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Abstract. In this paper, we propose an adaptive and rotating non-
local weighted joint sparse representation classification (ARW-JSRC)
method for hyperspectral image (HSI). The proposed method aims at
avoiding misclassification of the HSI pixels located around the bound-
aries of class and over-smoothed classification performance caused by
the window-based technique used in joint sparse representation classifi-
cation (JSRC). Since the window-based technique leads to the undesired
classification result, an adaptive threshold based on the spectral angle
between different classes and the rotated similar window replaced the
traditional rectangular window are applied to sufficiently utilize the rich
spectral-spatial signatures and alleviate this problem. Furthermore, a
new weight formula that accurately reflects the spectral-spatial feature
in HSI is applied to obtain more appropriate weights for HSI pixels in
search window. Experimental results indicate that our method achieves
great improvement in HSI classification, comparing to several widely used
classification methods.

Keywords: Hyperspectral image classification · Adaptive threshold ·
Rotated similar window · Non-local weighted

1 Introduction

Since hyperspectral image (HSI) has hundreds of spectral bands, it has a higher
spectral resolution comparing to other kinds of images, which improves its ability
to distinguish different materials [1,2]. Due to the each pixel in HSI corresponds
to a spectral curve, it means that HSI classification is to assign each pixel a land-
cover class based on their respective spectral information [3]. However, the high
dimensional characteristic existing in HSI may cause the Hughes phenomenon
[4], which poses a big challenge to the HSI classification.
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Sparse representation (SR), a useful tool for high-dimensional signal pro-
cessing, has been applied to HSI classification last few years. Related studies
shown in [7–10] have displayed the achievement the SR based methods made.
In 2011, Yi chen firstly applied the sparse representation classification (SRC)
approach from other fields to HSI classification [5]. Meanwhile, the author pro-
posed a joint sparse representation classification (JSRC) method rooting in the
assumption that HSI pixels in a small area consist of similar material (same
class). Though the JSRC has a better performance than SRC, there is a sit-
uation that not all HSI pixels can meet the assumption of JSRC. When the
HSI pixel locates at regional edge, its neighboring pixels can not be guaranteed
homogeneity. In order to reduce the interference of heterogenous pixels in the
neighborhood, Zhang in [6] proposed a non-local weighted joint sparse represen-
tation classification (NLW-JSRC) method. By assigning different weights to HSI
pixels in search window according to the similarities between neighboring pixels
and central pixel, the NLW-JSRC can improve the problem existing in JSRC.
However, its calculation of weights can not fully consider the spatial information
of the HSI and can not assign appropriate weights for pixels in search window.

In order to effectively reduce the interference of the heterogeneous pixels
in the search window, we propose an adaptive and rotated non-local weighted
sparse representation classification (ARW-JSRC) method. Compared with NLW-
JSRC, our proposed method can provide more appropriate weight to every pixel
in the search window. It uses a rotation transformation strategy to measure the
similarity between the pixels in the search window, so as to make full use of
the spatial information of the image. Then, a new weight calculation method is
used to give more appropriate weight to each pixel in the search. The adaptive
threshold involved in the weight formula is obtained by calculating the median
of the maximum and minimum spectral angles of various training samples.

The remainder of this paper is organized as follows. The non-local weighted
joint sparse representation classification is described in Sect. 2. Then, the adap-
tive and rotated non-local weighted joint sparse representation classification is
introduced in Sect. 3. The experimental results and discussion are presented in
Sect. 4. The conclusion is shown in Sect. 5.

