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Abstract. Dynamic fluorescence molecular tomography (FMT) is a promising
optical imaging technique for three-dimensionally demonstrating the metabolic
process of fluorophore in small animals. Conventional FMT methods focus on
reconstructing static distribution of fluorescent yield, and the reconstruction results
may perform poorly if the boundary measurement data, acquired from time-
varying fluorophore, were directly used in these methods. In this study, we apply
joint �1 and Laplacian manifold regularization model to dynamic FMT. The �1-
norm regularization method is used to deal with the ill-posedness of FMT, and the
Laplacian manifold regularization is introduced to obtain spatial structure infor-
mation of boundary measurements. Then, we use gradient projection for sparse
reconstruction (GPSR) method to solve the joint regularization model. Since the
boundary measurements are obtained from different time points, the input data is
converted from a vector to amatrix, and each column of thematrix corresponds to a
time point. Thus, a sequence of fluorophore concentration images, corresponding
to different time points, can be reconstructed in one step. Numerical simulation
experiments are performed and the results indicate that the proposed method can
recover the dynamic fluorophore well.

Keywords: Dynamic fluorescence molecular tomography · Regularization
method · Gradient projection for sparse reconstruction method

1 Introduction

Dynamic fluorescence molecular tomography (FMT), as a promising optical tomo-
graphic imaging technique, provides richer information than conventional static imaging,
and has the ability to capture the absorption, distribution, and elimination of fluorescent
bio-markers within small animals [1–3]. It is helpful in better studying drug delivery
and disease progression.
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In static FMT, the traditionalmethods [4–6] assumed the concentration of fluorescent
probe is constant, so these methods only reconstruct static distribution of fluorescent
yield from data sets acquired within several minutes, but fail to capture the temporal
information of the time-varying fluorophore. Besides, the reconstructed results perform
poorly if the measurements, corresponding to the non-stationary fluorophore concentra-
tion, are directly used in the static FMT reconstruction, especially when the fluorophore
concentrations vary rapidly.

To address the problem, some theoretical and experimental solutions have been pro-
posed [7–10], and the fluorophore is assumed as a discrete time stochastic process. These
methods allows the fluorophore concentration change over time, and they are capable to
solve the dynamic FMT reconstruction problem. Since the fluorephore concentrations,
viewed as a random variable at each time point, are temporally correlated, the acquired
measurement data are highly correlated with one another along the time axis. These
methods, however, obtain measurement data from different time first, and then recon-
struct a series of static distributions of fluorescent yield respectively, fail to make full
use of the temporal correlations of boundary measurements.

To overcome these limitations, in this paper, we propose a joint regularization model
to reconstruct a sequence of FMT images of different time points in one step. Both accu-
rate transportation model and sophisticated inverse algorithm are indispensable in FMT.
To deal with the high ill-posedness of FMT, many regularization methods have been
introduced to solve the inverse problem. �2-norm regularization, such as Tikhonov reg-
ularization [11, 12], was widely used in FMT. However, �2-norm regularization tends to
incur over-smoothness in reconstructed image. To improve the imaging quality, �1-norm
regularization, as an alternative solution, was used to promote the sparsity of the solution
[13–15]. For dynamic FMT, spatial structure is significant information for reconstructing
the distribution of fluorophore. To utilize both sparsity and spatial structure information,
manifold-based learning method [16–19] is needed. Thus, we introduce Laplacian man-
ifold regularization and combine it with �1-norm regularization to improve dynamic
FMT reconstruction. Then, we use gradient projection for sparse reconstruction (GPSR)
method [20, 21] to solve the joint regularization model.

The outline of this paper is as follows. In Sect. 2, the methods are detailed. Section 3
presents the experimental materials, and the reconstruction results are shown. In Sect. 4,
we draw conclusions based on the simulation results.

