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Abstract. In this paper, we propose a system calibration method for
panoramic 3D shape measurement with plane mirrors. By introducing
plane mirrors into the traditional fringe projection profilometry (FPP),
our system can capture fringe images of the measured object from three
different perspectives simultaneously including a real camera and two vir-
tual cameras obtained by plane mirrors, realizing panoramic 3D shape
reconstruction only by single-shot measurement. Furthermore, a flexible
new technique is proposed to easily calibrate the mirror. In the proposed
technique, the calibration of the mirror is discussed mathematically to
ensure the effectiveness and rationality of the calibration process, it only
requires the camera to observe a set of feature point pairs (including
real points and virtual points) to achieve the solution of the reflection
matrix for plane mirrors. The acquired calibration information is used to
convert 3D point cloud data obtained from real and virtual perspectives
into a common world coordinate system, making it possible to obtain
full-surface 3D data of the object. Finally, benefited from the robust and
high-performance calibration method, experimental results verify that
our system can achieve high-accuracy and panoramic 3D shape mea-
surement.

Keywords: Fringe projection profilometry · Plane mirrors ·
Calibration

1 Introduction

In recent years, Optical 3D shape measurement techniques are widely used in
various fields such as biomechanics, intelligent monitoring, robot navigation,

c© Springer Nature Switzerland AG 2019
Y. Zhao et al. (Eds.): ICIG 2019, LNCS 11902, pp. 15–26, 2019.
https://doi.org/10.1007/978-3-030-34110-7_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-34110-7_2&domain=pdf
https://doi.org/10.1007/978-3-030-34110-7_2


16 W. Yin et al.

industrial quality control, and human-computer interaction. Among plenty of
state-of-the-art methods, fringe projection profilometry (FPP) [1–8], which is
based on the principle of structured light and triangulation, has been proven
to be one of the most promising techniques due to its inherent advantages of
non-contactness, high accuracy, high efficiency, and low cost. In a conventional
measurement system based on fringe projection profilometry (FPP) consisting
of a camera and a projector, it cannot obtain the 360-degree overall 3D shape
results of the object with complex surfaces due to the limited or occluded field
of view, which leads to the limits on the application of FPP. Therefore, for such
problems, it is necessary to carry out multiple measurements from different views
to obtain the overall shape of the object.

In general, in order to achieve multiple measurements of the tested object
from different views, it can be classified into three main categories: methods
based on turn-table [9,10], methods based on movable robot arm [11,12], and
measurement systems with plane mirrors [13–15]. In the first method, the tested
object is placed on a turn-table, acquiring the whole 3D data by multiple rota-
tions. Based on an idea contrary to the first method, the second method requires
the measurement system to be mounted on a movable robot arm to perform
multiple measurements around the tested object. Besides, the complicated post-
processing operation for the scanned data must be performed using point cloud
registration algorithms such as Iterated Closest Point (ICP). As a result, these
fringe projection systems cannot be applied for the real-time overall acquisi-
tion of dynamic scenes, which requires multiple measurements and registration
algorithms that are time-consuming and laborious. Different from the first two
methods, measurement systems with plane mirrors can capture fringe images
of the measured object from three different perspectives simultaneously includ-
ing a real camera and two virtual cameras obtained by plane mirrors, making
it possible to achieve panoramic 3D shape reconstruction only by single-shot
measurement.

Several methods based on systems with plane mirrors has been presented in
the survey articles and achieved remarkable success. Epstein et al. firstly intro-
duced plane mirrors into FPP to create virtual cameras and projectors [13]. By
tracking the relative positions of camera, projector, and mirrors, an interactive
reconstruction system with structured light can provide 3D points to accurately
estimate the pose of a mirror, while also reconstructing 3D points on the object.
However, there are still some limitations in this system, which needs multiple
measurements because the entire surface of the object cannot be illuminated
at the same time. To solve this issue, Lanman et al. presented an orthographic
projection system using a DLP projector and a Fresnel lens, which illuminated
passive optical scatterers to create a volumetric display [14]. And then they
designed an unambiguous Gray code sequence to facilitates the establishment
of the correspondence of projectors and cameras, recovering a dense 3-D point
cloud data of the entire object surface. In addition, some conventional calibra-
tion procedures are used to obtain accurate mirror calibration due to the lack
of a suitable reflection model for the mirror, but it is complex and difficult
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to implement. Mariottini et al. systematically studied the catadioptric of the
mirror to propose an ideal catadioptric model that helps convert the virtual sur-
faces reflected by the mirror into their true positions [16]. Following this idea,
Chen et al. premade two speckle patterns on the mirrors to transform all sur-
face portions into a common global coordinate thus allowing a straightforward
full-surface 360-deg profile and deformation measurements [15]. However, this
method requires the plane mirror with the front surface reflection, otherwise
the thickness of the plane mirror should be considered [17]. In addition, it will
inevitably introduce errors into the calibration of the mirror due to the nonuni-
form thickness of the print paper with speckles. On the other hand, since the
paper is fixed on the plane mirror, it leads to limited 3D measurement volume
for the system with plane mirrors.

