
A Pruning Method Based on Feature
Abstraction Capability of Filters

Yi Tang, Xiang Zhang(B), and Ce Zhu

University of Electronic Science and Technology of China, Chengdu 611731, China
uestchero@uestc.edu.cn

Abstract. With the wide application of convolutional neural network,
the optimization of CNN has received ever-increasing research focus. This
paper proposes a new pruning strategy, which aims to accelerate and
compress off-the-shelf CNN models. Firstly, we propose the pruning cri-
teria for the feature abstraction capability of the filter, which is evaluated
by combining the kernel sparsity of the filter with the dispersion of the
feature maps activated by the filter. Then, the filter with weak Fea-
ture Abstraction Capability (FAC) is pruned to obtain a compact CNN
model. Finally, fine-tuning is used to restore the generalization ability.
And Compared with other pruning methods which use filters of the same
layer for contrast, Our method normalizes each layer, the proposed cri-
terion can be applied to the filters between cross-layer of CNN. Experi-
ments on CAFAR-10 and CUB-200-2011 datasets verify the effectiveness
of our method. The FAC-based method achieves better performance than
previous filter importance evaluation criteria.

Keywords: Accelerate · Kernel sparsity · Dispersion · Feature
Abstraction Capability

1 Introduction

In recent years, It is well known that convolutional neural networks have achieved
great success in various computer vision tasks [1], including object detection [2–
4], object classification [5,6] and semantic segmentation [7,8] and many others.
CNNs have achieved state-of-the-art performance in these fields compared with
traditional methods based on manually designed visual features [9]. However,
with the deepening and widening of CNN convolution layer, higher computa-
tional overhead and larger memory are required, so it is difficult to deploy CNN
model to resource-limited devices, such as mobile phones and embedded devices.
As a result, the application of convolutional neural network in practical scenar-
ios will be limited by various hardware equipment resources, such as storage
space, computing power and battery power. For instance, AlexNet [10] network
contains about 6 × 106 parameters, while some better networks like VGG [11]
contain about 1.38 × 108 parameters. For less complex tasks, such as simple
image recognition, the VGG network will require more than 500 MB memory
c© Springer Nature Switzerland AG 2019
Y. Zhao et al. (Eds.): ICIG 2019, LNCS 11902, pp. 642–654, 2019.
https://doi.org/10.1007/978-3-030-34110-7_54

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-34110-7_54&domain=pdf
https://doi.org/10.1007/978-3-030-34110-7_54

A Pruning Method Based on Feature Abstraction Capability of Filters 643

and 1.56 × 1010 Float Point Operations (FLOPs). The over-parameterized [12]
of deep learning is a major obstacle to deployment on mobile devices.

Thus, network compression has drawn a significant amount of interests from
both academia and industry. In recent years, numerous efficient compression
methods have been proposed, including low-rank approximation [12,13], param-
eter quantization [14,15], and binarization [16]. Among them, network pruning
[17–20] has excellent performance in reducing redundancy of CNNs, and it has
better model deployment ability compared with parameter quantization. simul-
taneous pruning can be applied to different elements of CNNs, such as weights,
filters, and layers. Early works in network pruning mainly resort to removing sev-
eral unimportant weight connections from a well-trained network with negligible
impact on network performance.

In this paper, a pruning strategy based on Feature Abstraction Capabil-
ity (FAC) of filters is proposed. Zhou et al. [21] have shown that the features
extracted by convolution kernels across layers or even the same layer have sig-
nificant differences in the contribution of the final prediction results. The more
information the feature map represents, the more important it is to the network.
Therefore, we believe that the Feature Abstraction Capabilities of different filters
are different, and use this criterion to guide the pruning of network elements.

