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Abstract. 3D face alignment from monocular images is a crucial pro-
cess in computer vision with applications to face recognition, anima-
tion and other areas. However, most algorithms are designed for faces
in small to medium poses (below 45◦), lacking the ability to align faces
in large poses up to 90◦. At the same time, many methods are not effi-
cient. The main challenge is that it is time consuming to determine the
parameters accurately. In order to address this issue, this paper pro-
poses a novel and efficient end-to-end 3D face alignment framework. We
build an efficient and stable network model through Depthwise Sepa-
rable Convolution and Densely Connected Convolutional, named Mob-
DenseNet. Simultaneously, different loss functions are used to constrain
3D parameters based on 3D Morphable Model (3DMM) and 3D vertices.
Experiments on the challenging AFLW, AFLW2000-3D databases show
that our algorithm significantly improves the accuracy of 3D face align-
ment. Model parameters and complexity of the proposed method are also
reduced significantly.

Keywords: 3D face alignment · 3D Morphable Model · Computer
vision

1 Introduction

Face alignment, which fits a face model to an image and extracts the semantic
meanings of facial pixels. Traditional face alignment is to locate the feature points
of human face. Such as corners of the eyes, corners of the mouth, tip of the nose,
etc. This is a fundamental processing process for many computer vision tasks,
e.g., face recognition [3], facial expression analysis [2], facial animation [6,7] and
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so on. In view of the importance of this problem, face alignment has been widely
studied since the Active Shape Model (ASM) of Cootes in the early 1990s [10].

Despite the continuous improvement on the alignment accuracy, face align-
ment is still a very challenging problem. Traditional 2D face alignment can
achieve satisfactory accuracy in small to medium poses, but this does not meet
the changing conditions in real-world applications, non-frontal images, low image
resolution, variable illumination and occlusion, etc. 3D face alignment aims to
reconstruct 3D face structure through 2D image and estimated the position of
3D and 2D face feature points after 3D face alignment to 2D image.

Motivated by the needs to address the efficient model, pose variation, and
the lack of prior work in handling poses, the paper proposes a novel and efficient
network structure, and uses different loss functions to optimize the 3D param-
eters and 3D vertices. The purpose is to calculate the positions of 2D and 3D
facial feature points under arbitrary postures. The reason for the efficiency of
MobileNet [18] is that the Depthwise Separable Convolution is used in the net-
work structure. Because of the Densely Connected between convolutional layers,
DenseNet [19] strengthened the transmission of feature, made more effective use
of feature and reduced the number of parameters to a certain extent. Inspired by
the above two network structures, our network structure has high efficiency of
both Depthwise Separable Convolution and feature reuse of Densely Connected.
To achieve a balance between high efficiency and high precision. Finally, exten-
sive experiments are conducted on a large subset of AFLW dataset [23] with a
wide range of poses, and the AFLW2000-3D dataset [35] with the comparison
with a number of methods. An overview of our method is shown in Fig. 1.

In summary, our contributions are summarized as follows:

(1). We proposes a novel and efficient network structure (MobDenseNet). To the
best of our knowledge, this is the first that Depthwise Separable Convolution
and Densely Connected are combined in a network leading to a new structure
of DNN.

(2). Different loss functions are used to optimize the parameters of 3D Mor-
phable Model and 3D vertices. Meanwhile, face alignment that can estimate
2D/3D landmarks with an arbitrary pose.

(3). We experimentally verified that our algorithm has significantly improved
performance of 3D face alignment compared to the previous algorithms, The
proposed face alignment method can deal with arbitrary pose and it is more
efficient.

2 Related Work

In this section, we will review the prior work in generic face alignment and 3D
face alignment.

2.1 Generic Face Alignment

Face alignment has achieved many achievements, including the classic AAM
[9,26] and ASM [8] models. This method considers face alignment as an opti-
mization problem to find the best shape and appearance parameters, which make
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Fig. 1. Overview of the ours method. Efficient full convolutional neural networks (Mob-
DenseNet). Figure 2 describes the details of MobDenseNet. The 3D parameters and 3D
vertices are constrained using different loss functions.

the appearance model best fit the input face. The basic idea of Constrained
Local Model (CLM) [1,11,27] in Discriminative methods is to learn a set of
local appearance models, one for each landmark, and the decision from the local
models are combined with a global shape model. Cascaded regression gradually
refines a specified initial prediction value through a series of regressions. Each
regression unit relies on the output of the previous regression unit to perform
simple image operations, and the entire system can automatically learn from
the training samples [12]. The ESR [7] (Explicit Shape Regression) proposed by
Sun et al. includes three methods, namely two-level boosted regression, shape-
indexed features and correlation-based feature selection method.

