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Abstract. Traditional strategies for reconstructing Compressed Sens-
ing Magnetic Resonance Imaging (CS-MRI) may introduce computa-
tional redundancy, and deep learning-based methods can significantly
reduce reconstruction time and improve restoration quality. However,
many recent deep learning-based algorithms lay insufficient attention to
spatial frequency information. In this paper, a Structural Oriented Gen-
erative Adversarial Network (SOGAN) is proposed aiming at restoring
image domain information as well as refining frequency domain dur-
ing the reconstruction of CS-MRI. Numerical Experiments showed our
model’s efficiency and capability for diagnostic purpose.
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1 Introduction

In the past two decades, Magnetic resonance imaging (MRI) has revolutionized
diagnostic and therapeutic imaging due to its non-radiation and non-ionizing
nature. It can reveal the structure and the function of internal tissues and organs
in a high-quality and safe manner. However, the main barrier in contemporary
MRI technology is the slow process of data acquisition, resulting in long scan time
and potentially more severe motion artefacts, hence accelerating MR acquisition
is in high demand. Different efforts have been made to reduce scan time, which
can be categorized into two complementary directions: physics and hardware-
based methods as well as signal processing based methods. The former mainly
lay emphasis on designing fast imaging sequences, as well as exploiting infor-
mation from multiple receiving coils. For example, generalized autocalibrating
partial parallel acquisition (GRAPPA) [1] aims to exploit the diverse informa-
tion in coil sensitivity maps. The latter relies on the prior knowledge of the
sparsity in k-space. Compressed Sensing MRI (CS-MRI) [2] is an important rep-
resentative in signal processing based methods. k-space is the frequency domain,
and randomly undersampled data (usually less than 50%) is often acquired in
c© Springer Nature Switzerland AG 2019
Y. Zhao et al. (Eds.): ICIG 2019, LNCS 11902, pp. 483–494, 2019.
https://doi.org/10.1007/978-3-030-34110-7_40

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-34110-7_40&domain=pdf
https://doi.org/10.1007/978-3-030-34110-7_40


484 H. An and Y.-J. Zhang

such applications. In the theory of Compressed Sensing MRI, artefacts brought
by random undersampling can be treated as noise-like interference and thus be
recovered by the sparse representation [2]. Although this assumption based on
the sparsity in the transformation domain succeeds in many applications [3–7],
one problem still exists is the computational complexity.

Recent progress in artificial neural networks opens new opportunities to solve
classification [8], recognition [9], and ill-posed inverse problems [10] more effi-
ciently than conventional signal processing methods. When dealing with ill-posed
inverse problems, Convolutional Neural Networks (CNNs) outperforms a great
number of traditional model-based methods in different tasks, such as image
super-resolution [11], segmentation [12], de-noising [13], and pose estimation [14]
etc.

In order to address the problems regarding complexity resulted from the
above assumption, there are preliminary researches focusing on deep learning
based MRI reconstruction have made great progress. Wang et al. [15] first pro-
posed using end to end CNN to learn the mapping between zero-filled and fully-
sampled data. Schlemper et al. [16] incorporated data consistency as a layer
when cascading CNNs for MRI reconstruction, also demonstrated that using
different Cartesian masks to train is beneficial for generic applications. Yang et
al. [17] took advantage of the algorithm in Alternating Direction Method of Mul-
tipliers (ADMM) and achieved results that reconstruction time was significantly
reduced while producing the same quality as traditional model-based methods.
Sun et al. [18] used a Recursive Dilated architecture aiming to reduce the net-
work parameters while introducing dilated convolutions. However, training tra-
ditional end to end CNN with pixel-wise oriented loss function may result in
overly smooth structure detail and lack perceptual coherent details for diagnos-
tic purpose. Goodfellow et al. [19] proposed Generative Adversarial Networks
(GANs) in which utilizing the generator network as a nonlinear transforma-
tion solves perceptually generating problems at a high level. Wang et al. [20]
proposed a state of the art single image super-resolution (SISR) model called
Enhanced SRGAN, taking advantage of a residual dense block with a GAN archi-
tecture. Such analogous computer vision tasks (e.g. super-resolution, de-noising,
and reconstruction) with perceptual quality driven goal gradually make use of
GAN architecture and showed promising results [20,21].

