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Abstract. Modern object detection frameworks such as Faster R-CNN
achieve good performance on static images, benefiting from the power-
ful feature representations. However, it is still challenging to detect tiny,
vague and deformable objects in videos. In this paper, we propose a
Motion Memory Attention (MMA) network to tackle this issue by con-
sidering the motion and temporal information. Specifically, our network
contains two main parts: the dual stream and the memory attention mod-
ule. The dual stream is designed to improve the detection of tiny object,
which is composed of an appearance stream and a motion stream. Our
motion stream can be embedded into any video object detection frame-
work. In addition, we also introduce the memory attention module to
handle the issue of vague and deformable objects by utilizing the tem-
poral information and distinguishing features. Our experiments demon-
strate that the detection performance can be significantly improved when
integrating the proposed algorithm with Faster R-CNN and YOLOv2.

Keywords: Video object detection · Dual stream · Memory attention
module

1 Introduction

Object detection is a fundamental task in computer vision. It has been widely
used in many applications, such as monitoring system and autonomous driving,
etc. In recent years, a lot of detectors based on ConvNets have been proposed
to improve the accuracy and speed in object detection task [3,13,16]. Although
they have achieved great success of object detection in image, the performance
in the video object detection is still not satisfying for tiny, vague and deformable
objects. Furthermore, distant objects on RGB frames are usually mixed with
the background. The response of these objects on the feature map is not dis-
tinguishable enough, which significantly limits the performance of conventional
detectors.

The temporal information in video plays an import role in video object detec-
tion [21,22]. They usually estimate the optical flow information between consec-
utive frames to improve the final detection results. However, the estimation of
optical flow is time consuming for practical scenarios.
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Fig. 1. (a) Motion Memory Attention Network (MMA). Our approach is com-
prised by dual stream and memory attention module. The memory attention module
is shown in Fig. 3; (b) Dual stream. The appearance stream is the Faster R-CNN
network pre-trained on the COCO dataset. The motion stream is composed of a num-
ber of column Depth-wise separable convolution blocks and takes temporal difference
frames as input.

To handle aforementioned issues, in this paper, we propose a dual stream
video object detection framework which composed of appearance and motion
stream, to encode generic appearance and motion cues respectively. The appear-
ance stream is the Faster R-CNN network pre-trained on the COCO dataset.
The motion stream is used to mine the motion information. Our motion stream
is composed of a number of column depth-wise separable convolution blocks and
takes temporal difference frames as input, which greatly reduces computation
cost compared to the optical flow based methods. For the tiny and blurry object
in the temporal difference frames, the position response of the moving object
on the feature map is obvious when the object moves, so our motion streams
can capture these objects. Since the temporal difference frames is not valid for
stationary objects, the appearance stream can provide complementary cues for
object detection.
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Furthermore, some detected objects maybe lost in subsequent frames due
to occlusion or motion blur. To tackle this issue, we propose to introduce a
memory attention module to exploit the temporal correlation in adjacent video
frames. Given object states in one frame, we can reliably predict their states
in the neighbouring frames using these inter-frame correlations. We use states
vectors to describe each video frame and infer the states of any frame from a
sequence of the states of its adjacent frames. Specially, the attention model is
introduced into the recurrent memory network to refine the states vectors of the
video frames. Therefore, the memory attention module can effectively capture
the inter-frame correlations. By utilizing the states of adjacent frames, we can
improve the detection results of occluded and blurred objects significantly.

The contributions of this paper can be summarized in the following three
aspects:

– We propose a dual stream to capture motion information in consecutive video
frames, in addition, to the appearance information, the motion information
can enhance the response of the moving object in the feature map.

– A memory attention module is proposed to exploit the temporal correlation
in adjacent video frames, and refine the states vector of each frame, which
can recover the lost object encountering deformation and blurring.

– Our method leads to competitive performance on benchmark video object
detection dataset DETRAC [20] across different detectors and backbone net-
works.

2 Related Work

2.1 Object Detection

Benefiting from the power of Deep ConvNes, object detectors such as Faster R-
CNN [16] has shown dramatic improvements in accuracy. Two-stage detectors
like R-CNN [4] directly combine the steps of cropping box proposals like Selective
Search and classifies them through the CNN model. Compared with the tradi-
tional method, it obtains significant precision improvement and opens the deep
learning era in object detection. Its descendants like Fast R-CNN [19] performs
end-to-end classification and position regression loss training on convolutional
neural networks. The Faster R-CNN suggests replacing the selective search with
a Regional Recommendation Network (RPN), to generate candidate bounding
boxes (anchor boxes) while filtering out background areas. Then it uses another
tiny network based on these proposals for classification and bounding box loca-
tion regression. In recent years, one-stage detectors like SSD [13] and YOLO [15]
have been proposed for real-time detection with satisfactory accuracy. However,
in contrast to these methods of still-image object detection, our method focuses
on object detection in videos.
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2.2 Object Detection in Video

