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Abstract. The recognition and content analysis of the components in petro-
graphic thin section image is a valuable study in geology. In this paper, we
propose a two-stage method to segmentation and recognition of petrographic thin
section image. In the first stage, we propose an image segmentation algorithm
that can adaptively generate superpixel numbers based on SLIC algorithm. The
algorithm is able to continually correct the number of superpixels in the iteration
and then cluster the pixels of the image into superpixels by both color and spatial
features. In the second stage, we designed a convolutional neural network and
trained it with mineral grain images, which is then used to classify the superpixels
obtained by first-stage. Finally, we count the categories and content of the
components in the image based on the segmentation and classification results.
We collected some images and invited geologists to label them for experimen-
tation. The experimental results demonstrate the following: (1) Our proposed
image segmentation algorithm is capable of dynamically generating the super-
pixels by the number of mineral grains in the image. (2) The CNN model we
designed can accurately identify the categories of superpixel regions and has a
small size. (3) The two-stage method is very effective in identifying the category
of major components in an image and accurately estimating the content.

Keywords: Petrographic thin section image - Superpixels - Image
segmentation - Image recognition - Component analysis

1 Introduction

The recognition and analysis of petrographic thin section plays an important role in the
development of oil and gas resources. The traditional method of recognizing petro-
graphic thin section is to cut and grind them into tens of micrometers of thin section,
and then the researchers analyzes the image under the microscope [1]. Traditional
methods require the knowledge of a researcher to complete, and the analysis of rock
composition is cumbersome, time-consuming, and inaccurate. With the rapid devel-
opment of digital image processing, image recognition technology has been widely
used in petrographic thin section analysis. Segmentation and recognition of mineral
grains in thin section images by image segmentation and recognition algorithms can
accurately measure the categories and contents of major components in rock samples,
thus better assisting petroleum development.
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Because rock samples are usually formed by the bonding of mineral grains, there is
a good idea for the analysis of the composition of petrographic thin section images.
Using the image segmentation algorithm to segment the grains in the image and then
identify each grain, the category and content of the main components in the thin section
can be counted. In principle, almost all existing image segmentation algorithms can be
used in the automatic segmentation of grain, such as region growing [2], ERS [3] and
TurboPixel [4]. However, these algorithms are designed for ordinary scene images and
may not be suitable for processing petrographic thin section image which contains large
numbers of mineral grains. The superpixel segmentation algorithm is an image region
over-segmentation algorithm. The image is divided into multiple irregular image blocks
according to certain feature similarities. The current effective algorithm are LSC [5],
SEEDS [6], SLIC [7] and so on. We believe that the sub-regions subdivided by the
superpixels are similar to the contours of the mineral grains, so the superpixels obtained
by the segmentation can be identified as a single grain. For example, Jiang et al. [8, 9]
used a superpixel algorithm to segment and merge sandstone thin section images to
obtain the contours of sandstone grains. However, the currently existing superpixel
algorithm is very inefficient, or it is necessary to set the number of superpixels desired
in advance. Therefore, we propose an algorithm that is fast and can dynamically adjust
the number of superpixels based on the number of grains in the image.

After the image is segmented, the segmented sub-regions need to be identified.
Since the crystal grains constituting the rock are generally colorless and transparent and
have similar refractive indices, adjacent grains exhibit similar colors under a plane
polarizing microscope, and it is sometimes difficult for the human eye to discern the
difference. Unlike plane polarized light images, grains produce different interference
colors under orthogonally polarized light [10]. For example, quartz and feldspar in
sandstones require experts to combine orthogonal polarized and plane polarized images
to distinguish them [11]. In recent years, convolutional neural networks have achieved
remarkable success in a lots of computer vision tasks, such as image recognition [12,
13], object detection [14] and semantic segmentation [15]. Therefore, we have designed
a CNN model that can combine the orthogonal polarized and plane polarized images to
identify the sub-regions obtained by the previous segmentation. After identifying the
category of each sub-regions, the area of each sub-regions of each category is counted,
and the categories and contents of the major components in the image can be
approximated.

In this paper, we have mainly completed the following work: (1) We propose a
two-stage method to identify the major components of petrographic thin section. In the
first stage, the image is segmented into over-segmented superpixel images. In the
second stage, the CNN model is trained to identify each superpixel region to obtain the
category of the mineral grain to which each superpixel region belongs. (2) We have
enhanced the SLIC algorithm and proposed an algorithm that can generate superpixel
adaptively based on the number of mineral grains in the image. For different images,
our algorithm only needs to set a fixed K value, and the algorithm can dynamically
adjust the number of superpixels to be segmented in multiple iterations. (3) We
designed a CNN model that effectively classifies mineral grains that are common in
petrographic thin section images. The CNN model can receive orthogonal polarized
and plane polarized images as inputs, and can adapt to any size. (4) We created a
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dataset that included thousands of petrographic thin section images. The details of the
dataset are described in Sect. 2.3.

