
Fine Granular Parallel Algorithm for HEVC
Encoding Based on Multicore Platform

Yi Li3(&), Dong Hu1,2,3(&), Chuanwei Yin3, and Yingcan Qiu3

1 Education Ministry’s Key Lab of Broadband Wireless Communication
and Sensor Network Technology, Nanjing University of Posts

and Telecommunications, Nanjing 210003, China
2 Education Ministry’s Engineering Research Center of Ubiquitous Network
and Health Service, Nanjing University of Posts and Telecommunications,

Nanjing 210003, China
3 Jiangsu Province’s Key Lab of Image Procession and Image Communications,
Nanjing University of Posts and Telecommunications, Nanjing 210003, China

{1217012311,hud}@njupt.edu.cn

Abstract. Compared with the previous standards, the coding efficiency and
complexity of High Efficiency Video Coding (HEVC) have been greatly
improved. Parallel encoding scheme based on CTU rows like wavefront parallel
processing (WPP) and inter-frame wavefront (IFW) can efficiently reduce the
encoding time of HEVC. However, due to the coding complexity of CTU within
various rows may be quite different, WPP and IFW have the problem of
unbalanced load among threads for parallel encoding tasks. To address this
issue, in this paper, factors affecting coding efficiency are found by analyzing
the data dependence and load relationship of intra- and inter-frame CTUs, and
we propose a fine granular parallel strategy accordingly. In the meanwhile,
refine the parallel granularity while maintaining the accuracy of symbol pre-
diction requires additional context information in CABAC encoding, which
leads to higher bit rate, and will reduce the efficiency of CABAC encoding. In
order to decrease the bit rate without affecting the quality, we also making some
modifications for the CABAC encoding. The proposed method is implemented
on the Tilera-GX36 multicore platform. Experiment results show that our
algorithm achieves up to 1.6 and 2.8 times speedup improvement compared with
IFW and WPP respectively.

Keywords: HEVC encoding � CTU � IFW � WPP � CABAC � Multicore
platform

1 Introduction

In order to achieve a range of 50% bit-rate reduction for equal perceptual video quality
[1] and about 40% bit-rate reductions at similar PSNR [2] compared to its previous
standard–H.264/AVC, some new features have been introduced into HEVC, which
also bring great increments of computational complexity [3]. HEVC provides several
parallel schemes to cope with the high-speed processing demands, which make parallel
coding on multicore platform possible. A representative method is slice-based

© Springer Nature Switzerland AG 2019
Y. Zhao et al. (Eds.): ICIG 2019, LNCS 11903, pp. 59–69, 2019.
https://doi.org/10.1007/978-3-030-34113-8_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-34113-8_6&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-34113-8_6&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-34113-8_6&domain=pdf
https://doi.org/10.1007/978-3-030-34113-8_6

parallelism, which has been introduced in H.264/AVC [4]. Two new parallel methods
are introduced in HEVC, which are tiles [5] and wavefront parallel processing
(WPP) [6]. Tiles splits a picture horizontally and vertically into multiple rectangular
regions for parallel processing, which is removing the parsing and prediction depen-
dency. WPP splits a picture into coding tree unit (CTU) rows, and processes these rows
in parallel.

Several related works focus on improving parallelism of HEVC based on WPP
have been proposed, Chi et al. [7] presented an approach called overlapped wavefront
(OWF) to address ramping inefficiencies in WPP for HEVC decoding. Chen et al. [8]
proposed a novel parallel encoding scheme called Inter-frame wavefront (IFW) using
the dependence of inter-frame CTU, realizing the multi-frame parallel encoding.
Although these methods well exploit parallelism in HEVC, since the coding com-
plexity of CTUs within various CTU rows may be quite different, WPP and IFW have
the problem of unbalanced load among threads for parallel encoding tasks. To handle
this problem, in this paper, we focus on exploring the data dependence and load
balancing between different CTUs within intra- and inter-frame, and propose a fine
granular parallel encoding based on the exploration. To avoid the possible loss in
coding efficiency, CABAC module is modified accordingly. Therefore, better parallel
speedup ratio can be achieved while the image quality can be guaranteed.