Many researchers have focused on more generic categories and realistic videos,
but their methods focus on post-processing class scores by static-image
detectors to enforce temporal consistency of the scores. MCMOT [12] regards
post-processing as a multi-object tracking problem, then uses the tracking tar-
get confidence to re-evaluate the confidence of detection. T-CNN [11] propagates
the predicted boundary box to adjacent frames according to the pre-computed
optical flow, and then uses the tracking algorithm of high confidence boundary
box to select multiple candidate frames around the last frame and select the
candidate box with the highest score. Han et al. [5] correlated the initial test
results into the sequence. The weaker class scores in the same video sequence
are improved, and the initial frame-by-frame detection results are improved.
In contrast, our approach considers temporal information at the feature layer
rather than post-processing the detected object frames. The entire framework
completes video object detection via an end-to-end training.

2.3 Long Short Term Memory

LSTM [8] is a structure of Rnn cell that has been proven to be stable and
powerful for modeling long-term dependencies, uses three gates (input, output,
and forgetting gates) to control the transfer of information between units, and
each gate has its own set of weights. The long-term short-term memory (LSTM)
and the gated recursive unit (GRU) [2] as the advanced versions of RNN, can
alleviate the problem of gradient disappearance to some extent [7,14]. GRU
is simpler than LSTM since the output gate is removed from the unit and the
output stream is indirectly controlled by the other two gates. Cell memory is also
updated in different ways in the GRU. But the traditional GRU are designed
to process text data rather than images. Using them on images may causes
some problems, such as excessive training parameters to converge. Therefore, we
need to convert a gated architecture to a convolutional architecture, replace dot
product with convolutions, which effectively utilizes spatial information.

2.4 Attention Modules

Attention module can model long-term dependencies and has been widely used
in the Natural Language Processing (NLP) field in recent years. Squeeze-and-
Excitation Networks [10] enhance the representational power of the network by
modeling channel-wise relationships in an attention mechanism. Chen et al. [1]
makes use of several attention masks to fuse feature maps or predictions from
different branches. Vaswani et al. [18] applies a self-attention model on machine
translation. The attention modules are also increasingly applied in the image
vision flied. For example, the work [9] proposes an object relation module to
model the relationships among a set of objects, which improves object recog-
nition. Our approach is motivated by the success of attention modules in the
above works.
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3 The Proposed Approach

Our approach is to detect generic objects in video, calibrate object locations
and classify them without any manual intervention. Our method is composed
of two modules: the dual stream and the memory attention module, as shown
in Fig. 1. Firstly, we pre-train the appearance and motion stream separately to
get better feature representation. Then, the output of these two streams are
summed together as the encoding results. After that, we utilize the memory
attention module to capture temporal information. The augmented features are
then fed into the RPN module and the bounding box regression and classification
are conducted for object detection.

3.1 Dual Stream Architecture

Appearance Stream. Our appearance stream is used to extract the object
appearance features, based on Faster R-CNN, which is an advanced method for
detection. In order to get a general appearance stream, we use an advanced CNN
structure for this stream, such as ResNet50 [6]. It takes RGB frames as input
and outputs H/4×W/4 feature map. It is pre-trained on an object detection
dataset, i.e., the COCO dataset, to locate object position.

Motion Stream. It is difficult for our appearance stream to separate tiny
objects that are blended with the background. Then our proposed temporal dif-
ference frames, as shown in Fig. 2(a), can not only eliminate the background
interference, but also enhance the expression of the object in the feature map.
After adding the motion stream, the response of object motion feature is signif-
icantly enhanced, and the tiny object undetected in original red bounding box
can be recovered accurately.

However, our motion stream is invalid for static objects. When an object
moves through the scene, motion stream enhances the response of the object posi-
tion on the feature map. But once it becomes stationary as shown in Fig. 2(b),
the motion network can not estimate the object like the appearance stream.
Therefore, we leverage this complementary nature to fuse the appearance and
motion streams in our pipeline.

