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Abstract. Learning the regional contents of scenes comprehensively is
key to scene recognition. Due to semantic diversity and spatial com-
plexity in scene images, modeling based on these regional contents is
challenging. The current works mainly focus on some small and partial
regions of the scene, while ignoring the majority region of the scene.
In contrast, we propose the Semantic Regional Graph modeling frame-
work for the comprehensive selection of discriminative semantic regions
in scenes. To explore the relations of these regions, we propose to model
these regions in geometric aspect based on the graph model, and gener-
ate the discriminative representations for scene recognition. Experimen-
tal results demonstrate the effectiveness of our method, which achieves
state-of-the-art performances on MIT67 and SUN397 datasets.
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1 Introduction

The goal of scene recognition is to predict scene labels for images. Scene recogni-
tion is a challenging task of computer vision since the scene images are composed
of various regional contents (e.g. foreground and background) with highly flexible
spatial layouts. This characteristic determines that extracting the discriminative
information of scenes requires the comprehensively learning of regional contents.
Therefore, how to model these regional contents to obtain consistent visual rep-
resentations is becoming the main challenge in the filed of scene recognition.

Some earlier methods [7,27,30] propose to model the local regional repre-
sentations with BOW (Bag of Words) encoding for scene recognition. With
the developments of Convolution Neural Networks (CNNs) [1,9,14], some scene
recognition methods [11,24,26,32,34,37] propose to learn regional features with
the CNN models. These methods can be divided into two branches: some meth-
ods [24,26,32] propose to extract CNN features on local patches, which are anno-
tated with the image-level label, and trained in weak supervision, leading to the
ambiguity and noise in training. While, some other methods [34,37] attempt
to generate region proposal to locate the object regions for feature extraction,
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Fig. 1. (a) An example image, (b) its annotations in COCO-Stuff dataset

which are then fed to the followed networks for classification. However, consid-
ering the characteristics of scene image, the object based methods still have the
limitation, since the object regions can only cover the relatively small and par-
tial area of the scene, while the majority area of the scene is ignored, which may
decrease the performance of scene recognition. In contrast, our motivation is to
obtain more comprehensive information in the scenes.

Obtaining more comprehensive information in the scenes requires that the
extracted region information have diversity. In addition to objects, the scenes
usually consist of a much larger area of “stuff” (amorphous background regions,
e.g. sea, sand, and sky), which also contain discrimination to different scenes. In
our work, we propose to obtain discriminative regional information based on the
stuff, since stuff covers a wider area, and it is essential to determine the scene
category (e.g. as shown in Fig. 1 sky, sand and sea are the imperative elements
in the beach category). Moreover, the object based works [34,37] also inspire us
that the object regions can also provide discriminative information. Therefore,
in our work, we take both object and stuff into account as the discriminative
semantic regions, and learn the relation of these semantic regions to generate
discriminative representations.

In this paper, we propose a semantic regional graph modeling (SRG) frame-
work for scene recognition. To perform scene recognition, we first feed an image
into the pre-trained semantic segmentation network (e.g. DeeplabV2 [4] pre-
trained on COCO-Stuff [3]) to generate the label map that has the same resolu-
tion as the input image. To obtain the information of scenes comprehensively, we
implement three region selection methods on the label map to select the discrimi-
native semantic regions, including the region of stuff and object. We extract these
regional representations based on a pre-trained CNN through RoIAlign [13].
These regional features are concatenated together as the node representations of
graph convolution network [15] (GCN). And we propose to learn the relations
between these regions on the geometric aspects through GCN, which is used
to optimize the corresponding node representations. Finally, we feed these opti-
mized representations into classifier to predict scene labels. We conduct several
experiments on MIT67 [20] and SUN397 [36], the experimental results illustrate
the effectiveness of the proposed method.
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2 Related Works

In this section, we briefly review the works that related to our topic in several
aspects. The differences and connections of these works with ours are also being
argued.