The rest of this paper is organized as follows. Section 2 introduces the CTU row-
level parallel schemes and analyzes its parallelism. In Sect. 3, our new fine granular
parallel method is described in details. We evaluate performance of the proposed
algorithm in Sect. 4, followed by a short conclusion in Sect. 5.

2 Related Works

In this section, the CTU data dependency and parallelism of CTU row-level parallel
schemes are introduced and analyzed. In order to denote the dependencies between
CTUs, Ci;j;k is used here to represent the k-th CTU of the j-th CTU row in the i-th frame
in the coding order, DepIFW ;inter Ci;j;k

� �
and DepIFW ;intra Ci;j;k

� �
is used to represent the

CTU on which Ci;j;k depends performing parallel inter- and intra-frame encoding using
IFW respectively.

2.1 Analysis of CTU Data Dependency

The intra-frame CTU dependency of IFW is same as WPP, so that the current CTU will
rely on the information of CTUs in its top, top right, top left and left directions, as is
illustrated in Fig. 1, the specific dependence can be expressed as (1). The encoding of
each CTU rows start only after coding from the second CTU of the previous row. As is
indicated in Fig. 2, a picture is separated to multiple CTU row partitions, each CTU
row is allocated to different threads for parallel processing.

60 Y. Li et al.

DepIFW ;intra Ci;j;k
� � ¼ Depwpp Ci;j;k

� � ¼ Ci;j�1;k�1;Ci;j�1;k;Ci;j�1;kþ 1;Ci;j;k�1;
� � ð1Þ

The motion estimation is to find the best matching pixel block in the search range
and get the best motion vector. All CTUs in the search range corresponding to the
current coding CTU in the reference frame must be encoded before the optimal motion
vector of the current CTU can be determined. The dependency relationship of inter-
frame CTU in IFW is given by (2) and Fig. 3 shows the detail.

DepIFW ;inter Ci;j;k
� � ¼ Ci1;j1;k1ji1 2 ref Ið Þ; 0� j1\jþ lh; 0� k1\lw

� � ð2Þ

lh indicates the downward vertical component of the motion vector, it is usually set
to 0 or 1 in IFW. lw indicates the horizontal component of motion vector. The encoding
process of Ci;j;k will be started immediately after the encoding of Ci1;j1;k1 is completed,

Fig. 1. The CTU data dependency of current CTU within a frame

Fig. 2. Parallel processing of intra-frame in IFW

Fine Granular Parallel Algorithm for HEVC Encoding 61

instead of frame-by-frame CTU row-level parallel encoding in WPP. That is, CTUs in
multiple frames can be encoded parallel after the dependencies are satisfied.

2.2 Parallelism of CTU Row-Level Parallel Schemes

Both the IFW and WPP using the CTU row as parallel unit. As shown in the Fig. 4, the
dependencies between CTUs are represented by a directed acyclic graph (DAG), there
are 4 � 5 CTUs in this example, and each CTU row is assigned a thread. It can be seen
that most of the time between threads is idle, so the scheme using CTU rows as parallel
unit wastes thread resources. Therefore, we propose a parallel scheme based on CTU.
In this paper, using parallelism (PL) to evaluate the improvement of coding speed by
parallel schemes and thread resource strategies. As shown in (3).

Fig. 3. Dependency of inter-frame CTU in IFW

Fig. 4. DAG used to express the dependency between CTUs

62 Y. Li et al.

PL ¼ EncTime1;F
EncTimeN;F

ð3Þ

EncTimeN;F refers to the time spent using N cores to encode in the parallel algo-
rithm F. We dividing a frame horizontally and vertically into (W � H) CTUs, assuming
that the average encoding time of each CTU is a unit of time. According to the Fig. 4,
there will be n units of time parallel processing when the thread resources are sufficient,
n is given as (4).

n ¼ 2� H� 1ð ÞþW ð4Þ

According to the relationship between the number of thread and CTU, we
designing the scheduling strategies in two cases. Firstly, if the threads resources are
sufficient, the H-th row begins to encode while the first row of CTU has not encoded
yet, indicating that each CTU row has a designated thread to process. Therefore, when
a thread encoding task is completed, the next frame will not be read due to the frame-
level task has not been completed, so the core thread is not fully utilized and the
parallelism is relatively low. (5) can express the PL.

