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Abstract. Recent research has shown that methods based on deep convolu-
tional neural networks (DCNN) can achieve high accuracy in the classification
of hyperspectral image (HSI). However, convolution operations with different
dimensions in deep neural networks usually perform in an isotropic structure,
resulting in the loss of extracting deep feature of anisotropic neighborhood.
Thus how to improve the ability of discriminative features learning is the key
issue in DCNN. In this paper, we propose an anisotropic diffusion partial dif-
ferential equation (PDE) driven hybrid CNN framework, named PM-HCNN.
The proposed framework uses 2D convolution and 3D convolution layers to
extract of spectral and spatial contexts in HSI. And a PDE based diffusion layer
is cascaded as feature propagation layers after hybrid convolution layers to
propagate the intrinsical discriminative features of various classes. Due to the
anisotropic diffusion on the feature space, the classification mistakes of tradi-
tional CNNs with a small number of training data can be further eliminated
while object boundaries can be preserved. Experimental results on several
popular datasets show that the proposed PM-HCNN achieved state-of-the-art
performance compared with the existing deep learning-based methods.

Keywords: Convolutional neural networks � Hyperspectral image
classification � Anisotropic diffusion model � Feature propagation

1 Introduction

Hyperspectral remote sensors provide an effective method for human to observe the
Earth’s surface. Hyperspectral imagery (HSI) with high resolution in both spectral and
spatial domains (i.e. derived from sensor systems) can be used in a wide range of
specific applications, such as agriculture, physics, and surveillance. In this case, the
acquired hyperspectral images can provide an almost continuous spectral curve for
each pixel in the image. Capturing rich spectral information while acquiring spatial
information, facilitates the generation of complex models to identify and classify dif-
ferent types of materials or plants in the images. However, the increase of the amount
of hyperspectral image data and the redundancy in spectral information bring great
challenges to the classification of hyperspectral images.
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In past decades, many effective methods have been proposed for the classification
of HSIs. For example, k-nearest neighbor (KNN) [1] has been used to construct a
distance function to analyze the similarity between testing samples and training sam-
ples. In [2], support vector machine (SVM) has more potential to determine the
decision boundary between classes by kernel methods. Also inspired by hybrid
huberized SVM (HHSVMs), a random HHSVM algorithm [3] for HSI was proposed.
Meanwhile, low-dimensional sparse representation-based classification (SRC) [4] and
random forest-based classifiers [5] have also been proved to be effective in HSI clas-
sification. Nevertheless, the existing methods mentioned above paid less attention to
the spatial relationship of the neighboring pixels, and the feature vectors fed into the
classifier are represented only by the spectral features of the pixels.

In recent years, spatial features have been considered in the classification process to
resolve the issues raised by some pixels of different categories with similar spectrums.
Consequently, some works have been conducted to introduce spatial information of
HSI into classification, such as Markov Random Field (MRF) [6] and wavelet trans-
form [7]. In the meantime, several traditional filters have also been adopted in the
classification, such as bilateral filter, mean filter and Gabor filter. Furthermore, with
considering spatial domains of HSI, for the first time in the [8], an edge retention filter
[8] was proposed to construct the spectral and spatial information of HSIs. In [9], the
Gabor filter was combined with the nearest regular subspace (RMS), and then the
spatial features extracted by the filter were fed to the RMS classifier.

Recently, the deep learning models have been introduced into the field of computer
vision as a powerful tool. Due to the powerful feature representation ability of deep
networks, many typical deep learning methods have been applied into the HSI clas-
sification, such as deep belief networks (DBNs) [10] and convolutional neural networks
(CNNs) [11, 12]. In order to enhance the utilization of HSI spectral-spatial structures,
Li et al. [13] proposed a new hyperspectral classification framework based on a fully
CNN, and integrated the optimized extreme learning machines (ELM). Cao et al. [14]
combines Markov random fields and convolutional neural networks to classify images
by formulating the problem from Bayesian. Additionally, Zhang et al. [15] uses a
multi-scale summation approach based on regions, and then feeds all spectral and
spatial information into a fully connected network.

