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Abstract. In this paper, we address the challenging problem of online
Multi-Object Tracking (MOT). We find for those targets that are
occluded or too small, the detectors usually fail to locate them. But
an SOT tracker always provides a prediction for each target in the next
frame. Therefore, we propose to use Single Object Tracking (SOT) pre-
dictions as complementary to detections. Also, we solve the data associ-
ation problem via a new clustering method based on the Markov Clus-
tering Algorithm (MCL). We first build a graph based on the targets,
detections and SOT predictions, and then separate different identities
by clustering. Experimental results on the MOT17 benchmark shows
that our proposed method outperforms previous state-of-the-art meth-
ods w.r.t. MOTA and also reduces the number of false negatives and
fragments significantly.

Keywords: Multi-object Tracking · Single Object Tracking · Markov
Clustering

1 Introduction

Multiple object tracking (MOT) in videos serves as a fundamental and important
task for many vision applications, such as video surveillance and autonomous
driving. The purpose of this task is to locate multiple objects in each frame and
obtain the trajectory for each identity. Most recently proposed approaches for
MOT adopt the tracking-by-detection framework, which formulates the tracking
problem as data association and solves it by linking detections frame by frame [3,
25,30–32,38]. According to different requirements of application systems, MOT
can be handled in either offline or online mode. The offline mode makes full use
of all frames across the entire sequences to generate trajectories; in contrast, the
online mode only has access to previous frames and the current frame. In this
paper, we focus on the online mode, which is more challenging and is required
by most online systems.

As we all know, the association algorithm is critical for the multiple object
tracking task. For online MOT, a conventional way is to perform matching among
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Fig. 1. Illustration of missing detections and recovered MOT results from our proposed
method. Two major factors that cause missing detections are (a) occlusion and (b)
small scale. Top row: detections. Bottom row: our MOT results. The two sequences are
from MOT17-04 and MOT17-02 sets, respectively.

detections in neighboring frames. Concurrent methods have made great efforts
on learning effective feature representations for matching [32,37]. A big disad-
vantage of those methods is that they rely on the provided detections, which
are sometimes noisy and they are not able to recover from missing detections.
We show two examples in the upper row of Fig. 1, where the missing detec-
tions are caused by occlusion and small scale. Several works [43–45] have a great
progress for pedestrian detection, but it is quite time consuming for these detec-
tors to make efficient work for recognizing and understanding video sequences
with complex scenes.

In order to overcome the above problems, some methods propose to use single
object tracking (SOT) predictions as compensation [7,47]. The SOT method
predicts the location of an identity in the next frame given the location in the
current frame. Previous methods rely too much on the SOT predictions, resulting
in frequent drifts towards other identities in complex scenes. As of now, it still
remains an open question how to integrate the detections and SOT predictions,
which are independent to each other.

Therefore, in this paper we investigate how to integrate pre-generated detec-
tions and single object tracking predictions in a unified framework. We propose
a new graph clustering algorithm to locally cluster three groups of bounding
boxes on two neighboring frames: the MOT targets on frame t−1; the SOT pre-
dictions on frame t; and the detections on frame t. After clustering, the target
location of each identity on frame t will be estimated by all the bounding boxes
belonging to its cluster. The MOT results on frame t are then used as targets
when processing frame t and t + 1.

In summary, our contributions are as follows:

– In order to compensate for noisy and missing detections, we propose to con-
sider SOT predictions and integrate two sources of bounding boxes in a more
balanced manner for online MOT.
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– We propose a new graph clustering procedure using the Markov Cluster Algo-
rithm (MCL) algorithm to locally cluster MOT targets, SOT predictions and
detections into different identities according to similarities represented by
deep features.

– From the experimental results on the challenging MOT17 benchmark, we
demonstrate that our method achieves state-of-the-art results among online
methods. As shown in Fig. 1b, our approach is able to recover missing detec-
tions so as to obtain more complete trajectories.