PL ¼ W� H= 2HþW � 2ð Þ ð5Þ

Secondly, if the threads resources are limited, in this case, (2H − 2X − 2) <
W < (2H − 2X), that is there are still X CTU rows that remain to be encoded when the
first row encoding has been completed. As long as there are threads in the H − X CTU
row threads has completed the corresponding row encoding, these threads will be
transferred to deal with the remaining X rows, where the X threads are reused, the
remaining H − X threads are not scheduled, so it is a waste of thread resources. (6)
give the PL:

PL ¼ W� H= 2W þ 2X � 2ð Þ ð6Þ

2.3 Existing Problems

The possibility of load unbalance among CTU row threads exists in CTU row-level
parallel schemes, like WPP and IFW, since the encoding complexity of CTUs within
various CTU rows may be quite different. When these encoding threads are scheduled
with each CTU row as the basic processing task, the encoding complexity of a CTU in
the previous row is too high, which will lead to the blocking of the coding threads in
the subsequent CTU rows, due to the data dependence between CTUs. This will cause
considerable latency among encoding threads. Moreover, according to the two cases
discussed in part 2.2, the parallelism are relatively low and thread resources has not be
fully utilized. Discussion of more details and our method are in the Sect. 3.

Fine Granular Parallel Algorithm for HEVC Encoding 63

3 Proposed Method

3.1 Analysis of CTU Load Balancing

As is shown in Fig. 5, suppose there are only two threads currently used to encode
CTU03 and CTU11 respectively. Because the complexity of CTU03 is higher than
CTU11, as a result, the second thread is blocked in CTU11, making it impossible to
code CTU12. If using the CTU rows as parallel granularity and the threads are allo-
cated to encode the CTU rows in parallel, the load of the coding threads will be
unbalanced, which will lead to the blocking of the coding threads. Dependency DAG
and (First in First out) FIFO queue are introduced to solve this issue. When the second
thread is blocked, the coding condition of CTU20 has met in the meanwhile, thus, the
second thread can be used to encode CTU20, thereby reducing the coding delay caused
by load unbalance of encoding based on CTU rows. Similarly, if the CTU20 has a

Fig. 5. Analysis of CTUs load balancing

Fig. 6. The actual threads load

64 Y. Li et al.

larger complexity, the thread that complete tasks first can be used to encode the CTU,
which has no dependency in the queue. A main thread operates on the queue to
schedule the threads pool; the DAG dependency matrix will be updated when a CTU
encoding is completed. Figure 6 shows the actual thread load of IFW and our
algorithm.

3.2 Specific Proposed Method

Threads scheduling strategy is described by adjacency matrix and in-degree matrix to
solve the problem of CTU load unbalance. The dependency is expressed by the in-
degree matrix, and the matrix will be updated every time a CTU has been encoded,
when the dependencies of CTU are satisfied, idle threads can be invoked to realize
multi-frame parallel encoding, thus solving the problem of thread blocking and low
parallelism of frame-by-frame coding. DAG represents the dependency between CTUs,
m is the serial number of CTUs, M is the number of CTUs within a frame, floor and
mod are representing downward integral and modular function respectively.