Despite the significant improvements by deep networks in spectral-spatial joint
classification, the standard convolution operations in deep networks usually perform in
an isotropic structure, therefore, which fails to extract the features of anisotropic
neighborhood of HSIs, a phenomenon which additionally challenges the accurate
classification of pixels near the object boundaries. In order to eliminate the drawback of
deep networks with isotropic convolution, we propose an anisotropic diffusion-driven
hybrid CNN framework, named PM-HCNN. In this work, first we use 2D and 3D
hybrid convolution layers to extract spectral-spatial features from original HSI, and
then a diffusion layer is added after the hybrid convolution layers to propagate the
intrinsical discriminative features of various classes. Lastly, to enable feature extraction
layer and the diffusion layer work collaboratively, we integrated the diffusion layer into
the whole network and trained together. The experimental results on two popular HSI
datasets demonstrate that the proposed PM-HCNN achieved state-of-the-art perfor-
mance compared with the existing deep learning-based methods.
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2 Anisotropic Diffusion Driven Hybrid CNN

Figure 1 shows the whole deep learning framework of HSI classification with aniso-
tropic diffusion. The whole deep learning framework is divided into two parts: a feature
extraction layer based on 2D and 3D convolution operations and a feature propagation
layer based on anisotropic diffusion. Since the network is an end-to-end framework, the
input is X 2 R

H�W�B, i.e., indicates the original HSI, and the output is ~F 2 R
H�W�L,

i.e., indicates the probabilities that the pixel belongs to each class.

2.1 Hybrid 2D and 3D Convolution Layers

CNN automatically learns the features of images at various levels through convolution
operations, which is consistence with our common sense of understanding images.
Therefore, once CNN was proposed, its hierarchical design was gradually recognized
as the most effective and successful technique in the field of computer vision.

2D-CNN can extract context representation features efficiently during the feature
extraction. The value at position ðx; yÞ on the ith feature map in the lth layer is given by
Eq. (1):

Fx;y
l;i ¼ rð

X
m

XHl�1

h¼0

XWl�1

w¼0

Kh;w
l;i;mF

ðxþ hÞ;ðyþwÞ
ðl�1Þ;m þ bl;iÞ ð1Þ

where Fðxþ hÞ;ðyþwÞ
ðl�1Þ;m is the value at position ðxþ h; yþwÞ on the mth feature map in the

ðl� 1Þth layer, m indexes over the set of the feature maps in the ðl� 1Þth layer which

Fig. 1. The hybrid CNN with anisotropic diffusion (PM-HCNN) for hyperspectral image
(HSI) classification. H, W, B, L denote the height, width, bands, and categories.
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is connected to the current feature map, bl;i is the bias of the ith feature map in the lth
layer, Hl andWl are the height and width of the kernels, K

h;w
l;i;m stands for the value of the

kernel connected to the ith feature map in the lth layer at the position ðh;wÞ, and rð�Þ is
the activation function.

Due to the large number of bands in the hyperspectral image, the 2D convolution
operation will generate a large number of parameters, which leads to over-fitting. The
1� 1 2D convolution kernel used in the experiment can not only solve the above
problem, but also realize the cross-channel information combination and increase the
nonlinear characteristics. What is more, in this experiment, we combine a 2D convo-
lutional layer and a 3D convolutional layer into one hybrid convolutional layer. We use
a 2D convolution layer to extract spectral features and obtain spectral features maps.
The formula is changed as follows:

Fx;y
l;i ¼ rð

X
m

Kl;i;mF
x;y
ðl�1Þ;m þ bl;iÞ ð2Þ

where Kl;i;m indicates the value of the ith spectral convolution kernel of the lth hybrid
convolutional layer at the position m. Thereafter we use the 3D convolution layer to
convolve the spectral feature maps and output the spatial-spectral feature maps. Nor-
mally, 3D convolution operations are used for 3D feature cubes in an effort to compute
spatiotemporal features when the input data is 3D. The 3D convolution operation is
formulated as follows:

