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Abstract. Fully convolutional neural networks (FCNs) have shown out-
standing performance in many dense labeling tasks. FCN-like salient
object detection models haven mostly developed lately. In the work,
we propose a novel pixel-wise salient object detection network based on
FCN by aggregating multi-level feature maps. Our model first makes a
coarse prediction by automatically learning various saliency cues, includ-
ing color and texture contrast, shapes and objectness. Then a densely
connected feature extraction block is adopted to further extract rich
features at each resolution. Moreover, skip-layer structure is introduced
for providing a better feature representation and helping shallow side
outputs locate salient objects. In addition, a weighted-fusion module is
utilized to combine multi-level features. Finally, a fully connected CRF
model can be optimally incorporated to improve spatial coherence and
contour localization in the fused saliency map. The whole architecture
works in a coarse to fine manner. Evaluations on five benchmark datasets
and comparisons with 10 state-of-the-art algorithms demonstrate the
robustness and efficiency of our proposed model.

Keywords: Salient object detection · Visual saliency detection · Deep
learning · Feature extraction

1 Introduction

Salient object detection aims at modeling human visual attention mechanism to
segment the most distinct regions or objects from the clutter backgrounds. It
has received a great deal of attention in computer vision community because of
its wide range of applications including video summarization [1], content-aware
image cropping and resizing [3,4] and person re-identification [2].

Since the seminal approaches of Itti et al. [5] and Liu et al. [6] are reported,
extensive visual saliency algorithms have been proposed to simulate human
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visual attention mechanism in images and videos. Traditional salient object
detection methods [7–10] adopt heuristic priors and manually designed features
which are usually considered as low-level information. These generic techniques
are useful for keeping fine images structures. However, these models cannot gen-
erate satisfied predicted results and are less applicable to a wide range of prob-
lems in practice. For example, it is difficult to pop out the salient objects when
the background and salient objects share similar attributes (See the first row
of Fig. 1). Moreover, it might fail sometimes, when there are multiple salient
objects (See the second row of Fig. 1).

Fig. 1. Comparisons of results of different kinds of methods. For input images in (a),
we show the salient object detection results of methods based on handcrafted features
in (b) [10] and (c) [8], and salient object detection results of methods based on deep
features in (d) [25] and (e) Ours.

In recent years, fully convolutional networks have shown powerful ability of
feature representation and obtained impressive results in many dense labeling
tasks including semantic segmentation [11,12], edge detection [14,15] and pose
estimation [13]. Inspired by these achievements, researchers in the saliency detec-
tion community attempt to utilize its ability of adaptively extracting semantic
features from raw images. These FCN-based models [16–18] have been successful
in overcoming the disadvantages of handcrafted feature-based approaches and
capturing high-level information about the objects and their clutter background,
thus achieving better performance. However, although the saliency model using
high-level information is superior, the low-level and mid-level features are also
important in detecting salient objects. Therefore, it is a key and challenging issue
to effectively and simultaneously aggregate multi-level saliency cues in a unified
learning framework for capturing both the semantic objectness and detailed
structure.

Motivated by these discussions, we propose a simple but effective salient
object detection model for the pixel-wise saliency prediction task to simultane-
ously aggregate multi-level features to capture distinctive objectness and detailed
information on complex images.
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The main contributions are summarized as follows:

(1) A novel FCN-based saliency detection network model is proposed, which
aggregates multi-level features as saliency cues. It performs image-to-image
prediction and learns powerful and rich feature representations on complex
images.

(2) We utilize the skip-layer scheme to guide low-level feature learning. With
the help of deeper side information, shallower side outputs refine their pre-
dictions with more accurate location.

(3) The proposed model achieves state-of-the-art performance both quanti-
tatively and qualitatively on DUT-OMRON [9], ECSSD [20], HKU [21],
PASCAL-S [19] and SOD [34] benchmark datasets in terms of PR curves,
F-measure, weighted F-measure and MAE scores.

2 Related Work

Generally, visual saliency detection approaches can be roughly classified into two
categories: human fixation prediction and salient object detection. The former [5]
is originally proposed to predict the fixation of eye movement, whereas the latter
aims to detect and segment each entire salient object with explicit object bound-
aries from surroundings. Since this paper is focused on salient object detection
based on deep learning, we will briefly review existing representative approaches
for salient object detection.

2.1 Handcrafted Features Based Models

The majority of salient object detection approaches usually utilize handcrafted
pixel/superpixel-level features, such as color, texture and orientation, by either
local or global manner. The local based methods use rarity, contrast or distinc-
tiveness of each pixel/region to capture the pixels/regions locally standing out
from their surroundings, while the global based methods estimate the saliency of
each pixel or region by using holistic priors of the entire image. Some researchers
propose to build graphical models of superpixels to implicitly compute contrast
[9,20]. They compute saliency by means of background, center, and compact-
ness priors. However, traditional approaches, which mainly rely on handcrafted
features, cannot describe semantic feature representation, therefore, they may
fail to pop out salient objects in complex images.

