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Abstract. Building localization in remote sensing imagery (RSI) is
widely applied in many geoscience and remote sensing areas. However,
many existing methods cannot generate accurate building contours. In
this paper, we propose an effective convolutional neural network (CNN)
framework, Tighter Quadrangle Network (TQR-Net), to locate buildings
with quadrangular contours in RSI. Here, TQR-Net can generate regu-
lar contours for each of building targets using a CNN branch which can
predict tighter quadrangles in parallel. Then, we train and test TQR-
Net on a large building dataset collected from Google Earth, and the
experiment results demonstrate that the proposed method can gener-
ate high-quality building contours and significantly outperforms other
CNN-based detectors.

Keywords: Deep learning · Convolutional neural network · Building
instance localization · Remote sensing · Tighter quadrangle

1 Introduction

With the rapid development of spaceborne and airborne imaging technology, the
high-resolution remote sensing imagery (RSI) can be more and more accessible to
make the spatial structure, texture and other information of geographic objects
abundant. Thus, automatic building localization can potentially achieve higher
accuracy, which is helpful to many remote sensing applications, such as land
planning, environment management and disaster assessment.

Therefore, developing automatic methods of building localization is a signifi-
cant task. Over the past decades, many approaches have been proposed for auto-
matic building localization. For example, in the early days, low-level handcrafted
features were applied for feature extraction to locate buildings. Kim et al. [1]
extracted the edge segments and detected possible building structures based on
graph search strategy. Jung et al. [2] proposed a Hough transform-based method
to extract the rectangular building roofs.
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Fig. 1. Example of building localization results from TQR-Net in Google Earth image
of Calgary, Alberta, Canada (51.05◦N , 114.07◦W ).

Moreover, in order to obtain building contours, image segmentation can also
be utilized to partition RSI into many regions and classify each pixel into a fixed
set of categories [3], distinguishing buildings from their surrounding background.
For example, Kampffmeyer et al. [4] combined different deep architectures includ-
ing patch-base and pixel-to-pixel approaches, to achieve good accuracy for small
object segmentation in urban remote sensing. Wu et al. [5] proposed a multi-
constraint fully convolutional network to improve the performance of the U-Net
model in building segmentation from aerial imagery. Troya-Galvis et al. [6] pre-
sented two different extensions of a collaborative framework called CoSC which
outperform hybrid pixel-object oriented approach as well as a deep learning app-
roach. Insufficiently, such methods can generate roughly building segmentation
boundary, however, they are always irregular and can not differentiate building
instances.

In recent five years, the CNN-based object detectors [7–10] have made a
great improvement for detecting remotely sensed targets [11–17]. Consequently,
the CNN-based building detectors have also made a breakthrough. For example,
Zhang et al. [18] proposed a CNN-based detector using multi-scale saliency-based
sliding window and improved non-maximum suppression (NMS) to detect sub-
urban buildings. Li et al. [19] presented a cascaded CNN architecture utilizing
Hough transform to guide CNN to extract mid-level features of the building.
Chen et al. [20] proposed a two-stage CNN-based detector for multi-sized build-
ing localization, in which a multi-sized fusion region proposal network (RPN)
and a novel dynamic weighting algorithm were used to generate and classify
multi-sized region proposals, respectively. Although such object detection-based
methods can classify individual buildings, they denote detection via rectangular
bounding boxes and can not generate building contour. To tackle this problem,



TQR-Net for Dense Building Instance Localization in RSI 283

Fig. 2. The architecture of the proposed multi-stage TQR-Net is as follows: (a) Feature
extraction stage generates a rich and multi-scale feature pyramid. (b) Region proposal
network outputs a set of object proposals with objectness scores si (e.g., i = 0, 1, 2
denotes three aspect ratios). (c) Bounding box branch regresses rectangular bounding
boxes of each pyramid level. (d) TQR box branch predicts quadrangle bounding boxes
and obtains building contours.

some instance segmentation-based methods [21–23] can be adopted to detect
buildings in RSI, but the generated contours are still irregular in the instance
segmentation-based approaches.