Fx;y;z
l;i ¼ rð

X
m

XHl�1

h¼0

XWl�1

w¼0

XRl�1

r¼0

Kh;w;r
l;i;m Fðxþ hÞ;ðyþwÞ;ðzþ rÞ

ðl�1Þ;m þ bl;iÞ ð3Þ

where i is the number of kernels in this layer, Fx;y;z
l;i is the value on the ith feature cube

in the lth layer at position ðx; y; zÞ, Rl indicates the spectral depth of 3D kernel, Kh;w;r
l;i;m is

the ðh;w; rÞth value of the kernel linked to the mth feature cube in the previous layer. In
our model, each feature cube is processed independently. So m in Eq. (3) need to be set
1, and the transformed formula for 3D convolution operation is as follows:

Fx;y;z
l;i;j ¼ rð

XHl�1

h¼0

XWl�1

w¼0

XRl�1

r¼0

Kh;w;r
l;i Fðxþ hÞ;ðyþwÞ;ðzþ rÞ

ðl�1Þ;j þ bl;iÞ ð4Þ

where j is the number of feature cubes in the preceding layer, Kh;w;r
l;i is the ðh;w; rÞth

value of the kernel linked to the jth feature cube of the preceding layer, Fx;y;z
l;i;j is the

output that is calculated by convolving the jth feature cube of the preceding layer with
the ith kernel of the lth layer at the position ðx; y; zÞ.

In summary, we use a 2D convolution, of which size is 1� 1, to reduce the
dimension of the channel without changing height and width of the input data, and then
extract the spectral and space information by 3D convolution. In addition, a plurality of
the above hybrid convolution layers are used to construct a deep network, and the
characteristics of both 2D and 3D convolution can be fully utilized to facilitate the
purpose of extracting deep spectral-spatial features.
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2.2 Feature Propagation Layers with Anisotropic Diffusion

A hyperspectral image with B channels and H �W size will be put into the neural
network as a whole. Take the Indian Pines dataset as an example, BN is added before
each 2D convolution layer to speed up the convergence of gradients, save computa-
tional resources and shorten the training time in the experiment.

In the stage of feature extraction, the spectral dimension of the data is transformed
into 128 when passing through the 2D convolution layer containing 128 1� 1� B
kernels. Moreover, for the 3D convolution layers, the kernel size is set to (3, 3, 7), the
kernel number is set to 2, the method of padding is set to “same”, and the stride is set to
(1, 1, 1), so the output of this hybrid layer becomes 2 channel feature maps. The input
of the second hybrid convolution layer is the output of the last hybrid convolution
layer, and the output of this layer is the same type of feature maps after the same
convolution operations. Finally, we use 1� 1� 256 2D convolution layer to perform a
pixel-by-pixel convolution operation on the feature maps.

For the following detailed explanation, after passing through the last 2D convo-
lution layer, the output is F, then the calculation formula of F is:

Fx;y;m ¼
X
m

Oi;mF
0
x;y;m þ bi ð5Þ

where F0
x;y;m is the value at the position ðx; yÞ on the mth feature map which output by

the last hybrid convolution layer, Oi;m is the ith convolution kernel and bi indicates
bias.

In order to enhance the quality of the feature maps and propagate the intrinsical
discriminative features of various classes, after the hybrid convolution layers, we
cascade a feature propagation (FP) layers with anisotropic diffusion. The idea is bor-
rowed from the nonlinear PDE which was proposed by Perona and Malik (also known
as PM diffusion) in [16].

Let Fx;y
t denotes the value at the position ðx; yÞ on the final pth feature map ðp ¼

1; . . .; LÞ in the tth iteration, the resulted anisotropic diffusion feature map can be
defined as follows:

Fx;y
tþ 1 ¼ Fx;y

t þ kðaN � rNðFx;y
t Þþ aS � rSðFx;y

t Þ
þ aE � rEðFx;y

t Þþ aW � rWðFx;y
t ÞÞ ð6Þ

where t represents the number of iterations, E, S, W, and N represent East, South, West,
and North, respectively, and k 2 0; 1=4½ � is used for the stability of the numerical
scheme. aN represents the diffusion coefficient in the north which controls the rate of
diffusion. rNðFx;y

t Þ indicates the derivative in the north. They can be expressed in
detail as follows:

aN ¼ expð� rNFk k2=k2Þ aS ¼ expð� rSFk k2=k2Þ
aE ¼ expð� rEFk k2=k2Þ aW ¼ expð� rWFk k2=k2Þ