2 Related Works

2.1 JSRC

In the JSRC, it is assumed that all neighboring HSI pixels in a small area
can be approximately represented by the linear combination of a few common
atoms with different coefficients. For any test HSI pixel xi(i = 1, 2, · · · , N),
let its search window size be set as

√
S × √

S, then the joint signal matrix
X = [x1,x2, . . . ,xS ] can be represented as
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X = [x1 x2 . . . xS ]
= [Dα1 Dα2 . . . DαS ]
= D [α1 . . . αi . . . αS ]

︸ ︷︷ ︸

Φ

= DΦ, (1)

where Φ is the sparse coefficient matrix with few nonzero rows and N is the
number of test pixels in HSI. D is the over-complete dictionary consist of training
pixels randomly selected from all classes in HSI with a certain proportion. Given
the over-complete dictionary D and the joint signal matrix X, the sparse matrix
Φ can be obtained as follow:

Φ = arg min ‖X − DΦ‖F s.t. ‖Φ‖row,0 ≤ K, (2)

where ‖Φ‖row,0 denotes the number of nonzero rows of Φ. Besides, the objective
function (2) can be solved by the simultaneous orthogonal matching pursuit
(SOMP) algorithm [11,12]. Once the sparse matrix Φ is obtained, the test pixel
x can be labeled as follow

Class(xi) = arg min
m=1,2,...,M

‖X − DmΦm‖F ,

i = 1, 2, . . . , N, (3)

where M is the number of classes in HSI. Dm is the sub-dictionary constructed
by HSI pixels randomly selected from mth class.

2.2 NLW-JSRC

The author in [6] proposed the NLW-JSRC method that assigns appropriae
weights to all neighboring pixels in search window based on the similarities
between neighboring pixels and the central test pixel. The weight wij can be
obtained mathmatically by

w′
ij = (1 − (

‖J(xi) − J(xj)‖
ρ

)2)2, (4)

where ‖J(xi) − J(xj)‖ denotes the similarity measure (euclidean distance)
between the two HSI patches, which are sized as so × so and centered at the
test pixel xj and the neighboring pixel xj , respectively. Parameter ρ is the
max(‖J(xi) − J(xj)‖). Then, the weight scheme w′

ij is modificated as follow:

wij =

⎧

⎨

⎩

0 0 < w′
ij < w′

1

w′
ij w′

1 < w′
ij < w′

2

1 w′
2 < w′

ij < 1
, (5)

where w′
1 and w′

2 are two parameters applied to judge valid and invalid
neighboring pixels.



390 J. Yan et al.

With the joint consideration of (2) and (5), we get:

ΦNLW = arg min ‖XW NLW − DΦ‖F ,

s.t.‖Φ‖row,0 ≤ K, (6)

where W NLW = diag(wi1, wi2, . . . , wim) is the non-local weighted matrix, and
each weight can be get by (5). The sparse coeffiecent matrix ΦNLW can be
obtained as similar as the JSRC. Finaly, the label fo the test pixel xi is given
by minimizing the residual:

Class(xi) = arg min
m=1,2,...,M

‖XW NLW − DmΦm
NLW ‖F ,

i = 1, 2, . . . , N. (7)

3 Adaptive and Rotated Weighed Joint Sparse
Representation Classification

Due to the NLW-JSRC can not consider the directionality of HSI spatial struc-
ture and the Turkey function failed to give appropriate weights. To make up for
the deficiency of NLW-JSRC, the adaptive and rotated weighed joint sparse rep-
resentation classification (ARWJSRC) is proposed. The proposed method can
be divided into three parts, containing spectral angle, rotated similar window,
weighed function.

3.1 Spectral Angle

In this paper, the spectral angle is used to measure the similarity between HSI
pixels. Suppose that there is a search window centered at HSI pixel xi(i =
1, 2, · · · , N) with the size of

√
S ×√

S and pixel xj(j = 1, 2, · · · , S) is one of HSI
pixels in search window, then the similarity between xi and xj can be written
as

θij = θ(x̄i, x̄j) =
180◦

π
arccos

x̄i · x̄j

‖x̄i‖2‖x̄j‖2 , θij ∈ [0◦, 90◦], (8)

where x̄i denotes the average of HSI pixels in similar window centered at xi with
the size of

√
s × √

s. It can be written as x̄i = 1
s

∑s
n=1 xn(i = 1, 2, · · · , N). xn

is one of HSI pixels in similar window. Besides, x̄j is the average of HSI pixels
in similar window centered at xj with the size of

