and Inverse Compton emission is
produced in a pulsar wind nebula (PWN). There is as of yet no clear physical picture
of how particle acceleration operates in these systems. None the less, there is a huge
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body of evidence that acceleration to PeV energies occurs in these systems. The
Crab Nebula, the most prominent example of a PWN, is a unique object which is
bright and well-studied in every waveband of the electromagnetic spectrum, with
synchrotron emission dominating from the radio up to 1 GeV and inverse Compton
emission seen above, up to almost 100 TeV (see Fig. 13.12). The Crab pulsar was
born in a historically observed supernova explosion in 1054 and has the most
extreme rate of conversion of rotational energy (Ė ≈ 5×1038 erg/s) of any Galactic
pulsar. In 1989 it became the first source to be detected at TeV energies [122].
Until very recently the gamma-ray emission from the Nebula was thought to be
steady in time, but recent dramatic flaring activity has been seen at GeV energies,
apparently corresponding to a rapid increase in the number of synchrotron-emitting
>PeV electrons (Fig. 13.12) [89, 123, 124]. It seems very difficult to explain these
flares in terms of diffusive shock acceleration, as this process seems to be too slow to
offset catastrophic synchrotron energy losses. A single shot acceleration mechanism
such as magnetic reconnection at the termination shock is an attractive option.

The gamma-ray emission from the Crab Nebula appears almost point-like with
the ∼0.1◦ resolution of current instruments, but this situation is atypical. In the
last decade, about two dozen TeV gamma-ray sources were discovered and firmly
or tentatively identified as PWN, including objects such as Vela X, MSH 15–52,
G 21.5−0.9, G 0.9+0.1, N 175B, and the nebula surrounding PSR B1706–44 (for
summaries, see e.g. [8, 125–127]). Most of these PWN are extended TeV gamma-
ray sources, with size of a fraction of a degree, often accompanied by a significantly
smaller-scale X-ray nebula surrounding the pulsar. While X-ray luminosities tend to
correlate quite well with the instantaneous spin-down energy loss Ė of the pulsar,
no clear correlation is observed between the gamma-ray luminosity and Ė [126].
Gamma-ray luminosities range from a fraction of a percent of the pulsar spin-
down energy loss Ė to tens of percent, indicating a relatively efficient conversion
of (rotational) kinetic energy into high-energy particles. A likely explanation for
the difference in size between X-ray and gamma-ray PWN and for the different
Ė-dependence of luminosities is that in the typical μG fields derived for extended
PWN, keV X-ray emitting electrons have energies of 100s of TeV and cooling times
of order 1000 years, whereas TeV gamma ray emitting electrons have energies in the
10 TeV range and cooling times beyond a few 10,000 years. For pulsars with ages
between a 1000 and a few 10,000 years (most of the gamma-ray PWN population),
only “recently” accelerated electrons with number ∼Ė therefore contribute to the
X-ray emission, whereas all electrons ever accelerated contribute to the gamma-ray
emission, reflecting essentially the initial rotational energy E0 of the pulsar (half of
which is lost during the initial few 100 years of spin-down history, see Sect. 13.3.2),
rather than Ė. The sizes of gamma-ray PWN tend to increase with the age of the
pulsar, saturating at sizes of a few tens of pc. The gamma-ray PWN are frequently
displaced from the pulsar, locating the pulsar (and the associated X-ray PWN) at
the edge of the gamma-ray PWN (e.g. Fig. 13.15). One explanation is that PWN
are often crushed and/or displaced by the supernova reverse shock [128], another
that—as discussed above—the gamma-ray PWN reflects relic electrons abundantly
created in the early history of the pulsar, whereas now the pulsar may have moved
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away from its birth place due to a kick from the explosion. However, in the few cases
where pulsar motion is known, it does not line-up well with the vector connecting
the pulsar and the centroid of the VHE PWN. In a few cases, such as for the source
HESS J1825−137 [129] shown in Fig. 13.15, gamma-ray PWN (as well as X-ray
PWN) show energy-dependent morphology, with the nebula shrinking towards the
pulsar with increasing gamma-ray energy, presumably due to radiative cooling of
electrons as the propagate away from the pulsar. GeV-TeV gamma-ray emission can
therefore be used to measure the time-integrated particle injection of the pulsar and
to understand the propagation of relativistic particles away from their sources.