FAC of all Filters

FAC of the Filter

Original convolutional layer

Input
feature maps

Filters
output

feature maps
Original convolutional layer

Input
feature maps

Filters
output

feature maps

2D kernels

batch feature maps
of the filter

Sparsity

+

+

+

+

Sparsity

+

+

Feature Dispersion

Quan fica on

0.32

pruned convolutional layer

Input
feature maps

Filters
output

feature maps
pruned convolutional layer

Input
feature maps

Filters
output

feature maps

0.32

0.51

0.08

0.75

0.32

0.51

0.08

0.75

Fig. 1. The framework of our method, in the original convolution layer, the input
feature graph is convoluted with the 3D filter to obtain the output feature map. In
our FAC method, we first obtain the sparsity of the 3D filter and the dispersion of the
batch feature maps by the L1-norm [24] and the data-driven method [18]. Finally, the
quantized value of the FAC is obtained as the pruning index in combination with the
sparsity and dispersion, and the filter with the lower FAC value in the volume layer is
pruned to generate a more Compact network.

As shown in Fig. 1, the Feature Abstraction Capability (FAC) of the filter is
obtained by evaluating the sparsity of the convolution kernel of the filter and the
information richness contained in the feature map activated by the filter. Our
main insight is that the feature map activated by the filter with lower Feature
Abstraction Capability (FAC) is redundant. Pruning unimportant filters and

644 Y. Tang et al.

fine-tuning the network to restore its generalization capabilities. Finally, the
CNN model accelerates and compresses during the training and testing phases,
transforming the cumbersome network into a smaller model with a slight per-
formance degradation. At the same time, we propose to normalize the quantized
value of each filter’s FAC, the proposed pruning strategy can be extended to all
layers of the deep CNN, eliminating the need for threshold sensitivity analysis
for each layer.

We evaluated our pruning framework by using two commonly used CNN
models: VGG-16 [22] and Resnet-110 [23]. These two models are pruned on
two benchmark datasets CIFAR10 and CUB 200 2011. These two data sets are
representative. In the CIFAR10 dataset, our method still achieves 4.9× compres-
sion and 1.77× acceleration on VGG-16, with about 0.3% top-1 accuracy drop.
Similarly, in the CUB 200 2011 dataset with 200 kinds of complex tasks of fine-
grained classification, our method still had 4.2× acceleration on VGG-16 with
roughly 0.6% top-1 accuracy drop, which was better than most similar pruning
algorithms.

2 Related Work

In this section, we will briefly introduce some popular network pruning meth-
ods in CNN compression, which can be divided into structured pruning and
unstructured pruning.

Unstructured pruning is to zero the weight value below a certain threshold
in the weights. Among them, what is impressive is that Han et al. [17] proposed
to connect by pruning the weight of small magnitudes on AlexNet network and
VGG network, and then retrain without affecting the overall accuracy, effectively
reducing the number of parameters. However, this pruning operation generates
an unstructured sparse model that requires sparse BLAS libraries or even spe-
cialized hardware to achieve acceleration.

Structured pruning reduces computational complexity and memory overhead
by directly removing structured parts, such as kernels, filters, or layers, and is
well supported by a variety of off-the-shelf deep learning platforms. For instance,
One pruning criterion is sparsity activated by non-linear ReLu mappings. Hu et
al. [18] proposed a data-driven neuron pruning approach to remove unimportant
neurons. They argue that if most of these activated feature maps are zero, it is
not important for neurons to have a high probability. The criterion measures the
importance of neurons by calculating the average percentage of zeros (APoZ)
in the activated feature map. However, the APoZ pruning criterion requires
the introduction of different threshold parameters for each convolutional layer,
which are difficult to accurately determine. Li et al. [24] proposed to remove
unimportant filters based on the L1-norm. Molchanov et al. [19] calculated the
influence of filters on network loss function based on Taylor expansion. According
to the criterion, if the filter has little influence on the loss function, the filter
can be safely removed. So they use Taylor expansion to approximate the change
in loss. He et al. [23] proposes a channel selection method based on LASSO

A Pruning Method Based on Feature Abstraction Capability of Filters 645

regression, which uses least squares reconstruction to eliminate redundant filters.
Similar to our study, Luo et al. [20] proposed a method to calculate entropy of
filters to measure the information richness of the convolution kernel. However,
only the information richness of the filter is considered in the method, and the
strategy can only compare the entropy value of the same convolutional layer.
Most of these methods need to accurately obtain the pruning threshold of each
convolutional layer, but this is difficult to achieve. If fixed compression rate is
used for pruning, it may lead to irreparable accuracy reduction.

