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Abstract. Driven by the importance of capturing non-local information
in video understanding, we propose Spatial-temporal Bottom-up Top-
down Attention Module (STBTA). Features are processed across in mul-
tiple scales and then combined to best capture the spatial relationships
associated with the region of interest and the surrounding environment
in a complicated scene. Attention maps are used for adaptive feature
refinement. STBTA can be plugged into any feedforward network archi-
tectures and is end-to-end trainable along with CNN. Extensive exper-
iments on UCF101, HMDB51, Kinetics-400 datasets demonstrate that
the proposed method can improve the performance for action recogni-
tion.

Keywords: Attention mechanism · Bottom-up top-down ·
Action recognition

1 Introduction

Non-local information is found to be of central importance for video under-
standing and image recognition [3,25]. By stacking a series of convolutional
layers, CNN is capable of capturing non-local information [25]. However, each
of the learned filters in a special layer operates in a local receptive field and
consequently, each corresponding unit of the transformation output is unable
to exploit global information outside of this local receptive field. This problem
becomes more severe in the lower layers of the network [8].

Stacked Hourglass Networks (SHN) [14] repeats bottom-up, top-down pro-
cessing with intermediate supervision to improve the performance of human pose
estimation. A single pipeline with skip layers is used to preserve spatial informa-
tion on each scale. Bottom-up top-down mechanism combines multi-scale infor-
mation and filters operate in a non-local receptive field, can be considered as
another way to capture non-local information. But videos/images own much
irrelevant and background information [3]. Nevertheless, SHN considers multi-
scale feature maps as the same without adaptive feature refinement.

Attention mechanism has been proven to be an efficient way to help the
network see important parts and diminishes background responses [29]. On cog-
nition theory, people focus sequentially on different parts of the scene to extract
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Fig. 1. Visualization of some samples on UCF101 using Grad-CAM [16]. The ground-
truth label is shown on the left of each input image. We compare the visualization
results of the STBTA network(STBTA + Inception v3) with baseline(Inception v3).
The Grad-CAM visualization highlight the class-specific discriminative regions, which
is calculated for the last convolutional outputs. These visualizations show STBTA
network focus on target objects more properly

relevant information [13]. Attention mechanism has been shown to achieve
promising results of image caption generation, machine translation, image recog-
nition [22,23,29].

Our goal is to increase representation power by using Bottom-up Top-down
mechanism and attention mechanism: capturing non-local information both in
space and temporal and focusing on important features. In this paper, we design
two efficient module: Spatial Attention Module (SAM) and Temporal Attention
Module (TAM), which is different from existing attention module. Based on these
modules, we propose Spatial Bottom-up Top-down Attention Module (STBTA)
as an efficient and a general component for capturing non-local spatial depen-
dencies and to obtain more discriminative attentional maps. As shown in Fig. 1,
an STBTA-integrated network focus on class-discriminative objects more prop-
erly compared with baseline. There are several advantages of using STBTA. (a)
STBTA can generate temporal-wise statistics and spatial grids statistics, which
increases the sensitivity to informative features and choose useful information.
(b) Our method can be considered as a general module which is feedforward
fashion and can be inserted into any CNNs directly. (c) STBTA can improve the
visual recognition performance efficiently.
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2 Related Work

Attention Mechanism. Human perception does not tend to process the whole
scene at once and focus selectively on parts of the visual space to acquire infor-
mation when and where it is needed [13]. Soft attention developed in recent
work can be trained end-to-end for convolutional neural network [23]. CBAM
[27] emphasizes meaningful features along two principal dimensions: channel and
spatial axes. In our model, we first propose a Spatial Attention Module I(SAM
I) based on SE Net [8], then we design a new grid-wise spatial attention module
II(SAM II) with depthwise convolution. Otherwise, driven by the intuition that
different frame play different role for action recognition, we design a fully new
temporal attention model.

Residual Network. Deep residual learning [7] is designed to learn residual of
identity mapping. This method has proved to be an efficient way to prevent
overfitting and increase the depth of the feedforward neuron network. Inception-
Resnet architectures [18] showed that the network can achieve competitive accu-
racy by embedding multi-scale processes in the deep residual network. In our
work, we use the residual connection to add different scale feature maps with
origin feature maps together.

Multi-scale Fusion. The work in [20] uses multiple resolution banks in parallel
and capture features at a variety of scales. Based on this method, bottom-up
(from high resolutions to low resolutions) and top-down (from low resolutions
to high resolutions) [14] is proposed to capture information at every scale. This
approach uses a single pipeline with skip layers has the capacity to capture full
body information and bring it to the next layer. Residual attention network [23]
uses bottom-up top-down mechanism as attention mask. Our network design
partly builds off of their work, exploring how to capture information across
scales and adapting their method of combing features across different resolutions.
Instead, we don’t use intermediate supervision process and introduce attention
mechanism which is different from previous work.