PWN represent the bulk of Galactic TeV gamma-ray sources, by far outnum-
bering emission traced to SNR shock-accelerated protons. At first, this seems
surprising. However, contrary to supernova remnant shocks, where acceleration
of very-high-energy particles stalls after a few 103 to at most 104 years, a pulsar
can supply the nebula with energy for many 104 years. In addition, under typical
conditions, electrons and positrons are more efficient TeV gamma-ray emitters than
are SNR-accelerated protons—radiative energy loss timescales are smaller by one
to two orders of magnitude. Therefore, PWN dominate the Galactic population of
TeV gamma-ray sources even though their energy reservoir—the rotational energy
of the pulsar—is typically an order of magnitude smaller than the ≈ 1051 ergs
released in a supernova explosion. In fact, it seems likely that a sizeable fraction of
the currently unidentified TeV gamma-ray sources—where no counterpart is seen in
other wavebands—are PWN where the pulsar is not detected (due to beaming effects
or simply a lack of sensitive observations) and where radiation-cooled electrons no
longer have sufficient energy to produce keV X-ray synchrotron photons.

PWN also occur inside binary systems, where the huge radiation fields and
stellar wind/outflow of the companion star dramatically modify the PWN properties.
PSR B1259−63 is young and powerful pulsar in an eccentric 3.4 year orbit around a
≈10 solar mass companion. Variable and point-like TeV and GeV emission is seen
around the periastron passage of the neutron star when radiation densities are highest
but the time-profile of the emission and the spectral energy distribution are complex
and very poorly understood (e.g. [130]). Extended radio emission is seen on mil-
liarcsecond scales supporting the idea that this system is a PWN “compactified” by
the high pressure environment and rapid radiative losses. In other well-established
TeV binaries systems, LS 5039, LS I +61 303 and HESS J0632+057, the nature of
the compact object is not certain and the systems may be accretion-, rather than
rotation-powered.

PWN naturally accelerate positrons and electrons in equal number. An increase
in the proportion of cosmic ray electrons and positrons contributed by PWN (and/or
the presence of a small number of dominant local/recent accelerators) may explain
the increase in the fraction of positrons seen in the locally measured cosmic rays at
high energies, as discussed in Sect. 13.2.4. Given a suitable pulsar age T , energy-
dependent diffusion D(E) of electrons causes the detected spectrum to harden
compared to the source spectrum—high energy particles reach Earth faster—and
radiative energy losses during propagation over a time T cause the spectrum to cut
off at a certain energy. The two effects combine to produce an excess in an E3
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weighted spectrum, the peak position and peak level being adjustable via pulsar
age, distance, and energy output, and matching the detected excess contribution for
plausible parameters. For example, positrons released T ≈ 105 years ago exhibit
a cutoff at Ecut,TeV ≈ 3 × 105/Tyear ≈ 3 TeV and at TeV energies travel over a
distance d ≈ (2DT )1/2 ≈ 500 pc (for D ≈ 1028E0.5

GeV cm2/s, see Sect. 13.2.2).
Assuming that about 10% of the rotational kinetic energy of ≈ 1050 erg of a 10 ms
pulsar is released in electrons and positrons, the resulting average electron energy
density in the 500 pc volume is of order 10−3 eV/cm3, comparable to the density
of secondary electrons from nuclear interactions of cosmic rays. In an energy range
where such a source dominates the flux of electrons and positrons, the positron
fraction is 1/2. While many details of this scheme remain to be clarified, such an
explanation of the effect in terms of conventional astrophysics would need to be
ruled out first, before more exotic schemes such as Dark Matter annihilation are
invoked. Local PWN, for which the signature of electron escape and subsequent
propagation to the Earth may be apparent in the cosmic ray electron spectrum at
very high energies, include Vela-X [131] and Geminga. A recent measurement of
the cosmic-ray diffusion around from Geminga [62], however, revealed unusually
small diffusion coefficients, which make it difficult for those electrons to reach Earth
during the relevant time scale.

