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Abstract. In recent years, concept factorization methods become a pop-
ular data representation technique in many real applications. However,
conventional concept factorization methods cannot capture the intrinsic
geometric structure embedded in data using the fixed nearest neighbor
graph. To overcome this problem, we propose a novel method, called Con-
cept Factorization with Optimal Graph Learning (CF OGL), for data
representation. In CF OGL, a novel rank constraint is imposed on the
Laplacian matrix of the initial graph model, which encourages the learned
graph with exactly c connected components for the data with c clusters.
Then the learned optimal graph regularizer is integrated into the model
of concept factorization. Therefore, this learned structure is benefit to
the clustering analysis. In addition, we develop an efficient and effective
iterative optimization algorithm to solve our proposed model. Extensive
experimental results on three benchmark datasets have demonstrated
that our proposed method can effectively improve the performance of
clustering.

Keywords: Concept factorization · Data representation · Geometric
structure · Rank constraint · Laplacian matrix · Regularizer

1 Introduction

Data representation methods have been widely applied to various fields in pat-
tern recognition and machine learning [1–3]. Over the past few decades, matrix
factorization methods have become one of the most popular data representation
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techniques due to its efficiency and effectiveness. Many classical matrix factor-
ization techniques, such as Singular Value Decomposition (SVD) [4], Principal
Component Analysis (PCA) [5], Nonnegative Matrix Factorization (NMF) [6]
and Concept Factorization (CF) [7], have shown the encouraging performances
in image classification, object tracking, document clustering, etc. [8,9].

NMF has aroused increasing interests due to its physical and theoretical
interpretations. NMF naturally leads to a part-based representation of data by
imposing the nonnegative constraint on both coefficient and basis matrices. The
basic idea behind NMF is to seek two nonnegative matrices to approximate the
original data matrix. However, NMF cannot deal with the data matrix contain-
ing with some negative elements due to the noise or outlier. Therefore, Xu et al.
[7] proposed a variation of NMF, called Concept Factorization (CF), for docu-
ment clustering. Different from the NMF methods, CF can deal with the data
matrix mixed with nonnegative elements. In order to discover the local geometric
structure of data, Cai et al. [10] proposed a Locally Consistent Concept Factor-
ization (LCCF) method for data representation. It models the manifold structure
of data using the graph regularizer. Shu et al. [11] proposed a Local Learning
Concept Factorization (LLCF) method to learn the discriminant structure and
the local geometric structure, simultaneously, by adding the local learning reg-
ularization term into the model of CF. Motivated by the deep learning, Li et al.
[12] proposed a multilayer concept factorization method to discover the struc-
ture information hidden in data using the multilayer framework. Pei et al. [13]
developed a CF with adaptive neighbors method for clustering. The idea of this
proposed method is to integrate an ANs regularizer into the CF decomposition.
However, the aforementioned methods cannot update dynamically the optimal
graph model, which is used to explore the intrinsic geometric manifold structure
of data in matrix decomposition.

To solve this issue, we propose a novel method named as Concept Factor-
ization with Optimal Graph Learning (CF OGL) in this paper. Specifically, we
impose a rank constraint on the Laplacian matrix of the initially given graph,
and then iteratively update it. Therefore, the learned graph has exactly c con-
nected components, whose structure is beneficial to the clustering applications.
Then the learned graph regularizer is used to constrain the model of the concept
factorization method, and thus the geometric structure of data can be better
preserved in low dimensional feature space. Extensive experimental results on
three datasets demonstrate that our proposed CF OGL method outperforms
other state-of-the-art methods in clustering.

This paper is organized as follows: We briefly describe both CF and LCCF
algorithms in Sect. 2. In Sect. 3, we introduce our proposed CF OGL algorithm
and then derive its updating rules. In Sect. 4, we carry out some experiments to
investigate the proposed CF OGL algorithm. Finally, conclusions are drawn in
Sect. 5.
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2 The Relative Work

In this section, the models of both CF and LCCF are briefly presented.

2.1 CF

Concept factorization is a popular matrix factorization technique to deal with
high dimensional data. Given a data matrix X = [x1, x2, ..., xn] ∈ Rm×n, xi

denotes a m-dimensional vector. In CF, the entire data points are used to lineally
represent each underlying concept, and all the concepts seek to lineally approx-
imate to each data point, simultaneously. Therefore, we can give the objective
function of CF as

X = XUV T (1)

where U ∈ Rn×k and V ∈ Rn×k. Using the Euclidean distance metric to measure
the reconstruction error, its minimization problem can be given as follows:

min
U,V

∥
∥X − XUV T

∥
∥
2

F

s.t.U ≥ 0, V ≥ 0
(2)

where ‖·‖F denotes the matrix Frobenius norm. Using the multiplicative updat-
ing algorithm, we derive the updating rules of Eq. (2) as follows:

ut+1
ij ← ut

ij

(KV )ij
(KUV T V )ij

vt+1
ij ← vt

ij

(KW )ij
(V WT KW )ij

(3)

where K = XT X. To deal with the nonlinear data, CF is easily kernelized using
kernel trick.