2 Methods

2.1 Dynamic FMT Forward Model

For dynamic FMT, the photon propagation in biological tissues can be modeled using
the diffusion equation (DE). In a continuous-wave domain with point excitation sources,
the propagation of excitation and emission lights can be presented as follows:

{ ∇ · [Dx (r)∇�(r, t)] − μax (r)�x (r, t) = −�δ(r − rs, t)
∇ · [Dm(r)∇�m(r, t)] − μam(r)�m(r, t) = −�xημα f (r, t)

(r ∈ �)

(r ∈ �)
(1)
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where� is the domain of the imaged object, r is the position vector.μαx,m(r) represents
the absorption coefficient, t denotes time. The subscript x andm represent the excitation
process and emission progress respectively. �x,m(r, t) denotes photon intensity and
Dx,m(r) is the diffusion coefficient of the tissue at position r . δ(r − rs, t) is the point
excitation source and � is the amplitude. rs is the position vector of different excitation
sources. η denotes the fluorescent yield efficiency, μα f (r, t) is the absorption coefficient
of fluorescent to the excitation light.

In this paper, finite element method (FEM) is chosen to solve the diffusion equations
that the imaged domain is discretized into ameshwith N nodes. Equation (1) is converted
into the following linear equations:

{
Kx�x = Sx
Km�m = FX

(2)

where Kx and Km represent the systemmatrix in excitation process and emission process,
respectively. Sx denotes the excitation source distribution, F is an N × N symmetric
matrix. Based on Eq. (2), the final equation can be formulated as:

AX = � (3)

Equation (3) shows the linear relationship between the unknown fluorescent yield
X and the boundary measurements �. A is an M × N weight matrix depending on the
geometry and optical parameters.

For static FMT, the fluorophore is assumed to be stationary that it does not change
during FMT imaging processes. Thus, X is a N × 1 vector represents the fluorescent
yield at a given time t , and �, also a N × 1 vector, is the corresponding boundary
measurements. However, in dynamic FMT, a time series of boundary measurements are
acquired at intervals ofminutes over time and the fluorescent yield can be denoted as X =
{X1, X2, · · · , Xt , · · · , Xk}, where k is the number of time points. As a consequence,
both of X and � are N × k matrices.

2.2 Dynamic FMT Inverse Model

The static reconstruction algorithms fail to solve the time-varying measurements, in this
paper, we proposed a joint �1 and Laplacian manifold regularization model to improve
the reconstruction performance.

To cope with the high ill-posed nature of Eq. (3) and the existence of noise, some
form of regularization method is indispensable in the inversion. Compared with �2-norm
regularization method, �1-norm regularization is used in this paper due to its sparsity.
The inverse problem can be formulated as:

argmin
X

1

2
||AX − �m ||22 + τ ||X ||1 (4)
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In order to improve the quality of reconstruction, both structural priors and temporal
correlations of boundary measurements should be fully utilized. Thus, we introduce the
Laplacian manifold regularization into the inverse process:

argmin
X

1

2
||AX − �m ||22 + τ ||X ||1 + λ

2
XT LX (5)

where XT LX is the Laplacian manifold regularization term and L is the regularization.
Let pi (i = 1, 2, . . . , N ) denotes the space nodes, ei, j (i, j = 1, 2, . . . , N ) denotes

the edges of FEM mesh. ei, j = 1 represents there is an edge between pi and p j ,
otherwise, ei, j = 0.

The Laplacian manifold regularizer is defined as:

N∑
i=1

N∑
j=1

wi, j (xi − x j )
2 (6)

where wi, j is the weight of the edge between node pi and p j , defined as:

wi, j =
{
exp(−||pi−p j ||22

σ 2 ) if ei, j = 1
0 if i = j or ei, j = 0

(7)

where σ > 0 is the parameter to adjust theweightmatrix. It is apparent thatwi, j ∈ [0, 1],
and the closer pi from p j , the closer wi, j to 1. By simple mathematical derivation, we
can obtain the formula:

N∑
i=1

N∑
j=1

wi, j (xi − x j )
2 = 2XT (D − W )X (8)

where W is a symmetrical weight matrix, which equals to (wi j )N×N . D is a diagonal
matrix, which equals to diag(d1, d2, . . . , dN ). Let L = D − W , then we obtain the
Laplacian manifold regularization item of Eq. (5).

2.3 Gradient Projection for Sparse Reconstruction Method

To resolve the dynamic optical imaging problem, the conventional approach estimates
each image independently, and then assembles these results into a time sequence. The
reconstruction results show good quality at each time point, but it fails to make full use of
the measurements � = {�1,�2, . . . , �k} that every column is temporarily correlated
with one another. In this paper, GPSR is utilized to solve Eq. (5).