In addition to the unpulsed emission from nebulae, pulsed GeV emission from
many pulsars is observed, with cutoffs at a few GeV e.g. [88], as expected since
higher-energy gamma rays have difficulty escaping from the pulsar magnetosphere
with its huge magnetic fields. In this context the recent detection of pulsed
emission up to energies of a few 100 GeV, following a steep power law rather
than the expected super-exponential cutoff [132, 133] was very surprising. Cascade
processes may be responsible for transporting the pulsed signal away from the
pulsar, reducing the suppression at higher energies.

13.4.4 Other Galactic Systems as Sources of High-Energy
Radiation

Several additional classes of cosmic particle accelerators have recently been
identified in our galaxy. These objects are generally stellar binary systems of
various types, or related to the collective effects of clusters of stars. Stellar binaries
containing a normal star and a black-hole are known to (episodically) host accretion-
powered jets which can be relativistic. These systems are the Galactic analogs of
the active galactic nuclei described in Sect. 13.4.5, and have been dubbed “micro-
quasars”. Cygnus X-3 appears to be black hole with a massive stellar companion,
and periodic emission has been detected using Fermi. The emission is correlated
with the appearance of radio features and seems to be associated with the formation
of a jet in the system. The only TeV detection of emission from a well-established
black-hole binary is that of a single flare from Cygnus X-1 with the MAGIC
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telescope [134]. Whilst intriguing, further TeV detections will be required to
confirm Cygnus X-1 as a TeV source.

The well-studied stellar binary Eta Carina contains two very massive (M >

30M$) stars which both produce powerful (radiatively driven) winds. The collision
of these stellar winds results in strong shocks and a situation akin to a supernova
explosion, except in a much denser (in terms of both matter and radiation) and
higher magnetic field environment (e.g. [135]). Gamma-ray emission is seen from
this system up to ∼100 GeV [136], with two distinct components, and variability
observed in the higher energy component which emerges above 20 GeV [137].
Whilst many questions remain, it now seems clear that Eta Carinae is a cosmic
particle accelerator and a hadronic origin of one of the components seems plausible.

Evidence for acceleration associated with the collective effects of stellar winds
is provided by the detection of very extended emission from the massive stellar
cluster Westerlund 1 [138]. Degree scale emission is seen stretching well beyond
the stellar cluster, which is one of the most massive in the Galaxy. However, a
supernova remnant, unseen at other wavelengths due to the unusual environment,
is not excluded as the origin of the TeV emission. Systems such as Westerlund 1 can
be seen as the Galactic analogues of the starburst galaxies described in Sect. 13.4.1.

A single Nova (powered by a thermonuclear explosion on the surface of a
degenerate white dwarf star) has been detected in high energy gamma-rays [139].
In an ∼10 day flare from the white dwarf V407 Cyg in 2010 emission was seen up
to ∼5 GeV.

13.4.5 Particle Acceleration Driven by Supermassive Black
Holes

The accretion of material onto supermassive (M ∼ 104Msol − 1010Msol) black
holes leads to the formation of oppositely-directed and highly-collimated jets of
material. The mechanism for launching of these jets is still hotly debated, but
magnetic fields in the accretion disc around the black hole look to be playing a
crucial role [140, 141]. Radio emission associated with these jets has been know
about for a long time, and is most dramatic in the case of Radio Galaxies where
the jets are seen at a large angle to the observer and their true scale of (often) 100s
of kiloparsecs can be seen, often dwarfing the host galaxy. Particle acceleration
is clearly taking place in these objects, at several different locations, for example
inside the inner (relativistic) jets, at the termination shocks of powerful jets and
at the edges of the so-called radio “lobes” which result when jets are decelerated
and spread out. Inverse Compton X-ray emission has been detected from several
such systems, tracing the same population of electrons as seen in radio and allowing
magnetic field strength and total energy densities to be estimated. X-ray Synchrotron
emission, indicating the presence of very high energy electrons, is also seen in
several places within systems powered by an active galactic nucleus (AGN). Despite
the well established relativistic particle populations in these objects the nature of
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the acceleration mechanism is still not known. Diffusive shock acceleration does
not seem to be the whole story in these objects, with a more distributed acceleration
mechanism apparently needed to explain the X-ray synchrotron emission from the
inner jets of nearby AGN [142].

