Skip to main content

Feasibility Study of Bagasse Ash as a Filling Material

  • Conference paper
  • First Online:
Advancements in Unsaturated Soil Mechanics (GeoMEast 2019)

Part of the book series: Sustainable Civil Infrastructures ((SUCI))

Abstract

India is the second most sugarcane producer in the world and generates 10 million tons of bagasse ash every year. Bagasse ash is generally spread as fertilizer in the field. It is the most frequent method of disposing of bagasse ash. However, it contains heavy metals which may lead to adverse effect on the yielding of the crop. Hence, some scholars recommend not using bagasse ash as fertilizer. Previous studies indicated that bagasse ash has been significantly used as a fine aggregate in concrete. As a fine aggregate bagasse ash also has the potential to be an alternative filling material. However, a comprehensive characterization of bagasse ash as an alternative filling material is significantly lacking. The present study aims at the characterization of bagasse ash as an alternative filling material instead of natural material. A series of direct shear test and permeability test were conducted for this purpose. The effect of water content and dry density on the shear strength parameter and permeability were studied. The test results show that angle of internal friction and apparent cohesion increase up to optimum moisture content and decreased after wards. The permeability of test specimen decreased with an increase in dry density. As a result, bagasse ash is comparable with conventional fill material.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Aigbodion, V.S., Hassan, S.B., Ause, T., Nyior, G.B.: Potential utilization of solid waste (Bagasse Ash). J. Miner. Mater. Charact. Eng. 9(1), 67–77 (2010)

    Google Scholar 

  • Almeida, F.C.R., Sales, A., Moretti, J.P., Mendes, P.C.D.: Sugarcane bagasse ash sand (SBAS): brazilian agroindustrial by-product for use in mortar. Constr. Build. Mater. 82, 31–38 (2015)

    Article  Google Scholar 

  • Amin, N.: Use of bagasse ash in cement and its impact on the strength and chloride resistivity. J. Mater. Civ. Eng. 23(5), 717–720 (2011)

    Article  Google Scholar 

  • Amin, N., Alam, S.: Activation of bagasse ash in cement using different techniques. Proc. Inst. Civ. Eng. Constr. Mater. 164(4), 199–204 (2011)

    Article  Google Scholar 

  • Arif, E., Clark, M.W., Lake, N.: Sugar cane bagasse ash from a high efficiency co-generation boiler: applications in cement and mortar production. Constr. Build. Mater. 128, 287–297 (2016)

    Article  Google Scholar 

  • ASTM: Standard test methods for one-dimensional consolidation properties of soils using incremental loading. ASTM D2435, 1–15 (2011)

    Google Scholar 

  • ASTM: Standard test methods for laboratory compaction characteristics of soil using modified effort (56,000ft-lbf/ft3 (2,700 kN-m/m3)). ASTM D1557, 1–14 (2012)

    Google Scholar 

  • ASTM: Standard test method for pH of soils. ASTM D4972, 1–4 (2013)

    Google Scholar 

  • ASTM: D854 - standard test methods for specific gravity of soil solids by water pycnometer. ASTM D854, 1–8 (2014)

    Google Scholar 

  • ASTM: Standard test method for measurement of hydraulic conductivity of porous material using a rigid-wall, compaction-mold permeameter. ASTM D5856, 1–9 (2015)

    Google Scholar 

  • ASTM: Standard test method for particle-size distribution (gradation) of fine-grained soils using the sedimentation (hydrometer) analysis. ASTM D7928, 1–25 (2017a)

    Google Scholar 

  • ASTM: Standard test methods for particle-size distribution (gradation) of soils using sieve analysis. ASTM D6913, 1–34 (2017b)

    Google Scholar 

  • ASTM: Standard test methods for liquid limit, plastic limit, and plasticity index of soils. ASTM D4318, 1–20 (2017c)