2.1 Scene Recognition

Scene recognition is an essential domain in computer vision. In some early works
[23,28], the basic visual elements (e.g. color, shape, and texture) play an impor-
tant role in learning the global features of images. However, since scenes are
relatively abstract, scene images are generally composed of multiple semantic
regions. Thus, some works [7,8,12,25,27,30] propose to perform scene recogni-
tion based on local region features. Lazebnik et al. [27] present the Spatial Pyra-
mid Matching (SPM) which divides the image into several local sub-regions,
extracts the feature on each region, and then concatenates the features of all
sub-regions to predict the image label. Additionally, Perronnin et al. [7] propose
to use Fisher Vector (FV) to encode local handcrafted features (e.g. SIFT [17])
for scene recognition. Alternatively, Song et al. [25] propose to exploit multiple
local features with context modeling, and also propose to embed multi-feature
in semantic manifold.

Recently, the deep learning methods have made great impacts in some fields of
computer vision, such as image recognition [1], object detection [21] and semantic
segmentation [4]. Hence, some recent scene recognition works propose their meth-
ods based on the convolution neural networks (CNNs), and sharply improve the
performances. Zhou et al. [2] present a massive scene-centric dataset Places that
generate better generalization than object-centric dataset (e.g. ImageNet [22]).
However, due to the structure of CNNs, some discriminative regional contents
might be discarded during training. To deal with this problem, some methods
propose to learn regional features. Wang et al. [32] propose PatchNets which is
trained in weak supervision. During the training process, images are cropped
into several patches and annotated with their image-level label. Song et al. [25]
propose to embed multi-scale regional features with a hierarchical context mod-
eling method. Wu et al. [34] propose to use the region proposal method to detect
the discriminative object regions in the image to guide the scene recognition. In
contrast to the current methods, we extract both object and stuff features as
the discriminative semantic regions, and model the relations of these semantic
regions in the geometric aspect through the graph network.

2.2 Graph Neural Network

Inspired by the impact of Graph Neural Network (GNN) in processing the non-
Euclidean data, some recent works [5,15,18,35,39] in the computer vision have
also employed the GNN to improve the performance, such as multi-label pre-
diction [18], zero-shot recognition [35], fine-grained image recognition [5] and
3D human pose regression [16]. Yang et al. [39] develop an attentional graph
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convolutional network to implement scene graph generation by upgrading the
nodes in both visual and semantic features. While we also employ GCN [15] to
upgrade the node representations, the graph we constructed is for each image,
and with geometric information, thus, the relation between regions can be better
captured, and the discriminative information can be preserved.

3 Semantic Regional Graph Model

The semantic regional graph modeling framework (SRG) including a semantic
region selection module, a graph modeling network module, and a scene classi-
fication module. The architecture of our framework is illustrated in Fig. 2.
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Fig. 2. The framework of SRG, which includes a semantic region selection module
to determine the discriminative semantic regions, and a graph modeling module to
learn the relation of semantic regions in geometric aspect, and a scene classification
module to conduct classification. (couch, tv and paper are the object semantic regions,
wall-concrete, furniture-other and carpet are the stuff semantic regions)

3.1 Semantic Region Selection Module

Generally, both stuff and object regions can provide discriminative informa-
tion. To obtain these semantic regions comprehensively, abundant annotation is
required. In our work, we adopt the COCO-Stuff [3] dataset, which contains 91
stuff categories and 80 object categories. Since the COCO-Stuff [3] dataset is a
semantic segmentation dataset, we propose to implement our method based on
the semantic segmentation network.