Active galaxies are prime candidates for the acceleration of UHECRs, as can
be seen from Fig. 13.8, with both the nucleus and the extended jets as possible
acceleration sites for 1020 eV particles. As discussed in Sect. 13.2.5 there are hints of
UHECR anisotropy correlated with the distribution of matter in the nearby universe
(within the GZK horizon) and in particular an excess in the direction of the very
nearby active galaxy Cen A (and also the direction of the more distant Centaurus
cluster of galaxies). Gamma-ray emission his been detected from Cen A on a wide
range of spatial scales. Figure 13.17 shows emission from the giant (10◦) lobes of
Cen A in radio synchrotron emission and (very likely) inverse Compton gamma-
ray emission in the Fermi band [143]. Non-thermal emission is also seen in Cen
A from the nucleus, inner jets and inner lobes. The synchrotron X-ray emission
seen from the termination shock of the inner lobe closely resembles the situation for
supernova remnants, but on a very much larger scale [144]. TeV emission is seen
from the inner parts of Cen A (see the right-hand panel of Fig. 13.17) with a position
consistent with the inner parts of the jet or the nucleus itself [145]. The giant lobes,
jets and nucleus are all candidate acceleration sites for UHECR [146–148].

Fig. 13.17 The nearby active galaxy Centaurus A on scales of many degrees (left) and fractions
of a degree (right). The left-hand plot is a multi-wavelength composite showing visible light
overlaid with radio data in orange and gamma-ray data from Fermi in purple. The right-hand plot
indicates the centroid of the TeV emission (cross) on a MWL composite of optical, X-ray (Chandra:
blue) and microwave (orange) data. (Credit—left hand—NASA/DOE/Fermi LAT Collaboration,
Capella Observatory, and Ilana Feain, Tim Cornwell, and Ron Ekers (CSIRO/ATNF), R. Morganti
(ASTRON), and N. Junkes (MPIfR); right hand—ESO/WFI (visible); MPIfR/ESO/APEX/A.Weiss
et al. (microwave); NASA/CXC/CfA/R.Kraft et al. (X-ray))
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The bulk of the ∼60 know extragalactic TeV gamma ray sources is of blazer
type, as is the bulk of the extragalactic GeV sources. In blazers, jets are oriented
close (within ∼10◦) to the line-of-sight to the observer, presenting a dramatically
different perspective compared to radio galaxies. Apparently super-luminal motions
observed in very-long-baseline-interferometer (VLBI) images of the central regions
of these objects indicate bulk relativistic motion. Particle acceleration is presumably
powered by this bulk motion, related to inhomogenities and shocks arising in the
flow. Blazers are characterised by rapidly variable emission and complete non-
thermal dominance of their spectral energy distributions, with the peak energy
output usually in the gamma-ray domain. Markarian 421 was the first extragalactic
object to be discovered in TeV gamma-rays [150] and is a dramatic example
of a high-energy-peaked blazar. The measured energy spectra of these objects
are significantly influenced by gamma-ray absorption by pair production with
infrared or optical extragalactic background light (EBL) (e.g. [151]); vice versa,
with assumptions regarding the intrinsic blazar spectra the absorption features can
be used to constrain the level of EBL (e.g. [152]), which traces the history of
star formation in the Universe and which, in certain spectral ranges, is difficult
to measure directly due to overwhelming foregrounds [153]. TeV Blazars exhibit
extreme variability, down to minute time scale [154]. This extreme variability places
tight constraints on the size r of the emission region, from causality arguments: r <
δctvar , where δ is a Doppler boost factor reflecting the bulk motion of the particle
acceleration region in the blazer jet. Blazars usually exhibit double-humped spectral
energy distributions (Fig. 13.18), most likely reflecting a synchrotron component at
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radio and X-ray energies, and an IC component at GeV/TeV energies, hinting at
electrons as the parent particles. Often, the synchrotron X-ray intensity is such that
X-rays form the dominant target for IC scattering. The parameters of the system—
the electron spectrum, size, boost factor and magnetic field—can be determined
from the location of the peaks in the radiation spectra, the exact spectral shape,
the variability timescale and the additional condition that the photon density in
the source region must be low enough to allow gamma rays to escape without
pair-producing. Combined with short variability timescales this approach usually
enforces large Doppler factors well beyond δ = 10; how such bulk motions are
achieved is not fully understood. While blazers obviously act as cosmic particle
accelerators, it is unclear if they accelerate significant amounts of protons in addition
to the electrons evident from their spectra, and most likely they have little impact on
the cosmic rays detected on Earth.