Besides traditional models, deep convolutional neural networks have recently
been used for feature point localization of faces. Sun et al. [28] firstly use CNN
to regress landmark locations with the raw face image, accurately positioning
of 5 key points of faces from coarse to fine. The work of [16] using the human
body pose estimation, the boundary information is introduced into the key point
regression. In recent years, most of the landmark detections of faces have been
studied on “coarse to fine”, while Feng et al. [14] have taken a different approach,
using the idea of cascaded convolutional neural networks. And [14] compared the
commonly used loss functions in face landmark detection, and based on this, the
concept of wing loss is proposed.

2.2 3D Face Alignment

Although the traditional method has achieved many achievements in face align-
ment, it will be affected by non-frontal face, illumination and occlusion in real-life
applications. The most common method is the multi-view framework [29], which
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Fig. 2. Details of MobDenseNet. k3n64s1 corresponds to the kernel size(k), number of
feature maps(n) and stride(s) of conv1.

uses different landmark configurations for different views. For example, TSPM
[34] and CDM [33] use the DPM-like [15] method to align faces of different shape
models, and finally select the most probable model as the final result. However,
since each view requires testing, the computational cost of the multiview app-
roach is always high.

In addition to multi-view solutions, 3D face alignment is a more common
approach. 3D face alignment [16,20], which aims to fit a 3D morphable model
(3DMM) [3] from a 2D image. The 3D Morphable Model is a typical statistical
3D face model. It has a clear understanding of the prior knowledge of 3D faces
through statistical analysis. Zhu et al. [35] proposed a localization method based
on 3D face shape, which solved the problem that some feature points were invis-
ible under extreme postures (such as side faces). Liu et al. [21] used the cascade
of 6 convolutional neural networks to solve the problem of locating facial feature
points in a large pose by using 3D face modeling. This paper [13] designed a UV
position map to achieve 3D shape features of a complete human face in a 2D
UV space.

Our approach is also based on convolutional neural networks, but we have
redesigned the network structure to make it efficient and robust. At the same
time, we use different loss functions for 3D parameters and 3D vertices to con-
strain the semantic information of 3D parameters and 3D vertices respectively.

3 Proposed Method

In this section we introduce the proposed robust 3D face alignment (R3FA) which
fits 3D morphable model with efficient fully convolutional neural networks.

3.1 3D Morphable Model

The 3D Morphable model is one of the most successful methods for describing
3D face space. Blanz et al. [3] proposed a 3D morphable model (3DMM) of 3D
face space with PCA. It is expressed as follows:

S = S + Aidαid + Aexpαexp (1)
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where S is a specific 3D face, S is the mean face, Aid is the principle axes trained
on the 3D face scans with neutral expression and αid is the shape parameter,
Aexp is the principle axes trained on the offsets between expression scans and
neutral scans and αexp is the expression parameter. So the coefficient {αid, αexp}
defines a unique 3D face . In this work Aid comes from the BFM [24] model and
Aexp comes from the FaceWarehouse model [5].

In the process of 3DMM fitting, we use the Weak Perspective Projection to
project 3DMM onto the 2D face plane. This process can be expressed as follows:

S2d = f ∗ Pr ∗ R ∗ {S + t3d} (2)

where S2d is the 2D coordinate matrix of the 3D face after Weak Perspective
Projection, rotation and translation. f is the scaling factor. Pr is a perspective

projection matrix
(

1 0 0
0 1 0

)
. R is a rotation matrix constructed according to

three rotation angles of pitch, yaw and roll respectively. t3d is the translation
transformation matrix of 3D points. Therefore, for the modeling of a specific face,
we only need to solve the 3D parameter P = [f, pitch, yaw, roll, t3d, αid, αexp].