To the best of our knowledge, this is the first single-pipeline end-to-end feed-
forward attention module that encoding non-local information with bottom-up
top-down mechanism about action recognition.

3 Proposed Method

STBTA: A STBTA net based on Inception-v3 [19] and TSN [24] for action
recognition is illustrated in Fig. 2. All of these submodules in STBTA are resid-
ual modules and STBTA performs like a big residual block. For each STBTA,
max pooling layer with stride 2 is used to process features down to a very low
resolution. We use t to denote the number of downsample and upsample times
of this paper, which is 1 default.

There exists a residual submodule between any adjacent layer during down-
sampling and upsampling (We have not visualized the residual submodule in
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Fig. 2. A STBTA network based on Inception-v3 and TSN. The first STBTA with
t = 2 is add after inception 3a. The second STBTA with t = 1 is add after inception
4e . T is the number of temporal segments, 3 in our experiment. t is the number of
downsample and upsample times in STBTA

Fig. 2 for simplicity). The design of residual submodule is the same as SHN [14].
We downsample the input feature map several times in this module. After reach-
ing the lowest resolution, the module begins the sequences of bilinear upsample
and combination features across scales by a symmetrical top-down architecture.
Furthermore, we add spatial and channel attention module to emphasize the fea-
tures of key local regions and further improve the performance of the network.
The output size is the same as the input feature map.

Global content information and temporal information are both important
for action recognition. Most simple actions can be recognitioned by a few frames
or a still frame. But for complicated actions, recognition highly rely on tem-
poral information. Based on this, we design two branch which are added after
upsample. The first branch is spatial attention module, which focus on spatial
information and process on feature maps which combined all scale information.
Spatial attention module is added after upsample to control computing cost.
Only one channel attention module is added into the last part of STBTA for
simplifying and process on all channels which combined all scale information.

(a) Spatial Attention Module I (b) Spatial Attention Module II

Fig. 3. The design of SAM I and SAM II.

Spatial Attention: Inspired by the design of channel attention recently [8]. For
action recognition, we care about ‘where’ is an informative part, which is sym-
metric with the channel attention branch. The design of spatial attention module
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Fig. 4. Temporal attention module

has two ways. As shown in Fig. 3a. The first form is computed a 2D descriptor
that encodes channel information at each pixel across the channel, which named
Spatial Attention Module I (SAM-I). Formally, given an intermediate feature
map F ∈ R

C×H×W as input, using channel max pooling and channel avg pool-
ing, generate two 2D maps: F s

avg ∈ R
1×H×W and F s

max ∈ R
1×H×W . Then do

element-wise-addition between them and convolved by a standard convolution
layer to produce 2D spatial attention map, sigmoid activate function is added in
the last. Then we get spatial coefficients:

Ms(F ) = σ(fconv(F s
max)) (1)

where fconv represents a convolution operation and σ denotes the sigmoid func-
tion. Then Ms(F ) is multiplied with each channel and add with origin feature
map to get the output.

Fusion channel may weaken distinguish information, so we design spatial
attention module in a new way. In the second form, the spatial dimension is
W × H for every channel. We divide every channel into N × N grids, N is
chosen to be 3 in our experiments. Max pooling is performed with each grid,
and then a conv layer and one softmax activation function are used to produce
coefficients for these grids. We use depthwise separable convolution here to not
change channel dependence. Which named Spatial Attention Module II(SAM-
II). The details of SAM-II are in Fig. 3b.

Temporal Attention: Intuitively, every temporal information play different
role for action, some temporal information may be key frame which has high dis-
tinction. Inspired by this intuitively, Temporal attention module(TAM) mainly
consider relations along temporal dimensions. First, we reshape the input feature
map as B × C × T × H × W . As shown in Fig. 4(batch size B is not shown for
conveniently). Notice 2D CNNs without temporal sampling is a special situation,
when T = 1. Firstly use 3D max pooling to get max response, then we calcu-
late mean along channel dim, following with conv layer and sigmoid activation
function too. Then we use the output to re-weight the input feature map. The
benefit of this design is the computation overhead is negligible and strengthen
the key information along temporal dim.
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4 Experiments

4.1 Experiments Setup

We use the PyTorch framework for CNN implementation and all the networks
are trained on 4 NVIDIA 1080Ti GPUs. Here, we describe the datasets and
implementation details.