13.5 Outlook

Significant progress has been achieved in the study of cosmic particle accelerators,
in particular through the improved detection and imaging of high energy (GeV) and
very high energy (TeV) gamma rays emitted in interactions of accelerated charged
particles; also the first detection of very high energy cosmic neutrinos was reported.
Particle acceleration is a ubiquitous feature in the Universe, associated especially
with the evolution of massive stars and with black holes. Over 3000 multi-GeV
accelerators are detected, and over 200 multi-TeV accelerators, with maximum
energies well beyond 100 TeV. A variety of acceleration mechanisms seems to
be realised in nature, including acceleration in non-relativistic SNR shocks and
colliding-wind shocks, in relativistic pulsar wind shocks, in the unipolar inductors
of pulsars, and in the compact and extended jets of AGN. In many systems,
the acceleration process is highly efficient in converting bulk kinetic energy. The
observed rapid variability in systems such as AGN or in the Crab Nebula represent
a challenge to models and may require additional acceleration schemes. Despite
this significant progress, a quantitative confirmation that SNR represent the sources
of the bulk of nucleonic cosmic rays in our own galaxy and a first-principle
calculation of their yield and spectrum is still lacking; other open questions concern
the details of diffusive propagation of cosmic rays and of the resulting cosmic-ray
anisotropies, the origin of the high-energy cosmic-ray positrons, and the origin of
the highest-energy cosmic rays. A variety of new instruments aim to address these
issues, including next-generation air-Cherenkov instruments such as CTA [155],
ground-based cosmic-ray detectors like LHAASO [20], ultra-high-energy cosmic
ray detectors such as JEM-EUSO [156] and a larger version of the Pierre Auger
detector, or the very-high-energy neutrino detectors KM3Net [98] and the planned
IceCube Gen2 instrument [157].
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119. J. Aleksić, et al.: Astron. Astrophys. 541 (2012) 11.
120. M. Ackermann et al.: Science 339 (2013) 807.
121. Y. Uchiyama, et al.: Astrophys. J. Lett. 723 (2010) L122.
122. T.C. Weekes, et al.: Astrophys. J. 342 (1989) 379.
123. A.A. Abdo, et al.: Science 331 (2011) 739.
124. M. Tavani, et al.: Science 331 (2011) 736.
125. P.M. Gaensler, P.O. Slane: Annu. Rev. Astron. Astrophys. 44 (2006) 17.
126. F. Mattana, et al.: Astrophys. J. 694 (2009) 12.
127. O. Kargaltsev, G. Pavlov: arXiv:1002.0885 (2010).
128. J.M. Blondin, R.A. Chevalier, D.M. Frierson: Astrophys. J. 563 (2001) 806.
129. F.A. Aharonian, et al.: Astron. Astrophys. 460 (2006) 365.
130. S.W. Kong, et al.: Mon. Not. R. Astron. Soc. 416 (2011) 1067.
131. J.A. Hinton, et al.: Astrophys. J. Lett. 743 (2011) L7.
132. E. Aliu, et al.: Science 334 (2011) 69.
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