2 Related Work

Multi-object Tracking Using SOT Tracking. Some previous works [7,40,
47] have attempted to use single object tracking approaches to solve the MOT
problem. Zhu et al. [47] design a cost-sensitive tracking loss based on ECO
[9] tracker and propose Dual Matching Attention Networks with spatial and
temporal attention mechanisms. It relies too much on the single object tracking
predictions without making full use of detections. Chu et al. [7] use CNN-based
single object tracker with spatial-temporal attention mechanism to handle the
drift caused by occlusion and interaction among targets, but it does not consider
how to deal with missing targets. Different from previous works, we integrate
detections and single object tracking predictions in a more balanced way to
estimate the targets’ final locations. The single object tracker runs independently
to track targets even when they are occluded.

Multi-object Tracking by Data Association. Data association is important
for the MOT task. Most online processing methods [3,13,38] adopt Hungarian
Algorithm [26] to match detections and targets. Wojke et al. [38] propose a
simple online and real-time tracking method with a deep association metric,
but it depends too much on the quality of detections and features based on
the appearance and position. On the other hand, offline methods consider MOT
task as a global optimization problem by using the multi-cut model [30–32] or
network flow [10,36,42]. For detection based graph models, it is effective to fix
noisy detections, but is hard to find the global optimal solution. In this paper,
we borrow the idea of graph clustering from offline MOT, but reduce the scale
of the graph from global to local by a large margin. In this way, our method is
able to fix noisy detections but it makes the optimization problem much easier
to solve.

3 Online MOT Framework

The framework of the proposed online MOT algorithm is shown in Fig. 2. First,
an SOT tracker is used to make prediction for each target at frame t (see
Sect. 3.1). All bounding boxes of targets, SOT predictions and detections are
cropped into image patches for further processing. Second, an affinity graph
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Fig. 2. The proposed online MOT framework. The graph clustering is performed on
top of the targets, predictions and detections. Each cluster consists of a group of image
patches from the same identity. After clustering, we update the location of each target
in frame t by taking into account both SOT predictions and detections.

model is built based on the whole set of image patches. After that, we utilize
a new clustering procedure to partition all image patches into groups, one for
an identity (see Sect. 3.2). Finally, we update location of each target at frame t
according to the predictions and detections inside the cluster (see Sect. 3.3).

In the following, we will describe each component of our framework in more
detail.

3.1 SOT Algorithm

For a tracking-by-detection framework, the MOT performance very much rely
on the quality of detections. When the detector fails to find a tiny or occluded
object, the trajectory becomes broken and a wrong ID switch may happen in this
frame. Fortunately, the SOT method can be used to recover missing detections.

In this paper, we choose the Discriminative Correlation Filter Tracker with
Channel and Spatial Reliability (DCF-CSR) [23] for tracking each single object.
The spatial reliability map adapts the correlation filters to support to the part
of the object during tracking. This strategy enlarges the search region when
the target happens to be occluded. The channel reliability scores which reflect
channel-wise quality of the learned filters, are used for weighting the per-channel
filter responses. The DCF-CSR tracker obtains state-of-the-art results on sev-
eral standard object tracking benchmarks, including OTB100 [39], VOT2015
[18] and VOT2016 [17]. It also runs in real-time on a single CPU as it uses
computationally efficient features, i.e. HoG [8] and Colornames [33].

Given a set of D-channel features F = {f1, ..., fD} and correlation filters H =
{h1, ..., hD}, the location corresponding to the maximum value in the correlation
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response indicates the new position of the target. Additionally, the DCF-CSR
tracker introduces channel reliability weights W = {w1, ..., wD} that considered
as scaling factors based on the discriminative power of each feature channel.

Ỹ =
D∑

l=1

fl � hl · wl. (1)

Here, the symbol � represents circular correlation computation between features
fl and filters hl. The optimal correlation filters H are estimated by minimizing
the following cost function:

ε(H) =
D∑

l=1

‖fl � hl − Y ‖2 + λ ‖hl‖2 , (2)

where the variable Y is the desired output, which is a 2-D Gaussian function
centred at the target location, and λ is a regularization parameter that controls
overfitting.

3.2 Graph Clustering

We solve the data association problem via a graph clustering method. Different
from previous works, our graph is constructed based on two adjacent frames with
local information. Since the number of clusters is unknown, we use the Markov
Cluster Algorithm (MCL) [34] to partition the graph into multiple sub-graphs.