In this work, a system calibration method for panoramic 3D shape mea-
surement with plane mirrors is proposed. Firstly, the ideal reflection model for
the plane mirror is review. Then, a flexible new calibration technique is pro-
posed to easily calibrate the mirror. In the proposed technique, the calibration
of the mirror is discussed mathematically to ensure the effectiveness and ratio-
nality of the calibration process, it only requires the camera to observe a set
of feature point pairs (including real points and virtual points) to achieve the
solution of the reflection matrix for plane mirrors. The entire calibration process
is divided into two steps: the initial estimation of the reflection matrix and the
precise calibration using the Levenberg-Marquardt algorithm with the bundle
adjustment strategy. Finally, the estimated calibration information is used to
convert 3D point cloud data obtained from real and virtual perspectives into a
common world coordinate system, making it possible to obtain full-surface 3D
data of the object. Benefitting from the robust and high-performance calibration
method, experimental results verify that our method can achieve high-accuracy
and panoramic 3D shape measurement.

2 Principle

2.1 The Reflection Model for the Plane Mirror

In this subsection, we will discuss in detail how to establish the ideal reflection
model for the plane mirror. Firstly, let us consider the measurement system
with a plane mirror as shown in Fig. 1, where an arbitrary 3D point of the tested
object in the world coordinate system (X,Y,Z) is denoted by Xo(xo, yo, zo), O
is the original point of the world coordinate system, drw is the distance between
O and the mirror, Xr(xr, yr, zr) represents the corresponding virtual point of
Xo due to the reflection of the plane mirror, dro is the distance between Xo and
the mirror, and nr is the normal vector of the mirror. From Fig. 1, we represent
the reflection of plane mirror in the vector way:

−−−→
OXr =

−−−→
OXo +

−−−−→
XoXr. (1)
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Fig. 1. The schematic diagram of the measurement system with a plane mirror.

Due to
−−−−→
XoXr = 2dro

−→
nr, Eq. (1) can also be rewritten as:

−−−→
OXr =

−−−→
OXo + 2dro

−→
nr. (2)

Besides, the relationship between dro and
−−−→
OXo can be calculated:

dro = drw − −−−→
OXo · −→

nr, (3)

where · is the dot product of vectors,
−−−→
OXo · −→

nr is a value instead of a vector, so
combining Eqs. (2) and (3) yields:

−−−→
OXr =

−−−→
OXo + 2drw

−→
nr − 2

−−−→
OXo · −→

nr−→nr. (4)

In this subsection, Xo, Xr, and nr are matrices with the size of 3 × 1. Due to−−−→
OXo · −→

nr = (Xo)Tnr = (nr)TXo, Eq. (4) can also be rewritten in the matrix
way:

Xr = (I − 2nr(nr)T )Xo + 2drwn
r, (5)

where I is the 3 × 3 identity matrix. So we have:
[
Xr

1

]
=

[
I − 2nr(nr)T 2drwn

r

0 1

] [
Xo

1

]
. (6)

So the reflection matrix Dr for plane mirrors is defined as the following formula:

Dr =
[
I − 2nr(nr)T 2drwn

r

0 1

]
. (7)

It is noted that Dr is involutory (e.g., (Dr)−1 = Dr) in [16]:
[
I − 2nr(nr)T 2drwn

r

0 1

] [
Xr

1

]
=

[
Xo

1

]
. (8)
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It can be found according to Eq. (8) that the reflection matrix Dr for plane
mirrors can be obtained immediately if nr and drw are known, and the 3D point
cloud data obtained from virtual perspectives can be converted into the 3D point
cloud data in the real world coordinate system. As a result, the core challenge for
the panoramic 3D measurement is to calculate nr and drw quickly and accurately.