Mardani et al. [22] first incorporated GAN into Compressed Sensing MRI,
Quan et al. [23] used a cyclic loss function while learned residual content of
undersampled scans. Yang et al. [24] incorporated perceptual and frequency
domain loss, Li et al. [25] introduced a structure regularization called Patch
Correlation Regularization (PCR) which aims to restore structure information
within both local and global scale. Chen et al. [26] trained a GAN to provide
two MRI contrast during one single scan.

The motivation of this study mainly comes from two observations. In recent
years, image restoration and de-noising tasks lay great emphasis on perceptual
quality [27] based on the human visual system (HVS). Also, it is straightforward
to formulate one single reconstruction based on a single observation instead of
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repeatedly refinement of the generated sample, which is beneficial for clinical
hardware implementation.

Taken the above observations into consideration, in this study, we adopted
and improved Generative Adversarial Network (GAN) to first time aimed at
preserving global structure using an MS-SSIM oriented training purpose, while
realizing data correction after single reconstruction. Specifically, our contribu-
tions are as follows:

– We proposed to incorporate MS-SSIM oriented loss function in an unbalanced
U-Net based generator architecture, further balanced between NMSE loss and
frequency domain loss.

– We proposed to add a single data consistency correction after one-time recon-
struction using GAN, which can be further synthesized into the model.

– We presented a theoretical analysis of the proposed differentiable loss func-
tion, conducted numerous comparison experiments to examine our model and
proved the efficiency of the proposed method.

The rest of this paper is organized as: In Sect. 2 the problem is stated, and
Structure Oriented Generative Adversarial Networks (SOGAN) is proposed after
the evaluation of conventional methods and deep learning methods. Section 3
reports the method as well as our contributions. In Sect. 4, training details and
data evaluation are presented. Discussion and conclusion are in Sect. 5.

2 Problem Formulation

Compressed Sensing MRI can be treated as an ill-posed linear system y = Φx+ε
with Φ ∈ C

M×N . ε denotes the noise and other unmodeled dynamics. The obser-
vation and desired reconstruction are respectively denoted as y and x, where y
∈ C

M and x ∈ C
N , note that M � N . The image acquisition process can

be described by matrix C
M×N . Thus the desired goal is estimating the inverse

matrix C
N×M which is underdetermined. Another unstable factor is the unmod-

eled dynamics ε. The reconstructed image is often estimated by

x̂ = arg min
x

{1
2
‖Φx −y‖22 +

L∑

l=1

λlg(x)} (1)

in which Φ = PF ∈ C
M×N is the measurement matrix with P denoting under-

sample operation and F denoting Fourier transformation. g(·) is the regular-
ization term, making use of prior information and lq-regularizer (q ∈ [0, 1]) is
usually adopted for compressed sensing problems.

For learning based problem formulation, no further information is obtained
besides the training samples and the corresponding noisy observations. The goal
is to estimate x′ with newly acquired data y′. We denote the fully-sampled
training data as set X = {x1, x2, . . . , xt}, and the corresponding observa-
tions as set Y = {y1, y2, . . . , yt}, thus the training process can be written as
S = {(x1, y1), (x2, y2), . . . , (xt, yt)}.
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2.1 Conventional Model-Based MRI

Magnetic Resonance Imaging takes advantage of the radio frequency pulse
sequence. Model-based theories can be categorized into two parts: transform-
based methods and dictionary learning-based methods. For conventional Com-
pressed Sensing (CS) theory, utilizing the sparsity characteristic of acquired sig-
nal is important, and transforms such as Fourier transform, Wavelets [4] and
discrete cosine transform [2] are used. However, solving the minimization prob-
lem may introduce computational complexity and also result in block artefacts
[28]. The highlights for dictionary learning-based methods [29] is that it can
specifically design a dictionary for the desired dataset.