2.2 Deep Neural Networks Based Models

Recently, deep learning based approaches, in particular the convolutional neural
networks (CNNs), have been applied to detect salient objects and have improved
the performance by a large margin. Wang et al. [23] propose one deep neural net-
work to compute saliency score for each pixel in local context first, and then refine
the saliency score for each object proposal over the global view with another
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network. Li et al. [21] predict saliency score of each superpixel by incorporating
multi-scale features in a generic convolutional neural network. Zhao et al. [31]
compute saliency by integrating global and local context into a deep learning
based framework. Although these models achieve better results than traditional
schemes, these models are very time-consuming due to the reason that they take
segmented region as a basic unit to train a deep neural network for predicting
saliency and the networks have to run many times for predicting saliency degree
of all the superpixels in the image.

To remedy above problems, researchers prefer to adopt FCN-like model to
detect saliency in a pixel-wise manner. Some researchers propose to use specific-
level features for saliency prediction. For example, Lee et al. [25] propose to
encode low-level distance map and high-level semantic features of deep CNNs. In
[26], a network sharing features for segmentation and saliency tasks is proposed,
and a graph Laplician regularized nonlinear regressor model is presented for
refinement.

In contrary to these methods only use specific-level features, several works
explore to integrate features from different side outputs and indicate that the
features from all levels are potential saliency cues and are helpful for saliency
prediction. The features from deep layers contain semantic information which is
helpful for objectness, while the features from shallow layers contain rich detailed
information which is helpful for explicit boundary in high-resolution prediction.

However, how to effectively and efficiently aggregate multi-level convolutional
features remains challenging. To this end, several researchers make valuable
attempts to solve this problem. Li et al. [27] combines a pixel-level fully convolu-
tional stream and segmented-wise spatial pooling stream. The fully convolutional
stream is a multi-scale fully convolutional network, which generates a saliency
map with one eighth resolution of the raw input image by exploiting visual
contrast across multiscale convolutional layers. Long et al. [11] introduce skip
connections and adds high-level prediction layers to intermediate layers to gen-
erate pixel-wise prediction results at multiple resolutions. Liu et al. [16] design a
two-stage deep network, in which a coarse global prediction is obtained by auto-
matically learning various global structured saliency cues and another network
is adopted to further refine the details of saliency maps via integrating local
context information.

Though obvious achievement has been made by these deep learning based
models in recent years, there is still a large room for improvement over the
generic FCN-based models to uniformly highlight the entire salient objects and
preserve the detailed boundaries against the cluttered background.

3 Proposed Model

Our proposed salient object detection model mainly consists of two stages: (1)
a FCN-based deep network for multi-level features extraction and aggregation;
and (2) a spatial coherence scheme for saliency refinement.
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Fig. 2. The architecture of the proposed model. In the VGG-16 net, the names of the
layers whose features are utilized are shown. The resolution of each step is also shown.

3.1 Network Architecture

To design a FCN-like network that is capable of accounting for both local and
global context of an image and incorporating details from various resolutions, we
develop a multi-scale deep convolutional neural network for learning discriminant
saliency features (our mode is shown in Fig. 2). It consists of two components:
feature extraction and aggregation.

Multi-level Feature Extraction. Our proposed model adopts VGG-16 net
[28] (pre-trained over the ImageNet dataset for image classification) as our base
network, and modifies it to meet our requirements. We retain its 13 convolutional
layers, and remove the original 5th pooling layer and fully connected layers.
Thus, the modified VGG-16 is composed of 5 groups of convolutional layers. For
simplicity, we denote the third sub-layer in the fifth group of convolutional layer
as Conv5 3, and the other convolution layers in the VGG-16 is also denoted
by this analogy. For an input image I with size W × H, the modified VGGNet
produces five feature maps fi with decreasing spatial resolution by stride 2.

For each continuous feature fi, i ∈ {5, 6, . . . , 10} extracted from VGG-16, we
design a densely connected feature extraction block Convi. It utilizes a simple
connectivity pattern: to preserve the feed-forward nature, each layer obtains
additional inputs from all preceding layers and passes on its own feature maps
to all subsequent layers, which is similar to DenseNet [24]. Figure 3 illustrates
this layout schematically.