For the motion stream, we use Depth-wise separable convolution (DWConv)
to reduce computational complexity. Since temporal difference frames is not as
complex as RGB frames, shallow Depth-wise separable convolution layers fits
them well. This stream decomposes standard convolution into DWConv which
can also be called spatial or channel-wise convolution, followed by a 1 × 1 point-
wise convolution layer. Therefore, cross-channel and spatial correlation can be
calculated independently, which greatly reduce the number of parameters, and
make the structure of the motion network simpler and faster to execute. This
method is trained to estimate the location of independently moving objects,
based on temporal difference frames calculations from consecutive three frames
as input. For the temporal difference method, we set the threshold to 25 and set
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Fig. 2. (a) Appearance and motion stream feature visualization. It can be clearly
seen that, for the feature response of the object position, the effect of the temporal
difference frames are much higher than that of the RGB frame. But when we added
them together, the objects missed in the red box is restored. (b) Visualization of motion
stream features, including stationary objects in red circle. (Color figure online)

the brightness value between 30 and 100 as the background. Then we use some
morphology processing (such as corrosion, expansion) to reduce the interference
of the motion background. The time cost of obtaining these temporal difference
frames is much less than the optical flow picture. We train the motion stream
to estimate independently moving objects that produce a H/4× W/4 prediction
output, where each value represents the status of the corresponding pixel motion.

3.2 Memory Attention Module

To capture temporal information in the video sequence, we propose a memory
attention module which comprised two key components: ConvGRU module and
attention module. The ConvGRU module is designed to exploit the temporal
correlation in adjacent video frames, and the attention module is to refine the
status feature matrix ht in ConvGRU, as shown in the Fig. 3. Our memory
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Fig. 3. Memory attention module. Our memory attention module is composed two
key components: ConvGRU module and an Attention module.

attention module is computed with convolutional operators and non-linearities
as follows.

zt = σ(Whz ∗ ht−1 + Wxz ∗ xt + bz) (1)
rt = σ(Whr ∗ ht−1 + Wxr ∗ xt + br) (2)

ht = tanh(Wh ∗ (rt�ht−1) + Wxr ∗ xt + br) (3)

ht = (1 − zt)�ht−1 + z�h (4)
ct = Softmax(W1∗1(ReLU(W1∗1 ∗ GAP (ht)))) (5)

h
′
t = (ct ∗ ht + ht) (6)

Firstly, ConvGRU obtains the states of the two control gates (reset gate and
update gate) by the last transmitted state ht−1 and the input xt of the current
node. As shown in Eq. (1). The state and gate are 3D tensors that character-
ize the spatiotemporal pattern in the video, effectively remember each object
trajectory and their direction. σ stands for the activation function, acting as a
gating signal. After getting the gating signal, we use the reset gate to handle the
state of the previous frame ht, and then splice it with the input xt, and get the
implicit state of the current frame through a tanh activation function. � denotes
the multiplication of the corresponding element. The last and most critical step,
as we call it the memory update phase, is used to simultaneously forget and
remember. According to Eq. (4), we can see that zt and 1 − zt are interlocked,
selectively forgetting or retaining the previous state and the hidden state. Mod-
ule learning combines the characteristics of the current frame with the video
representation of the memory to improve motion predictions, or to fully recover
them from previous observations even if the moving objects become stationary.

Our attention module is to refine the state feature ht in ConvGRU, and to
improve the representation of specific context by mining the interrelationships
between channels. As shown in Fig. 3, the module is built upon deep CNN fea-
tures to achieve the feature selection. Detailed steps are shown in Eq. (5). The
GAP represents the global average pooling. This descriptor embeds the global
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distribution of channel-wise feature responses. W is a 1 × 1 convolution kernel.
The Softmax value represents the importance of each region in the image fea-
ture. Then the output is multiplied by the original features. Finally the extracted
features are added to the original features to complete feature enhancement as
Eq. (6) shows. The input of attention module is extracted from the state ht. After
the feature selection of the attention module, the refined feature map will con-
tinue to be sent to the next cell in the ConvGRU. In this way, we can complement
the contents of the current frame with the refined front and rear frame states,
which improves the detection ability of blurred, occluded and deformed objects.
As shown in Fig. 4. Finally, we feed the augmented features into the RPN and
ROI module, and then conduct the bounding box regression and classification
for object detection. The details of RPN and ROI module can be referred in [16].

Fig. 4. Our memory attention module recovers the object in the current frame that
was lost due to occlusion and blurring based on the state vector of the previous frame.

4 Experiments

We evaluate our approach on a public dataset DETRAC [20]. We first introduce
the dataset and implementation details, followed by a series of ablation exper-
iments. Finally, we present the comparison results with other state-of-the-art
methods.

DETRAC: The DETRAC [20] is a large object detection dataset of urban street
scene, with 10 h at 24 different locations in Beijing and Tianjin. The frame rate is
25 frames per second with a resolution of 960× 540. The entire dataset contains
100 videos with 140,000 frames manually labeled with 8,250 vehicles for a total
of 1.21 million labeled objects. The training set contains 60 videos, and the rest
40 videos for the test set.