3.2 MobDenseNet Structure

The reason MobileNet [18] is effective is the use of Depthwise Separable Con-
volution technology in the network structure. Based on MobileNetV1 [18], the
design of MobileNetV2 [25] combines with the recent popular residual ideas.
But the idea of residuals is achieved by the direct addition of elements. [19] a
phenomenon that many layers of the ResNet [17] network, the first performer of
residual thinking, contribute less and can be randomly discarded during train-
ing. This shows that residual ideas are prone to redundant information. In order
to solve this problem, DenseNet [19] proposes any layer of the network, the fea-
ture map of all the layers in front of the layer is the input of this layer. The
feature map of the layer is the input of all the layers behind. However, DenseNet
has many parameters and the network structure is not efficient. So combining
with MobileNet’s efficiency and DenseNet’s feature enhancement, we build a
new network structure MobDenseNet by combining DenseNet’s dense connec-
tions on the overall framework of MobileNet. Our network structure includes
both MobileNet’s high efficiency and enhance feature representation.

The architecture of MobDenseNet is illustrated in Fig. 2. MobDenseNet is
a fully convolutional neural network without full connection layer. Conv1 is a
convolution layer with kernel size(k) of 3, stride(s) of 2 and number of feature
maps(n) of 32 to extract rough features. Layer1 to Layer7 are 7 dense blocks
for extracting depth features. Figure 3 shows the details of one of the Dense-
Block, Layer3. The convolution layer of a set of 1× 1, 3× 3, 1× 1 filters in Mob-
DenseNet as a basic unit called MobileBlock. As shown in Fig. 3, this set of basic
units is consistent with MobileNetV2. DenseLayer3 contains three sets of Mobile
Blocks (each MobileBlock output is cascaded as the input of the next Mobile-
Block). As such, MobDenseNet retains the simplicity and efficiency of MobileNet.



Robust 3D Face Alignment with Efficient Fully CNN 271

As shown in Fig. 3, Layer3 contains three sets of MobileBlocks. In order to match
the number of channels connected to the Dense connection, we added a tran-
sition layer after each MobileBlock (the convolution layer filter is 1 × 1), the
purpose is adjust the number of channels in the preview MobileBlock output
feature map. We use both real face images and generated face images to train
our MobDenseNet (details can be found in the suppl. material).

Dense Layer3 1x1 Convolution
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1x1 Convolution
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Fig. 3. The details of one of the DenseBlock, Layer3. The convolution layer of a set
of 1 × 1, 3 × 3, 1 × 1 filters in MobDenseNet as a basic unit called MobileBlock. The
transition layer is the number of channels to match the input and output feature maps.

3.3 Loss Function

We chose two different Loss Functions to jointly train MobDenseNet. For 3D
parameters and 3D vertices we use different loss functions for training. We follow
the Weighted Parameter Distance Cost (WPDC) of Zhu et al. [35] to calculate
the difference between the ground truth of 3D parameters and the predicted
3D parameters. The basic idea is explicitly modeling the importance of each
parameter:

Lwpdc = (Pgt − P )TW (Pgt − P ) (3)

where P is the estimation and Pgt is the ground truth. The diagonal matrix W
contains the weights. For each element of the shape parameter p, its weight is
the inverse of the standard deviation that was obtained from the data used in
3DMM training. Because our ultimate goal is to accurately obtain 68 landmarks
of human faces. So for 3D face vertices reconstructed with 3D parameters, we
use Wing Loss [14] which is defined as:

Lwing(ΔV (P )) =
{

ω ln(1 + |ΔV (P )|/ ∈) if |ΔV (P )| < ω
|ΔV (P )| − C otherwise

(4)

where ΔV (P ) = V (Pgt)−V (P ),V (Pgt) and V (P ) are the ground truth of the 3D
facial vertices and the 3D facial vertices reconstructed using the 3D parameters
predicted by the network, respectively. ω and ∈ are parameters. C = ω−ω ln(1+
ω/ ∈) is a constant that smoothly links the piecewise-defined linear and nonlinear
parts.

Overall, the framework is optimized by the following loss function:

Lloss = λ1Lwpdc + λ2Lwing (5)
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where λ1 and λ2 are parameters, which balance the contribution of Lwpdc and
Lwing. The selection of those parameters will be discussed in the next section.

4 Experiments

In this section, we evaluate the performance of R3FA on three common face
alignment tasks, face alignment in small and medium poses, face alignment in
large poses, and face reconstruction in extreme poses (±90◦ yaw angles), respec-
tively.