2.2 The Calibration Method for the Plane Mirror

At present, the conventional method requires artificially attaching a printing
paper on the plane mirror to acquire the attitude information of the plane mir-
ror for realizing the calibration of the plane mirror [15]. However, this method
requires the plane mirror with the front surface reflection, otherwise, the thick-
ness of the plane mirror should be considered [17]. In addition, it will inevitably
introduce errors into the calibration of the mirror due to the nonuniform thick-
ness of the print paper with speckles. On the other hand, since the paper is fixed
on the plane mirror, it leads to limited 3D measurement volume for the system
with plane mirrors.

In this subsection, the calibration of the mirror is discussed mathematically
to ensure the effectiveness and rationality of the calibration process. The entire
calibration process is divided into two steps: the initial estimation of the reflec-
tion matrix and the precise calibration using the Levenberg-Marquardt algorithm
with the bundle adjustment strategy.

The Initial Estimation of the Reflection Matrix
Firstly, let nr is (ar, br, cr), Eq. (8) can also be rewritten in detail:

⎡
⎢⎢⎣

1 − 2(ar)2 −2arbr −2arcr 2ardrw
−2arbr 1 − 2(br)2 −2brcr 2brdrw
−2arcr −2brcr 1 − 2(cr)2 2crdrw

0 0 0 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣
xr

yr

zr

1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
xo

yo

zo

1

⎤
⎥⎥⎦ . (9)

From Eq. (9), it requires the camera to observe N feature 3D point pairs (includ-
ing real points Xo and virtual points Xr) to achieve the solution of the reflection
matrix for plane mirrors. Minimizing Eq. (9) is a nonlinear minimization prob-
lem, which requires the accurate initial guesses of nr and drw obtained using the
technique described in the following section. In addition, we have from Eq. (9):

[1 − 2(ar)2]xr − 2arbryr − 2arcrzr + 2ardrw = xo, (10)

− 2arbrxr + [1 − 2(br)2]yr − 2brcrzr + 2brdrw = yo, (11)

− 2arcrxr − 2brcryr + [1 − 2(cr)2]zr + 2crdrw = zo. (12)

Combining Eqs. (10) and (11) yields:

ar(yr − yo) + br(xo − xr) = 0. (13)
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Likewise, the other two formulas can be derived from Eqs. (10), (11), and
(12):

ar(zr − zo) + cr(xo − xr) = 0. (14)

br(zr − zo) + cr(yo − yr) = 0. (15)

So combining Eqs. (13), (14), and (15) yields:
⎡
⎣yr − yo xo − xr 0
zr − zo 0 xo − xr

0 zr − zo yo − yr

⎤
⎦

⎡
⎣ar

br

cr

⎤
⎦ = 0. (16)

Solving Eq. (16) is a least-squares minimization problem for obtaining an initial
guess of nr(ar, br, cr). In our method, SVD can be implemented to yield the
exact solution for the least-squares minimization problems, and the last column
vector of V obtained using SVD is the initial guess nr

0(a
r
0, b

r
0, c

r
0). And Eqs. (10),

(11), and (12) can also be rewritten for estimating the initial guess of drw:

r1(drw) = 2ar0d
r
w + [1 − 2(ar0)

2]xr − 2ar0b
r
0y

r − 2ar0c
r
0z

r − xo = 2ar0d
r
w + c1, (17)

r2(drw) = 2br0d
r
w − 2ar0b

r
0x

r + [1 − 2(br0)
2]yr − 2br0c

r
0z

r − yo = 2br0d
r
w + c2, (18)

r3(drw) = 2cr0d
r
w − 2ar0c

r
0x

r − 2br0c
r
0y

r + [1 − 2(cr0)
2]zr − zo = 2cr0d

r
w + c3, (19)

f(drw) =
N∑

n=1

r21(d
r
w) + r22(d

r
w) + r23(d

r
w), (20)

where c1, c2, and c3 are the constant values now. Since there is only one variable
drw in Eqs. (17), (18), and (19), minimizing Eq. (20) is a quadratic equation
problem with one unknown, and the first-order derivative of f(drw):

f ′(drw) =
N∑

n=1

8[(ar0)
2 + (br0)