Given an image I, we feed it into a pre-trained semantic segmentation model
(e.g. DeeplabV2 pre-trained on the COCO-Stuff), and obtain a label map S ∈
RH×W as output. The label map S has the same resolution of input image I.
The value Sij of the pixel (i, j) in S represents the predicted category of its
counterpart in I. For each category c, we can define a category binary map Sc

based on S, which can be formalized as:

Sc
ij =

{
1, Sij = c

0 Sij �= c
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In practice, some category-wise binary maps will have no or few positive pixel
(the value of the pixel is 1). These maps bring useless or noise information about
desired semantic regions. So we set a threshold T to filter them. First, we count
the number P c of positive pixels in each category map Sc. Then, we select a new
subset {c̄ | P c̄ > T} of categories.

Based on the binary map S c̄, we generate the connected components as
semantic regions by applying the algorithm in [33]. By performing the same
operation on all selected category-wise binary maps, we can obtain the set R of
semantic regions. Each item r in R corresponds to a semantic region, and con-
tains two elements r =

[
r1, r2

]
, where r1 = {x, y, w, h} contains the coordinate

of central point and width and height of this region and r2 denotes the pre-
dicted category of this region. To determine the discriminative semantic regions,
we design several region selection methods:

Maximum Region (MR): The simplest selection method only consider the
area of regions. Given region r, the area of region can be computed by r1. Then,
we choose top N regions which are listed in descending order by area. We define
the operator S(·) to represent this selection process. The selected region set V
is obtained by,

V = S(R, N)

Category guided Maximum region (CM): Considering the semantic diver-
sity, we propose another selection method by considering the category informa-
tion r2 of region. To address the issue that many large regions in R belong to a
few categories, we choose the maximum region of each category in R to form a
new region set Rcm. Then the operator S(·) is performed on Rcm to obtain the
selected region set V .

Category guided Union (CU): To bring abundant and useful information,
another selection operation is based on the union of regions within same pre-
dicted category. We compute the union of regions of every category c̄, and use
the union as the element to form a new region set Rcu. Then the operator S(·)
is performed on Rcu to obtain the selected region set V .

After obtaining the discriminative semantic region set V , we extract the local
representations of regions through a pre-trained CNN. For each region vi in V ,
we can use the coordinate of central point and width and height with RoIAlign
[13] operation to generate the representation xi ∈ Rd of this region. To make use
of global information, we regard the image as a global region with the geometry
information {x = W/2, y = H/2,W,H} and add it into the region set V . Finally,
the region representation matrix X ∈ R(N+1)×d is obtained.

3.2 Graph Modeling Module

In order to model these regions, we reorganize them in form of graph and per-
form GCN [15] to capture the discriminative relation between regions. Unlike
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the conventional convolutions, the GCN is operated on the non-Euclidean data,
which requires to learn a specific function fgcn(,)

X(t+1) = fgcn(X(t), A) (1)

where X ∈ RN×d(N indicates the number of regions, and d denotes the dimen-
sion of region representation) is the region representation matrix and A ∈ RN×N

is the corresponding adjacency matrix (we will discuss the construction process
of A later). When applying the convolution operation [15], the function fgcn can
be formalized as:

X̄(t+1) = η(θ̃− 1
2 Ãθ̃− 1

2 X̄(t)W (t)) (2)

where X(t+1) ∈ RN×d denotes the optimized representations of regions, and
Ã = A + IN , θii =

∑
j

Ãij is the degree matrix of Ã, W (t) denotes the trainable

weight matrix. η(·) is the non-linear activation function ReLU.
To optimize the node representations on the graph. We need to extract the

local representation set X = {X1, ...Xi, ...XN}, and construct the adjacency
matrix A. Since we have extracted the node representations that based on the
RoIAlign [13]. Therefore, we only discuss the way of constructing the adjacency
matrix A.