The location of each CTU is represented by i; jð Þ, that is:

i ¼ floor
m
M

� �
j ¼ m modM ð7Þ

For DAG ¼ V;Eð Þ, if the set of boundaries E contains Vi;j;Vm;n
� �

, indicating that
the CTU (m, n) depends on the CTU (i, j). When the CTU represented by Vi;j is
encoded, removing the boundaries containing Vi;j from DAG. The entry of CTU, which
has a boundary relationship with Vi;j, will be reduced by 1, and indicates a dependency
is satisfied. When the entry of vertices becomes 0, the corresponding vertices can be
processed in parallel. Therefore, the DAG and the in-degree matrix will be updated
each time a CTU is encoded. Since the entrance values of different CTUs in the in-
degree matrix are obtained from the DAG, the adjacency matrix is used to represent the
DAG, and W and H are used to represent the number of CTUs in the horizontal and
vertical directions of a frame respectively. The entry value D of each CTU is obtained
by adjacent matrix A:

A i;jð Þ; m;nð Þ ¼ 1; vi;j; vm;n
� � 2 E

0; else
1� i;m�H; 1� j; n�W

�
ð8Þ

Dm;n ¼
PH
i¼1

Pw
j¼1

A i; jð Þ; m; nð Þ 1�m�H; 1� n�W ð9Þ

Parallel granularity refinement makes CABAC encoding require additional context
information if symbol prediction accuracy is to be maintained, which leads to higher bit
rate. In order to reduce the bit rate, we divide the coding process at CTU level into two
consecutive modules. The first module makes intra- and inter-frame prediction at CTU
level according to the rate-distortion cost, and obtains the best partition and prediction
mode of CTU. The second module to encode CTU according to the partition and
prediction mode information. In the optimal mode decision-making stage, the best

Fine Granular Parallel Algorithm for HEVC Encoding 65

partition and optimal mode are obtained by parallel processing of multiple threads, the
syntax information, however, will not be encoded by CABAC immediately, but will
continue the encoding process of other CTUs. Independent CABAC encoding threads
will encode the syntax elements of this optimal information. Consequently, the pro-
posed scheme can be divided into two task levels, frame-level and CTU-level, as
shown in Fig. 7. Frame-level tasks request threads to process the CTU-level task queue
of the current frame for parallel processing. When the encoding process of a frame is
finished, the thread resource for this frame is released and the code stream after
CABAC is stored

4 Experiment

4.1 Experiments Design

The algorithm is implemented on the Tilera-GX36 multicore platform, and using x.265
as the reference software. Two sets of comparison experiments are set up in the
meanwhile. The first one is the WPP that does not take into account the inter-frame
correlation, and the second one is IFW, which takes into account the inter-frame
correlation. Since the experiment involves the dependency of the CTU in the time
domain, we dividing the coding frame type into two cases: IPPPP and IBBBP. The
indicators used for evaluating the experimental performance are bit rate, PSNR, and
parallel acceleration ratio. With the increase in the number of threads, the trend of the
parallel acceleration of the three algorithms is compared. The size of LCU is 32 � 32 in
the experiment, and the video sequence used in our experiment are 1600p Traffic,
1080p Kimono and 720p FourPeople. Parallel acceleration ratio is used to express the
acceleration of parallel algorithm relative to serial encoding, which is represented by
speedup.

Fig. 7. Two task levels of the proposed scheme

66 Y. Li et al.

Speedup ¼ EncTimeserial
EncTimeparallel

ð10Þ

EncTimeserial is the time required for single-core serial encoding and EncTimeparallel
is the time spend on multi-core parallel encoding.

4.2 Results and Discussion

Experimental results in Table 1 are obtained with the thread number is 32. It can be
found from these data that compared with the two comparison algorithms, the PSNR of
our method decreases and the parallelism degree improves. Furthermore, compared
with the WPP, the IFW scheme also increases the bit rate slightly, because the
improvement of the algorithm increases the syntax elements, but compared with IFW,
our parallel algorithm reduces the bit rate due to the addition of the CABAC opti-
mization scheme. The parallel acceleration ratio of our algorithm is much higher, which
is achieves up to 1.6 and 2.8 times speedup improvement compared with IFW and
WPP respectively for 720P FourPeople test sequence (Figs. 8, 9 and 10).