Datasets. Three well-known benchmarks, UCF101 [17], HMDB-51 [11] and
Kinetics-400 [10] are used in the evaluations of action recognition. UCF101 con-
sists of 13,320 manually labeled videos from 101 action categories. It has three
train/test splits, each split has around 9,500 videos for training and 3,700 video
for testing. HDMB51 is a realistic and challenging dataset. It consists of 6,766
manually labeled clips from 51 categories. Kinetics-400 contains around 246K
training videos and 20k validation videos from 400 categories.

Implement Details. For 2D networks, all of our network are based on TSN
[24]. To conduct fair comparison, we keep most of the settings same as TSN.
Random cropping and horizontal flipping are used for data augmentation. We
train network by using the SGD optimizer with a mini-batch size of 64. The
learning rate drops down by 10 every 30 epochs and we set the dropout radio
at 0.7 to prevent over-fitting. We use a weight decay of 0.0005 with a momen-
tum of 0.9 and set the initial learning to 0.001. The spatial size is 224 × 224
pixels. We train our module for 100 epochs. In the resting stage, 25 segments
are sampled from RGB and optical flow. For 3D networks, we add our module
on 3D Inception-v1 [1] and 3D ResNext-101 [6]. For 3D Inception-v1, we follow
the design in [1]. What’s different is in our practice we sample 10 clips randomly
from a full-length video and compute the softmax scores, the final result is aver-
aged of these scores. For 3D ResNext-101, we follow the implement details as [6]
to conduct fair comparison. We choose ResNext as the back bone because the
good performance. What’s different is that we use fine-tune strategies which be
describe in Sect. 4.3.

Table 1. Ablation study on our proposed module. We show RGB top-1 classification
accuracy on split 1 of UCF-101.

Method BNInception

baseline 84.30%

baseline + SAM-I 84.63%

baseline + SAM-II 85.02%

baseline + TAM 84.71%

basline + SAM-I + TAM 85.27%

baseline + SAM-II + TAM 85.66%
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4.2 The Efficiencies of STBTA

First we add our proposed module on BNInception [9], the ablation study result
is shown in Table 1. Both SAM and TAM can improve the recognize performance
and combine them lead to better result.

Table 2. We compare 1, 2 STBTA be added to the BNInception(the first with t = 2
before inception (3c) and the second with t = 1 before inception (4d)), Inception-
v3(the first with t = 3 before mixed 5b and the second with t = 2 before mixed 7a)
and Inception-Resnet-v2(the first with t = 3 before mixed 5b and the second with t = 2
before mixed 7a). We show RGB top-1 classification accuracy on split 1 of UCF-101

Method BNInception Inception-v3 Inception-Resnet v2

baseline 84.30% 84.88% 86.49%

+ 1 STBTA 85.27% 85.93% 87.95%

+ 2 STBTA 85.76% 86.59% 88.44%

In order to show the efficiencies of STBTA, we use BNInception [9], Inception-
v3 [19] and Inception-Resnet-v2 [18] as baseline and all pretrained on ImageNet.
Table 2 shows the results of different number of STBTA be added to the baseline.
A network with STBTA leads to a better result in general. It is noteworthy
that add one STBTA lead to 1% improvement generally. Considering calculation
overhead, we add 2 STBTA to baseline in this paper as default. Furthermore, to
demonstrate our module’s general applicability. We use our STBTA on Kinetics-
400, which is two orders of magnitude larger than HMDB51 and UCF101 and
is very time-consuming to train. Limited to the hardware resources, we only
one STBTA with t = 3 on Inception-v3(before mixed 5b). The result is shown
in Table 3. In Table 4, we list some recently comparable methods. Our result
is based on Inception-Resnet-v2 baseline(the first STBTA with t = 3 is added
before mixed 5b and the second STBTA with t = 2 is added before mixed 7a), we
call this STBTA net. Only use RGB frame as input and pretrained on ImageNet,
our method outperforms MiCT-Net by 1.4% on UCF101. In addition, use SAM-
II, we can obtain an extra gain about 0.4% but time-consuming. We use SAM-I
in STBTA as default in rest.

Table 3. We show video top-1 classification accuracy for RGB input on Kinetics-400.
Report on the val sets.

Method Inception V3

baseline 72.5%

+ 1 STBTA 73.7%
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Table 4. Performance comparison to the state-of-the-arts methods on UCF-101 over
three splits for RGB as input.

Method RGB

TSN [24] 86.01%

I3D [1] 84.5%

MiCT-Net [30] 87.3%

STBTA net (SAM-I) 88.70%

STBTA net (SAM-II) 89.10%

4.3 Fine-Tune Strategy

Due to the large number of 3D ConvNets’s parameters, small datasets can be
easily over-fitting. One would fine-tune existing networks that are trained on
Kinetics or Sports1M. There are three general guidelines for fine-tuning if new
dataset is similar to the original dataset. The first common practice is to truncate
the last layer. The second common practice is to use a smaller learning rate to
train all the network. The third method is to freeze the weights of the first few
layers and train others later.