Geometric Relation: To understand the connection of each node represen-
tation on the graph, we construct the adjacency matrix A. Since the impact
of geometric relation in scenes is heavily. Thus, in order to model the rela-
tion of semantic regions, we define the geometric representation based on each
region, and construct the corresponding geometric adjacency matrix. For a pair
of regions vi and vj in region set V , a 4-dimensional relative geometric feature
is produced, as(

log
( |xi − xj |

wi

)
, log

( |yi − yj |
hi

)
, log

(
wj

wi

)
, log

(
hj

hi

))

Then, this feature is embedded into a high-dimensional (ds-dim) representation
Oij by performing method in [29]. The embedded feature is projected by Wo ∈
Rds×1 into a scalar, which can be represented as:

αij = OijWo,

Agr = softmax(α) (3)

After constructing the adjacency matrix, we can apply the graph convolution
network in Eq.(6) to update the regional representation X(t), and generate the
updated X(t+1).

3.3 Scene Classification Module

To prevent over-fitting, we only adopt one-layer GCN. After the operation of
graph modeling, we obtain the final region representations X1, then use the
global region representation X1

1 as image representation. Finally, the image rep-
resentation is fed into an one-layer fully connected network for classification.
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4 Experiments

In this section, we introduce the experimental details of our SRG. And we design
several experiments, to evaluate the performance of SRG on two widely used
scene recognition benchmarks, MIT67 [20] and SUN397 [36].

4.1 Experimental Datasets

MIT67: There are 67 indoor scene categories and 15,620 images. Each category
contains at least 100 images. For evaluation experiments, each category contains
80 images for training and 20 images for test following the original protocol.

SUN397: There are 397 categories and 108,754 images in this dataset. Following
the original paper, we divide 50 images for training and 50 images for test. Due
to this dataset is relatively large, evaluating on this dataset is challenging.

4.2 Implementation Details

In the semantic region selection module, we adopt the DeeplabV2 [4] pre-trained
on the COCO-Stuff [3] as our basic segmentation model. The resolution of the
input image is fixed as 448 × 448, which leads to 448 × 448 label map. Based
on this map, we select the discriminative regions of the image by our region
selection methods, in which the threshold T is 0.01, and the selected number
N of selected discriminative regions is determined on the statistics of the dis-
tribution of the number of regions, which are shown in Fig. 3. The mean values
of the two benchmarks are 15.61 and 10.46, respectively. Thus, the number of
regions we selected in MIT67 and SUN397 are 16 and 10 respectively (if the
number of semantic regions in some images is lower than N , we fill the selected
region set with fake regions, whose representations are denoted by zeros, and
geometric information is {x = 0, y = 0,W = 1,H = 1}). Then, we extract these
representations based on Res50-PL model (ResNet50 [14] model pre-trained on
the Places365). The initial region representation matrix is (N + 1) × 2048.

In the graph modeling module, we adopt one layer GCN to upgrade the
node representations. The initial node representations are regularized with the
L2 regularization factor, then fed into our graph model. In the training phase,
we train our models for 20 epochs with the batch size of 32 and Adam optimizer,
and the initial learning rate is set to 0.001, and is divided by 10 at 10/15/18th
epoch. On the two benchmarks, the hidden layer units in graph convolution
are 4096, and 8192, for MIT67 and SUN397 datasets respectively. We use omit
regularization (dropout) in our final classifier with a rate of 0.5.

After graph modeling, we obtain the final region representations. We only
adopt one layer GCN to upgrade, and use the global region representation
as image representation to conduct scene classification, which can prevent the
impact of the fake region representations upgrade.
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Fig. 3. The distribution of discriminative regions in MIT67 and SUN397.

4.3 Results

In this subsection, we conduct several experiments to evaluate the performance
of our approach. The classification results of the linear SVM are set as the
baselines, whose inputs are initial global region representations.

Effectiveness of Different Region Selections. In the semantic region selec-
tion module, we set three region selection methods, such as Maximum Region
(MR), Category guided Maximum region (CM) and Category guided Union
(CU). We conduct some detailed experiments in Table 1, and analyze the effec-
tiveness of three selection methods. In Table 1, it can be noticed that three
region selection methods have achieved higher results than the baselines, which
demonstrates the effectiveness of our region selection method. In addition, we
can observe that CM performs better than MR, which indicates when selecting
regions based on the semantic meanings, more discriminative information of the
image can be learned. Moreover, the slightly lower performance of CU demon-
strates that selecting the union of regions may result in redundancy. Therefore,
it’s essential to ensure the diversity of semantics and avoid redundant informa-
tion when selecting discriminative semantic regions.