2 Proposed Method

The compositional analysis of the petrographic thin section image is divided into two
stage. In the first stage, we proposed the SLIC method of adaptive superpixel number
(AS-SLIC). The AS-SLIC algorithm can adaptively generate multiple superpixels
based on the number and characteristics of mineral grains in the image. In the second
stage, the CNN is trained to identify the superpixels obtained by the previous stage. By
identifying the category of mineral grains in each superpixel region, the approximate
content of the major components in each thin section image can be calculated.

2.1 The SLIC of Adaptive Superpixel Number (AS-SLIC)

We first introduce the original SLIC algorithm. The original SLIC superpixels corre-
spond to clusters in the CIELAB color space and spatial space. First, the algorithm
needs to set two values m and K, m is a constant value, and K represents the number of
superpixels that are desired to be divided. Then, the image is divided into K grids, and
the center point of each grid is used as the initial cluster Cy = [lg, ax, by, xx, yk]T
A pixel P; color is represented in the CIELAB color space [l,a,b]T, as shown in
Eq. (1), the d. is color distance between P; and Cy. The [x, y]T represents the position of
the pixel. As shown in Eq. (2), the d; represents the spatial space distance between P;

and Cy. The D, computes the distance between P; and C; is measured in both color

and spatial space, which is defined as Eq. (3). In the Eq. (3), S = /N/K, where N is
the number of pixels of the input image. Since the initial superpixel approximates an
S x S region, the search for similar pixels is done in a region 2§ x 2§ around the cluster
center. In one iteration, each pixel is assigned to the nearest cluster center, then the new
cluster center is recalculated and the next iteration continues.

d. = \/(li — L)+ (@ — )’ + (b — b))’ (1)

dy = \/(xi —x) 4 i —w)? (2)

S CRE)

In the petrographic thin section image especially the sandstone thin section image,
the mineral grains of different origins are different in size, so the number of grains in
the image varies from tens to hundreds. The original SLIC algorithm needs to set the
number of superpixels divided in advance. When the number of mineral grains in the
image is large, setting a smaller K will cause a superpixel to contain multiple grains.
Conversely, if the number of grains in the image is small, setting a larger K will cause
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over-segmentation. Both of the above cases are not conducive to subsequent classifi-
cation. As shown in Fig. 2(a), we use the original SLIC algorithm and set K to 20. The
results on the left Fig. 2(a) are acceptable, but because the grain area in the right of
Fig. 2(a) is small, many superpixels contain multiple grain regions.

We proposed AS-SLIC algorithm takes into account the properties of mineral
grains in petrographic thin section image. Most of the mineral grain composition is
relatively single, so a single grain exhibits a uniform color in the image. Because of the
optical properties of the crystals that make up the mineral grains, the differently ori-
ented grain will show different colors under an orthogonal polarizing microscope.
When a plurality of grain regions are included in one superpixel obtained by the
segmentation, the superpixel will present a plurality of regions of different colors. So
we can use the color histogram of all the pixels in the superpixel to determine whether
the superpixel contains only a single grain. As shown in Fig. 1(a), this superpixel
contains two grain regions, so the gray histogram of the superpixel has two peaks as
shown in Fig. 1(b).

o 50 100 150 200 250

() (b)

Fig. 1. (a) Is a superpixel that is not completely split. (b) Is the gray histogram of the (a).

Our method still needs to set K at the beginning, and K represents the number of
cluster centers in the first iteration. Because the number of cluster centers will gradually
increase during the iteration, the initial set K value is relatively small. In the original
SLIC algorithm, once each pixel has been assigned to the appropriate cluster, then the
mean vector of all the pixels belonging to each cluster are recalculated to update the
cluster center. The difference between the algorithm we designed and the original SLIC
lies in the update strategy of the cluster center. First, for each cluster center, the gray
histogram H; of all the pixels belonging to the cluster is counted. If the resulting gray
histogram has only one peak, then it is likely that only one whole grain or a local region
of one grain is included in the cluster. In this case, the average vector V,i =
[l;, ai, bi, xi, y,-]T of all the pixels belonging to this cluster Cy is used as the new cluster
center C, as shown in the Eq. (4). If the gray histogram has two or more peaks, the
pixels belonging to this cluster C; are from multiple grain regions. Therefore, it is
necessary to split the cluster C; into multiple cluster. It is assumed that there are T
peaks in the gray histogram Hy, the corresponding gray value at the peak is represented
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by Peak;, and V,f represents a vector of pixels in the cluster C; whose gray value is
equal to Peak;. The previous cluster Cy is split into 7 new cluster according to peak.
The calculation method of the new cluster C,"C is as shown in the Eq. (5), where m
represents the number of pixels in the cluster center C; whose gray value is equal to
Peak;.