√
s × √

s.
The deficiency exiting in NLW-JSRC can not be solved if the similarity

between xi and xj is measured directly as above. Because the calculation intro-
duced above dose not consider the directionality of HSI spatial structure. Thus,
the rotated similar window strategy is introduced in next subsection.
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3.2 Rotated Similar Window Strategy

NLW-JSRC dose not consider the directionality of HSI spatial structure and only
calculate the Euclidean distance between two HSI patches. As considering the
redundancy of image spatial information, we apply the rotated similar window
technology instead of the traditional window technology to measure the similar-
ity between neighboring pixel and the central. The rotated window method looks
for the most similar structure through the rotation of the HSI patches so that
the similarity between neighboring pixel and the central can be more accurately
estimated. The Fig. 1 illustrates the process.

(a) 0 rotation (b) 90 rotation (c) 180 rotation (d) 270 rotation

(e) Upside down (f) Flip left and right (g) Diagonal flip (h) Anti-angle flip

Original image block

Fig. 1. The rotation measurement of similarity. The rotated similar window consists of
the central pixel and its 8 neighboring pixels. Suppose that (a)–(d) are the HSI blocks
obtained by rotating the original HSI block 0◦, 90◦, 180◦, 270◦, respectively. Besides,
(e)–(h) are obtained by flipping the original HSI block upside down, left and right,
diagonally, anti-diagonally, respectively. It is obvious that they have low similarities
with it although (b)–(h) have the same spatial structure with the original HSI block.
Because their directionality of HSI block are different from the original HSI block unless
the (a). Thus, to find the most similar structure by rotating the HSI block is important
to get a more accurate similarity measurement.

The following passage will mathematical introduce the specific process. Sup-
pose that φ(xi) and φ(xj) respectively denotes the similar window centered at
test HSI pixel xi and xj that is one of HSI pixels in the search window centered
at xi. Then, the most similar structure φ̂(xj) of xj with φ(xi) can be obtained
by

φ̂(xj) = Rk[φ(xj)] = arg min
k=0,1,··· ,7

‖φ(xi) − Rk[φ(xj)]‖F , (9)

where Rk[•] denotes kth rotation or flip operation.
By getting φ̂(xj) and φ(xj), their residual rmin, ro with φ(xi) can be respec-

tively expressed as

rmin = ‖φ̂(xj) − φ(xi)‖F , (10)
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ro = ‖φ(xj) − φ(xi)‖F . (11)

Once the residuals rmin, ro are obtained, a direction coefficient O can be got.
The coefficient O can revise the spectral angle obtained by (9), which improve
the measurement of similarity between HSI pixels. The coefficient O can be got
by

O =
rmin

ro
. (12)

Then the revised spectral angle θ̂ij between the test pixel xi and any HSI
pixel xj in search window centered at xi can be written as

θ̂ij = θ̂(x̄i, x̄j) = θ(x̄i, x̄j) × O. (13)

3.3 The Proposed Calculation of Weights

For any HSI pixel xj(j = 1, 2, · · · , S) in the search window centered at a test
pixel xi(i = 1, 2, · · · , N), its weight wij in search window can be obtained by

wij =
1

1 + ( θ̂ij

θth
)G

, (14)

where G is the order that determined the decay rate of weight. The larger weight
is, the more similar HSI pixels are. Vice versa. θth is a adaptive threshold which
is got by calculating the median between the maximum and minimum of spectral
angle between training samples. Here is its detailed process.

Given the training samples Xtrain = [X1, · · · ,Xi, · · · ,XM ], where X ∈
R

B×Ni is class ith training samples and Ni denotes the number of training
samples in ith class. Then the average X̄i of class i can be written as

X̄i =
1
Ni

Ni
∑

n=1

xn
i , i = 1, 2, · · · ,M. (15)

After getting averages of all classes according to (15), their spectral angles
θij = θ(X̄i, X̄j) can be obtained by (8) and sorted. The adaptive threshold θth is
the median between the maximum θmax and minimum θmin selecting from the
sorted spectral angles.