Through GPSR approach, the variable X is split into positive and negative parts.
Equation (5) can be rewritten as the following quadratic program:

argmin
1

2
ZT BZ + CT Z s.t.Z ≥ 0 (9)
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where Z =
[
Z p

Zn

]
, C =

[
τ1N − AT�

τ1N + AT�

]
, and B =

[
AT A + λL −(AT A + λL)

−(AT A + λL) AT A + λL

]
.

These relationships are satisfied by Z p = (xi )+ and Zn = (−xi )+ for all i =
1, 2, . . . , N , where (·)+ denotes the positive-part operator. Then gradient projection
algorithm is used to solve the problem in Eq. (9).

Let F(Z) = 1/2ZT BZ +CT Z , we search from each iterate Z (v) along the negative
gradient −∇F(Z (v)), and iterate Z (v) evolves to iterate Z (v+1) as follows:

Z (v+1) = (Z (v) − α(v)∇F(Z (v)))+ (10)

where α(v) > 0 is the scalar parameter. We define the vector g(v) as:

g(v)
i =

{
[∇F(Z (k))]i i f z(v)

i > 0 or [∇F(z(v))]i < 0
0 otherwise

(11)

The initial value of α(v) can be computed as:

α0 = (g(v))T g(v)

(g(v))T Bg(v)
(12)

Compared with other methods, the proposed method has several features: First, the
joint �1 and Laplacian manifold regularization model makes full use of the temporal
correlations of boundary measurements. Second, the input data � is a N × 4 matrix,
each column corresponds to a set of boundarymeasurements that obtained from different
time points. The proposed algorithm could output the reconstructed results X , a N × 4
matrix, in one step.

2.4 Evaluation Index

To quantify the reconstruction performance, position error (PE) was calculated to
measure the distance variation between the reconstructed region and real region. The
definition of PE is:

PE = ||Pr − P0||2 (13)

where Pr and P0 are the center coordinates of reconstructed and actual fluorescent
sources respectively. We also calculated the volume of the reconstructed fluorophore, to
compare with the volume of real target. The results is shown in Sect. 3.
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3 Experiments

3.1 Experimental Setup

Numerical simulation is implemented to validate the performance of the joint regulariza-
tion model and the proposed algorithms. A virtual mouse atlas was employed to provide
the 3-D information, the mouse torso from the neck to the base of the kidneys was
selected as the investigated region. As shown in Fig. 1(a), the simulation model includes
five organs: muscle, heart, lungs, liver and kidneys. To simplify the simulation of the
metabolic processes of drug, we focus on imaging kinetic behavior in liver.

Fig. 1. (a) The mouse 3-D geometry model used in simulation studies. (b) Shows the position of
the spherical target.

The spherical target is set in the liver and the center of it is at (16.4, 11, 16.4) mm,
as shown in Fig. 1(b). The positions of four excitation point sources is located at Z =
16 mm. For each excitation location, the fluorescence is measured from the opposite
side within 120 deg field of view.

The absorption and the scattering coefficients are essential in the photon propagation
simulation. The following Table 1 gives the optical parameters of the mouse organs. The
optical properties outside these organs were regarded as homogeneous.

Table 1. Optical parameters of the mouse organs.

Organ μax (mm−1) μ′
sx (mm−1) g

Muscle 0.0052 1.08 0.9

Heart 0.0083 1.01 0.85

Lungs 0.0133 1.97 0.9

Liver 0.0329 0.70 0.9

Kidneys 0.0066 2.25 0.86
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To simulate the metabolic process, a series of spherical targets with different con-
centrations and sizes should be set as different fluorescents. We planned to set three
simulation experiments: (a) Spherical targets with same concentration and different
radii. (b) Spherical targets with different concentrations and same radius. (c) Spherical
targets with different concentrations and different radii.

In this paper, we mainly focus on testing the proposed model and the algorithm,
only the first experiment is illustrated, the other experiments would be done in the future
work. According to the ICG concentration curves in [22], which mimic the metabolic
processes of ICG in different organs and tissues, we set four spherical targets with four
different radii: 1.0, 1.5, 2.0, 2.5 (mm) to simulate the diffusion progress of fluorescent
at the four time points: 10, 15, 30, 60 (min). The variation of target concentration within
each time point is neglected for simplification.