In addition to the network pruning method, some other CNN compression
methods are introduced, such as designing a more compact architecture. For
example, it is known that most parameters of the CNN model exist in fully-
connected layers, so the global average pooling is proposed to replace the full
connection layer in the Network-In-Network [26]. Son et al. [27] reconstructed
the network by unified representation of similar convolutions, so as to achieve
effective compression of the network. However, this method has some limitations.
It is only effective for 3 × 3 convolution kernels. Sandler et al. [28] proposed the
use of depthwise separable convolution to build a lightweight network, which has
also been widely used in mobile devices. It’s important to note that our approach
can be combined with these strategies to achieve a more compact and optimized
network. As for ResNet-50, there exists less redundancy compared with classic
CNN models. We can still bring 1.63× acceleration and achieves 2.48× reduction
in FLOPs and parameters with 0.007 decrease in accuracy.

3 Pruning Method

In this section, we will describe in detail our pruning method based on the
Feature Abstraction Capability of the filter. First, the general framework is
given. Our main idea is to quantify the FAC of all convolutional layer filters,
discard those filters with poor performance in each pruning, and restore their
performance by fine-tuning. These implementation details will be released later.
Finally, the training and pruning planning strategy we used in the experiment
is introduced, which has less impact on the final prediction accuracy compared
with other previous strategies.

3.1 Framework

Figure 1 illustrates the overall framework of our proposed FAC pruning method.
We first obtain the weight values of all 2D kernels in the 3D filter, obtain the
sparsity of the 3D filter from the sum of the L1-norm [24] of the 2D kernels,
at the same time obtain the batch feature maps of the filter by the data-driven
method [18], and then calculate the discreteness of batch feature maps. We use
the discreteness of the filter batch feature maps to evaluate the richness of the
information contained in the activated feature map, because if the difference in
the feature map of the filter is small each time, we have enough reason to believe
that the filter Feature Abstraction Capability is weak. Finally, we combine the

646 Y. Tang et al.

sparsity of the convolution kernel with the information dispersion of the activated
feature map to make the estimated filter feature abstraction more accurate and
robust.

Then, all weak filters are pruned from the original model to achieve a more
optimized network architecture. Note that the corresponding input channels of
filters in the next layer should be removed. Finally, the network is fine-tuned to
restore its generalization performance.

3.2 Filter Sparsity

In the convolution layer i, the input tensor Ii εR
C×Hin×Win is convolved

with a set of filter weights Wi εR
N×C×Kh×Kw to get the output tensor

Yi εR
N×Hout×Wout . Here, C is the number of the input feature maps, Hin and

Win are the height and width of the input feature maps, N is the number of the
filters, Hout and Wout are the height and width of the output feature maps, Kh

and Kw are the height and width of a filter. The convolution operation can be
expressed by the following formula:

Yn = Ii ∗ Wn (1)

Where denote the convolution operation, Wn is the weight of the nth filter
in the convolutional layer I, Wn εRC×Kh×Kw . Yn is the feature map of nth filter,
Yn εRHout×Wout .

We evaluate the sparsity of the filter by calculating the L1-norm of Wn,
because it is known from Eq. (1) that if the absolute value of the weights value in
Wn is mostly close to zero, the L1-norm will be small and the value in the output
feature map of the filter will also be closer to zero. We think that such a feature
map is approximately sparse, indicating that the filter’s Feature Abstraction
Capability is also weaker. Therefore, for the n-th input feature map, we define
its sparsity as:

Sn =
C∑

c=0

Kh∑

i=0

Kw∑

j=0

|Wn,c,i,j |, n = 0, 1, 2, . . . , N (2)

3.3 Discreteness of Feature Maps

In this paper, we propose a criterion based on the FAC of the filter to evaluate the
importance of each filter. We believe that if the difference between the feature
maps of each output of the filter is greater, the filter’s Feature Abstraction
Capability will be stronger.