Features Aggregation. We obtain five feature maps with size different reso-
lution from feature extraction blocks. The feature maps of deeper convolutional
layers can accurately locate salient objects, while the feature maps generated by
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Fig. 3. Details of the feature extraction module.

shallower convolutional layers contain more details. To help the shallow side out-
put contain more global properties, we refine these feature maps by skip-layer
structure, namely, introducing the deeper side-output to its former shallower
one. At each Unpool processing block, we combine features through summation.
Moreover, we use a score module to integrate different maps and obtain a fused
saliency map. To make the output maps of the features at different solutions
have the same size for fusing, we use the deconvolutional layer for up-sampling.
The strides of the last deconvolutional layers in the last four sides are respec-
tively set to 2, 4, 8 and 16. And then, we combine features by concatenating
them.

3.2 Spatial Coherence

To improve spatial coherence and achieve more accurate results, we adopt a pixel-
wise saliency refinement model based on a fully connected conditional random
field (CRF) [29] in the inference phase. This CRF model solves a binary pixel
labeling problem, which is similar to our saliency prediction task, and employs
the following energy function,

E(L) = −
∑

i

logP (li) +
∑

i,j

θij(li, lj) (1)

where L represents a binary label assignment for all pixels. P (li) is the proba-
bility of pixel xi with label li, which indicates the likelihood of pixel xi being
salient. Initially, P (1) = Si and P (0) = 1 − Si, where Si is the saliency score
at pixel xi from the fused saliency map S. θi,j(li, lj) is a pairwise potential and
defined as follows,

θij = μ(li, lj)[ω1exp(− ||pi−pj ||2
2σ2

α
) − ||Ii−Ij ||2

2σ2
β

+ ω2exp(− ||pi−pj ||2
2σ2

γ
)] (2)

where μ(li, lj) = 1 if li �= lj , and zero otherwise. θij involves two kernels. The
first kernel depends on pixel positions p and pixel intensities I. This kernel
makes nearby pixels having similar colors take similar saliency scores. Three
parameters determine the degree of influence by color similarity and spatial
relation, respectively. The second kernel is to remove small isolated regions. The
parameters of ω1, ω2, σ2

α, σ2
β , σ2

γ are set to 3.0, 3.0, 60.0, 8.0 and 5.0 respectively
in our experiments.
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4 Experiments

4.1 Implementation Details

Our network is based on the publicly available Caffe library, an open source
framework for CNNs training and testing. As mentioned above, we choose VGG-
16 as our pre-trained model and fine-tune it for pixel-wise saliency prediction.
We utilize the same training and validation sets as in [8]. The learning rate is set
to 1e−9, the momentum parameter is 0.9, the weighted decay is set to 0.0005.
The fusion weight in the feature integration module are all initialized with 0.2
in the training phase.

4.2 Datasets

We conduct evaluations on five widely used salient object benchmark datasets.
DUT-OMRON is manually selected from more than 140,000 natural images, each
of which has one or more salient objects and relatively complex backgrounds. As
an extension of the Complex Scene Saliency Dataset (CSSD), ECSSD is obtained
by aggregating the images from two publicly available datasets and the Internet.
HKU contains 4447 images, most of which have low contrast and multiple salient
objects. PASCAL-S is generated from the PASCAL VOC dataset with 20 object
categories and complex scenes. SOD is more challenging with multiple salient
object and background clutters in images.

4.3 Evaluation Metrics

We adopt the precision-recall (PR) curve to evaluate our proposed model. The
precision and recall are computed by binarizing the saliency map with 256 thresh-
olds, ranging from 0 to 255, and comparing the binary map with the ground
truth. The PR curves demonstrate the mean precision and recall of saliency maps
at different thresholds. We also use F-measure (Fβ) and weighted F-measure
(ωFβ) scores to comprehensively consider precision and recall. Fβ is given by:

Fβ =
(1 + β2) · Precision · Recall

β2 · Precision + Recall
(3)

where β is a balance parameter to weight the precision and recall, and β2 is
set to 0.3. Similar to Fβ , ωFβ is computed with a weighted harmonic mean of
Precisionw and Recallw: Fw

β = (1+β2)·Precisionw·Recallw

β2·Precisionw+Recallw .
Beside, we use the mean absolute error (MAE) to evaluate the average pixel-

wise error between the saliency map and ground truth. It is defined as MAE =
1

h·w
h∑

i=1

w∑
j=1

|Sij − Gij | where S denotes the saliency map, G denotes the ground

truth, and h and w denote the height and width of the image.
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4.4 Performance Comparison with State of the Art

We compare our proposed approach with 10 state-of-the-art methods, including
UCF [33], MTDS [26], LEGS [23], MDF [21], KSR [30], DRFI [8], SMD [10],
ELD [25], MC [31], and ELE [32]. We use either the implementations or the
saliency maps provided by the authors for fair comparison. Note that MC, UCF,
ELD, MTDS, LEGS, MDF, KSR are deep learning based models.

Table 1. Fβ and ωFβ scores of saliency maps produced by different approaches on
DUT-OMRON, ECSSD, HKU, PASCAL-S, and SOD datasets (The top models are
highlighted in bold. ‘-’ denotes the saliency maps are not available).