2.2 Generative Adversarial Networks

General image processing aimed Generative Adversarial Networks derives from
a zero-sum game between two CNN based neural networks, called the generator
G and the discriminator D. The generator aims to learn the mapping from
the manifold latent space z and the corresponding ground truth input x. The
discriminator learns to classify whether the input sample lies within real data
distribution Pdata or in generated data distribution Pg. Together the training
function L can be formulated by

max
D

min
G

L(D,G) = Ex∼Pdata(x) [logD(x)] + Ez∼Pz(z) [log(1 − D(G(z)))] (2)

GAN can be estimated by the simultaneous optimization of G and D, based
on a stochastic gradient descent algorithm. However, at the initial stage, the
over-confident discriminator may result in gradient vanishing problem, thus the
gradient step for generator often takes

ΔG = ∇GEz∼Pz(z) [−log(D(G(z)))] (3)

The optimized balance between generator and discriminator should finally reach
at

D′
G(x) =

Pdata(x)
Pdata(x) + Pg(x)

(4)

in which the discrimination process approximates random guess and the training
process is then stopped. In the final stage, the generated sample distribution Pg

approximates real data distribution Pdata.

3 Method

In the proposed SOGAN architecture, U-Net based generator is adopted for
several reasons. Skip connections between the down-sampling encoder and up-
sampling decoder can preserve structure information within different scales,
which have proven effective among medical image processing tasks [30]. Unlike
the upscaling characteristic of super-resolution, the input and output of our task
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Fig. 1. U-Net structure of generator used in this study

should maintain the same size. Moreover, the residual connection can effectively
propagate gradients and avoid gradient vanishing problem.

The generator used in this study is shown in Fig. 1 which utilizes skip con-
nections, and each down-sampling decreases the feature map size by a factor of 2
and each up-sampling increase the feature map size by a factor of 2. Empirically
doubling the feature maps in the decoder which results in an unbalanced U-Net
helps to reconstruct more detail, and gain better results. Each down-sampling
and up-sampling stage consists of three parts: convolutional layer (deconvolu-
tional layer), batch normalization layer, Leaky ReLU layer.

3.1 Multi-scale SSIM Loss

In order to evaluate the content quality of a reconstructed image, PSNR and
SSIM are the two important factors involved. More importantly, the percep-
tual quality of the image is often assessed by SSIM [31], thus the perceptually
motivated error function is adopted in this study. To evaluate SSIM at pixel p,

SSIM(p) =
2μxμy + C1

μ2
x + μ2

y + C1
· 2σxy + C2

σ2
x + σ2

y + C2
= l(p) · cs(p) (5)

SSIM driven loss function should be written as

LSSIM (p) =
1
N

∑

p∈P

(1 − SSIM(p)) (6)

In order to deal with boundary regions, we need to replace pixel patch p with
center pixel p̃ to calculate SSIM and its derivatives. For back propagation need,
the derivatives of SSIM function should be calculated as

∂LSSIM (p)
∂x(p)

= − ∂

∂x(q)
SSIM(p̃) = −(

∂l(p̃)
∂x(q)

· (p̃) + l(p̃) · ∂cs(p̃)
∂x(q)

) (7)

where q is any other pixel in patch P , and l(p̃) and cs(p̃) denote two differ-
ent terms in computing SSIM(p̃). For Multi-scale SSIM computation, the loss
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function is then written as

LMS−SSIM (P ) = 1 − MSSSIM(p̃) (8)

However, MS-SSIM as the goal of network optimization may introduce a shift of
brightness or colors [31], based on this observation, multiple loss functions are
combined as demonstrated in the next section.

3.2 Generator Loss

For structural oriented training purpose, MS-SSIM loss, adversarial GAN loss,
pixel-wise l2 loss, and frequency domain l2 loss are combined as the total opti-
mization goal. We use the loss function in Eq. (8) for MS-SSIM loss, which is the
main training guidance. For fast convergence and robustness, pixel-wise NMSE
loss dominates the training procedure at the starting point, which helps to guide
the overall gradient descent procedure. For pixel NMSE the loss function can be
written as

min
G

LNMSE(G) =
‖xt − x̂g‖22

‖xt‖22
(9)