As shown in Fig. 2, we use global average pooling [26] for the activated feature
maps output of layer i, in this way, a N × Hout × Wout output tensor will be
converted into a 1×N vector. At the same time, a corresponding score is obtained
for each feature map output of the filter. In order to calculate the dispersion of
each filter’s output feature map score, more output results are needed, so we
calculate a score for each batch of the data set, and finally we will get a matrix

A Pruning Method Based on Feature Abstraction Capability of Filters 647

Fig. 2. How to use Global Average Pooling (GAP) to calculate the score of output
feature map in convolutional layer i, it should be noted that feature maps are activated
by ReLu function before GAP, because we think that the negative values in feature
maps are filtered out in the network.

M εRB×N , where B refers to the number of batches in the training data set, and
N is the output channel number.

Then, for M:,j in the matrix M represents the output scores vector of the
j-th filter, let μj be the average of the scores of the j-th filter, the formula is as
follows:

Sn =
B∑

i=0

Mi,j , j = 0, 1, 2, . . . , N (3)

Then, the feature maps dispersion of the j-th filter is:

Dj =

{
0, μj = 0√∑B

i=0(Mi,j−µj)2

B , otherwise
(4)

3.4 Definition of the FAC

From the above discussion, we know that the importance of the filter depends on
two parts, the sparsity of the convolution kernel and the discreteness of the fea-
ture maps. Therefore, we combine the two parts to propose the Feature Abstrac-
tion Capability (FAC) to measure the importance of the filter by:

FAC = Sn ∗ Dj (5)

3.5 Normalization

In many papers, the pruning criterion is only applicable to the convolution kernel
comparison between the same layers, and the scale inconsistency will occur when
applied to the cross-layer. Therefore, in our method, we uses layer-wise L2-
normalization to achieve reasonable rescaling:

Θ(i) =
Θ(i)

√∑N
j=0(Θ(i))2

(6)

Where, Θ(i) refers to the set of all FAC filters in the layer i, which can be
understood as a vector. Θ(i) refers to the FAC of the j-th filter in the layer i.

648 Y. Tang et al.

3.6 Pruning and Fine-Tuning Strategy

There are two main types of network architectures: traditional convolution and
fully-connected architectures, as well as some structural variants. VGG and
Resnet are typical representatives, and we mainly introduce the pruning meth-
ods of these two networks. As shown in Table 1, we notice that more than 39%
parameters exist in the fully-connected layers for VGG-16. Some papers [20] use
global average pooling instead of the full connection layer, which can greatly
reduce the number of parameters of the model, but also greatly reduce the con-
vergence speed of the model, which may make it difficult to train the model
back to the original accuracy. Therefore, we reduce the parameters of the full
connection layer by pruning the filter of the last convolution layer to reduce the
input channel of FC1 layer.

prune

64 × 64 × 3 × 3

64 × 64 × 3 × 3

relu

+

64-d

32 × 64 × 3 × 3

64 × 32 × 3 × 3

relu

+

64-d

32 × 64 × 3 × 3

64 × 32 × 3 × 3

relu

+

64-d

relu relu

(a) The two-layer Resnet

prune

64 × 256 × 1 × 1

64 × 64 × 3 × 3

relu

+

256-d

256 × 64 × 1 × 1

relu

64 × 256 × 1 × 1

64 × 64 × 3 × 3

relu

+

256-d

256 × 64 × 1 × 1

relu

32 × 256 × 1 × 1

32 × 32 × 3 × 3

relu

+

256 × 32 × 1 × 1

relu

32 × 256 × 1 × 1

32 × 32 × 3 × 3

relu

+

256 × 32 × 1 × 1

relu

relu relu

256-d

(b) The three-layer Resnet

Fig. 3. Our pruning strategy for ResNet. For each residual block, the final convolutional
layer filter cannot be pruned, reducing its input channel by pruning of the previous
layer.

For ResNet, there are some restrictions in the pruning process due to the
introduction of so-called “identity shortcut connection”. For example, the sum-
mation operation requires that the number of output channels per block in the
same group needs to be consistent (see Fig. 3). In the ResNet network structure,
two kinds of residual modules are mainly used, one is that two 3×3 convolution
networks are connected in series as one residual module, and the other is 1 × 1,
3 × 3, 1 × 1 of 3 convolutional networks are concatenated together as a residual
module.