I
G=-3" Vin=|c 4)
- 1 m i
C, = Ezj':l V/,m= ’Pj‘,Pj € Cyand P; gray value is equal to Peak; (5)

In order to avoid a superpixel splitting too many sub-regions, in each iteration we
only select the two peaks containing the largest number of pixels in Hj to split. And in
the experiment we set a maximum value K,,,, when the number of cluster in the
iteration is greater than K, the splitting strategy is no longer executed. We use L,
norm shown in Egs. (6) and (7) to compute the residual error R between the new cluster
and previous cluster locations. The iteration is stopped when R is less than a certain
threshold. The entire algorithm is shown in Table 1.

Table 1. The main steps of AS-SLIC algorithm

Algorithm 1.AS-SLIC
Input:/, the petrographic thin section image.

K, the initial number of superpixels (The default value is 20).
Output: C, the initial segmentation results of I, C = {Cy}=; -

repeat
for each cluster center C; do
for each pixel P; ina 25 X 2§ region around C;, do
Compute the distance D;5; between Cj, and pixel P; .
Assign P; to the best matching cluster Cp, .
end for
end for
for each cluster center C;, do
Draw a gray histogram H, of all the pixels in Cj.
if The number of peaks in Hy, is greater than 1 then
Compute new cluster C} by Eq.(5). Delete the cluster Cj, .
The new clusters C}. based on C, is added to the clusters set C.
else
Compute new cluster centers Cy, .
Set C,=Cy, .
end if
end for
Computer residual error R.
until R < threshold
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1
R :ﬁsz:le (©)
Ry = Hcllc - CkHi, if Cy is not split. o
0 i - CkH;, if Cy is split.

2.2 Classification of Mineral Grains

Convolutional neural networks have been used for classification tasks for many years.
Therefore, we designed a CNN model to identify the superpixel region obtained by the
first stage segmentation. The orthogonal polarized image of the thin section focuses on
the color features of the rock, and the plane polarized image focuses on the texture
features of the rock. In order to make full use of the information in plane polarized and
orthogonal polarized images, and to adapt to the superpixels of various sizes as input,
we designed the CNN model to combine depthwise separable convolution [16] and
spatial pyramid pooling [17].

Our CNN model architecture is shown in Table 2. The input to the model is two
images, which are the orthogonal polarized image I, and the plane polarized image 1,
of the rock thin section. We expect the model to extract specific low-level semantic
features from the two images, respectively. In the first input layer, the input /, and I,
are group convolved with a3 x 3 x 3 x 32 convolutional filter. The layer in front of
the model uses a depth separable convolution, which is computationally intensive and
leaves no information to communicate between the two images entered. After
extracting the low-level semantic features from the two images, in order to combine the
features in the two images to obtain the high-level semantic features of the rock sample
as a whole, the 1 x 1 pointwise convolution is used for information exchange. All
layers are followed by a ReLU nolinearity and batchnorm. Down sampling is handled
with strided convolution in the depthwise convolutions.

Since the size of the superpixel obtained in the first stage is uncertain, and in order
to prevent loss of features due to image scaling, we hope that the model can accept
superpixel regions of any size or scale as input. Therefore, our model uses the strategy
of spatial pyramid pooling to produce a fixed-size representation. There are two fully
connected layers after the spatial pyramid pooling layer and feeds into a softmax layer
for classification. To prevent overfitting, the dropout strategy is used and the value is
set to 0.3. Finally, cross entropy loss is employed as the loss function to train the
network. Counting convolutions and fully connected layers, our model has 28 layers.

2.3 Image Dataset

To verify the effect of our method on petrographic thin section images, we collected the
images and invited geologists to mark them. First, we created the Petrographic Thin
Section Image Dataset (PTSID). The PTSID includes images of 801 rock samples in 7
categories, each sample with a plane polarized image and a orthogonal polarized image.
So there are 1602 images in the PTSID, and the resolution of each image is 1392 x
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Table 2. We designed the CNN Architecture. The “dw” represents a depthwise convolution,
and “group” represents a group convolution. When the input resolution of the first layer of the
model is 256 x 256, the convolution kernel and input size of each layer are as follows.