Approach DUT-OMRON ECSSD HKU PASCAL-s SOD

Fβ ωFβ Fβ ωFβ Fβ ωFβ Fβ ωFβ Fβ ωFβ

SMD 0.537 0.398 0.712 0.532 0.691 0.499 0.622 0.462 0.605 0.474

DRFI 0.555 0.374 0.732 0.567 0.722 0.502 0.613 0.446 - -

ELE 0.575 0.525 0.755 0.720 0.699 0.655 0.652 0.604 - -

LEGS - - 0.783 0.723 0.709 0.616 0.688 0.610 0.686 0.612

MC - - 0.797 0.750 0.759 0.700 0.692 0.628 0.589 0.391

KSR 0.591 0.493 0.782 0.675 0.747 0.638 0.703 0.610 0.668 0.579

MDF 0.596 0.499 0.749 0.643 0.764 0.641 0.648 0.557 0.697 0.601

ELD 0.614 0.564 0.817 0.773 - - 0.721 0.659 - -

MTDS 0.603 0.463 0.826 0.693 - - 0.658 0.521 0.698 0.568

UCF 0.621 0.537 0.844 0.788 0.823 0.754 0.733 0.669 0.738 0.684

Ours 0.660 0.615 0.862 0.851 0.868 0.845 0.747 0.719 0.759 0.759

For quantitative evaluation, we show comparison results with PR curves and
MAE scores in Figs. 4 and 5. And the comparisons of Fβ and ωFβ are displayed
in Table 1. We do not show the comparison of PR curves on DUT-OMRON due
to the limited space. In terms of Fβ , ωFβ and MAE scores, we can see that our
model outperforms all other methods, especially on complex datasets. For the
PR curves, our model also achieves a good performance on four datasets and is
a little worse than UCF on ECSSD and PASCAL-S.

We show visual comparison in Fig. 6. We can see that our model not only
detects and localizes salient objects accurately, but also preserves object details
subtly. It can handle various complex situations well, including salient objects
being small (row fourth and fifth), clutter backgrounds and salient objects (row
first and sixth), backgrounds and salient objects sharing similar appearance (row
second, third and fifth).

4.5 Evaluation on CRF Scheme

A fully connected CRF scheme is incorporated to further uniformly highlight the
interior regions of salient object and preserve explicit contour in the saliency map
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(a) (b)

(c) (d)

Fig. 4. PR curves of saliency maps produced by different approaches on four datasets.
(a) ECSSD, (b) HKU, (c) PASCAL-S and (d) SOD.

Fig. 5. MAE scores of the saliency maps produced by different models on five datasets.
Lower is better.

from our proposed multi-scale FCN-like network. To validate its effectiveness,
we have also evaluated the performance of our final saliency approach with and
without (w/o) CRF scheme on five benchmark datasets in terms of Fβ , ωFβ , and
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Fig. 6. Visual comparison results based on different models. (a) Input, (b) ground
truth, (c) SMD, (d) DRFI, (e) LEGS, (f) MC, (g) MDF, (h) ELD, (i) MTDS, (j) UCF,
and (k) Ours.

MAE scores. The results are displayed in Table 2, which shows that the CRF
scheme improves the accuracy of our proposed model.

Table 2. Comparisons of our approach with and without(w/o) CRF scheme in terms
of Fβ , ωFβ , and MAE.

Datasets Method Fβ ωFβ MAE

DUT-OMRON Ours with CRF 0.6600 0.6152 0.0852

Ours w/o CRF 0.6265 0.5753 0.0932

ECSSD Ours with CRF 0.8621 0.8505 0.0627

Ours w/o CRF 0.8299 0.8019 0.0730

HKU Ours with CRF 0.8681 0.8454 0.0463

Ours w/o CRF 0.8260 0.7897 0.0569

PASCAL-S Ours with CRF 0.7465 0.7187 0.1041

Ours w/o CRF 0.7180 0.6816 0.1127

SOD Ours with CRF 0.7594 0.7589 0.1225

Ours w/o CRF 0.7503 0.7303 0.1284

5 Conclusion

In this paper, we propose a simple but effective approach for pixel-wise salient
object detection based on a fully convolutional network, which extracts multi-
level features and utilizes the preceding information through a densely connected
module. Moreover, the features from deeper layers are connected to the shallower
ones by skip-layer structure for guiding the learning of shallower layers. Besides,
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a fusion layer is adopted to combine these rich features to generate a saliency
map. In order to obtain more fine-gained saliency detection results, we introduce
a saliency refinement scheme based on a fully connected CRF to further improve
saliency performance. Experimental results demonstrate that our proposed app-
roach achieves encouraging performance against 10 state-of-the-art methods on
five benchmark datasets.
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