Table 1. Comparison results of three algorithms

Frame
type

Sequences WPP IFW Our method
PSNR
(dB)

Bit rate
(kbps)

Speed
up

PSNR
(dB)

Bit rate
(kbps)

Speed
up

PSNR
(dB)

Bit rate
(kbps)

Speed
up

IPPPP Traffic 31.422 3111.93 3.56 31.235 3286.68 6.31 31.081 3231.24 9.42
Kimono 33.086 3098.74 3.37 32.863 3178.55 6.14 32.673 3145.16 9.13
FourPeople 23.167 712.09 2.92 22.841 796.34 5.69 22.682 764.24 8.24

IBBBP Traffic 32.087 3243.55 5.45 31.765 3395.56 7.43 31.584 3326.13 9.85
Kimono 35.126 3122.88 4.39 34.839 3209.08 6.98 34.691 3186.24 9.61
FourPeople 26.253 792.03 3.09 26.033 834.11 5.03 25.876 821.67 8.22

Fig. 8. Parallel acceleration ratio of WPP

Fine Granular Parallel Algorithm for HEVC Encoding 67

It can be found from these line charts that the parallel acceleration ratio for three
methods increase gradually with the increasing thread numbers, the addition of B
frames can improve the parallel acceleration ratio, because B frame is bidirectional
predictive frame, which can enhance the efficiency of video sequence compression.

5 Conclusion

In this paper, we introducing the parallel algorithms based on CTU row firstly. Then, the
dependency of CTUs on intra- and inter-frame and the load balancing among threads of
CTU row-level parallel schemes are analyzed. A fine granular parallel coding model is
established for the dependency relationship between CTUs, in-degree matrix and
adjacent matrix are used to represent the update of dependency. Finally, we imple-
menting the proposed method on the Tilera-GX36 multi-core platform. Experimental
results show that the parallel acceleration ratio is further improved by our method.

Fig. 9. Parallel acceleration ratio of IFW

Fig. 10. Parallel acceleration ratio of proposed method

68 Y. Li et al.

References

1. Sullivan, G.J., et al.: Overview of the high efficiency video coding (HEVC) standard. IEEE
Trans. Circuits Syst. Video Technol. 22(12), 1649–1668 (2013)

2. Ohm, J., et al.: Comparison of the coding efficiency of video coding standards—including
high efficiency video coding (HEVC). IEEE Trans. Circuits Syst. Video Technol. 22(12),
1669–1684 (2012)

3. Bossen, F., et al.: HEVC complexity and implementation analysis. IEEE Trans. Circuits Syst.
Video Technol. 22(12), 1685–1696 (2012)

4. Zhao, L., et al.: A dynamic slice control scheme for slice-parallel video encoding. In: IEEE
19th International Conference on Image Processing 2012, pp. 713–716. IEEE, Florida (2012)

5. Baik, H., Song, H.: A complexity-based adaptive tile-partitioning algorithm for HEVC
decoder parallelization. In: IEEE International Conference on Image Processing 2015,
pp. 4298–4302. IEEE, Quebec (2015)

6. Radicke, S., et al.: A multi-threaded full-feature HEVC encoder based on wavefront parallel
processing. In: 11th International Conference on Signal Processing and Multimedia
Applications 2014, pp. 90–98. IEEE, Vienna (2014)

7. Chi, C.C., et al.: Improving the parallelization efficiency of HEVC decoding. In: IEEE 19th
International Conference on Image Processing 2012, pp. 213–216. IEEE, Florida (2012)

8. Chen, K., et al.: A novel wavefront-based high parallel solution for HEVC. IEEE Trans.
Circuits Syst. Video Technol. 22(12), 181–194 (2016)

Fine Granular Parallel Algorithm for HEVC Encoding 69

	Fine Granular Parallel Algorithm for HEVC Encoding Based on Multicore Platform
	Abstract
	1 Introduction
	2 Related Works
	2.1 Analysis of CTU Data Dependency
	2.2 Parallelism of CTU Row-Level Parallel Schemes
	2.3 Existing Problems

	3 Proposed Method
	3.1 Analysis of CTU Load Balancing
	3.2 Specific Proposed Method

	4 Experiment
	4.1 Experiments Design
	4.2 Results and Discussion

	5 Conclusion
	References