2 + (cr0)
2]drw + 4(ar0c1 + br0c2 + cr0c3). (21)

Due to the normal vector nr
0 (e.g., (ar0)

2 + (br0)
2 + (cr0)

2 = 1), so we have:

f ′(drw) =
N∑

n=1

8drw + 4(ar0c1 + br0c2 + cr0c3). (22)

Therefore, the initial guess of drw is:

drw =
∑N

n=1 −1/2(ar0c1 + br0c2 + cr0c3)
N

. (23)

There is the minimum value of f(drw) if Eq. (23) is established.
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The Precise Calibration Using the Levenberg-Marquardt Algorithm
with the Bundle Adjustment Strategy
Next, Eqs. (10), (11), and (12) can be rewritten again based on the Levenberg-
Marquardt algorithm:

g1(ar, br, cr, drw) = [1 − 2(ar)2]xr − 2arbryr − 2arcrzr + 2ardrw − xo, (24)

g2(ar, br, cr, drw) = −2arbrxr + [1 − 2(br)2]yr − 2brcrzr + 2brdrw − yo, (25)

g3(ar, br, cr, drw) = −2arcrxr − 2brcryr + [1 − 2(cr)2]zr + 2crdrw − zo, (26)

N∑
n=1

g21(a
r, br, cr, drw) + g22(a

r, br, cr, drw) + g23(a
r, br, cr, drw), (27)

where N is the total number of 3D point pairs. Minimizing Eq. (27) is a non-
linear minimization problem, which is solved with the Levenberg-Marquardt
algorithm. It is worth noting that there are two key factors (Xr and Xo) affect-
ing the accuracy of the final optimization. It is well known that FPP is capable
of acquiring high-precision 3D data of actual feature points. In our system, the
precision of 3D measurement obtained using traditional multi-frequency phase-
shifting profilometry is about 30µm. Therefore, the influence of the second factor
Xr should be considered primarily. In above calibration, Xr

n (n = 1, 2, 3, · · · , N)
were always taken as known input data. However, the low-precision 3D measure-
ment for the virtual points (caused by the imperfect flatness of the mirror or the
uneven reflectivity of the mirror) will introduce systematic errors into the final
calibration results with low reliability. By further enhancing the manufacturing
quality of the plane mirror, this disadvantage can be overcome to some extent
to improve the performance of the calibration, but it is expensive and time-
consuming. Therefore, the bundle adjustment strategy should be introduced to
try to avoid problems caused by the mirror with low quality [18]. So Eq. (27)
can be rewritten according to the bundle adjustment strategy:

N∑
n=1

g21(a
r, br, cr, drw,X

r
n) + g22(a

r, br, cr, drw,X
r
n) + g23(a

r, br, cr, drw,X
r
n). (28)

Although the total number of variables has been increased from 4 to 4 + 3N ,
minimizing Eq. (27) is still a nonlinear minimization problem that can be solved
with the Levenberg-Marquardt method.

3 Experiments

In the experiment, a mirror-assisted FPP system is built to verify the actual
performance of the proposed method as shown in Fig. 2. This system includes a
monochrome camera (Basler acA2440-75 um with the resolution of 2448 × 2048),
a DLP projector (LightCrafter 4500Pro with the resolution of 912 × 1140), two
plane mirrors with the front surface reflection (the size of 30 cm× 30 cm). In
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Camera

Projecter

Fringes

Fig. 2. The diagram of the mirror-assisted FPP system.

Fig. 2, since the camera is placed above the projector, a series of horizontal
fringe patterns are projected by the projector and captured by the camera.