4.1 Implementation Details

In this subsection, we will decompose our approach to verify the contribu-
tion of each component. We implement our method based on Pytorch. Our
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proposed network is based on the ResNet-50 and ResNet-101 pre-trained on
ImageNet [17].

Training: We respectively use the Faster R-CNN and YOLOv2 as our basic
object detection frameworks, most of the parameters are set according to the
original publication. SGD training is performed, with 6 image at each mini-
batch. 120 K iterations are performed on 4 GPUs, each of which holding two
mini-batch. All our experiments are performed on a workstation with Nvidia
1080ti, CUDA 9.0 and cuDNN V7.5.

Table 1. The performance on DETRAC [20] dataset. APP represents appearance
stream, MOT represents motion stream, and MA represent memory attention. The
Faster R-CNN is based on ResNet-50. The YOLOv2 is based on darknet19.

Method APP MOT MA mAP(%)

Faster R-CNN � 71.71

� 61.00

� � 72.83

� � 72.92

� � � 73.96

YOLOv2 � 71.23

� 60.16

� � 72.47

� � 72.24

� � � 73.39

Table 2. Per-class results on DETRAC [20] testing set. MMA net outperforms existing
approaches and achieves 74.88% in mAP.

Method Backbone mAP (%) Car Van Bus Others

R-FCN Res50 71.73 88.42 74.04 90.49 33.97

R-FCN Res101 73.27 88.63 73.73 90.61 40.11

SSD Vgg16 70.16 87.29 72.13 87.21 34.02

FSSD Vgg16 71.75 89.16 73.25 88.46 36.12

YOLOv2 darknet19 71.23 89.93 65.84 87.83 41.31

Faster R-CNN Res50 71.71 88.95 73.08 90.55 34.27

Faster R-CNN Res101 73.11 88.91 73.23 90.63 39.66

MMA + YOLOv2 darknet19 73.39 90.41 69.53 91.23 42.37

MMA + FasterR−CNN Res50 73.96 90.25 74.78 93.32 37.48

MMA + FasterR−CNN Res101 74.88 90.87 75.06 93.33 40.26
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Fig. 5. Detection results of YOLOv2, Fater R-cnn and our algorithm. The car in the
red box is missed by YOLOv2 and FastrRcnn, but detected by our algorithm. (Color
figure online)

4.2 Ablation Study

For better understanding MMA net, we investigate the impact of each component
in its design. The results are summarized in Table 1.

As show in Table 1, our MMA net improves the performance. Compared with
the baseline Faster R-CNN (ResNet-50), our MMA yields to a result of 73.96%
in mAP, which brings 2.25% improvement. (1) APP: The appearance stream
is the backbone of base detectors like Faster R-CNN. As we can see, our base-
line accuracy is 71.71%. (2) MOT: When we add motion steam separately, the
accuracy is reduced by a few points compared to the baseline. The reason is
that there are many static objects in the dataset. For example, cars stopping at
traffic lights are almost equivalent to stationary targets in consecutive frames,
which leads to inaccurate temporal difference frame and low precision. Therefore,
adding appearance stream can facilitate compensating the ineffective prediction
of motion stream, which improves the mAP to 72.83%. (3) MA: Employing mem-
ory attention module individually outperforms the baseline by 1.21%. When we
integrate these modules together, the performance further achieves to 73.96%. In
addition, when we apply a deeper pre-trained network (ResNet-101), our module
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detection performance is improved to 74.88%. After integrating our components
to YOLOv2, the performance consistently improves.

4.3 Comparison to the State-of-the-art

Table 2 compares our approach to the state-of-the-art methods on DETRAC [20].
In order to verify the superiority of our approach, we use different backbone
networks for verification. The results show that we perform much well than above
of method. Figure 5 visualizes some representative results of the Faster R-CNN,
YOLOv2 baseline and our proposed framework. It is clear that the visualization
quality of our method is much better than the baselines.

5 Conclusion

In this paper, we propose a novel module for object detection in video with
competitive performance, which introduces a dual stream network with memory
attention module. In our network, we make full use of the object motion infor-
mation and send it into a memory attention module, followed by the refined con-
secutive frames states for improving detection accuracy. Specifically, the motion
stream improves the detection accuracy of the tiny objects, but it can not detect
the stationary object, so we merge it with the appearance stream to form a com-
plementary module and memory attention module to recover the lost object due
to deformation and blur. Our ablation study shows that our proposed module
can achieve competitive results and outperforms other advanced methods. More
importantly, our modules can be easily embedded in other object frameworks
such as Faster R-CNN and YOLOv2, which demonstrates the generality of our
method.
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