Recall that xt denotes the ground truth and x̂g is the generated sample. Different
from single image super-resolution (SISR) tasks in which images do not have a
clear frequency domain pattern, MRI data are naturally acquired from k-space.
Thus at the same time, a frequency domain NMSE loss is added into the training
loss

min
G

Lk−space(G) =
‖ft − f̂g‖22

‖ft‖22
(10)

where ft and f̂g are the corresponding k-space data of xt and x̂g. At last, the
adversarial loss based on the discriminator is written as

min
G

LGAN (G) = −log(D(G(x̂g))) (11)

The total loss function for SOGAN generator is then as follows

LSOGAN (G) = αLMSSSIM + βLNMSE + γLkspace + ηLGAN (12)

3.3 Single Data Consistency Correction

The task of MRI reconstruction is analogous to super-resolution, de-noising but
also different. The intrinsic down-sampling is operated in k-space, which result
in global aliasing and blurring artefacts.

After training the network, a mapping from the observation sample xt to
the reconstructed samples x̂g = frecon(xt) is obtained. In order to fully correct
the original k-space data, we apply a data consistency layer after a single time
reconstruction. As F(xt) contains the original data from the fully-sampled data
and the padded zeroes, the generator only tries to fill the zeroes in k-space
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as far as possible. During this nonlinear interpolation, frecon(xt) also changed
the original data inevitably because the reconstruction is performed in the image
domain. Hence the correction is formulated in function fDC(·) which is conducted
in k-space, the output of the final network is

x̂g(t)′ = F−1(fDC(F(x̂g))) (13)

where we transform to frequency domain and replace corresponding data points.
Finally, the undersampling and reconstruction process is illustrated in Fig. 2.

Fig. 2. Overall reconstruction process of SOGAN

4 Experiment Settings and Results

In the following, experiments are performed on testing the capability of SOGAN,
and results are compared with other state-of-art methods.

4.1 Experiment Settings

Dataset. We tested SOGAN on MICCAI 2013 Grand Challenge on Multi-
Atlas Labeling [32], and used deep brain structures data for training, testing and
validating. For training purpose, 12729 T2 weighted brain scans were included,
3879 for validation and 7082 for testing purpose. All the images of T2 weighted
brain scans are 256×256 and we normalize them into [−1, 1]. During the under-
sampling process, all the networks are tested under different masks: 10%, 20%,
and 30%, correspondingly yields 10, 5 and 3.3 times acceleration. For robustness
of the training process, a time-decreasing data augmentation is added onto the
training set. All the random added white Gaussian noise (AWGN) and random
interpolation of the image starts at a ratio of 1, and decrease as the training
epochs increase. In order to test the model, 50 images from the test set was
randomly chosen.
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Network Settings and Training Details. After empirically experiments, we
set the loss function as LSOGAN (G) = αLMSSSIM + βLNMSE + γLkspace +
ηLGAN , where α = 10, β = 15, γ = 0.5, and η = 1. In the early stage, NMSE
and frequency domain loss decreases dramatically as the main motivation, later
on, SSIM and adversarial loss modify the details of the output. The architecture
of SOGAN was inspired by [19] and we implemented on Tensorlayer API. The
training was conducted on NVIDIA Tesla K80 of 12 GB memory. The initial
learning rate was set to 1E-3, the batch size was set to 25.

4.2 Results on Real MRI Data

We use the Structural Similarity Index (SSIM), Normalized Mean Square Error
(NMSE), and the Peak Signal to Noise Ratio (PSNR) as the three evaluation
methods. The results are shown in Table 1, SSIM results are shown in Table 2. For
visualization results, the SOGAN reconstruction under different under-sampling
rates are in Fig. 3. In order to compare the efficiency of different improvements
of our method, we first trained the final network with Structural Oriented GAN
with Data Consistency Loss (SOGAN-DC), then we removed the Data Consis-
tency layer (SOGAN). We also examined our model with the SSIM loss function
removed (Pixel-SOGAN) to show that structural aimed training is beneficial.
In order to compare different model performance, we trained the state-of-art
deep learning based method DAGAN [24], we also compared our model with
ADMM-Net [17].