3.2 Forward Simulation

The photo propagation model of dynamic FMT reconstruction is illustrated in this
section. Four spherical targets with different radii: 1.0, 1.5, 2.0, 2.5 (mm) and same
concentration was set in the liver, as shown in Fig. 2.

Fig. 2. Fourmousemodelswith different spherical targets. The radius are 1.0, 1.5, 2.0 and 2.5mm,
corresponding to (a) to (d), to simulate the diffusion progress of fluorescent.

The photon density on the mouse surface was simulated using the FEM approach. In
order to obtain the measurements, the four models was discretized into 10689, 10793,
10869, 10750 nodes, respectively. Figure 3 shows the forward results. 3-D reconstruc-
tions were performed on a tetrahedral mesh discretizing the mouse model with 7712
nodes.
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Fig. 3. Forward results of spherical targetswith different radii: (a) 1.0mm, (b) 1.5mm, (c) 2.0mm,
and (d) 2.5 mm.

3.3 Reconstruction Results

Based on the joint �1 and Laplacian manifold regularization model and the experiment
settings, we utilize the GPSR method to solve the inverse problem. Enough iterations
were used to ensure sufficient convergence. The regularization parameters of the method
were manually optimized to balance the reconstruction error and image contrast.

Specifically, parameter τ and λ for Laplacian regularization term have significant
influence on the reconstructed results. This is mainly because the variable X and input
data � are N × 4 matrices, for each column the optimal parameters are different. Thus,
it is necessary to add constraints to the parameters to get the best results of each column
at once.

Figures 4 and 5 show the reconstruction results in 3-D views and cross-sectional
views respectively. It is clearly seen from the reconstructed images at different time
points that the center of reconstructed fluorophores is close to the spherical targets and
the quality is acceptable. The quantitative assessment of the reconstruction results are
shown in Table 2.

Table 2 shows that the distance between the center of the reconstructed fluorophore
and real target is 1.1 mm to 1.5 mm, which proves the reliability of the proposed method.
Besides, in consideration of the radius of target varies from 1.0 mm to 2.5 mm, the
proposed algorithms shows stability in reconstructing small target and big target.
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Fig. 4. Reconstruction results. (a), (b), (c) and (d) shows the reconstruction results of spherical
targets with radius equals to 1.0, 1.5, 2.0, 2.5 mm, respectively.

Fig. 5. The cross-sectional views of the reconstruction results. (a)–(d) are correspond to Fig. 4.
(a)–(d). The black circle is the real position of target.
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Fig. 6. Thevolumeof spherical target and reconstructed target. The curves are depicted to different
colors (spherical target: dark yellow; reconstructed target: grey) (color figure online).

Table 2. Quantitative assessment

Radius (mm) Reconstructed source center (mm) PE (mm) Volume (mm3)

1.0 (17.1, 11.8, 16.1) 1.139 0.376

1.5 (15.7, 11.7, 15.2) 1.503 1.248

2.0 (16.7, 11.8, 15.3) 1.375 2.638

2.5 (16.0, 12.3, 16.0) 1.382 6.782

Figure 6 shows the volume of spherical targets and reconstructed targets. The
transvers axis represents time and the vertical axis represents value of volume. With
the increase of radius, the reconstruction results show growth trend, and the differences
between the real targets and reconstructed targets are relatively small.

4 Discussion and Conclusion

In this paper, we propose a joint �1 and Laplacian manifold regularization model for
dynamic FMT reconstruction. Compared with other methods, the proposed approach
makes full use of the sparsity and spatial structure information of the boundary measure-
ment data, and a sequence of FMT images of different time points can be reconstructed
in one step. Besides, numerical simulation is implemented to validate the performance of
the joint regularization model and the proposed algorithms. The results demonstrate the
reliability and stability of the proposed approach. In general, this approach for dynamic
FMT can provide satisfactory reconstructed images.

In the simulation section,wemainly focus on testing theproposedmodel and the algo-
rithm, only the first experiment, assuming that all the fluorescent targets have the same
concentration, was illustrated. The other comprehensive experiments will be carried out
in future works.
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