ð7Þ
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rNðFx;y
t Þ ¼ Fx;y�1

t � Fx;y
t rSðFx;y

t Þ ¼ Fx;yþ 1
t � Fx;y

t

rEðFx;y
t Þ ¼ Fx�1;y

t � Fx;y
t rW ðFx;y

t Þ ¼ Fxþ 1;y
t � Fx;y

t

ð8Þ

In Eqs. (7) and (8), the constant term k is used to control the sensitivity to the edge.
And the symbol r needs more attention and should not be confused with the gradient
operator r, as it is used to represent the nearest-neighbor differences. The entire
formula requires three parameters to be set beforehand: the number of iterations t,
parameter k and thermal conductivity parameter k. Larger values of k and k, corre-
sponds to the smoother image, and makes it more difficult to preserve the marginal
features of the image.

After the FP layer, the formula for converting F into the classification probability ~F
is defined as:

~Fk ¼ eFkPL
i¼1 e

Fi
ð9Þ

where ~Fk is the probability that a pixel at a certain position belonging to category
kð1� k� LÞ in the hyperspectral image.

Finally, the classification results C 2 R
h�w is computed as follows:

C ¼ Argmax(~FÞ ð10Þ

In deep learning, the loss function can evaluate the quality of the model and provide
the direction of optimization. PM-HCNN adopts cross entropy as the loss function. In
the network, the training set consists of pixels with corresponding class labels in the
hyperspectral image. If the pixel Xx;y of the hyperspectral image at the position ðx; yÞ is
a training sample, then Xx;y 2 Dtrain. Qx;y indicates the probability vectors at the
position ðx; yÞ. When Xx;y belongs to category kð1� k� LÞ, the corresponding vector
Qx;y at the kth position is 1, and the rest is 0. Let Vtrain 2 R

H�W�L be the probability
labels of the network output ~F. It is converted from the labels corresponding to the
training sample. Then the element in Vtrain satisfies the following formula:

Vx;y
train ¼ Qx;y Xx;y 2 Dtrain

0 otherwise

�
ð11Þ

where 0 is a vector whose elements are all 0, Vx;y
train indicates the probability vector at the

ðx; yÞ position. So the loss function of the network in the training phase is:

Lossð~F;VtrainÞ ¼ �
XH
x¼1

XW
y¼1

XL
k¼1

Vx;y;k
train logð~Fx;y;kÞ ð12Þ

where ~Fx;y;k and Vx;y;k
train represent the specific value of ~F and Vtrain at the position

ðx; y; kÞ. The loss function of the verification set can also be obtained by the same
reasoning.
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3 Experimental Analysis

In order to verify the validity of the proposed model in the classification, this paper uses
two different hyperspectral datasets for experiments: The Indian Pines (IN) and Ken-
nedy Space Center (KSC) dataset. In addition, five methods based on deep learning are
selected for the comparative experiments: 2D-CNN [17], DC-CNN [18], 3D-CNN [19],
MC-CNN [20] and SSRN [21]. Meanwhile, the paper uses the overall accuracy (OA),
average accuracy (AA) and kappa statistic to measure the classification result of each
model. OA is the ratio of the number of class pixels of the correct classification to the
total number of categories. AA is the average of the ratio between each type of
prediction and the total number of each category. Kappa coefficient is a method based
on confusion matrix to measure classification accuracy.

3.1 Experimental Environment and Parameters

In the experiment, the training and testing process were conducted on a same computer
with the following configuration: CPU: i7-8700K, GPU: NVIDIA GeForce GTX
1080Ti and Memory: 32 GB.

For the IN dataset, in the training process, the optimizer is Adam, initial learning
rate is 0.001, and the number of iterations is set to 500. The network consists of 4
hybrid convolution layers, and the number of output channels is set to 128. For the 3D
convolution kernel, the kernel size is set to (3, 3, 7), the method of padding is set to
“same”, the stride is set to (1, 1, 1) and the activation function is Sigmoid. In addition,
the parameters of the FP layer are set as follows: the number of iterations t is 7, the k of
the thermal conductivity is 5 and k is 1/7.