    Google Scholar 

  • Bahurudeen, A., Marckson, A.V., Kishore, A., Santhanam, M.: Development of sugarcane bagasse ash based Portland pozzolana cement and evaluation of compatibility with superplasticizers. Constr. Build. Mater. 68, 465–475 (2014)

    Article  Google Scholar 

  • Bahurudeen, A., Santhanam, M.: Influence of different processing methods on the pozzolanic performance of sugarcane bagasse ash. Cement Concr. Compos. 56, 32–45 (2015)

    Article  Google Scholar 

  • Bahurudeen, A., Kanraj, D., Gokul Dev, V., Santhanam, M.: Performance evaluation of sugarcane bagasse ash blended cement in concrete. Cement Concr. Compos. 59, 77–88 (2015)

    Article  Google Scholar 

  • Barasa, P.K., Jonah, K., Mulei, S.M.: Stabilization of expansive clay using lime and sugarcane bagasse ash. Int. J. Sci. Res. (IJSR) 4(4), 2112–2117 (2015)

    Google Scholar 

  • Berg, R., Christopher, B., Samtani, N.: Design and Construction of Mechanically Stabilized Earth Walls and Reinforced Soil Slopes–Volume I. Federal High Way Administration (FHWA), Washington, D.C. (2009)

    Google Scholar 

  • Bilir, T., Gencel, O., Topcu, I.B.: Properties of mortars with fly ash as fine aggregate. Constr. Build. Mater. 93, 782–789 (2015)

    Article  Google Scholar 

  • BS 8002: Code of Practice for Earth Retaining Structures. British Standards Institution, London (1994)

    Google Scholar 

  • Chusilp, N., Jaturapitakkul, C., Kiattikomol, K.: Utilization of bagasse ash as a pozzolanic material in concrete. Constr. Build. Mater. 23(11), 3352–3358 (2009a)

    Article  Google Scholar 

  • Chusilp, N., Jaturapitakkul, C., Kiattikomol, K.: Effects of LOI of ground bagasse ash on the compressive strength and sulfate resistance of mortars. Constr. Build. Mater. 23(12), 3523–3531 (2009b)

    Article  Google Scholar 

  • Cordeiro, G.C., Toledo Filho, R.D., Tavares, L.M., Fairbairn, E.de M.R.: Ultrafine grinding of sugar cane bagasse ash for application as pozzolanic admixture in concrete. Cem. Concr. Res. 39(2), 110–115 (2009)

    Article  Google Scholar 

  • Fairbairn, E.M.R., Americano, B.B., Cordeiro, G.C., Paula, T.P., Toledo Filho, R.D., Silvoso, M.M.: Cement replacement by sugar cane bagasse ash: CO2 emissions reduction and potential for carbon credits. J. Environ. Manag. 91(9), 1864–1871 (2010)

    Article  Google Scholar 

  • FrĂ­as, M., Villar, E., Savastano, H.: Brazilian sugar cane bagasse ashes from the cogeneration industry as active pozzolans for cement manufacture. Cement Concr. Compos. 33(4), 490–496 (2011)

    Article  Google Scholar 

  • Gandhi, K.S.: Expansive soil stabilization using bagasse ash. Int. Jo. Eng. Res. Technol. 1(5), 5–7 (2012)

    Google Scholar 

  • Ganesan, K., Rajagopal, K., Thangavel, K.: Evaluation of bagasse ash as supplementary cementitious material. Cement Concr. Compos. 29(6), 515–524 (2007)

    Article  Google Scholar 

  • IRC:SP: 58: Guidelines for Use of Fly Ash in Road Embankments. Indian Roads Congress, New Delhi (2001)

    Google Scholar 

  • IRC:SP: 102: Guidelines for Design and Construction of Reinforced Soil Walls. Indian Roads Congress, New Delhi (2014)

    Google Scholar 

  • IS: 2720 (Part 5): Determination of Liquid and Plastic Limit. Indian Standards Institute, New Delhi (1985)