The final question is how to fine tune the entire network during the pruning
process. Our strategy is prune and retrain iteratively. We found that most of the
pruning method is to pruning filter of each layer at a fixed rate of pruning, and
then fine-tuning the model a few times, but if the pruning rate is too high, the
filter structure of the layer may be damaged. This problem will become more
apparent in more complex task networks because too many filters are pruned at
once in this layer.

So our method is to preset a compression ratio α for the whole network. We
need to pruning N × (1−α) filters, and then we only pruned β filters each time,
finally whole network is fine-tuned with few epochs to recover its performance

A Pruning Method Based on Feature Abstraction Capability of Filters 649

slightly. In this way, we only need to perform N × (1 − α)/β pruning, and those
β filters that are pruned each time are distributed across all convolutional layers
of the network, not concentrated on one layer at a time. And the value of β
in the experiment is 256. The fine-tuning method obtained better results in
experiments than other methods.

Table 1. Overall performance of our approach to reduce FLOPs and parameters on
the VGG-16 model. The experiment is based on the CIFAR10 dataset. Note that we
will resize the 32 × 32 image size in CIFAR to 128 × 128.

Layer Feature map size FLOPs Parameters

Original Pruned Percentage Original Pruned Percentage

Conv1-1 128× 128 29.36M 21.56M 73.4% 1.79K 1.32K 73.5%

Conv1-2 128× 128 605.02M 305.65M 50.5% 36.92K 18.65K 46.7%

Conv2-1 64× 64 302.51M 37.4M 12.4% 73.85K 9.13K 12.4%

Conv2-2 64× 64 604.50M 18.74M 3.1% 147.58K 4.58K 3.1%

Conv3-1 32× 32 302.25M 5.91M 2.0% 295.16K 5.77K 1.9%

Conv3-2 32× 32 604.24M 9.39M 1.5% 590.08K 9.17K 1.6%

Conv3-3 32× 32 604.24M 16.83M 2.8% 590.08K 16.43K 2.8%

Conv4-1 16× 16 302.12M 10.69M 3.5% 1.18M 41.74K 3.5%

Conv4-2 16× 16 604.11M 24.84M 4.1% 2.36M 97.04K 4.1%

Conv4-3 16× 16 604.11M 32.37M 5.3% 2.36M 126.44K 5.4%

Conv5-1 8× 8 151.02M 9.63M 6.4% 2.36M 150.48K 6.4%

Conv5-2 8× 8 151.02M 16.68M 6.9% 2.36M 260.69K 11.1%

Conv5-3 8× 8 151.02M 20.62M 13.6% 2.36M 322.18K 13.7%

FC1 1 8.39M 2.92M 34.8% 8.39M 2.92M 34.8%

FC2 1 1.05M 1.05M 100.0% 1.05M 1.05M 100.0%

FC3 1 10.24K 10.24K 100.0% 10.24K 10.24K 100.0%

Total – 5.02B 534.29M 10.6% 24.17M 5.03M 20.9%

4 Experiments

We used our pruning method to pruning two typical CNN models: VGG-16
and ResNet-50. We have implemented our approach using the deep learning
framework Pytorch. The validity of the algorithm is verified on two datasets,
CIFAR-10 and CUB 200 2011. The CIFAR-10 dataset consists of 60000 images,
whose size is 32 × 32, and the number of images in each category is 6000, with
10 categories. During training, images are converted to 128 × 128, because if
the image is too small, the FLOPs of the network itself will be very small, and
the deceleration effect after pruning is not obvious. The Cub 200 2011 is a birds
data set for fine-grained classification tasks, which contains 11788 images of 200
different bird species. It presents a significant challenge for pruning algorithms

650 Y. Tang et al.

to maximize model compression and acceleration without reducing accuracy too
much. During training, all images of Cub 200 2011 are resize to 320×320, After
each pruning, we fine-tune the whole network in 8 epochs with learning rate
varying from 10−3 to 10−5. During the last pruning, the network is fine-tuned
in 20 epochs with learning rate varying from 10−3 to 10−8. All experiments are
run on a computer equipped with Nvidia GTX 1080Ti GPU.