4.1 Implementation Details

We use the Pytorch deep learning framework to train the MobDenseNet models.
The loss weights of R3FA are empirically set to λ1 = 0.5 and λ2 = 1. In our
experiments, we set the parameters of the Wing loss as ω = 10 and ∈ = 2.
The Adam solver [22] is employed with the mini-batch size and the initial learn-
ing rate set to 128 and 0.01, respectively. There are 680,000 face images in our
training data set, including 430,000 real face images and 250,000 synthetic face
images. Real face images come from 300W-LP [35] datasets, and various data
enhancement algorithms are adopted to expand the datasets. We run the train-
ing for a total of 40 epochs. After 15, 25 and 30 epochs, we reduced the learning
rate to 0.002, 0.0004 and 0.00008 respectively.

4.2 Evaluation Databases

We evaluate the performance of R3FA on two publicly available face data sets
AFLW [23] and AFLW2000-3D [35]. These two data sets contain small and
medium poses, large poses and extreme poses (±90◦ yaw angles). We divide the
dataset AFLW and AFLW2000-3D into three intervals of [0◦, 30◦], [30◦, 60◦], and
[60◦, 90◦] according to the face absolute yaw angle, and each interval is about
1/3 of the total.

AFLW. AFLW face database is a large-scale face database including multi-pose
and multi-view, and each face is marked with 21 feature points. This database has
a very large amount of information, including pictures of various poses, expres-
sions, lighting, and ethnicity. The AFLW face database consists of approximately
250 million hand-labeled face images, of which 59% are women and 41% are men.
Most of the images are color, images only a few are gray images. We only use part
of the extreme pose face images of the AFLW database for qualitative analysis.

AFLW2000-3D. AFLW2000-3D is constructed by [35] to evaluate 3D face
alignment on challenging unconstrained images. This database contains the first
2000 images from AFLW and expands its annotations with fitted 3DMM param-
eters and 68 3D landmarks. We use this database to evaluate the performance
of our method on face alignment tasks.
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4.3 Evaluation Metric

Given the ground truth 2D landmarks Ui, their visibility vi, and estimated land-
marks Ûi of Nt testing images. Normalized Mean Error (NME), which is the
average of the normalized estimation error of visible landmarks, i.e.,

NME =
1
Nt

Nt∑
i

(
1

di|vi|1
N∑
j

vi(j)||Ûi(:, j) − Ui(:, j)||) (6)

where di is the square root of the face bounding box size, as used by [37]. Note
that normally di is the distance of two centers of eyes in most prior face alignment
work dealing with near-frontal face images.

4.4 Comparison Experiments

Comparison on AFLW. In the AFLW dataset, 21,080 images were selected
as test samples, with 21 landmarks in each sample. During testing, we
divide the testing set into 3 subsets according to their absolute yaw angles:
[0◦, 30◦], [30◦, 60◦] and [60◦, 90◦] with 11,596, 5,457 and 4,027 samples respec-
tively. Since few experiment has been conducted on AFLW, we choose some
baseline methods with released codes, including CDM [33], RCPR [4], ESR [7],
SDM [32], 3DDFA [35] and nonlinear 3DMM [30]. Table 1 demonstrates the
comparison results. The NME(%) of face alignment results on AFLW with the
first and the second best results highlighted. The results of provided alignment
models are marked with their references. Figure 4 shows the corresponding CED
curves. Our CED curve is only compared to the best method in Table 1. The
results show that our R3FA algorithm significantly improves the face alignment
accuracy in full pose. The minimum standard deviation of R3FA also proves its
robustness to posture changes.

Table 1. The NME(%) of face alignment results on AFLW and AFLW2000-3D.

AFLW DataSet(21 pts) AFLW2000-3D DataSet(68 pts)

Method [0o, 30o] [30o, 60o] [60o, 90o] Mean Std [0o, 30o] [30o, 60o] [60o, 90o] Mean Std

CDM 8.150 13.020 16.170 12.440 4.040 - - - - -

RCPR 5.430 6.580 11.530 7.850 3.240 4.260 5.960 13.180 7.800 4.740

ESR 5.660 7.120 11.940 8.240 3.290 4.600 6.700 12.670 7.990 4.190

SDM 4.750 5.550 9.340 6.550 2.450 3.670 4.940 9.760 6.120 3.210

3DDFA(CVPR16) 5.000 5.060 6.740 5.600 0.990 3.780 4.540 7.930 5.420 2.210

Nonlinear 3DMM(CVPR18) - - - - - - - - 4.700 -

Ours-R3FA 4.549 5.427 6.204 5.393 0.676 3.149 4.010 5.270 4.143 0.871
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Table 2. The NME(%) of face alignment results on AFLW and AFLW2000-3D with
the different network structures.