Table 1. Evaluations for PSNR and NMSE

Method 10% 20% 30%

PSNR NMSE PSNR NMSE PSNR NMSE

Zero-Filling 27.94 ± 3.75 0.33 ± 0.06 33.47 ± 4.23 0.18 ± 0.03 34.99 ± 4.47 0.15 ± 0.03

ADMM-Net 30.70 ± 3.94 0.24 ± 0.08 37.31 ± 4.14 0.16 ± 0.08 37.36 ± 3.84 0.15 ± 0.05

DAGAN 33.76 ± 4.20 0.17 ± 0.02 39.28 ± 3.41 0.09 ± 0.02 39.76 ± 3.62 0.08 ± 0.01

Pixel-SOGAN 34.02 ± 3.97 0.16 ± 0.03 40.02 ± 4.02 0.08 ± 0.02 40.87 ± 3.78 0.07 ± 0.02

SOGAN 34.22 ± 3.93 0.16 ± 0.03 40.10 ± 4.26 0.08 ± 0.02 41.07 ± 3.84 0.07 ± 0.02

SOGAN-DC 35.08 ± 4.47 0.15 ± 0.03 41.87 ± 4.56 0.07 ± 0.02 42.70 ± 4.48 0.06 ± 0.01

4.3 Comparison

Comparison of Different Training Variables. It can be observed that Data
Consistency layer plays an important role in reconstruction quality, and the
improvement becomes more efficient as the sampling rate increases, this is due
to the correction involves more data as the sampling rate increases. Also, SSIM
oriented loss function helps to improve the performance of the network not only
in SSIM but also in PSNR. Note that, there is a significant help in Data Con-
sistency layer but the correction does not introduce computational redundancy
as the reconstruction time does not increase a lot.
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Table 2. Evaluations for SSIM

Method 10% 20% 30%

Zero-Filling 0.77 ± 0.08 0.84 ± 0.06 0.88 ± 0.05

ADMM-Net 0.80 ± 0.04 0.89 ± 0.04 0.91 ± 0.02

DAGAN 0.88 ± 0.04 0.95 ± 0.01 0.96 ± 0.01

Pixel-SOGAN 0.93 ± 0.01 0.97 ± 0.01 0.97 ± 0.01

SOGAN 0.93 ± 0.01 0.98± 0.01 0.99± 0.01

SOGAN-DC 0.95± 0.03 0.98± 0.01 0.98 ± 0.01

Fig. 3. SOGAN reconstruction results under different under-sampling rates

Fig. 4. The comparison of reconstructed samples’ differences from fully sampled data
under 10% under-sampling
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Fig. 5. Pixel values drawn from a horizontal line from reconstructed samples

Comparison with Different Sampling Rate. As can be observed from
Table 1, different sampling rate did influence the reconstruction result a lot.
Current reconstruction results for 10% undersampling is approximately at the
same level of 30% undersampling with zero-filling images. Also, the performance
increases non-linearly, when the undersampling rate is significantly low (10%),
the reconstruction is more efficient.

Comparison with Other Models. We tested SOGAN with other state-of-
art models as shown in Table 1, the performance has been improved due to
the k-space correction and the introduced combined loss function. Specifically
for structure evaluation methods, SOGAN-DC outperforms the other models in
SSIM evaluation as shown in Table 2. As for visual comparison, we plotted the
pixel values in a horizontal line from a reconstructed sample. The differences of
reconstructed samples from fully sampled data between different methods are
listed in Fig. 4, SOGAN-DC also has perceptually satisfying result. Moreover, it
can be observed from the details of pixel values drawn from a horizontal line in
Fig. 5 that SOGAN-DC preserved structure contrast most successful.

5 Discussion and Conclusion

In this paper, we propose to incorporate the structural training technique in
image restoration into the reconstruction of compressed sensing MRI, formed
and presented our novel SOGAN model. For compressed sensing MRI, preserv-
ing structural information is critical for clinical diagnostic purpose. This study
focused on preserving the frequency domain information with k-space correction
layer as well as structural oriented MS-SSIM loss function. Theoretical analyses
of the structural loss function are given and the combined training strategies are
illustrated.
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Numerical experiments showed our architecture is efficient to learn the map-
ping from zero-filling acquisitions to the perceptually convincing reconstructions.
For future exploration, it is interesting to form an architecture with fewer param-
eters and pruning strategy for hardware implementation.
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