4.1 VGG-16 Pruning

The detailed distribution of FLOPs and parameters in each layer of VGG-16
is shown in Table 1. As we have seen, the 2nd - 12th layer convolutional layer
contains 90% FLOPs. And we can see that our pruning method is also mainly
aimed at layer 3–12. For the first two layers of convolutional layer, there is no
large-scale pruning. We think that the first two layers of filters contain rich
feature information, so they have stronger Feature Abstraction Capability than
other filters in the layer. The side proves that our method has a certain degree of
interpretability. The pruning rate we set is 80%, that is, 80% of the filters in the
model are pruned off. Finally, we compare our method with following baselines
on the VGG-16 model:

Taylor Expansion [19]: The effect of the filter on the network loss function is
calculated based on the Taylor expansion method. According to this criterion, if
the filter has little effect on the loss function, the filter can be safely removed.

APoZ [18]: The criterion measures the importance of filters by calculating the
average percentage of zeros (APoZ) in the activated feature map.

Entropy [20]: The method to calculate entropy of filters to measure the infor-
mation richness of the convolution kernel.

Table 2. Comparison of different model compression methods for VGG-16 network on
CIFAR10.

Method Top-1 Acc FLOPs (%) Params (%) Speed up Compression

Original 0.916 5.02B 24.17M 1.0× 1.0×
APoZ-50% 0.912 1.27B (25.3%) 8.39M (34.7%) 1.61× 2.7×
APoZ-80% 0.803 0.19B (3.8%) 3.34M (13.8%) 1.92× 5.4×
Taylor-50% 0.922 1.42B (28.2%) 6.94M (28.71%) 1.48× 3.8×
Taylor-80% 0.908 0.56B (11.2%) 1.03M (4.3%) 1.72× 6.1×
Entropy GAP 0.868 1.56B (31.1%) 4.22M (17.5%) 1.49× 4.8×
FAC-50% 0.925 1.26B (25.1%) 11.09M (45.9%) 1.54× 2.0×
FAC-80% 0.913 0.53B (10.6%) 5.03M (20.8%) 1.77× 4.9×

A Pruning Method Based on Feature Abstraction Capability of Filters 651

Table 3. Comparison of different model compression methods for VGG-16 network on
CUB 200 2011.

Method Top-1 Acc Top-5 Acc FLOPs (%) Params (%) Speed up

Original 0.764 0.939 31.64B 304.1M 1.0×
APoZ-80% 0.556 0.833 1.40B (4.4%) 80.6M (26.5%) 5.6×
Taylor-50% 0.772 0.948 13.96B (44.1%) 91.8M (30.2%) 2.7×
Entropy-50% 0.728 0.932 9.42B (29.8%) 64.6M (21.2%) 3.5×
FAC-50% 0.786 0.950 11.62B (36.7%) 122.6M (40.3%) 3.1×
FAC-80% 0.758 0.937 6.74B (21.3%) 66.6M (21.9%) 4.2×

As shown in Tables 2 and 3, we used different algorithms for pruning VGG-
16 networks in CIFAR10 and CUB 200 2011 datasets, among which the APOZ
method pruned the filter of each layer with a fixed prune rate. We can see
that when the pruning rate reaches 80%, the accuracy of the model drops very
seriously. In the Entropy method, Luo et al. used GAP instead of the fully-
connected layer, which greatly reduced the parameters of the model, but had a
greater impact on the prediction accuracy of the model (which greatly increased
the difficulty of convergence of the model). The Taylor method uses a pruning
strategy similar to ours. It can be seen that the Taylor criterion has better per-
formance for model size compression, but at the same pruning rate, our method
has less precision loss and more excellent acceleration performance. As can be
seen from the two tables, the larger the size of the input image, the greater
the clipping acceleration. In the CUB 200 2011 dataset, the size of the input
image is 320 × 320. Our method can achieve about 4.7× reduction in FLOPs
and parameters with 0.006 decrease in accuracy. When the pruning rate is 50%,
the accuracy of the pruned model is even higher than the original model, and
higher than other pruning methods.