Graph Definition. For every two adjacent frames t − 1 and t, we first define
a finite set V , which consists of a series of bounding boxes: the targets at frame
t − 1, the predictions by SOT tracker and the provided detections at frame t.
Another finite set E is composed of edges. Each element e ∈ E represents an
edge between two nodes v, w ∈ V . Every edge e ∈ E has a cost, represented
by the similarity c ∈ (0, 1) computed based on deep feature of two nodes. A
weighted and undirected graph G = (V,E) shown in Fig. 3a is then defined with
the following two constraints:

• For v, w ∈ V , if both of them come from the same category among the
targets, SOT predictions and detections, they should not be connected, the
edge {v, w} �∈ E.

• For v, w ∈ V , if they are too far way in either the spatial domain or the
feature domain, they should not be connected, the edge {v, w} �∈ E.

Clustering. Given an affinity graph, we apply our proposed clustering algo-
rithm to partition it into clusters, each of which consists of bounding boxes of
one single identity. We show an illustration in Fig. 3b.
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Fig. 3. Illustration of our graph clustering method. (a) In the graph, each node indi-
cates one bounding box; each edge represents affinity between a pair of nodes. We
measure similarity with CNNs features. (b) Nodes are grouped into different clusters,
each of which consists of bounding boxes of one identity.

To partition the graph thoroughly, we develop a new graph clustering method
by running the Markov Cluster Algorithm (MCL) for multiple rounds. The MCL
algorithm finds cluster structure in a graph by a mathematical bootstrapping
procedure. It simulates random walks through the graph by alternation of two
operators called expansion and inflation. Expansion coincides with taking the
power of the graph matrix using the normal matrix product (i.e. matrix squar-
ing), and allows flow to connect different regions of the graph. Inflation cor-
responds with taking the Hadamard power of the graph matrix, and changes
the probabilities associated with the collection of random walks. Shortening the
expansion parameter and increasing the inflation parameter are able to improve
the granularity or tightness of clusters.

In our method, we run the MCL algorithm for multiple times to reach rea-
sonable numbers of predictions and detections in each cluster. The detail of our
graph clustering is illustrated in Algorithm 1. First, The MCL process is applied
on the whole graph and obtains coarse clusters where sometimes one node is
contained in multiple clusters or alone in a cluster. Then, we adapt the infla-
tion parameter step by step and perform a loop graph clustering (Algorithm 2)
on overlapping clusters where multiple targets are connected. After that, we
adopt the loop graph clustering again on a sub-graph consisting of all incom-
plete clusters so as to make sure each detection node connect to its target. Here,
incomplete clusters indicate those ones missing SOT predictions or detections.

3.3 State Update

After clustering, we classify all clusters into four different types according to the
number of prediction and detection boxes in each cluster. We show an illustration
in Fig. 4.
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Algorithm 1. Graph Clustering
Input: Affinity Graph G = (V, E).
Output: Confirmed Clusters Set M .
1: M ← ∅, incomplete clusters set D ← ∅;
2: Apply MCL algorithm to cluster on Graph G to discover clusters set C;
3: for c ∈ C do
4: n1, n2, n3 ← the numbers about target, prediction and detection in c;
5: if n1 = 0 or n2 = 0 or n3 ≥ 0 then
6: D = D ∪ c;
7: else if n1 = 1 and n2 = 1 and n3 ≥ 1 then
8: M = M ∪ c;
9: else

10: Get a sub-graph g by a overlapping cluster c;
11: Loop graph clustering (Algorithm 2) on g to get clusters set S;
12: for s ∈ S do
13: k1, k2, k3 ← the numbers about target, prediction and detection in s;
14: if k1 = 1 and k2 = 1 and k3 ≥ 1 then
15: M = M ∪ s;
16: else
17: D = D ∪ s;
18: end if
19: end for
20: end if
21: end for
22: Get a sub-graph g by D;
23: Loop graph clustering (Algorithm 2) on g to get clusters set S;
24: for s ∈ S do
25: M = M ∪ s;
26: end for

For each type of cluster, we design a corresponding state update strategy,
and explain different strategies in the following:

(a) The state is estimated by merging the SOT prediction and detection(s).
(b) The state is first estimated by Kalman filter prediction and then refined by

merging the prediction and detection(s).
(c) The state is estimated by the SOT prediction.
(d) The target is seen as out of view, so we remove it from the MOT list.