θth =
θmax + θmin

2
. (16)

3.4 Reconstruction and Classification

Suppose that there is a search window centered at test pixel xi with the
size of

√
S × √

S and all pixel in search window construct a joint signal
matrix X = [x1

i ,x
2
i , · · · ,xS

i ], then a rotating weighted matrix W OW =
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diag(wi1, wi2, · · · , wiS) according to (14). Similar to (7), the sparse coefficient
matrix ΦOW can be obtained by

ΦOW = arg min ‖XW OW − DΦ‖F , s.t.‖Φ‖row,0 ≤ K, (17)

In this paper, the SOMP algorithm is used to solve (17). Once the sparse
coefficient matrix ΦOW is got, the class of test HSI pixel xi can be determined
by

Class(xi) = arg min
n=1,2,...,M

‖XW OW − DnΦn
OW ‖F ,

i = 1, 2, . . . , N. (18)

4 Experiment and Discussion

In this paper, two data sets containing Indian Pines and Pavia University are
used to evaluate the performance of the proposed method. Besides, several clas-
sical HSI classification algorithms are also used as contrasting methods to prove
the superiority of our proposed method. The section can be divided into two
parts: 1) experimental data; 2) experimental result and discussion.

In this paper, four evaluating indicators including the average accuracy (AA),
the overall accuracy (OA), the kappa coefficient, and time were used to judge the
classification results. In order to display superiority of the proposed method, sev-
eral classical algorithms including SVM [14], SRC [5], JSRC [5], NLW-JSRC [6]
are applied to compare with our method. Among those methods, SVM and SRC
are pixel-wise classification algorithms which only takes into account the spectral
information, whereas the rest is the spectral-spatial classification method.

The parameters of SVM are obtained by the 5-fold cross-validation tech-
nique. According to [5,15], the sparsity level of all the sparse representation-
based method mentioned in this paper was set to 3. If rising in sparsity level,
it not only causes higher computational cost but also mislead the dictionary
atoms from wrong classes to be selected, which leads to the worse classification
performance. For Indian Pines and Pavia University, the window sizes in JSRC
were 7 × 7 and 11 × 11, respectively. As for the NLW-JSRC, the window sizes
were set as 9 × 9 and 13 × 13, respectively. Besides, the size of the nonlocal
weighting patch was 7×7. The parameters w1, w2 for the thresholds of nonlocal
weights were 0.14 and 0.88, respectively. More detail was shown in [6]. All the
experiments were conducted using MATLAB R2014a on a 3.2 GHz computer
with 64.0 Gb RAM.

4.1 Indian Pines

The Indian Pines has 220 spectral bands ranging from 0.4-2.5um where each
band consists of 145×145 pixels with a spatial resolution of 20m. Due to serious
water absorption [13], we remove 20 absorption bands (no. 104-108, 150-163,
220) and retain only the remaining 200 bands. For this data set with 16 classes
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Table 1. Sixteen classes in the AVIRIS
Indian Pines data and the training and test
sets for each class.

Class Name Train Test

1 Alfalfa 6 40

2 Corn-notill 129 1299

3 Corn-mintill 83 747

4 Corn 24 213

5 Grass-pasture 48 435

6 Grass-trees 73 657

7 Grass-pasture-
mowed

5 23

8 Hay-windrowed 48 430

9 Oats 4 16

10 Soybean-notill 97 875

11 Soybean-mintill 196 2259

12 Soybean-clean 59 534

13 Wheat 21 184

14 Woods 114 1151

15 Blgs-grass-trees-
drives

39 347

16 Stone-steel-
towers

12 81

Total 958 9291

Table 2. Nine classes in the ROSIS
Urban Pavia University data and the
training and test set for each class.

Class Name Train Test

1 Asphalt 332 6299

2 Meadows 933 17716

3 Gravel 105 1994

4 Trees 154 2910

5 Painted metal
sheets

68 1277

6 Bare Soil 252 4777

7 Bitumen 67 1263

8 Self-Blocking
Bricks

185 3497

9 Shadows 48 899

Total 2144 40632

of land cover, we randomly select 10% of each class of samples for training and
the remaining is used for testing. The reference contents are shown in Table 1
and the label map of ground truth is shown in Fig. 4(a).

