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Abstract. In recent years, multi-view learning methods have devel-
oped rapidly where graph-based approaches have achieved good perfor-
mance. Usually, these learning methods construct information graph for
each view or fuse different views into one graph. In this paper, a novel
multi-view learning model that learns one similarity matrix for all views
named Multi-view Similarity Learning (MSL) is proposed, where adap-
tive weights are learned for each view. The multi-view similarity learning
method is further extended to kernel space. Experiments of classifica-
tion, clustering and semi-supervised classification on different real-world
datasets show the effectiveness of the proposed method.
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1 Introduction

Usually, in the field of machine learning and pattern recognition, the dimension
of data is very high, so how to map high-dimensional data to low-dimensional
data and preserve the topology of data is an important issue we are studying
now. Then, some classical linear dimensionality reduction methods are proposed,
such as Principle Component Analysis (PCA) [5], Linear Discriminant Analysis
(LDA) [13], Multidimensional Scaling (MDS) [4]. But the linear dimension reduc-
tion method can not represent the manifold structure of data well, so in recent
years, many nonlinear dimensionality reduction methods are proposed, such as
isometric feature mapping (ISOMAP) [14], local linear embedding (LLE) [8],
and Laplacian Eigenmaps (LE) [1]. Laplacian Eigenmaps is a nonlinear dimen-
sionality reduction method for manifold data learning, it can well preserve the
nonlinear structure of data space.
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However, in many real world applications, the representation of actual data is
not a single form, but can have many forms of expression, such as person’s differ-
ent angles of faces, which can collect different information from different angles.
Usually, for each thing, we observe things from different angles that cannot be
observed from another angle, so in order to understand more comprehensive
information, we need to observe the problem from multiple angles. Nowadays,
we can get different feature from one dataset, we think that compared with single
feature, multi-view features can get better results. So for classification, clustering
and semi-supervised, we think compared with the single-view similarity learning
algorithm, multi-view similarity learning can have the higher accuracy.

Today, in many areas of science, such as pattern recognition, computer vision,
genetics, and data mining, we can more easily get data that contain heteroge-
neous features from samples from different perspectives. In visual data, images
can be represented by different descriptors. For example, gray features, gabor
features [10], local binary patterns (LBP) features [12], and so on. In image pro-
cessing, the gabor function is a linear filter for edge extraction. Local binary
patterns (LBP) were first proposed as an effective texture description operator,
and have been widely used due to their excellent rendering ability for image
local texture features. LBP features have significant advantages such as gray
invariance and rotation invariance. Because LBP features are simple to calcu-
late and have good effects, LBP features have been widely used in many fields
of computer vision.

One of the methods to solve the multi-view problem is to connect vectors
from different perspectives into a vector and then on the cascaded vector, directly
apply the single view clustering algorithm. However, this connection results in
overfitting on small samples and has no meaning to the multi-view problem. Our
solution to multi-view is to learn a similarity matrix by adding weights to each
view. The weights can be updated through each iteration. Our method can be
used for classification, clustering and semi-supervised classification.

The k-nearest neighbor (k-NN) [7] classification algorithm is one of the sim-
plest machine learning algorithms. And k is a very important parameter in the
k-NN algorithm. The selection of the k value will affect the classification result
of the sample to be classified. However, it is hard to choose a proper neighbor
number k beforehand, because if the value of k is too small, the model is easily
interfered by noisy data, and if k is too large, the prediction ability of the model
is greatly weakened. Generally we use cross-validation to select an appropriate
k value.

2 Learning Multi-view Similarity in Laplacian Eigenmaps

In this section, we first introduce a nonlinear dimensionality reduction method
LE. And then simply illustrate our multi-view similarity learning algorithms.
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2.1 Laplacian Eigenmaps

For the success of the graph-based approach, preserving local manifold structures
is an important factor. Laplacian Eigenmaps (LE) is a graph-based dimension-
ality reduction algorithm and it constructs the relationship between data uses a
local angle.

Given a set of data points {X1,X2, · · · ,Xn}, denote data matrix X ∈ Rn×p,
where n is the number of data points and p is the dimension of features, LE
pursues their low dimensional representation Y1, Y2, · · · , Yn ∈ Rq(q < p), which
constructs a weighted graph with n points as nodes, and a set of weighted edges
connecting neighboring points. If the two data instances i and j are very similar,
then i and j should be as close as possible after dimensionality reduction.

The steps are as follows:

1. Constructing the Adjacency Graph: Construct neighborhood graph G
through k-nearest neighbors algorithm, k is a preset value. Given n data
points {X1,X2, · · · ,Xn}. Nodes i and j are connected if Xi is among k nearest
neighbors of Xj or Xj is among k nearest neighbors of Xi.