    Google Scholar 

  • IS 2720 (Part XL): Determination of Free Swell Index of Soils. Bureau of Indian Standards, New Delhi (1977)

    Google Scholar 

  • IS 2720 (13): Direct Shear Test. Bureau of Indian Standards, New Delhi (1986)

    Google Scholar 

  • Kaniraj, S.R., Gayathri, V.: Permeability and consolidation characteristics of compacted fly ash. J. Energy Eng. 130(1), 18–43 (2004)

    Article  Google Scholar 

  • Kim, S.S., Chun, B.S. (1994): The study on a practical use of wasted coal fly ash for coastal reclamation. In: 13th International Conference on Soil Mechanics and Foundation Engineering, pp. 1607–1612. CRC Press, London (1994)

    Google Scholar 

  • Krishna, A., Latha, G.: Modeling the dynamic response of wrap-faced reinforced soil retaining walls. Int. J. Geomech. 12(August), 439–450 (2011)

    Google Scholar 

  • Kumar Yadav, A., Gaurav, K., Kishor, R., Suman, S.K.: Stabilization of alluvial soil for subgrade using rice husk ash, sugarcane bagasse ash and cow dung ash for rural roads. Int. J. Pavement Res. Technol. 10(3), 254–261 (2017)

    Article  Google Scholar 

  • Lee, L.H., et al. (1965): The application of bagasse furnace ash to sugar cane fields, Rept. Taiwan Sugar Expt. Sta. (Taiwan), pp. 38, 53–79 (1965)

    Google Scholar 

  • Lima, S.A., Sales, A., Santos, T.J. (2009): Caracterização fĂ­sico-quĂ­mica da cinza do bagaço da cana-de-açúcar visando o seu uso em argamassas e concretos como substituto do agregado miĂşdo (Physicochemical characterization of the sugarcane bagasse ash for using in mortars and concretes as a natural aggregate replacement). 51°. Congresso Brasileiro do Concreto (Brazilian Congress Concrete). Proceedings. IBRACON, SĂŁo Paulo (2009)

    Google Scholar 

  • Modani, P.O., Vyawahare, M.R.: Utilization of bagasse ash as a partial replacement of fine aggregate in concrete. Procedia Eng. 51(NUiCONE 2012), 25–29 (2013)

    Article  Google Scholar 

  • Moretti, J.P., Sales, A., Almeida, F.C.R., Rezende, M.A.M., Gromboni, P.P.: Joint use of construction waste (CW) and sugarcane bagasse ash sand (SBAS) in concrete. Constr. Build. Mater. 113, 317–323 (2016)

    Article  Google Scholar 

  • Moses, G., Osinubi, K.J.: Influence of compactive efforts on cement- bagasse ash treatment of expansive black cotton soil. Int. J. Civ. Environ. Struct. Constr. Architect. Eng. 7(7), 1541–1548 (2013)

    Google Scholar 

  • Murari, A., Singh, I., Agarwal, N., Kumar, A.: Stabilization of Local Soil with Bagasse Ash (April), pp. 37–39 (2015)

    Google Scholar 

  • Nadaf, M.B., Mandal, J.N.: Steel grid reinforced fly ash slopes. In: Proceedings of Geo-Chicago 2016, ASCE, Chicago, pp. 678–687 (2016)

    Google Scholar 

  • Prusty, J.K., Patro, S.K., Basarkar, S.S.: Concrete using agro-waste as fine aggregate for sustainable built environment – a review. Int. J. Sustain. Built Enviro. Gulf Organ. Res. Dev. 5(2), 312–333 (2016)

    Article  Google Scholar 

  • Purohit, P., Michaelowa, A.: CDM potential of bagasse cogeneration in India. Energy Policy 35(10), 4779–4798 (2007)

    Article  Google Scholar 

  • Rajasekar, A., Arunachalam, K., Kottaisamy, M., Saraswathy, V.: Durability characteristics of Ultra High Strength Concrete with treated sugarcane bagasse ash. Constr. Buil. Mater. 171, 350–356 (2018)