4 Experiments

Dataset. We evaluate our proposed online MOT method on the MOT17 bench-
mark dataset [24]. The dataset consists of 7 videos for train and 7 videos for test.
Each video sequence is provided with 3 sets of detections, i.e. DPM [12], Faster-
RCNN [27] and SDP [41].
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Algorithm 2. Loop Graph Clustering
Input: Sub-graph G = (V, E), Initial inflation parameter r, Increment Δr.
Output: Clusters Set C.
1: NOT OK ← true;
2: while NOT OK do
3: Cluster on Graph G with inflation parameter r to discover clusters set C;
4: for c ∈ C do
5: n1, n2, n3 ← the numbers about target, prediction and detection in c;
6: if n1 = 0 or n2 = 0 or n3 = 0 then
7: NOT OK ← false;
8: else if n1 = 1 and n2 = 1 and n3 >= 1 then
9: NOT OK ← false;

10: else
11: NOT OK ← true;
12: break;
13: end if
14: r ← r + Δr;
15: end for
16: end while

Fig. 4. Illustration of four cluster types. We classify clusters into four types only for
target including (a) One target, one prediction and one or more detections; (b) One tar-
get and one or more detections; (c) One target and one prediction; (d) One target. The
circle, triangle, square indicate targets, SOT predictions and detections, respectively.

Evaluation Metrics. We adopt the evaluation metrics defined in [2,19,22,24,
28]: Multiple Object Tracking Accuracy (MOTA) [2], Multiple Object Tracking
Precision (MOTP) [2], ID F1 score (IDF1) [28], the ratio of Mostly Tracked tar-
gets (MT), the ratio of Mostly Lost targets (ML), the number of False Positives
(FP), the number of False Negatives (FN), the number of Identity Switches (IDS)
[22] and the number of fragments (Frag). In these metrics, we mainly force on
MOTA which can intuitively measure the performance of tracker. As illustrated
in Eq. (3), MOTA combines three error sources: false positives (FP), missed
targets (FN) and identity switches (IDS).

MOTA = 1 −
∑

t(FNt + FPt + IDSt)∑
t GTt

(3)

Implementation Details. We call the DCF-CSR tracker by OpenCV tracking
API which contains implementations of many single object tracking algorithms.
To reduce drifts, the tracker always serves the final updated location as template.
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Fig. 5. Tracking examples from the MOT-CVPR19 challenge. The top tracklet of ID 6
and the bottom tracklet of ID 401 in our results are from CVPR19-01 set and CVPR19-
03 set respectively.

Table 1. Tracking performance on the test set of the MOT17 benchmark dataset.

Mode Method MOTA↑ MOTP↑ IDF1↑ MT↑ ML↓ FP↓ FN↓ IDS↓ Frag↓
Online GMPHD N1Tr [1] 42.1 77.7 33.9 11.9% 42.7% 18,214 297,646 10,698 10,864

EAMTT [29] 42.6 76.0 41.8 12.7% 42.7% 30,711 288,474 4,488 5,720

FPSN [20] 44.9 76.6 48.4 16.5% 35.8% 33,757 269,952 7,136 14,491

PHD GSDL [14] 48.0 77.2 49.6 17.1% 35.6% 23,199 265,954 3,998 8,886

AM ADM [21] 48.1 76.7 52.1 13.4% 39.7% 25,061 265,495 2,214 5,027

DMAN [47] 48.2 75.9 55.7 19.3% 38.3% 26,218 263,608 2,194 5,378

Ours 48.4 76.3 45.5 19.4% 35.9% 33,525 255,091 2,531 4,944

Offline MHT bLSTM [16] 47.5 77.5 51.9 18.2% 41.7% 25,981 268,042 2,069 3,124

IOU [4] 45.5 75.9 39.4 15.7% 40.5% 19,993 281,643 5,988 7,404

EDMT [6] 50.0 77.3 51.3 21.6% 36.3% 32,279 247,297 2,264 3,260

If the target is only tracked by single object tracker over a period of time tmax =
30, it will be seen as out of view and be removed from MOT list. We employ
a pre-trained CNN model [37] trained on a large-scale person re-id dataset [46]
to extract deep feature with 128 dimensionality. The affinity graph is based on
the cosine distance of pair-wise deep feature with thresholds about the feature
domain and the space domain: τf = 0.2 and τs = 9.4877.