2.2 LCCF

Traditional CF method fails to consider the manifold structure information of
data. To solve this issue, Cai et al. [10] proposed the LCCF method, which
models the manifold structure embedded in data using the fixed graph model.
Therefore, the objective function of LCCF can be given as follow:

min
U,V

∥
∥X − XUV T

∥
∥
2

F
+ λtr(V T LV )

s.t.U ≥ 0, V ≥ 0
(4)

where λ stands for a balance parameter, and tr(.) denotes the trace of a matrix.
D is a diagonal matrix, Dii =

∑

S Wij , L = D − W . Similarly, we derive the
updating rules of Eq. (4) as follows:

ut+1
ij ← ut

ij

(KV )ij
(KUV T V )ij

vt+1
ij ← vt

ij

(KW+λWV )ij
(V WT KW+λDV )ij

(5)

According to the rules (5), we can achieve a local minimum of Eq. (4).
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3 The Proposed Method

3.1 Motivation

Traditional CF methods cannot effectively explore the intrinsic geometric man-
ifold structure embedded in high dimensional data using the fixed graph model.
By addint the rank constraint into the Laplacian matrix of the initially given
graph, we learn an optimal graph model with exactly c connected components. In
CF AGL, the learned graph regularizer is further constructed, and then imposed
on the model of CF. Therefore, our proposed method explores the semantic infor-
mation hidden in high dimensional data effectively.

3.2 Constrained Laplacian Rank (CLR)

A graph learning method, called Constrained Laplacian Rank (CLR), was pro-
posed to explore the intrinsic geometric structure of data, whose goal is to learn
an optimal graph model [14]. Therefore, the CLR method is formulated by the
following optimization problem:

JCLR = min∑
j aij=1,aij≥0,rank(LQ)=n−k

‖Q − W‖2F (6)

where LQ stands for the Laplacian matrix of the matrix Q. Denote σi(LQ) as the
i-th smallest eigenvalue of LA. It is worth noting that σi(LQ) > 0 because of its
positive semidefinition. Therefore, Eq. (6) can be reformulated as the following
problem for a large enough value of σi:

JCLR = min∑
j qij=1,qij≥0

‖Q − W‖2F + 2λ

k∑

i=1

σi(LQ) (7)

According to the Ky Fans Theorem, we have the following equivalent definition
as

k∑

i=1

σi(LQ) = min
F∈n×k,FT F=I

Tr(FT LQF ) (8)

Therefore, we can further rewrite the problem (7) as follows:

min
Q

‖Q − W‖2F + λTr(FLQFT )

s.t. FFT = I,Q1 = 1, Q ≥ 0, Q ∈ Rn×n
(9)

3.3 Our Proposed Method

By integrating the learned graph regularization term into the model of CF, the
objective function of our proposed CF OGL method can given as follows:

min
Q,U,V

(‖Q − W‖2F + βTr(FLQFT ) + λTr(V LQV T )

+μ
∥
∥X − XUV T

∥
∥)

s.t.FFT = I, V ≥ 0, U ≥ 0, Q1 = 1, Q ≥ 0, Q ∈ Rn×n

(10)
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It is impractical to find the global optimal solution of problem (10) because it is
not a convex problem in U , V and A together. Fortunately, we can achieve a local
solution by optimizing the variables alternatively. Therefore, the optimization
scheme of our proposed CF OGL method mainly consists of two parts:

Fixing Q and F , Update U and V . By fixing the variables A and F , the
Eq. (10) can be rewritten as the following problem:

min
U,V

(λTr(V LQV T ) + μ
∥
∥X − XUV T

∥
∥)

s.t.V V T = I,Q ≥ 0, U ≥ 0
(11)

Similarly, it is easy to derive the updating rules of problem (10) as follows:

ut+1
ij ← ut

ij

(KV )ij
(KUV T V )ij

(12)

vt+1
ij ← vt

ij

(KW+λWV )ij
(V WT KW+λDV )ij

(13)

Fixing U and V , Update Q and F . By fixing U and V , we can rewrite the
Eq. (10) as the following optimization problem:

min
Q,U,V

(‖Q − W‖2F + βTr(FLQFT ))

s.t.FFT = I,Q1 = 1, Q ≥ 0, Q ∈ Rn×n
(14)