2. Choosing the weights: Choose edge weights using heat kernel or simply
set edge weight to be 1 if connected and 0 otherwise, or we can get similarity
matrix S with heat kernel by:

Sij = exp

{
−d2ij

2r

}
(1)

where dij = ‖Xi − Xj‖, r > 0 is a suitable constant.
3. Eigenmaps: Calculate the eigenvectors and eigenvalues of the Laplacian

matrix L by:

Lv = λDv (2)

where D is diagonal matrix and its entries are row sums of S, Dii =
∑

j Sij ,
Laplacian matrix L = D − S. We omitting the eigenvector v0 and use the
next q eigenvectors for embedding in q-dimensional Euclidean space: Xi �→
Yi = (v1(i), v2(i), · · · , vq(i))�.

2.2 Learning New Multi-view Similarity

For multi-view data, the representation X1,X2, · · · ,Xm is the data matrix for
each view. Xv ∈ Rn×pv

(v = 1, 2, · · · ,m), where n is the number of data and pv is
the feature dimension of the v-th view. For graph-based methods, each view can
build a similar graph and maximize performance by itself. The similarity between
two data points in 1 does not reflect the local popular structure of manifold data,
so we add a locally linear reconstruction to sample point by its neighbor points.
Then for each view, we propose an effective method is to combine these views
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with the appropriate weights wv(v = 1, 2, · · · ,m), so our objective function can
be written as

min
S,w

m∑
v=1

w2
v‖Xv − XvS‖2F (3)

s.t. Sij = Sji ≥ 0, Sii = 0

If the distance between sample points are larger, the corresponding recon-
struction weight is smaller, and vice versa. We limited reconstruction weight Sij

is non-negative, and reconstruction weight is symmetry. Therefore, between sam-
ple points we add linear reconstruction constraints to learn the new similarity,
so the objective function can be written as

min
S,w

m∑
v=1

w2
v‖Xv − XvS‖2F + αv‖S − Sv

0‖2F (4)

s.t. Sij = Sji ≥ 0, Sii = 0

The L1 paradigm can produce relatively sparse solutions, and has the ability
to select features. It is useful when solving high-dimensional feature space. Then
the minimization of the final objective function of our learning new similarity
turns into

min
S,w

m∑
v=1

(w2
v‖Xv − XvS‖2F + αv‖S − Sv

0‖2F ) + β‖S‖1 (5)

s.t. Sij = Sji ≥ 0, Sii = 0

2.3 Learning Weight for Each View

Where each view shares the same similarity matrix, so we can get a more accurate
similarity matrix by adding appropriate weights to each view. We want the
distance between the data points in the same class to be as small as possible, so
the objective function of weight can be written as

min
m∑

v=1

w2
vdv (6)

s.t. Σm
v=1wv = 1.

The Lagrange function of Eq. (6) can be written as

min
m∑

v=1

w2
vdv − λ

(
m∑

v=1

wv − 1

)
. (7)

Taking the derivative of Eq. (7) and setting the derivative to zero, we get the
iterative formula for wv is

wv =
(dv)−1∑m
v=1(dv)−1

(8)

where dij = ‖Xi − Xj‖.
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3 Algorithms and Analyses

In this section, we respectively analyze the multi-view similarity learning algo-
rithm for mix-signed data and non-negative data.

Algorithm 1. Algorithm of Learning Multi-view Similarity for Mix-Signed Data
Input: X = {X1, X2, · · · , Xm}, Xv ∈ Rn×pv , v ∈ {1, 2, · · · , m}, positive tuning
parameter α and β.
Output: An n-by-n similarity matrix S among n training samples.
Initial The weight for each view, wv = 1

v
, for compute initial similarity matrix Sv

0 ,
with its elements being heat kernels Sv

0 ij = exp{−d2
v ij/2r}.

Set S
(0)
ij = 1, S

(0)
ii = 0(i, j = 1, 2, · · · , n), t = 0.

repeat
For each i, j = 1, 2, · · · , n, update S

(t+1)
ij as in (9).

Update weight by wv = (dv)
−1

∑m
v=1(dv)

−1 .

t = t + 1.
until t > MaxIterNum.

return S(t).

3.1 Algorithm for Mix-Signed Data

When the elements of the cell array X are mixed with symbols (some are pos-
itive and some are negative), we learn the similarity matrix S by the Eq. (9)
iterative update formula. Algorithm1 summarizes the overall similarity learn-
ing iterative update algorithm for mix-signed data. In this algorithm, we set
Q =

∑m
v=1(w

2
vX

v�Xv). And in addition to the input cell array X, there are two
tuning parameters α and β. In practice, we found that our algorithm is robust
to both parameters α and β, so in all experiments in this paper, we only set
α = β = 1.