For the KSC dataset, in the training process, the optimizer is Adam, the initial
learning rate is 0.0005, and the number of iterations is set to 300. The network consists
of 4 hybrid convolution layers, and the number of output channels is set to 64. For the
3D convolution kernel, the kernel size is set to (5, 5, 7), the method of padding is set to
“same”, the stride is set to (1, 1, 1) and the activation function is Sigmoid. In addition,
the parameters of the FP layer are set as follows: the number of iterations t is 3, the k of
the thermal conductivity is 3 and k is 1/8.

3.2 Datasets

The Indian Pine dataset was gathered by airborne Visible/Infrared Imaging Spec-
trometer (AVIRIS) sensor in 1992 over the Indian Pines test site in Indiana, USA. It
was the first benchmark dataset to be used for the study of hyperspectral image clas-
sification techniques with a cut size of 145 � 145. The Indian Pines scene consists of
21025 pixels and 224 spectral reflectance bands in the wavelength range 0.4–2.5 lm,
but 24 bands that cannot be reflected by water need to be removed for this the study.
Because of the tremendous unbalanced number of samples among different classes and
mixed pixels in the image, so the Indian Pines dataset has been widely used to evaluate
the performance of classification methods. The dataset covers sixteen categories. And
the numbers of training, verification, and test samples which belong to different classes
are shown in Table 1.
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The KSC dataset was acquired by the NASA AVIRIS (Airborne Visible/Infrared
Imaging Spectrometer) instrument over the Kennedy Space Center (KSC), Florida, on
March 23, 1996. The spatial resolution of The KSC data is about 18 m. And after
removing water absorption and low SNR bands, 176 bands remain. Due to the simi-
larity of spectral signatures for certain vegetation types, it is difficult to distinguish the
land cover for the environment. For classification purposes, 13 classes were defined for
the site. The numbers of training, verification, and test samples which belong to dif-
ferent classes are shown in Table 2.

3.3 Experimental Results

In our experiment, we randomly selected 10 sets of training samples for each data set
for repeated experiments. The final classification result is presented as “mean”. We use
the same proportion of training, validation, and test data for the same dataset.

For IN dataset, the split percentage of training, validation, and testing data is 10%,
1%, 89%, respectively. Figure 2 shows the classification maps for IN dataset obtained
by different methods. Table 1 shows the exact value of OA, AA, Kappa for each class
by different methods. Under the same conditions, PM-HCNN has improved on OA and
Kappa when comparing to other methods. And it is only slightly lower than MC-CNN
by 0.14% in AA. Compared with SSRN, the three indicators increased by 0.46%,
6.77% and 0.53% respectively.

For KSC dataset, we use 5% of the labeled pixels as the training set, 1% for
validation and 94% for test datasets, respectively. The classification maps of different
methods are shown in Fig. 3. And from Table 2, we can get the exact value of OA,
AA, Kappa for each class by different methods. It is obvious that PM-HCNN achieves
the best result with an overall accuracy of 98.57%, which is 0.69% higher than the
second best (97.88%) obtained by SSRN, and is 5.55% higher than the result of
93.02% by DC-CNN. Also for AA and KAPPA, the proposed method achieves the best
result.

Fig. 2. The classification maps for IN dataset by different methods.
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Table 1. Individual class, overall, average accuracy (%) and Kappa statistics of all methods on
the Indian Pines dataset using 10% training samples and 1% validation samples.

Class Samples 2D-
CNN

DC-
CNN

3D-
CNN

MC-
CNN

SSRN Proposed
Train Val Test

Alfalfa 5 1 48 100 95.48 99.41 98.18 99.42 99.38
Corn-notill 143 14 1277 94.11 93.90 96.07 96.25 98.40 98.40
Corn-mintill 83 8 743 93.69 94.33 94.65 96.84 97.13 97.91
Corn 23 2 209 95.40 94.99 97.65 97.16 96.71 99.50
Pasture 49 4 444 96.87 98.17 98.76 99.03 97.20 99.80
Trees/Grass 74 7 666 98.35 98.54 98.00 98.61 99.01 99.05
Pasture-mowed 2 1 23 100 100 98.82 98.03 80 96.63
Hay-windrowed 48 4 437 96.58 98.19 99.09 99.45 99.45 99.86
Oats 2 1 17 100 93.84 95.00 97.64 0 93.86
Soybeans-notill 96 9 863 94.27 92.18 96.18 95.21 96.38 91.82
Soybean-mintill 246 24 2198 95.81 95.90 96.08 96.68 98.02 98.98
Soybean-
cleantill