As aforementioned, generally, there are two kinds of bounding boxes to locate
building targets. One is rectangular, which cannot generate the contours of build-
ings. The other is polygonal, based on instance segmentation detectors (e.g.,
Mask R-CNN [10]), which can locate buildings via predicting their segmentation
and polygonal contours. However, such polygonal contours are always inaccurate
due to their uncertain nodes and irregular shapes.

In this paper, aiming to make a trade-off between these two kinds of bounding
boxes, we propose to use quadrangular bounding boxes, which are generated by a
tighter quadrangle-based convolutional neural network (TQR-Net) directly. Con-
sidering that most buildings are quadrilateral, we adopt quadrangular bounding
boxes with four nodes, which can not only avoid irregular shapes but also keep
certain structural restrictions.

Without bells and whistles, the experiment results prove that the proposed
TQR-Net can improve the feature extraction domain of corner and contour in
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building targets with higher precision of building localization. Here, we give an
example of localization results acquired by TQR-Net in Google Earth urban area
image of Calgary is shown in Fig. 1.

2 Proposed Approach

As shown in Fig. 2, our method is based on a multi-stage region-based object
detection framework. In this section, we will elaborate the proposed network in
the subsections.

2.1 Multi-stage Region-Based TQR-Net

There are four main stages in TQR-Net, i.e., feature extraction, region proposal
network, bounding box branch, and tighter quadrangle box branch, and we will
detail each stage as follows.

Feature Extraction. A feature extraction network can extract features from
the input image. Here we utilize ResNeXt-101 [24] for feature extraction, and
such multi-scale feature maps are extracted on five levels, which can be defined
as {C1, C2, C3, C4, C5}. At each level, convolutional layers generate feature maps
of the same size. In order to detect buildings in different scales, we use Feature
Pyramid Network (FPN) [25] in the convolutional backbone which utilizes top-
down lateral connections to build an in-network feature pyramid. The FPN can
take {C2, C3, C4, C5} as input and generate the final set of feature maps defined
as follows:

P∗ = {P2, P3, P4, P5, P6}. (1)

Region Proposal Network. A region proposal network (RPN) can generate
region of interests (RoIs) on feature maps P∗ by the anchors which are pre-
defined in five scales and three aspect ratios. In RPN, classification and bounding
box regression are performed by a 3 × 3 convolutional layer, followed by two
sibling 1 × 1 convolutions, subsequently.

Bounding Box Branch. After RPN, feature maps of size 7 × 7 from RoIs
are extracted by using RoIAlign [10] on {P2, P3, P4, P5}, and they are fed into
bounding box branch which performs classification and rectangular bounding
box regression, respectively.

Tighter Quadrangle Box Branch. In the proposed network, a tighter quad-
rangle (TQR) box branch is applied to generate building contours using quadran-
gular bounding boxes. Similar to the sequential protocol of coordinates proposed
in [26], via ordering the coordinates, we can define the quadrangular bounding
box with four nodes uniquely. By default, the four nodes are arranged clockwise,
and the node closest to the grid origin is set to be the first. In particular, if there
are two nodes at the same distance with the grid origin, we set the node which
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Fig. 3. Joint loss curves of TQR-Net with ResNeXt-101 in three typical areas.

owns smaller value x as the first one. After determining the order of the nodes,
inspired by the coordinates of rectangle bounding box as follows:

r∗ = (x, y, w, h), (2)

the 8-coordinate TQR box can be represented as follows:

t∗ = (x, y, w1, h1, w2, h2, w3, h3, w4, h4). (3)

Here, variables x, y denote the center coordinates of the TQR box’s minimum
bounding rectangle, and wn, hn represent the n-th (n = 1, 2, 3, 4) relative posi-
tion to the center coordinates.