Theorem 1. The objective function in Eq. (5) monotonically decreases (ie, does
not increase) under the update rule Eq. (9) of Algorithm1.

S
(t+1)
ij = S

(t)
ij

√
[S(t)Q− + Q−S(t)]ij + 2[Q+ + αvSv)]ij

[S(t)Q+ + Q+S(t) + 2
∑m

v=1 αvS(t)]ij + 2Q−
ij + β)

(9)

For proof of Theorem 1, refer to article [2].

3.2 Algorithm for Nonnegative Data

For nonnegative data, we propose a more efficient multi-view similarity learn-
ing algorithm to learn the similarity matrix S as in Eq. (10), and we also set
Q =

∑m
v=1(w

2
vX

v�Xv). We summarize the multi-view similarity algorithm for
nonnegative data in Algorithm 2. And we only set α = β = 1 in all the experi-
ments of this paper.
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Algorithm 2. Algorithm of Learning Multi-view Similarity for Nonegative Data
Input: X = {X1, X2, · · · , Xm}, Xv ∈ Rn×pv , v ∈ {1, 2, · · · , m}, positive tuning
parameter α and β.
Output: An n-by-n similarity matrix S among n training samples.
Initial The weight for each view, wv = 1

v
, for compute initial similarity matrix Sv

0 ,
with its elements being heat kernels Sv

0 ij = exp{−d2
v ij/2r}.

Set S
(0)
ij = 1, S

(0)
ii = 0(i, j = 1, 2, · · · , n), t = 0.

repeat
For each i, j = 1, 2, · · · , n, update S

(t+1)
ij as in (10).

Update weight by wv = (dv)
−1

∑m
v=1(dv)

−1 .

t = t + 1.
until t > MaxIterNum.

return S(t).

Theorem 2. For nonnegative data, the objective function in Eq. (5) decreases
monotonically (i.e. it is non-increasing) under the update rule Eq. (10) in Algo-
rithm2.

S
(t+1)
ij = S

(t)
ij

√
2[Q + αvSv)]ij

[S(t)Q + QS(t) + 2
∑m

v=1 αvS(t)]ij + β)
(10)

For proof of Theorem2, refer to article [2].

4 Learning Multi-view Similarity in Kernel Spaces

The role of the kernel function is to imply a mapping from low-dimensional space
to high-dimensional space F , then in F space, we learn new similarity for data.

For each view, we use a nonlinear map: φ : Rpv → Fv, Xv
i → φ(Xi)v,

the mapped data matrix is φ(X)v = [φ(X1)v, φ(X2)v, · · · , φ(Xn)v]. So the min-
imization objective function becomes

min
S,w

m∑
v=1

(w2
v‖φ(X)v − φ(X)vS‖2F + αv‖S − Sv

0‖2F ) + β‖S‖1 (11)

In this paper, four kernel functions are mainly used, include linear kernel,
gaussian kernel, cosine kernel and polynomial kernel. In implementation, the
mapping φ does not need to be computed explicitly. By choosing a proper kernel
function k, The φ mapping and F space can determined implicitly by the dot
product between two mapped data samples φ(Xi)v and φ(Xj)v in F space by

k(Xv
i ,Xv

j ) = (φ(Xi)v · φ(Xj)v) (12)

Note that most of kernel functions are nonnegative, such as gaussian kernel
and cosine kernel. So we replacing φ(X)v�φ(X)v with kernel matrix Kv in the
iterative updating (10) for non-negative data, then we can get
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S
(t+1)
ij = S

(t)
ij

2[
∑m

v=1((w
2
vK

v) + αvS
v
0 )]ij

[S(t)
∑m

v=1(w2
vK

v) +
∑m

v=1(w2
vK

v)Sv
0 + 2

∑m
v=1 αvSv

0 ]ij + β)
(13)

We replacing (10) in Algorithm 2 for nonnegative data with (13), we can obtain
the multi-view similarity learning algorithm in kernel space.

5 Experiments

In this section, we first introduce the data set we used. And then we will perform
the proposed method on many benchmark datasets and compare it with other
related graph-based multi-view learning methods. In the following experiments,
we will learn new multi-view similarity matrix with Algorithm2.

Fig. 1. Images of toy tiger mapped into the embedding space described by the two
coordinates of MSL. Different angles of tiger are shown next to circled points in different
parts of the space.