The classification map was shown in Fig. 2(b)–(h) and the classification
results including OA, AA, Kappa, and time were displayed in Table 3. As
it shown in Table 3, all the pixel-wise methods (KNN, SVM, and SRC) had
worse performance than the spectral-spatial classification methods (JSRC, NLW-
JSRC, SAJSRC, and ARW-JSRC). The reason is that those pixel-wise methods
can not take advantage of spatial information in HSI and avoid the “Houghes”
phenomenon. HSI pixels belong to same class may have different spectral char-
acteristic and those are same class may have the similar spectral characteristic,
which brings great difficulties to those pixel-wise classification methods. Among
all approaches listed at Table 3, the proposed method ARW-JSRC displays the
best classification performance comparing with other methods in terms of OA,
AA, Kappa. Especially, the improvement brought by ARW-JSRC on JSRC is
significantly obvious in terms of various evaluation metrics. For instance, the OA
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Table 3. Classification results of the Indian Pines and Pavia University, including
classification accuracies for every class, AA, OA, Kappa, and Time obtained by SVM,
SRC, JSRC, NLW-JSRC, and ARW-JSRC

Class Indian Pines Pavia University

SVM SRC JSRC NLW-JSRC ARW-JSRC SVM SRC JSRC NLW-JSRC ARW-JSRC

1 26.83 17.07 92.50 97.56 100.00 91.97 74.31 91.03 93.90 97.27

2 68.40 54.86 94.55 93.39 97.82 96.46 94.12 99.79 99.32 100.00

3 54.75 51.14 91.15 91.30 95.72 71.01 60.33 94.88 98.80 98.85

4 34.27 41.31 90.61 84.98 100.00 92.54 80.07 90.31 94.54 94.19

5 88.71 83.87 94.69 94.70 99.08 99.22 99.53 99.69 100.00 100.00

6 94.67 90.11 96.18 99.24 99.24 75.47 55.70 99.46 87.06 99.94

7 28.00 80.00 84.00 92.00 100.00 74.43 76.33 98.89 98.42 99.92

8 99.07 98.37 97.20 99.07 100.00 85.62 74.21 95.00 98.23 99.66

9 5.56 16.67 66.67 55.56 61.11 97.55 94.99 55.73 86.43 52.50

10 62.24 68.08 89.14 93.36 96.34

11 83.34 73.25 96.42 94.84 98.82

12 74.86 40.15 80.04 88.18 99.25

13 95.11 90.22 91.26 97.28 99.46

14 95.96 91.12 99.82 98.77 100.00

15 57.93 44.96 85.63 96.54 96.83

16 93.98 93.98 92.77 100.00 96.39

OA 77.49 69.95 93.67 94.67 98.34 90.26 81.79 96.05 96.29 98.01

AA 66.48 64.70 90.16 92.30 96.25 87.14 78.84 91.64 95.19 93.59

Kappa 74.08 65.62 92.77 93.90 98.11 86.98 75.50 94.76 95.05 97.36

Time(s) 831.80 5.12 22.97 107.70 193.99 1403.50 26.37 190.51 574.33 1990.33

(a) (b) (c)

(d) (e) (f)

Fig. 2. Classification map for the Indian Pines image. (a) Label map; (b) SVM (OA =
77.49%); (c) SRC (OA = 69.95%); (d) JSRC (OA = 93.67%); (e) NLW-JSRC (OA =
93.26%); (f) ARW-JSRC (OA = 98.34%).
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has increased from 93.67% to 98.34%. Though the NLW-JSRC and SAJSRC also
has improved the classification result of JSRC, the ARW-JSRC makes the great
improvement on the JSRC about 5%, which is more efficient than the NLW-JSRC
and SAJSRC. Moreover, the ARW-JSRC has the 100% classification accuracy in
class 1, 4, 7, 8, and 14. The reason why the ARW-JSRC can make such a great
improvement is that it considers the directionality of spatial structure in HSI
and assigns more appropriate weights for HSI pixels in search window. However,
using the rotated similar window and the nonlocal weighted based method leads
to the large computation consumption for the ARW-JSRC.