Extracting Params Time(ms/pic) Params AFLW DataSet(21 pts) AFLW2000-3D DataSet(68 pts)

Method AFLW(21 pts) AFLW2000-3D(68 pts) [0o, 30o] [30o, 60o] [60o, 90o] Mean Std [0o, 30o] [30o, 60o] [60o, 90o] Mean Std

RestNeXt50 0.799ms 2.012ms 90.585M 4.599 5.516 6.297 5.471 0.694 3.122 4.065 5.351 4.179 0.913

MobileNetV2 0.316ms 0.956ms 9.487M 4.643 5.581 6.397 5.540 0.716 3.236 4.080 5.181 4.165 0.796

DenseNet121 0.684ms 2.221ms 27.9M 4.442 5.249 6.168 5.286 0.705 3.051 3.912 5.297 4.087 0.925

MobDenseNet 0.395ms 1.024ms 10.900M 4.549 5.427 6.204 5.393 0.676 3.149 4.010 5.27 4.143 0.871
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AFLW2000-3D.

Comparison on AFLW2000-3D. In the AFLW2000-3D dataset, 2000 images
were selected as test samples, with 68 landmarks in each sample. Considering the
visible and invisible evaluation, 3D face alignment evaluation can be downgraded
to a full landmark evaluation. we divide the testing set into 3 subsets according to
their absolute yaw angles: [0◦, 30◦], [30◦, 60◦], [60◦, 90◦] with 1,312, 383 and 305
samples respectively. Table 1 demonstrates the comparison results. The NME(%)
of face alignment results AFLW2000-3D with the first and the second best results
highlighted. The results of provided alignment models are marked with their
references. Figure 5 shows the corresponding CED curves. Our CED curve is
only compared to the best method in Table 1. Table1 and Fig. 5 demonstrate that
our algorithm also has a significant improvement in the prediction of invisible
regions, showing good robustness for face alignment in arbitrary poses.

Comparison on Different Network Structures. We selected a variety of dif-
ferent network structures for comparison during the experiment. The experimen-
tal network structure includes ResNeXt [31], MobileNetV2 [25], DenseNet121
[19], and our proposed MobDenseNet. To the best of our knowledge, these
three popular and efficient network structures are the first to be used in the
field of 3D face alignment. Table 2 demonstrates the comparison results. The
NME(%) of face alignment results on AFLW and AFLW2000-3D with the dif-
ferent network structures. The table shows the time when each sample extracts
parameters through the network model and the parameter size of the network
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model. Extracting params time (ms/pic) is calculated on GTX 1080Ti and 64
GB RAM. These three network structures can be divided into two categories,
one is the efficient network structure represented by MobileNetV2, and the other
is the high-precision network structure of ResNeXt50 and DenseNet121. In order
to balance efficiency and high precision, we have designed MobDenseNet inde-
pendently. The experimental results demonstrate the motivation and expected
results of our original design. Our network structure achieves a balance between
high efficiency and high precision. Comparison and analysis with MobileNetV2
and DesenNet can be found in suppl. material. The 2D/3D alignment results of
our method are shown in Fig. 6.

Fig. 6. The results of 2D/3D face alignment of our method. Result of 2D face alignment
(second rows), 3D face alignment (third rows), Align 3D face mesh to 2D image (fourth
rows).

5 Conclusions

In this paper, we propose a novel and efficient framework (R3FA), which solves
the problem of 2D/3D face alignment with full pose. In order to balance the
computational efficiency and alignment accuracy of the model, we propose a new
deep network MobDenseNet. We innovatively use two loss functions to jointly
optimize 3D reconstruction parameters and 3D vertices. At the same time, we
use real and synthetic images to train our network together. We have achieved
the best accuracy on both AFLW and AFLW2000-3D datasets compared to
existing algorithms. Comparing experiments with several popular networks, our
algorithm can achieve a good balance between accuracy and efficiency. In the
future, we will further improve the accuracy of 2D/3D face alignment, and at
the same time the algorithm will have higher efficiency.
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