5.1 Brief Description of Data Sets

ORL1 data set include 400 images with 40 classes. We extract three visual fea-
tures from each image: gray feature with dimension 4, 096, gabor feature with
dimension 2, 560, and LBP feature with dimension 3, 776.

AR2 data set include 3, 120 images with 120 class. We extract three visual
features from each image: gray feature with dimension 2, 000, gabor feature with
dimension 3, 200, and LBP feature with dimension 4, 720.

1 http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html.
2 http://www.pudn.com/Download/item/id/2427991.html.

http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html
http://www.pudn.com/Download/item/id/2427991.html
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Fig. 2. Classification accuracy of MSL at four datasets.
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Fig. 3. Classification accuracy of MSL with different kernel functions at ORL dataset.
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Fig. 4. Classification accuracy of MSL with different kernel functions at COIL-100
dataset.

PIE3 data set is a face data set, we select its subset pose27 that include
1, 440 images with 20 class. We extract three visual features from each image:
gray feature with dimension 1, 024, gabor feature with dimension 640, and LBP
feature with dimension 944.

Yale4 data set include 166 images with 15 class. We extract three visual
features from each image: gray feature with dimension 4, 096, gabor feature with
dimension 2, 560, and LBP feature with dimension 3, 776.

COIL205 data include 1, 440 images with 20 class. We extract three visual
features from each image: gray feature with dimension 1, 024, gabor feature with
dimension 640, and local binary pattern (LBP) with dimension 944.

Handwritten numerals6 (HW) data set is comprised of 2, 000 data points
for 0 to 9 digit classes, 200 data points for each class. We extract three visual
features from each image: gray feature with dimension 256, gabor feature with
dimension 160, and LBP feature with dimension 236.

The COIL1007 data set contains 7, 200 colorized images corresponding to 100
different objects in 72 different viewpoints. We extracted 7 features from each

3 http://www.cs.cmu.edu/afs/cs/project/PIE/MultiPie/Multi-Pie/Home.html.
4 http://vision.ucsd.edu/content/yale-face-database.
5 http://www.cs.columbia.edu/CAVE/software/softlib/coil-20.php.
6 https://archive.ics.uci.edu/ml/datasets/Multiple+Features.
7 http://www.cs.columbia.edu/CAVE/software/softlib/coil-100.php.

http://www.cs.cmu.edu/afs/cs/project/PIE/MultiPie/Multi-Pie/Home.html
http://vision.ucsd.edu/content/yale-face-database
http://www.cs.columbia.edu/CAVE/software/softlib/coil-20.php
https://archive.ics.uci.edu/ml/datasets/Multiple+Features
http://www.cs.columbia.edu/CAVE/software/softlib/coil-100.php
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image, including the gray scale features features and other six channels in the
RGB and HSV channels, all of which are characterized by 16, 384 dimensions.

Caltech1018 data set is containing 101 categories of images. We select 1, 474
images with 7 classes, include Dolla-Bill, Face, Garfield, Motorbikes, Snoopy,
Stop-Sign and Windsor-Chair. Six features are extracted from all the images,
include 48 dimension gabor feature, 40 dimension wavelet moments, 254 dimen-
sion CENTRIST feature, 1, 984 dimension HOG feature, 512 dimension GIST
feature, and 928 dimension LBP feature.

5.2 Low Dimensional Embedding

In this part, we use one class of COIL-100 datasets, this class containing 72
images at different angles, we embedding high-dimensional images data into low-
dimensional space. We can see in Fig. 1, these 72 images are rotated at different
angles, so when embedding to a two-dimensional space, the closer to a circle. We
extracted the gray feature and RGB features of each channel, and found that
the performance after fusion is better than that of a single channel features.
Figure 1 showing the results of a single channel and channel fusion, and there is
a corresponding picture next to each point.

Figure 1 shows the 2-D embedding results of single-view and multi-view with
each row corresponding to one manifold benchmark. From the figure, we can
see our method MSL is more robust and can effectively find the proper low-
dimensional embedding.

5.3 Classification of MSL

In this section, in order to validate the performance of the proposed method, we
apply our method into multi-view classification. We used the indicator accuracy
(ACC) [6] to evaluate the performance of the algorithm on four benchmark
datasets. The four datasets we used are ORL, Yale, AR, and PIE. Each database
is randomly divided into a training set and a test set, with different numbers of
images being used for training.

The neighbor number k in computing heat kernel similarity of MSL are tuned
such that MSL reach its best classification performance. We set the parameters
α = β = 1. The classification accuracy is computed by the nearest neighbor
classifier.