4.1 Results on the MOT Benchmark Datasets

We evaluate our proposed method on the test sets of the MOT17 benchmark
and compare it with the state-of-the-art MOT trackers in Table 1. The symbol
“↑” means that higher is better and the symbol “↓” means that lower is better.

Compared to other online methods, our MOT method achieves the best per-
formance in terms of MOTA, MT, FN and Frag metrics. Especially, our method
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Table 2. Comparison performance with different SOT trackers on the train set of the
MOT17 benchmark dataset.

SOT MOTA↑ MOTP↑ IDF1↑ MT↑ ML↓ FP↓ FN↓ IDS↓ Frag↓
MOSSE [5] 27.5 81.2 20.7 1.9% 81.5% 3,374 236,840 3,178 6,643

KCF [15] 49.8 81.5 48.8 12.2% 64.8% 11,457 155,130 2,601 2,436

UDT [35] 50.4 81.1 50.4 13.1% 63.7% 14,201 151,360 1,683 2,062

DCF-CSR [23] 50.6 81.5 50.0 13.0% 63.9% 14,214 150,660 1,719 2,085

Table 3. Contributions of SOT and clustering.

Method MOTA↑ FP↓ FN↓ IDS↓ (FP + FN + IDS) ↑
Baseline 47.7 7,802 165,041 3,354 176,197

+ clustering 48.2 7,463 165,050 2,044 174,557

+ SOT 49.1 21,523 147,783 2,140 171,446

+ SOT, clustering 50.6 14,214 150,660 1,719 166,593

has far achievements than other online methods in terms of FN and Frag. The
scores of FN and Frag precisely explain that our method can fix the problems
caused by missing detections. Besides, the performance of our method in MOTA
is also near with state-of-art offline methods performance. Also we show some
instances of our results in Fig. 5. Those tracklets are from MOT CVPR 2019
challenge [11], which was released not long ago and is hiding other results now.
Therefore, we are not able to compare our method with other ones, but we can
visualize tracking results, that will be helpful to find success and failure cases.

4.2 Ablation Study

SOT Algorithm Selection. In terms of performance of single object tracking,
we compare MOT results with different state-of-the-art SOT methods on the
train sets of the MOT17 benchmark dataset. We use MOSSE [5], KCF [15], DCF-
CSR [23] and UDT [35] respectively to get different results. Among these SOT
methods, MOSSE, KCF and DCF-CSR are all correlation filter trackers based on
different hand-crafted features, while UDT tracker is an unsupervised correlation
filter tracking method with deep features. As illustrated in Table 2, DCF-CSR
and UDT have pretty performance in terms of all metrics. But considering about
running speed and the value of MOTA, we finally choose DCF-CSR as the single
object tracker in our MOT method.

Impact of SOT and Clustering. We set up different experiments to demon-
strate the contributions of SOT algorithm and graph clustering. First, we asso-
ciate only targets and detections by building an assignment problem that can be
solved by the Hungarian Algorithm [26]. Second, we consider the data associa-
tion as a local optimization by adopting the MCL algorithm. Last, we add single
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object tracking module to previous experiments. As illustrated in Table 3, clus-
tering works better than assignment, and the method with single object tracking
performs better than one without single object tracking. In general, SOT and
clustering modules have positive effects on the performance of MOT.

5 Conclusions

In this paper, we introduce a unified online multi-object tracking framework
which integrates single object tracking predictions and pre-generated detections,
and applies graph clustering to solve local optimization. For single object track-
ing, we use DCF-CSR tracker to track each target location. For graph clustering,
we take the MCL algorithm repeatedly to reach reasonable cluster results. In
the end, we evaluate our proposed method on the MOT benchmark dataset and
obtain better performance than other state-of-the-art trackers.
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