In the calibration process of the mirror, our calibration method needs to
capture multiple pose data (6 postures are used in this experiment) of the circu-
lar calibration board with high precision, each of which can provide 15 feature
point pairs as shown in Fig. 3. Then, these feature point pairs are used to perform
in sequence the initial estimation of the reflection matrix and the precise cali-
bration using the Levenberg-Marquardt algorithm with the bundle adjustment
strategy. In order to quantitatively analyze the robustness of the proposed cali-
bration method, the calibration residual errors at different steps are calculated
as shown in Table 1. From the comparison results in Table 1, it can be found
that our method can provide a relatively accurate initial guess of nr and drw with
the RMS of 0.0704 mm or 0.0611 mm. Based on these estimations, the calibra-
tion residual errors can be further decreased to 0.0578 mm or 0.0534 mm using
the Levenberg-Marquardt algorithm, which confirms its effectiveness. However,
the low-precision 3D measurement for the virtual points will introduce system-
atic errors into the process of the calibration, which leads to the calibration
results with low reliability. Therefore, the bundle adjustment strategy should be
introduced into the calibration method to obtain results with high precision in
Table 1.
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(a) (b) (c)
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Fig. 3. The measurement result of the circular calibration board. (a) One pose data of
the circular calibration board can provide 15 feature point pairs, (b) The 3D data of
virtual points, (c) The 3D data of real points.

To further evaluate the accuracy of the proposed approach, a standard
ceramic spheres with a diameter of 50.8 mm is measured using our system, and
the single-view 3D measurement results and the full-surface 3D measurement
results are presented in Figs. 4(a)–(c) and (g)–(i). Then, for the single-view 3D
measurement results, we perform the sphere fitting to obtain separately the mea-
sured errors with the RMS of 27.577µm, 47.531µm, and 44.791µm shown in
Figs. 4(d)–(e), and the accuracy of full-surface measurement result is 65.122µm
shown in Figs. 4(j)–(l). This result verifies that the proposed method can realize
high-accuracy and panoramic 3D shape measurement.

Table 1. Comparison of calibration residual errors.

RMS (mm) IEa L-Mb L-M with BAc

Mirror (left) 0.0704 0.0578 1.7911 × 10−5

Mirror (right) 0.0611 0.0534 1.1588 × 10−5

aIE = the initial estimation, bL-M = the
Levenberg-Marquardt algorithm, cL-M with BA =
the Levenberg-Marquardt algorithm with the bun-
dle adjustment strategy.
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Finally, a Voltaire model is measured and the corresponding full-surface 3D
reconstruction results are shown in Fig. 5(a). And then, the corresponding results
from three different views are presented to illustrate the reliability of our method
which can achieve robust panoramic 3D shape measurement for objects with
complex surfaces in Figs. 5(b)–(d).

Mirror (Left) Real (Mid)
(a) (b)

0.5960

0.5046

0.4132

0.3217

0.2303

0.1389

0.0475

-0.0475

-0.1389

-0.2303

-0.3217

-0.4132

-0.5046

-0.5960

Error 
(mm)

Mirror (Right)

47.531 μm 27.577 μm 44.791 μm

65.122 μm 65.122 μm 65.122 μm

S
in
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e-

vi
ew

Fu
ll-

su
rfa

ce

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(c)

Fig. 4. The 3D measurement results of a standard ceramic spheres. (a)–(c) The single-
view 3D measurement results. (d)–(f) The corresponding distribution of the errors
of (a)–(c). (g)–(i) The full-surface 3D measurement results. (j)–(l) The corresponding
distribution of the errors of (g)–(i).
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Fig. 5. The measurement results of a Voltaire model. (a) The full-surface 3D recon-
struction results of a Voltaire model. (b)–(d) The corresponding results of (a) from
three different views.

4 Conclusion

In conclusion, we proposed a system calibration method for panoramic 3D shape
measurement with plane mirrors. By introducing plane mirrors into the tradi-
tional fringe projection profilometry (FPP), our system can capture fringe images
of the measured object from three different perspectives simultaneously includ-
ing a real camera and two virtual cameras obtained by plane mirrors, realizing
panoramic 3D shape reconstruction only by single-shot measurement. Then, a
flexible new calibration technique is proposed to easily calibrate the mirror.
In this work, the calibration of the mirror is firstly discussed mathematically to
ensure the effectiveness and rationality of the calibration process, it only requires
the camera to observe a set of feature point pairs (including real points and vir-
tual points) to achieve the solution of the reflection matrix for plane mirrors. By
the initial estimation of the reflection matrix and the precise calibration using
the Levenberg-Marquardt algorithm with the bundle adjustment strategy, the
robust calibration information with high performance can be acquired to recov-
ery full-surface 3D data of the object. Finally, experimental results verify that
our method can achieve high-accuracy and panoramic 3D shape measurement
with the precision of 65.122µm.
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