As aforementioned, in order to generate the TQR box, {P2, P3, P4, P5} are
fed into TQR box branch, which uses RoiAlign to extract 7 × 7 feature maps
from boxes (xb, yb, wb, hb) output by bounding box branch. Then, three fully-
connected layers are utilized to collapse the small feature maps into two 10-d
vectors {t0, t1}, where t0 corresponding to the background class is ignored in
the loss computation, and t1 represents the predicted TQR box. For TQR box
regression, we adopt the parameterizations of the 10-coordinate as follows:

dx = (x − xb)/wb, dwn
= wn/wb,

dy = (y − yb)/hb, dhn
= hn/hb,

d∗
x = (x∗ − xb)/wb, d∗

wn
= w∗

n/wb,

d∗
y = (y∗ − yb)/hb, d∗

hn
= h∗

n/hb,

(4)

where x∗, y∗, w∗
n, h∗

n (n = 1, 2, 3, 4) stand for the ground-truth TQR box.

2.2 Loss Function

For end-to-end training, we utilize a joint loss to optimize our network. Here,
the joint loss is combined of Lrpn, Lbbox and Ltqr, for region proposal network,
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Fig. 4. Precision-recall comparisons of bounding box between TQR-Net and other base-
line methods with different backbones on Qinghai Province dataset in three different
kinds of areas. (IoU = 0.5). Key: R = ResNet-101-FPN; X = ResNeXt-101-FPN; M =
Mask Branch.

bounding box branch and TQR box branch, respectively. Formally, we compute
the joint loss function L for each mini-batch as follows:

L =
Θ∑

θ

L(θ)
rpn +

Θ∑

θ

L
(θ)
bbox +

Θ∑

θ

L
(θ)
tqr + ϕ ‖ w ‖2, (5)

where ϕ is a hyper-parameter, w is a vector of network weights and, the definition
of RPN loss L

(θ)
rpn and bounding box branch loss L

(θ)
bbox can refer to [9,10], for the

θ-th image in a mini-batch (e.g., batch size Θ = 3 in our experiments). Moreover,
the TQR box branch loss Ltqr for one image is defined as follows:

Ltqr({di}, {d∗
i }) = λ

1
Ntqr

∑

i

smoothL1(di − d∗
i ),

smoothL1(x) =

{
0.5x2 if |x| < 1
|x| − 0.5 otherwise

.

(6)

Here, i and Ntqr are the index and number of the TQR boxes, and di and d∗
i

represent the 10 parameterized coordinates of the predicted and ground-truth
TQR boxes, respectively. For the regression loss, we use smoothL1 which is the
robust loss function defined in [8].

In this paper, we set the weight decay ϕ = 0.0001, Ntqr = 1000, and the loss
weight λ = 10. The joint loss curves of TQR-Net with ResNeXt-101 in three
typical kinds of areas are shown in Fig. 3.

3 Experiments and Discussion

3.1 Dataset

In order to evaluate our method, we collect a large building dataset from Google
Earth, in which all buildings are manually labeled by minimum bounding rect-
angles. The RGB images in this dataset are from rural, suburban and urban
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Fig. 5. Building localization results in Qinghai Province, China. First two rows (urban):
Tianjun Dist. in Haixi Mongolian T.A.P (37.30◦N , 99.02◦E) and Xinghai Dist. in
Hainan T.A.P (35.58◦N , 99.99◦E). Key: T.A.P = Tibetan Autonomous Prefecture;
E.A = Ethnic Autonomous Dist. Second two rows (suburban): Tu E.A.D in Haidong
City (36.82◦N , 101.99◦E) and Tongde Dist. in Hainan T.A.P (35.26◦N, 100.55◦E).
Last two rows (rural): Gonghe Dist. in Hainan T.A.P (36.40◦N, 100.97◦E) and Datong
Hui and Tu E.A.D in Xining City (37.03◦N, 101.50◦E).

areas in Qinghai Province, China. Statistically, there are 48222 labeled build-
ings (7628, 16533 and 24061 in rural, suburban and urban areas) in 1660 images
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Table 1. Comparisons of bounding box APbb(%) and ARbb(%) among the baseline
methods and the proposed method on Qinghai Province dataset in three different kinds
of areas. Key: M.R. = Mask R-CNN [10]; R = ResNet-101-FPN; X = ResNeXt-101-
FPN; M = Mask Branch.