    Article  Google Scholar 

  • Ram Rathan Lal, B., Mandal, J.N.: Feasibility study on fly ash as backfill material in cellular reinforced walls. Electron. J. Geotech. Eng. 17(J), 1637–1658 (2012)

    Google Scholar 

  • Ram Rathan Lal, B., Mandal, J.N.: Behavior of cellular-reinforced fly-ash walls under strip loading. J. Hazard. Toxic Radioact. Waste 18(1), 45–55 (2014)

    Article  Google Scholar 

  • Ram Rathan Lal, B., Padade, A.H., Mandal, J.N. (2015): Effect of single and double anchored systems on the behaviour of cellular reinforced fly ash walls. In: IFCEE 2015 © ASCE 2015, GSP 256, pp. 1473–1482 (2015)

    Google Scholar 

  • Rashad, A.: Cementitious materials and agricultural wastes as natural fine aggregate replacement in conventional mortar and concrete. J. Build. Eng. 5, 119–141 (2016)

    Article  Google Scholar 

  • Rukzon, S., Chindaprasirt, P.: Utilization of bagasse ash in high-strength concrete. Mater. Des. 34, 45–50 (2012)

    Article  Google Scholar 

  • Sales, A., Lima, S.A.: Use of Brazilian sugarcane bagasse ash in concrete as sand replacement. Waste Manag 30(6), 1114–1122 (2010)

    Article  Google Scholar 

  • Saxena, P., Misra, N.: Remediation of heavy metal contaminated tropical land. In: Sherameti, I., Varma, A. (eds.) Soil Heavy Metals, Soil Biology, vol. 19, pp. 431–477. Springer, Berlin (2010)

    Chapter  Google Scholar 

  • Sabat, A.K.: Utilization of bagasse ash and lime sludge for construction of flexible pavements in expansive soil areas. Electr. J. Geotech. Eng. 17 H, 1037–1046 (2012)

    Google Scholar 

  • Shafigh, P., Mahmud, H.Bin, Jumaat, M.Z., Zargar, M.: Agricultural wastes as aggregate in concrete mixtures - A review. Constr. Build. Mater. 53, 110–117 (2014)

    Article  Google Scholar 

  • Shafiq, N., Hussein, A.A.E., Nuruddin, M.F., Mattarneh, H.Al.: Effects of sugarcane bagasse ash on the properties of concrete. In: Proceedings of the Institution of Civil Engineers – Engineering Sustainability, pp. 1–10 (2016)

    Google Scholar 

  • Singh, N.B., Singh, V.D., Rai, S.: Hydration of bagasse ash-blended portland cement. Cem. Concr. Res. 30(9), 1485–1488 (2000)

    Article  Google Scholar 

  • Srinivasan, R., Sathiya, K.: Experimental study on bagasse ash in concrete. Int. J. Serv. Learn. Eng. 5(2), 60–66 (2010)

    Google Scholar 

  • Sua-Iam, G., Makul, N.: Use of increasing amounts of bagasse ash waste to produce self-compacting concrete by adding limestone powder waste. J. Cleaner Prod. 57, 308–319 (2013)

    Article  Google Scholar 

  • Villar-Cocina, E., Frias, M., Hernandez-Ruiz, J., Savastano Jr., H.: Pozzolanic behaviour of a bagasse ash from the boiler of a Cuban sugar factory. Adv. Cem. Res. 25(3), 136–142 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. K. Bhoi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bhoi, A.K., Mandal, J.N., Juneja, A. (2020). Feasibility Study of Bagasse Ash as a Filling Material. In: Hoyos, L., Shehata, H. (eds) Advancements in Unsaturated Soil Mechanics. GeoMEast 2019. Sustainable Civil Infrastructures. Springer, Cham. https://doi.org/10.1007/978-3-030-34206-7_7

Download citation

Publish with us

Policies and ethics