(A) When Q is fixed, the Eq. (14) becomes

min
FFT=I

(βTr(FLQFT )) (15)

It is easy to know that the solution scheme of F can be converted into solving
the k smallest eigenvalues problem of LQ.
(B) When F is fixed, the problem (14) becomes the following optimization prob-
lem:

min
∑

i,j=1

(qi,j − wi,j)
2 + β

2

∑

i,j=1

‖fi − fj‖22 qi,j

s.t.
∑

j qij = 1, qij ≥ 0
(16)

For each row wi, we have the vector form as

min
qi≥0,qi1=1

∥
∥
∥qi − (wi − β

2 dT
i )

∥
∥
∥

2

2
(17)

where dij = ‖fi − fj‖22. The problem (17) can be solved by the optimization
algorithm proposed in [14].

4 Experimental Results

In this section, we carry out some experiments to investigate the proposed
CF OGL method on the Yale, ORL and FERET datasets. To demonstrate its
effectiveness, the proposed CF OGL method is compared with several state-
of-the-art methods, such as K-means, PCA, NMF, CF and LCCF. Two well
accepted measurements, such as accuracy (AC) and normalized mutual infor-
mation (NMI), are used as metrics to quantify the performance of data repre-
sentation in clustering.
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Algorithm 1. Summary of the proposed CF OGL method

Input: Initial graph W , parameter β, λ, μ, Data matrix X.
Output: The coefficient matrix V ;
Initialization: W ← W0, Q ← Q0, LQ = Laplace(Q)
Repeat
Fixing Q and F :

Update U by Eq.(12);
Update V by Eq.(13);

Fixing U and V :
Update F by Eq.(15);
Update Q by Eq.(17);

Compute LQ by LQ = DQ − Q+QT

2
;

Until convergence

4.1 Yale Face Dataset

The Yale face dataset includes a total of 165 face images from 15 individuals. In
each experiment, the P categories images were randomly sampled from the Yale
dataset to evaluate the performances of all methods. We run all methods ten
times for each value of P , and recorded their average results. The results of all
methods on the Yale dataset are shown in Table 1. We can clearly see that our
proposed CF OGL method outperforms other state-of-the-art methods regard-
less of the choices of P . Specifically, the average AC and NMI of the proposed
CF OGL method are 3.7% and 5.1% higher than those of LCCF, respectively.
The main reason is that our propose CF OGL method can learn an optimal
graph structure, which can significantly improve the clustering performance than
LCCF.

4.2 ORL Face Dataset

The ORL face dataset contrains 400 face images from 40 distinct subjects. For
some subjects, the face images were taken at different times, varying the lighting
and facial expressions. In this experiment, we adopted the above similar experi-
mental scheme to investigate the effectiveness of our proposed CF OGL method.
Table 2 provides the clustering results of six methods on the ORL face dataset.
It can be observed that CF OGL can achieve the best performance among all
the compared methods. The main reason is that our proposed CF OGL method
can learn the optimal graph and thus effectively preserve the intrinsic geometric
structure of data. Therefore, it outperforms other state-of-the-art methods on
this dataset (Figs. 1 and 2).

Fig. 1. Some samples from the Yale dataset
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Table 1. The clustering performances on the Yale face dataset