Type/Stride Filter shape Input size
Conv group/S =2 |3 x 3 x3 x 32 x 2 group | 256 x 256 x 6
Conv dw/S =1 3 x3x32dw 128 x 128 x 32
Conv/S =1 1 x1x32x64 128 x 128 x 32
Conv dw/S =2 3 x3 x 64 dw 128 x 128 x 64
Conv/S =1 1 x1x64x128 64 x 64 x 64
2x |Conv dw/S =13 x 3 x 128 dw 64 x 64 x 128
Conv/S =1 1 x1x128 x 128 64 x 64 x 128
Conv dw/S =1 3 x3x128 dw 64 x 64 x 128
Conv/S =1 1 x1x128 x 256 64 x 64 x 128
Conv dw/S =2 3 x 3 %256 dw 64 x 64 x 256
2x | Conv/S =1 1 x 1 x256 x 256 32 x 32 x 256
Conv dw/S =13 x 3 x 256 dw 32 x 32 x 256
Conv/S =1 1 x1x256x 512 32 x 32 x 256
Conv dw/S =2 3 x3x512dw 32 x 32 x 512
2% [Conv/S =1 1x1x512x512 16 x 16 x 512
Conv dw/S =13 x3 x512dw 16 x 16 x 512
Conv/S =1 1 x1x512x512 16 x 16 x 512
Conv dw/S =2 3x3x512dw 16 x 16 x 512
Conv/S =1 1 x1x512x512 8 x 8 x512
Spatial pyramid 2 x 2 pooling 8 x 8 x 512
pooling 1 x 1 pooling
FC1 2560 x 512 5x 512
FC2 512 x 21 1 x512
Softmax - 1x21

1040 pixels. Each image is detailed with the category of sample, the category and
content of the main components (the content is expressed as a decimal, and the sum of
the components is 1). There are 500 images in the PTSID that are pixel-level anno-
tations for typical mineral grains, with a total of 2126 mineral grains in 21 categories.
To train the CNN model we designed, we also produced the Mineral Grain Classifi-
cation Dataset (MGCD). The mineral grain region marked in the PTSID is first
extracted to generate a sub-image whose size is equal to the minimum circumscribed
rectangle of the grain contour. In addition to the grain region in the sub-image, the pixel
values of the other regions are filled with 0. The sub-image is then rotated, scaled, and
cropped to augment the dataset. In order to maintain data balance between categories,
we rotate the categories with fewer images to rotate more angles to get more new
images. After the above process, a total of 8150 mineral grain images in 21 categories
were included in the MGCD.
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3 Experiments

3.1 Superpixel Segmentation Experiment

We selected sandstone thin section images from PTSID to verify the performance of
the AS-SLIC algorithm. The reason for selecting the sandstone image is that it contains
a large number of grains of different sizes, which can reflect the characteristics of the
algorithm adaptively generating the number of superpixels. Figure 2 shows a com-
parison of our AS-SLIC with the original SLIC. The initial K values of both algorithms
are set to 20. As shown in the right column of Fig. 2, when the number of grains in the
image is large, the superpixels segmented by the original SLIC contain multiple grains,
which is not as good as our AS-SLIC. Obviously, our algorithm can generate different
superpixel number segmentation results for different images.
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Fig. 2. The comparison between our AS-SLIC and the original SLIC. In the experiment, the
initial K values of both algorithms were 20. The image in (a) is the result of segmentation using
the SLIC, and (b) is the segmentation result of our AS-SLIC algorithm.

In terms of performance, we have found that majority of the image clusters do not
change after 4 iterations. After 11 iterations, the residual error R of most images will be
less than the threshold. Therefore, the time complexity of our algorithm in practical
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applications is close to that of the SLIC algorithm. We experimented with an image
with a resolution of 1392 x 1040. The average computational complexity of our AS-
SLIC and other existing superpixel algorithms is shown in Table 3. Because our
algorithm needs to count the gray histogram in the iteration, and the number of clusters
may increase, it takes more time than the original SLIC algorithm. However, compared
to other classic superpixel algorithms such as GC [18], TP [4] and QS [19], our
algorithm is still very fast.