Area Method APbb APbb
50 APbb

75 ARbb

Rural M.R. (R) 32.5 64.9 29.0 41.4

M.R. (X) 34.7 66.7 33.3 43.8

M.R. (R+M) 34.3 67.0 32.7 44.7

M.R. (X+M) 35.1 67.7 33.2 45.8

TQR-Net (R) 38.2 68.9 38.7 49.8

TQR-Net (X) 38.8 70.7 39.7 51.3

Suburban M.R. (R) 33.4 65.3 30.9 44.5

M.R. (X) 34.9 67.3 32.9 46.2

M.R. (R+M) 35.4 67.6 34.1 49.7

M.R. (X+M) 37.0 69.3 36.7 49.3

TQR-Net (R) 38.7 69.3 39.9 50.8

TQR-Net (X) 39.8 70.4 41.4 52.0

Urban M.R. (R) 28.8 58.3 25.6 42.0

M.R. (X) 31.1 61.0 29.1 43.2

M.R. (R+M) 30.5 59.9 28.5 43.8

M.R. (X+M) 32.0 61.3 31.1 44.7

TQR-Net (R) 33.7 61.6 33.5 46.8

TQR-Net (X) 35.4 64.3 36.6 48.5

(296, 631 and 733 in rural, suburban and urban areas). For each area, images
are randomly split into 50% for training and 50% for testing.

3.2 Implementation and Results

All models are implemented with PyTorch on 3 NVIDIA GeForce GTX 1080 Ti
of 11 GB on board memory. We evaluate ResNet-101 [27] and ResNeXt-101 [24]
pre-trained on ImageNet [28] as backbone. As for the parameters in the new
layers, we adopt the weight initialization strategy introduced in [29]. In order
to train our network, we use stochastic gradient descent (SGD) with a fixed
learning rate of 0.002, and the momentum is set to 0.9.

The proposed TQR-Net is compared with Mask R-CNN [10] in three typical
areas. We also compare the TQR box branch with the mask branch. Table 1
shows the comparison results of COCO-style bounding box average precision
(APbb) and average recall (ARbb), following the definitions in [30].

In Table 1, we can see that TQR-Net outperforms the baseline methods in
both APbb and ARbb indicators in all three areas. For example, compared to
Mask R-CNN with the mask branch, TQR-Net improves 3.7% in APbb and 5.5%
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in ARbb while using ResNeXt-101 as backbone in rural area. Moreover, we show
precision-recall curves comparisons of our method and other competitors with
different backbones in three different kinds of areas, respectively, in Fig. 4 (for
convenience, we draw precision-recall curves according to PASCAL VOC for-
mat here). Some localization results generated by TQR-Net with ResNeXt-101
as backbone can be seen in Fig. 5. Thus, our method preserves more geomet-
ric information with maintaining certain structural restrictions, which can aid
building localization.

4 Conclusion

In this paper, a multi-stage CNN-based method called TQR-Net has been pro-
posed to locate buildings with quadrangle bounding boxes, which can be trained
end-to-end by a joint loss function. We make a trade-off between rectangu-
lar and polygonal bounding boxes to acquire high-quality building contours
in our method. Different from traditional object detection-based and instance
segmentation-based methods, TQR-Net can directly generate TQR boxes with
more flexibility of freedom than bounding boxes, while avoiding irregular shapes,
extra time and resource overheads, associated with predicting masks. Experi-
ments on a large Google Earth dataset of three typical kinds of areas demonstrate
its effectiveness for building instance localization task.
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