P AC NMI

K-means PCA NMF CF LCCF CF OGL K-means PCA NMF CF LCCF CF OGL

8 0.536 0.520 0.511 0.545 0.556 0.575 0.602 0.590 0.589 0.561 0.592 0.628

9 0.480 0.458 0.477 0.438 0.454 0.505 0.560 0.540 0.558 0.516 0.542 0.575

10 0.489 0.469 0.465 0.490 0.460 0.514 0.589 0.575 0.577 0.551 0.533 0.604

11 0.462 0.480 0.461 0.480 0.480 0.497 0.587 0.596 0.577 0.559 0.569 0.604

12 0.440 0.451 0.431 0.437 0.428 0.456 0.564 0.566 0.564 0.530 0.536 0.575

13 0.439 0.427 0.423 0.400 0.422 0.449 0.573 0.566 0.564 0.513 0.534 0.585

14 0.448 0.454 0.422 0.432 0.431 0.474 0.589 0.602 0.581 0.542 0.546 0.610

15 0.427 0.423 0.408 0.396 0.386 0.429 0.583 0.582 0.568 0.519 0.518 0.596

AVG 0.468 0.461 0.451 0.456 0.453 0.490 0.581 0.577 0.572 0.536 0.546 0.597

Fig. 2. Some samples from the ORL dataset

Table 2. The clustering performances on the ORL face dataset

P AC NMI

K-means PCA NMF CF LCCF CF OGL K-means PCA NMF CF LCCF CF OGL

20 0.386 0.384 0.373 0.244 0.377 0.394 0.582 0.578 0.573 0.367 0.571 0.584

22 0.375 0.382 0.364 0.230 0.370 0.391 0.596 0.592 0.575 0.371 0.591 0.596

24 0.368 0.374 0.357 0.239 0.373 0.406 0.592 0.598 0.579 0.388 0.585 0.613

26 0.356 0.364 0.342 0.228 0.344 0.374 0.585 0.595 0.569 0.384 0.577 0.596

28 0.341 0.350 0.328 0.209 0.339 0.360 0.586 0.588 0.568 0.376 0.575 0.591

30 0.334 0.324 0.332 0.206 0.328 0.355 0.587 0.582 0.580 0.382 0.578 0.589

32 0.326 0.339 0.330 0.200 0.338 0.361 0.587 0.582 0.580 0.382 0.578 0.589

34 0.332 0.332 0.334 0.206 0.330 0.345 0.588 0.597 0.578 0.385 0.589 0.607

36 0.328 0.324 0.312 0.204 0.336 0.345 0.600 0.595 0.585 0.392 0.584 0.597

38 0.320 0.315 0.315 0.185 0.320 0.322 0.596 0.600 0.583 0.383 0.587 0.604

40 0.3075 0.315 0.302 0.192 0.315 0.318 0.589 0.597 0.581 0.400 0.5953 0.598

AVG 0.343 0.346 0.335 0.213 0.343 0.361 0.591 0.593 0.577 0.385 0.585 0.598

4.3 FERET Face Dataset

The FERET face database contains 200 different individuals with about 7 face
samples for each individual. Here, we randomly chose P categories samples from
the FERET dataset, and mixed them as the experimental subset for cluster-
ing. All methods were run ten times, and then their average performances were
recorded as the final results. The clustering performances for each method on the
FERET dataset are summarized in Table 3. It is easy to find that the average
performance of our proposed CF OGL method has certain advantage compared
with other methods in clustering (Fig. 3).
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Fig. 3. Some samples from the FERET dataset

(a) Yale (b) Yale

(c) ORL (d) ORL

(e) FERET (f) FERET

Fig. 4. Performances of all methods versus different vaules of the parameter λ
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(a) Yale (b) Yale

(c) ORL (d) ORL

(e) FERET (f) FERET

Fig. 5. Performances of all methods versus different vaules of the parameter β
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Table 3. The clustering performances on the FERET face dataset

P AC NMI

K-means PCA NMF CF LCCF CF OGL K-means PCA NMF CF LCCF CF OGL

80 0.283 0.283 0.270 0.205 0.256 0.315 0.596 0.600 0.594 0.527 0.601 0.617

100 0.273 0.274 0.255 0.200 0.248 0.298 0.606 0.611 0.596 0.546 0.613 0.622

120 0.271 0.274 0.253 0.187 0.239 0.283 0.617 0.619 0.604 0.543 0.618 0.629

140 0.260 0.269 0.243 0.184 0.232 0.276 0.619 0.633 0.611 0.545 0.631 0.642

160 0.258 0.262 0.233 0.175 0.228 0.272 0.627 0.638 0.613 0.537 0.632 0.643

180 0.249 0.253 0.231 0.173 0.223 0.254 0.632 0.642 0.622 0.546 0.639 0.641

200 0.246 0.257 0.228 0.171 0.220 0.251 0.634 0.649 0.622 0.549 0.645 0.644

AVG 0.263 0.267 0.245 0.185 0.235 0.278 0.619 0.627 0.609 0.542 0.626 0.632

4.4 The Analysis of the Parameters

In our proposed CF OGL, the parameters β, λ and μ have an effect on the
clustering performance. Specifically, we randomly chose 10, 20, 80 categories
samples as the dataset to carry out the experiments. However, the parameter
selection of the proposed CF OGL method is still an open problem. Therefore,
we determine the parameters by grid search at first and then change them within
certain ranges. Here, we only investigate the parameters β and λ. The Figs. 4
and 5 show the performances of all methods varied with different values of β and
λ on three datasets, respectively. It is clear to see that our proposed method can
achieve a relative stable performance in a large range.

5 Conclusion

In this paper, a novel matrix factorization technique, called Concept Factor-
ization with adaptive graph learning (CF OGL), is proposed for data repre-
sentation. In order to learn an optimal graph, we impose a rank constraint on
the Laplacian matrix of the initially given graph. Then the learned graph reg-
ularizer is integrated into the model of CF. Therefore, our proposed CF OGL
method effectively exploits the geometric manifold structure embedded in high
dimensional data. Experimental results have shown that the proposed CF OGL
algorithm achieves better performance in comparison with other state-of-the-art
algorithms.
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