3 5 7 9 11 13 15 17 19 21
0.86

0.88

0.9

0.92

0.94

0.96

0.98

Size of Search Window S

O
A

(%
)

Indian Pines
Pavia University

(a)

1 5 10 12 15 18 20 22 25 30 40
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Order G

O
A

(%
)

Indian Pines
Pavia University

(b)

Fig. 3. Influence of parameters on classification. (a) Search window size S; (b) Order
G.

The size of search window S directly determines the size of neighborhood of
the test pixel, which finally influences the joint signal matrix and the classifica-
tion. The influence of search window on the classification has shown in Fig. 3(a).
The size of search window S ranged from 3 × 3 to 21 × 21. As it can be seen in
Fig. 3(a), the OA increased rapidly when 3 <

√
S < 9. The reason is that the

number of HSI pixels in joint signal matrix is insufficient causing the unsatis-
factory result at first. When

√
S = 4, the OA reaches its peak. However, the

heterogenous pixels in search window will be more and more when
√

S > 4, which
brings great challenges to the classification. Thus, once

√
S is larger than the

optimal threshold, the ARW-JSRC can not solve efficiently all the heterogenous
pixels in search window. In order to have the good classification performance,
the size of search window S can be set as 9 × 9.

The order G determines the slope of the weighed function. The influence of
order G on the classification is shown in Fig. 3(b). From Fig. 3(b), it is known
that the ARW-JSRC got its best OA when G = 12. When 1 < G < 12, the
OA rose quickly because more appropriate weights can be given by the weighed
function as G grew. However, the OA decreases slow when G > 12. The reason
is that those have small similarity may be given large weights when G is too
large. Therefore, the optimal order of weighed function can be set as G = 12.
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4.2 Pavia University

The geometric resolution of Pavia University image is 1.3 m and it has 115 bands
ranging from 0.43 to 0.86μm. Some of bands in the HSI data are noisy and we
only preserve 103 bands for the experiment. For this data with 9 classes of
ground truth, we randomly select 5% of each class of samples for training and
the remaining is used for testing. The specific information can be seen in Table 2
and the label map of ground truth shown in Fig. 4(a).

The classification map is shown in Fig. 4(b)–(h) and the classification results
can be seen in Table 3. Due to the more adequate samples than the Indian Pines,
most classification algorithms have the higher OA, especially for the pixel-wise
methods. Though the ARW-JSRC has the best classification performance in
terms of OA, AA, and Kappa, it cost most time to obtain the better results.
It means that the ARW-JSRC obtains the better classification result (OA =
98.05%) than the JSRC (OA = 96.05%) by consuming more time. As for the
size of search window S and order of weighed function G, their optimal value
can be set as

√
S = 7 and G = 3 from Fig. 3(a) and (b).

(a) (b) (c)

(d) (e) (f)

Fig. 4. Classification map for the Pavia University image. (a) Label map; (b) SVM
(OA = 90.26%); (c) SRC (OA = 81.79%); (d) JSRC (OA = 96.05%); (e) NLW-JSRC
(OA = 95.99%); (f) ARW-JSRC (OA = 98.05%).
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5 Conclusion

Aiming at the problem that JSRC can not deal with the interference of het-
erogeneous pixels in the search window, a joint sparse representation classifica-
tion algorithm based on adaptive rotation weighting is proposed. The algorithm
mainly uses the strategy of rotating similar window to measure the similarity
between pixels, and uses a new method of weight calculation to assign weight to
each pixel in the search window. In addition, the median of the maximum and
minimum spectral angles of various training samples are used as the adaptive
threshold of the weight formula. Experiments show that the proposed algorithm
achieves remarkable improvement in classification accuracy.

Although the proposed method achieves good classification accuracy, it takes
a heavy computation. In the future, we will start with reducing the time com-
plexity of the algorithm and improve the efficiency of the algorithm.
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