By comparison, we can see that our FAC-based pruning method has better
overall performance, and there is a better balance between model compression
and model acceleration at the same pruning rate.

4.2 ResNet-110 Pruning

In the network structure of ResNet-110, it is divided into three hierarchies by
the residual block, and the size of its corresponding feature maps are 32 × 32,
16×16, and 8×8, respectively. According to the process of pruning for ResNets in
Sect. 3.5, the pruned model for ResNet-110 was obtained on CIFAR-10. During
the training process, the images are randomly cropped to 32 × 32.

The overall performance of our method on pruning ResNet-110 is shown
in Table 4, We prune this model with 2 different pruning rate (pruning 20%,
30% filters respectively). The best pruned model achieves 2.48× reduction in
FLOPs and parameters with 0.007 decrease in accuracy. Unlike traditional
CNN architectures, ResNet is more compact. There is less redundancy than the

652 Y. Tang et al.

Table 4. The pruned model for ResNet-110 on CIFAR-10 with different pruning rate.

Model Top-1 Acc Speed-up Compression Time

#FLOPs FLOPs% #Para. Para.%

ResNet110 0.937 2.53 × 108 – 1.72 × 106 – 1.0×
FAC-20% 0.933 1.46 × 108 57.7% 1.02 × 106 59.3% 1.34×
FAC-30% 0.928 1.02 × 108 40.3% 0.72 × 106 41.9% 1.63×

VGG-16 model, so it seems more difficult to delete a large number of filters.
However, when small pruning rate is adopted, our method can improve the per-
formance of ResNet-110 to the maximum extent.

5 Conclusion

In this paper, we propose a pruning framework based on the Feature Abstraction
Capabilities of filters to accelerate and compress the CNN model simultaneously
in the training and inference phases. Compared with the previous pruning strat-
egy, the pruning model has better performance. Our approach does not depend
on any proprietary libraries, so it can be widely used in a variety of practical
applications of current deep learning libraries.

In the future, we want to further explore the interpretability of model prun-
ing, and then design pruning strategies that are more suitable for different visual
tasks (such as semantic segmentation, target detection, image restoration, etc.).
The pruned network will greatly accelerate these visual tasks.

References

1. Girshick R.: Fast R-CNN. In: The IEEE International Conference on Computer
Vision (ICCV), pp. 1440–1448 (2015)

2. Redmon, J., Farhadi, A.: YOLO9000: better, faster, stronger. In: The IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR), pp. 7263–7271 (2017)

3. Hu, H., Gu, J., Zhang, Z., et al.: Relation networks for object detection. In: The
IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2018)

4. He, K., Gkioxari, G., Dollár, P., et al.: Mask R-CNN. In: The IEEE International
Conference on Computer Vision (ICCV), pp. 2961–2969 (2017)

5. He, K., Zhang, X., Ren, S., et al.: Deep residual learning for image recognition.
In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
(2016)

6. Huang, G., Liu, Z., Van Der Maaten, L., et al.: Densely connected convolutional
networks. In: The IEEE Conference on Computer Vision and Pattern Recognition
(CVPR) (2017)

7. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic seg-
mentation. In: The IEEE Conference on Computer Vision and Pattern Recognition
(CVPR) (2015)

A Pruning Method Based on Feature Abstraction Capability of Filters 653

8. Xu, Y.S., Fu, T.J., Yang, H.K., et al.: Dynamic video segmentation network. In:
The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp.
6556–6565 (2018)

9. Kuhn, M., Johnson, K.: An introduction to feature selection. In: Kuhn, M., John-
son, K. (eds.) Applied Predictive Modeling, pp. 487–519. Springer, New York
(2013). https://doi.org/10.1007/978-1-4614-6849-3 19

10. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep con-
volutional neural networks. In: International Conference on Neural Information
Processing Systems (NIPS), pp. 1097–1105 (2012)