To test the performance of the multi-view similarity learning in kernel spaces
computed in (13), we test the classification accuracy of single-view and multi-
view new similarity learning method with different kernel functions on ORL
database. In this paper, four kernel functions (linear, polynomial, cosine, and
Gaussian) are adopted in the experiments. We test MSL with tenfold cross-
validation [3] as different number of embedded dimension is chosen. Figure 2
shows the classification accuracy of the single-view feature on the four data sets
and the classification accuracy after the fusion of the three features. Figure 3

8 http://www.vision.caltech.edu/feifeili/Datasets.htm.

http://www.vision.caltech.edu/feifeili/Datasets.htm


Multi-view Similarity Learning of Manifold Data 641

Table 1. Clustering accuracy of MSL on two datasets

Database Yale Caltech101

SC(1) 0.3675 0.3460

SC(2) 0.3313 0.4480

SC(3) 0.3375 0.5290

SC(4) − 0.6070

SC(5) − 0.6720

SC(6) − 0.5910

MVSC 0.6050 0.7250

MLAN 0.6325 0.7800

MSL 0.6506 0.8433

shows the classification performance variations of MSL with different kernel func-
tions, and the classification performance variations of single-view and multi-view.
And from the Fig. 3, We can see that classification performance of multi-view
is better than classification performance of single-view on any kernel. From the
Fig. 4, we extracted the fours features include gray feature and features of the
RGB three channels of the picture and then calculate the classification accuracy
of each channel, and classification accuracy of fusion with multiple channels, we
can see the classification accuracy after fusion is higher than the classification
accuracy of a single channel.

5.4 Clustering of MSL

In this section, we compared our method with other two multi-view learn-
ing methods, one is Multi-view Spectral Clustering (MVSC) [9] and the other
is Multi-view Learning with Adaptive Neighbours (MLAN) [11], Table 1 show
the clustering result in terms of accuracy of different method in two different
datasets, SC is single-view feature. We can see our clustering results are better
than the other two methods.

5.5 Semi-supervised Classification of MSL

In this section, we compared our method with MLAN [11] method, and in terms
of semi-supervised classification, we choose the front 20% data as labeled sample,
Table 2 show the semi-supervised classification performance of different method
in three different datasets, we can see that our method is better than other
method.
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Table 2. Semi-supervised classification accuracy of MSL on three datasets

Database ORL COIL20 HW

SC(1) 0.5500 0.7207 0.9250

SC(2) 0.7750 0.8690 0.8040

SC(3) 0.7813 0.5474 0.7630

SC(4) − − 0.6930

SC(5) − − 0.6910

SC(6) − − 0.4730

MLAN 0.8313 0.9716 0.9760

MSL 0.8700 0.9920 0.9813

6 Conclusion and Remarks

In this paper, we introduce a novel multi-view similarity learning method named
MSL, and our method can preserves the manifold structure of the data. For
multi-view learning, our method can automatically learns weights for each view.
The experimental results on real world benchmark data sets demonstrate that
the classification accuracy of multi-view features is higher than that of single-
view feature. And in clustering and semi-supervised classification, the accuracy of
our method is higher than that of other multi-view methods. These experimental
results demonstrate the effectiveness of our method.
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12. Ojala, T., Pietikäinen, M., Mäenpää, T.: Multiresolution gray-scale and rotation
invariant texture classification with local binary patterns. IEEE Trans. Pattern
Anal. Mach. Intell. 24(7), 971–987 (2002)

13. Wang, X., Tang, X.: Dual-space linear discriminant analysis for face recognition.
In: 2004 IEEE Computer Society Conference on Computer Vision and Pattern
Recognition, pp. 564–569 (2004)

14. Yang, M.-H.: Discriminant isometric mapping for face recognition. In: Crowley,
J.L., Piater, J.H., Vincze, M., Paletta, L. (eds.) ICVS 2003. LNCS, vol. 2626, pp.
470–480. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36592-3 45

https://doi.org/10.1007/3-540-36592-3_45

	Multi-view Similarity Learning of Manifold Data
	1 Introduction
	2 Learning Multi-view Similarity in Laplacian Eigenmaps
	2.1 Laplacian Eigenmaps
	2.2 Learning New Multi-view Similarity
	2.3 Learning Weight for Each View

	3 Algorithms and Analyses
	3.1 Algorithm for Mix-Signed Data
	3.2 Algorithm for Nonnegative Data

	4 Learning Multi-view Similarity in Kernel Spaces
	5 Experiments
	5.1 Brief Description of Data Sets
	5.2 Low Dimensional Embedding
	5.3 Classification of MSL
	5.4 Clustering of MSL
	5.5 Semi-supervised Classification of MSL

	6 Conclusion and Remarks
	References