A general solution is the first few layers capture universal features like curves
and edges. But ignore data imbalanced totally. In this paper, we propose a new
engineering strategy to fine-tune neural networks. Give different learning rates,
according to the depth of neural networks, achieve an impressive performance
advancing. Which be formulated with.

βl = sin
(

l

L
∗ π

2

)
∗ α (2)

L is the network’s depth, l is current layer’s depth. α is the learning rate now.
βl, l = 1, 2...L is the learning rate of the l layer.

Table 5 show the results of fine-tune strategy and a single STBTA added
to 3D Inception-v1. We inflated a 2D Inception-v1 follow [1] and pretrained on
Kinetics-400. Fine-tune strategy can lead to 1% improvement over the baseline.
And with additional 1 STBTA can further lead to 0.8% improvement.

Table 5. We show top-1 result based on 3D Inception-v1. Report on the split1 of
UCF101.

Method 3D Inception-v1

baseline 92.72%

+ fine-tune strategy 93.75%

+ 1 STBTA 94.55%

In order to show our method’s effectiveness, we visualize several examples for
the behavior of a SBTA be added to the baseline in Figs. 5 and 1. Our module
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Fig. 5. We compare the visualization results of SBTA-integrated network(Inception-
v3+SBTA) with baseline(Inception-v3). All the convnets are based on TSN. The grad-
CAM visualization is calculated for the convolutional outputs after Mixed7D. The
first row is input image, the second row is baseline’s results and the third row is our
SBTA-integrated network’s results.

Table 6. Comparisons with state-of-the-art results on UCF101 and HMDB51 over 3
splits.

Method UCF101 HMDB51

TSN [24] 94.0% 68.5%

ST-ResNet [4] 93.5% 66.4%

TLE [2] 95.6% 71.1%

Attention Cluster [12] 94.6% 69.2%

STP [26] 94.6% 68.9%

Two Stream MiCT-Net [30] 94.7% 70.5%

ActionVLAD [5] 92.7% 66.9%

CoViAR + optical flow [28] 94.9% 70.2%

ISPAN(30 frames) [3] 95.5% 70.7%

Two Stream STBTA Net 95.20% 71.1%

can learn to find meaningful relational clues in long distance and pas attention
to more specific and accurate action regions in every frame.

4.4 Comparison with 2D State-of-the-Arts

To prove the effectiveness, we further evaluate our STBTA net on all 3 splits of
UCF-101 and HMDB-51 with only use ImageNet pre-trained in Table 6. We list
recent state-of-the-art and comparable methods. Two stream STBTA net obtain
the improved performance 95.2%/71.1%, which is on pair with TLE. It can be
noticed that our proposed STBTA’s performance is better on HMDB51 (a hard
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dataset). Note that the two-stream architecture numbers on individual RGB and
Flow streams can be interpreted as a simple baseline, which applies a ConvNet
independently on 25 uniformly sampled frames then average the predictions.

4.5 Comparison with 3D State-of-the-Arts

In Table 7, we compare 3D state-of-the-arts method on UCF101 and HMDB51
with only RGB as input. ResNext-101 are pre-trained on Kinetics-400. Our
3D STBTA obtain an extra gain about 1.3% on UCF101 and about 1.2% on
HMDB51. The reason why STBTA’s result on HMDB51 isn’t competing with
UCF101 may be HMDB51’s samples is too small for 3D ConvNets.

Table 7. Comparisons with state-of-the-art results on UCF101 and HMDB51 over 3
splits.

Method UCF101 HMDB51

C3D [21] 82.3% −
RGB-I3D(64f) [1] 95.6% 74.8%

P3D Resnet + IDT [15] 93.7% −
ResNext-101(64f) [6] 94.5% 70.2%

ResNext-101(64f) [6] + STBTA 95.8% 71.4%

+ fine-tune strategy 96.0% 72.2%

RGB-I3D(64f) [1] + STBTA 96.1% 75.4%

+ fine-tune strategy 96.3% 75.8%

5 Conclusions

We propose a novel Spatial Bottom-up Top-down Attention Module (STBTA),
which can encoding non-local information and achieve adaptive feature refine-
ment via Bottom-up Top-down and attention mechanism. Experimental results
show that the proposed module can improve the recognition performance for the
task of video classification. Even a simple addition of one STBTA in a baseline
CNN can achieve significant improvement over the baseline.

For the future work, we will exploit different applications of our module such
as action detection and image segmentation to better explore Bottom-up Top-
down mechanism and attention mechanism for different tasks.
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