11. Simonyan, K., Zisserman, A.: ImageNet classification with deep convolutional neu-
ral networks. In: International Conference on Learning Representations (ICLR)
(2015)

12. Lin, S., Ji, R., Chen, C., et al.: Holistic CNN compression via low-rank decompo-
sition with knowledge transfer. IEEE Trans. Pattern Anal. Mach. Intell. (TPAMI)
(2018)

13. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Coordinating filters for faster deep neu-
ral networks. In: The IEEE International Conference on Computer Vision (ICCV)
(2017)

14. Wu, J., Leng, C., Wang, Y., et al.: Quantized convolutional neural networks for
mobile devices. In: The IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR), pp. 4820–4828 (2016)

15. Jacob, B., Kligys, S., Chen, B., et al.: Quantization and training of neural net-
works for efficient integer-arithmetic-only inference. In: The IEEE Conference on
Computer Vision and Pattern Recognition (CVPR) (2017)

16. Lin, X., Zhao, C., Pan, W.: Towards accurate binary convolutional neural network.
In: International Conference on Neural Information Processing Systems (NIPS),
pp. 345–353 (2017)

17. Han, S., Mao, H., Dally, W.J.: Deep compression: compressing deep neural net-
works with pruning, trained quantization and Huffman coding. In: International
Conference on Learning Representations (ICLR) (2016)

18. Hu, H., Peng, R., Tai, Y.W., Tang, C.K.: Network trimming: a data-driven
neuron pruning approach towards efficient deep architectures. arXiv preprint
arXiv:1607.03250 (2016)

19. Molchanov, P., Tyree, S., Karras, T., et al.: Pruning convolutional neural networks
for resource efficient inference. In: International Conference on Learning Represen-
tations (ICLR) (2017)

20. Luo, J.H., Wu, J.: An entropy-based pruning method for CNN compression. arXiv
preprint arXiv:1706.05791 (2017)

21. Zhou, B., Sun, Y., Bau, D., et al.: Revisiting the importance of individual units in
CNNs via ablation. arXiv preprint arXiv: 1806.02891 (2018)

22. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition. In: International Conference on Learning Representations
(ICLR) (2015)

23. He, K., Zhang, X., Ren, S., et al.: Deep residual learning for image recognition. In:
The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp.
770–778 (2016)

24. Li, H., Kadav, A., Durdanovic, I., et al.: Pruning filters for efficient convnets. In:
International Conference on Learning Representations (ICLR) (2016)

25. He, Y., Zhang, X., Sun, J.: Channel pruning for accelerating very deep neural
networks. In: International Conference on Computer Vision (ICCV) (2017)

https://doi.org/10.1007/978-1-4614-6849-3_19
http://arxiv.org/abs/1607.03250
http://arxiv.org/abs/1706.05791
http://arxiv.org/abs/1806.02891

654 Y. Tang et al.

26. Lin, M., Chen, Q., Yan, S.: Network in network. In arXiv preprint arXiv:1312.4400
(2013)

27. Son, S., Nah, S., Lee, K.M.: Clustering convolutional kernels to compress deep
neural networks. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.)
ECCV 2018. LNCS, vol. 11212, pp. 225–240. Springer, Cham (2018). https://doi.
org/10.1007/978-3-030-01237-3 14

28. Sandler, M., Howard, A., Zhu, M., et al.: MobileNetV2: inverted residuals and
linear bottlenecks. In: Computer Vision and Pattern Recognition (CVPR) (2018)

http://arxiv.org/abs/1312.4400
https://doi.org/10.1007/978-3-030-01237-3_14
https://doi.org/10.1007/978-3-030-01237-3_14

	A Pruning Method Based on Feature Abstraction Capability of Filters
	1 Introduction
	2 Related Work
	3 Pruning Method
	3.1 Framework
	3.2 Filter Sparsity
	3.3 Discreteness of Feature Maps
	3.4 Definition of the FAC
	3.5 Normalization
	3.6 Pruning and Fine-Tuning Strategy

	4 Experiments
	4.1 VGG-16 Pruning
	4.2 ResNet-110 Pruning

	5 Conclusion
	References