Table 3. Time complexity compared to existing superpixel algorithms

Algorithm | GC [18] | TP [4] | QS [19] | SLIC [7] | Our AS-SLIC
Time (s) |77.6 203.6 |70.3 54 7.1

3.2 Image Classification Result

Training Methods. Our model was built on the TensorFlow framework and was
trained using the GTX 1080 GPU. We used the “Xavier” algorithm [20] to initialize the
weights of all layers. The initial learning rate was 0.001 and reduced to /0.1 every 10
epochs. The training used stochastic gradient descent with 0.9 momentum. The batch
size was set to 32 and the training “early stopping” (When the loss of the training set in
five consecutive epochs is no longer reduced, the training is stopped) strategy is used.
We use the “Multi-Size Training” strategy [17] mentioned in SPPNet for training. We
resize the training set to four scales s = {224,192, 160, 128} and randomly selected
one scale image for training in each epoch.

Results and Analyses. Our CNN model and other popular models were tested on the
MGCD dataset. Table 4 compares our model to the VGG16 [21], ResNet [13], Goo-
gleNet [22] and MobileNet [16]. Overall, the ResNet34 model has the highest accu-
racy. This may be because the color and texture features in the thin section image are
easily lost after multi-layer convolution, and the “shortcut connection” structure in the
ResNet model makes the low-level information easier to forward propagation.
Although the VGG model has the largest parameter, it is easier to overfit and the

Table 4. The experiment results of our model comparison to popular models

Network MGCD test | Number of parameters
accuracy (%)

Top-1 | Top-3

VGG16 942 |98.6 |134 M
ResNet34 (954 |99.1 |213 M
ResNet50 |96.1 (994 [23.6 M
GoogleNet (953 [989 |582M
MobileNet [95.0 |99.1 |321 M
Ours 954 992 (274 M




502 L. Dong and Z. Zhang

gradient disappears, so the performance is the worst. Our model is nearly as accurate as
ResNet and is the smallest one of all models. Compared with the MobileNet and
GoogLeNet models of the light weight, our model has the highest accuracy and the
smallest model size. This shows that our model architecture is suitable for processing
petrographic thin section images.

3.3 Analysis of Components

We summarize the results of the classification of each superpixel in the second stage,
and the sum of the areas of the superpixel regions of each category is taken as the
content of the mineral grains. As shown in Fig. 3, and 3(a) is a petrographic thin
section image, and Fig. 3(b) is the segmentation and recognition result of Fig. 3(a).
Each superpixel in the image covers an entire mineral grain or a part of a mineral grain,
so the recognition result of the superpixel can be used as the category of the mineral
grain. The different categories of mineral grains identified in the image are represented
by different colors, and the percentage of each category of grains in the entire sample is
counted. The results of the component analysis in this experiment were reviewed by
several geologists. Experts believe that our analysis results are close to the results of
manual analysis, and have a good application prospect, which provides a good solution
for the automated analysis of petrographic thin section images in the future geology
field.
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Fig. 3. Analysis of petrographic thin section image components. (a) is a petrographic thin
section image. (b) is the segmentation and recognition result of (a).

(a)

3.4 Computation Cost

Our method is implemented using Python3.6 and Tensorflowl.12 on a PC with an
GTX1080 GPU card (8§ GB RAM) and Intel Core i7 3.6 GHz. The average processing
time for an image with 1392 x 1040 resolution is 8.9 s. In the first-stage, since only the
CPU was used for calculation, the average time was 7.1 s. In the second-stage, the
superpixel region was identified using 1.7 s, and finally the statistics were consumed
for 0.1 s. It can be seen that the first stage consumes a lot of time, and in our future
research, implementing our superpixel segmentation algorithm as an algorithm that can
be executed in parallel on the GPU can achieve faster execution efficiency.
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4 Conclusion

In this paper, we propose a two-stage method for recognizing the category and content
of the major components in the petrographic thin section image. We proposed an AS-
SLIC algorithm, which adaptively adjusts the number of superpixels according to the
gray histogram of the superpixel in each iteration. In the experiment, our AS-SLIC
algorithm maintains the same speed as the original SLIC algorithm. When the number
of grains in the image is large, it can adaptively increase the number of superpixels, and
the generated superpixel is more suitable for the edge of the grain. We designed a CNN
model to identify mineral grains that showed excellent performance in our MGCD
dataset. Our model is a light weight network and has the same excellent classification
results as other classic models such as ResNet. The results of our two-stage method for
the analysis of petrographic thin section image were recognized and praised after
evaluation by several geologists. Our method has important reference value for com-
ponent analysis in other types of images, such as cancer cell analysis in medical
images, remote sensing image analysis, and so on.
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