61 6 547 93.74 94.51 97.02 96.04 95.42 88.64

Wheat 21 2 189 99.68 99.37 99.78 99.58 98.95 98.27
Woods 129 12 1153 98.39 98.16 98.82 99.30 99.48 98.99
Building-Grass 38 3 339 95.67 92.18 94.72 95.71 96.76 98.02
Stone-
steelTowers

9 1 85 94.48 93.15 95.48 95.48 97.05 99.35

OA 95.79 95.60 96.84 97.19 97.86 98.32
AA 96.69 95.81 97.22 97.45 90.59 97.36
Kappa 95.20 94.99 96.40 96.80 97.56 98.09

Fig. 3. The classification maps for KSC dataset by different methods
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In summary, for the two datasets, what is clear is that PM-HCNN can retain the
little features at the boundary of regions belonging to different categories and make
some different categories of features more visible. Furthermore, the proposed method
can also eliminate the classification mistakes of traditional CNNs. So the classification
accuracy has been improved when comparing to other methods.

4 Conclusion

In this paper, we propose a hybrid convolutional neural network with Perona and Malik
diffusion (PM-HCNN) and apply it to hyperspectral image classification. The proposed
PM-HCNN framework uses an end-to-end convolutional architecture to automatically
extract spectral and spatial features through hybrid convolution layers which contains
2D and 3D convolution layers. For the loss of extracting deep feature of anisotropic
neighborhood after using convolution operations, the framework contains a feature
propagation layer based on anisotropic diffusion. The layer propagates the intrinsical
discriminative features of various classes and makes each class more distinguishable
from every other classes. These improvements result in preserving object boundaries
and eliminate the classification mistakes of traditional CNNs with a small number of
training data. Equipped with the analysis of experimental results, PM-HCNN frame-
work can be used to get better classification accuracy than other methods. The future

Table 2. Individual class, overall, average accuracy (%) and Kappa statistics of all methods on
the Kennedy Space Center dataset using 5% training samples and 1% validation samples.

Class Samples 2D-
CNN

DC-
CNN

3D-
CNN

MC-
CNN

SSRN Proposed
Train Val Test

Scrub 18 4 325 97.65 98.54 98.58 98.97 98.84 99.23
Willow swamp 13 3 227 88.78 90.17 82.31 89.13 97.07 98.93
CP hammock 13 3 240 64.38 74.71 73.55 78.51 97.13 98.85
Slash pine 13 3 236 67.29 78.33 60.33 76.57 89.77 95.57
Oak/broadleaf 9 2 150 65.42 63.94 64.64 61.00 87.78 89.33
Hardwood 12 3 214 79.15 89.88 79.29 86.72 99.32 95.67
Swamp 6 2 97 80.14 87.94 77.98 82.79 93.55 84.91
Graminoid
marsh

20 4 366 88.49 92.59 93.37 92.93 98.59 99.37

Spartina marsh 26 6 488 90.87 94.10 88.06 88.86 98.50 98.86
Cattail marsh 21 5 378 99.52 95.57 98.36 99.15 99.32 99.67
Salt marsh 21 5 393 99.64 99.00 99.69 99.84 99.74 100
Mud flats 26 6 471 97.98 96.34 89.44 95.47 98.16 97.96
Water 47 10 870 98.98 100 98.56 99.21 100 100
OA 91.06 93.02 89.98 92.44 97.88 98.57
AA 86.02 89.32 84.93 88.40 96.75 96.80
Kappa 90.04 92.23 88.84 91.58 97.64 98.41

550 F. Lu et al.



direction of our work is to established a unified diffusion driven CNN architecture, in
which all the hyper-parameters both in the diffusion unit and CNN can be learnt from
the training sets.
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