Table 1. Comparisons of different region selection methods

Baseline Region selection MIT67(%) SUN397(%)

MR CM CU

� – – – 86.87 71.53

– � – – 87.99 74.03

– – � – 88.13 74.06

– – – � 87.69 73.89
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Moreover, three region selection methods are based on the same graph mod-
eling. In Table 1, it can be noted that our best results are 1.26% and 2.53% over
baselines. This confirms that the effectiveness of modeling the geometric rela-
tion between discriminative semantic regions, which can boost the performance
of scene recognition.

The Effectiveness of Different Kinds of Semantic Regions. To determine
the effectiveness of different kinds of semantic regions, we construct the following
experiments. We divide the semantic regions into different sets, including stuff
and object sets. According to the statistics, the number N of selected regions
is 4/12 (object/stuff) in MIT67, 2/8 (object/stuff) in SUN397. We select these
regions based on the CM region selection method. In Table 2, we can observe that
the stuff and object are both over the baselines when the number of regions is
equal, which indicates that we can obtain discriminative information from both
stuff and object regions. When enlarging the number of stuff regions, there are
still improvements. Furthermore, when considering both stuff and object regions,
the improvement of performances are also obvious, which demonstrates that
object and stuff regions can provide complementary information. Thus, obtaining
comprehensive information of scene images can improve the performances of
scene recognition.

Table 2. Comparisons of different semantic regions.

Regions Object Stuff Object & Stuff MIT67(%) SUN397(%)

2 � – – – 71.92

2 – � – – 72.41

8 – � – – 73.4

10 – – � – 74.06

4 � – – 87.01 –

4 – � – 87.09 –

12 – � – 87.46 –

16 – – � 88.13 –

Baseline – – – 86.87 71.53

4.4 Comparison with State-of-the-Art Methods

We compare our SRG with state-of-the-art methods. The results are shown in
Table 3. It can be observed that our SRG outperforms the current state-of-the-
art methods, confirming the effectiveness of our method. Compared with the
region based works [24,32,34,37], our SRG achieves the best performance, which
demonstrates the effectiveness of our method. To the best of our knowledge, our
SRG obtains state-of-the-art performance in the domain of scene recognition.
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Table 3. Comparisons of our method with state-of-the-art methods

Approaches MIT67(%) SUN397(%)

Places365+VGGNet16 [2] 76.5 63.2

MetaObject-CNN [34] 78.9 58.11

MLR+CFV+FCR1-w [37] 82.24 64.53

LS-DHM [10] 83.75 67.56

VSAD+FV+Places205-VGGNet-16 [32] 86.2 73.0

PowerNorm [19] 86.3 –

Places401-Deeper-BN-Inception (B2)[31] 86.7 72.0

SDO [6] 86.72 73.41

MP [24] 86.9 72.6

MFAFVNet+Places [38] 87.97 72.01

Adi-Red [40] – 73.59

Our SRG 88.13 74.06

5 Conclusion

In this paper, we propose our semantic regional graph modeling framework for
scene recognition. To select the discriminative semantic regions in the scene com-
prehensively, we conduct several region selection methods, effectively capturing
the discriminative semantic regions, ensuring the semantic diversity and avoiding
redundancy. In the graph learning module, we optimize the region representa-
tions in the relation of geometric aspects, and generate the discriminative scene
representations. The exploration of stuff and object regions also demonstrates
the complementarity of them. Based on the comprehensive semantic regions,
our method can obtain state-of-the-art performances on MIT67 and SUN397
datasets.
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