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3 Cenpes, Petróleo Brasileiro S.A. – Petrobras, Rio de Janeiro - RJ, Brazil
colombo.danilo@petrobras.com.br

Abstract. Most Convolutional Neural Networks make use of subsam-
pling layers to reduce dimensionality and keep only the most essential
information, besides turning the model more robust to rotation and
translation variations. One of the most common sampling methods is
the one who keeps only the maximum value in a given region, known
as max-pooling. In this study, we provide pieces of evidence that, by
removing this subsampling layer and changing the stride of the convolu-
tion layer, one can obtain comparable results but much faster. Results on
the gait recognition task show the robustness of the proposed approach,
as well as its statistical similarity to other pooling methods.

Keywords: Convolutional Neural Networks · Deep learning · Gait
recognition

1 Introduction

Sub-sampling layers, known as pooling, perform two essential tasks on Convo-
lutional Neural Networks (CNN): (i) to reduce the number of hyperparameters,
thus decreasing the computational cost for training and inference; and (ii) to
hold a certain degree of space invariance by keeping the most relevant informa-
tion. Deep learning techniques have achieved state-of-the-art results on image
processing tasks since 2010. Image classification and localization competitions,
such as ImageNET Large Scale Visual Recognition Challenge (ILSVRC) [22] and
COCO (Common Objects in Context) [15], comprise such neural models in their
top results mostly. Inception-V4 [24] and ResNET [6], for instance, achieved out-
standing results in image classification tasks. Their basic structure has been used
in several other works by adopting transfer learning techniques [3,4,11,20].
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However, a considerable drawback of these networks concerns the computa-
tional cost for both training and inference, taking several days (or even weeks)
to achieve the desired results. Therefore, any gain on speed is always welcomed
in such models. This work aimed to introduce a more efficient way to reduce
the number of parameters and still to keep the spatial invariance expected in
CNN-based models. The idea is to replace pooling layers by 2D convolutions
with stride as of two. Such modification keeps the average accuracy in different
networks, with the boost in both training and inference time.

The remainder of this work is organized as follows: Sect. 2 describes several
types of sub-sampling approaches, and Sect. 3 presents the proposed approach.
Sections 4 and 5 discuss the methodology and the experiments, respectively.
Finally, Sect. 6 states conclusions and future works1.

2 Related Works

Convolutional Neural Networks were designed based on human visual cortex [13].
In short, such a brain region has two main types of cells: (i) simple cells, which
are computationally emulated by the CNN kernels; and (ii) complex cells, that
can be found either in the primary visual cortex [7], secondary visual cortex, and
the Broadman area 19 of the human brain [9]. The former cells are allocated in
the primary visual cortex, and such structures respond mainly to edges and
bars [8]. The former cells respond both to edges and gradings, like a simple cell,
but also to spatial invariance. It means that such cells react to light patterns in
a large receptive field on a given orientation.

Based on this biological information, LeCun et al. [13] developed the first
successful CNN model. Its structure consists of a total of seven layers: two pairs
of convolutions followed by an average pooling, two multi-layer perceptrons layer,
and a final layer responsible for classification. Roughly speaking, a CNN uses
pooling since its beginning.

Max-pooling was first proposed in 2011 [17] as a solution for gesture recog-
nition problems. Since then, several works claim that such operation is the best
sub-sampling rule for a CNN. However, some other rules, such as Global Averag-
ing Pooling [14], may also be applied in other circumstances: in this specific case,
it was designed to replace a multi-layered perceptron network in the final lay-
ers of a CNN since it tries to impose correspondences between feature maps and
categories. Another sub-sampling approach is a forced concatenation of informa-
tion from MaxPooling combined with the convolution of stride two. The work
of Romera et al. [21], for instance, aimed at performing real-time pixel-level
segmentation using such paradigm, achieving near state-of-the-art segmentation
results.

Sometimes, data sub-sampling is not desired because spatial information is
quite important, and any loss could affect the results. DeepMind claims, on its
reinforcement learning work [16], that any kind of pooling could remove relevant

1 The source code is available at https://github.com/thierrypin/gei-pool.

https://github.com/thierrypin/gei-pool
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spatial information in several games so that the CNN used in their work consists
only on convolutional and perceptron layers. Therefore, such arguments suggest
it may be necessary to develop new pooling techniques in order to improve results
on several problems.

In this work, we proposed GEINet, a deep network for the problem of gait
recognition that does not contain any pooling layer. Besides, we also showed
that the lack of such a layer could provide satisfactory results, but pretty much
faster.

3 Proposed Approach

The main goal of this work is to find out the best neural structure in order
to perform gait recognition successfully. Proposed by Han and Bhanu [5], the
Gait Energy Image (GEI) approach can be used to classify or identify a given
individual. Such technique consists of an average of pictures from a person in a
given activity, such as walking or jogging. Roughly speaking, it can be understood
as a heatmap indicating what the most frequent positions assumed by a person
are. Figure 1 depicts some examples of images generated by the GEI approach.

Fig. 1. Example of a GEI image for three different people. Image extracted from the
“OU-ISIR Gait Database, Large Population Dataset (OULP)” [10].

State-of-the-art GEI classification results were achieved by Shiraga et al. [23],
which proposed three other architectures to identify people from their gait
images. The original network is straightforward, consisting of two blocks with
a convolutional step (18 7 × 7 and 45 5 × 5 kernels), a 2 × 2 max-pooling,
as well as local response normalization [12]. Following the convolutions, are two
fully-connected layers of size 1, 024 and 956 (number of classes). All layer out-
puts are activated with ReLU, except for the last one, which is activated with
the well-known softmax function.

In this paper, we proposed three other architectures for comparison purposes:

1. A re-trained GEINet structure composed of two sets of layers of convolution,
pooling, and Local Response Normalization (LRN) [12]. Such layers are then
followed by two multilayer perceptrons and finally by a softmax for baseline
purposes;
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2. A similar model, but removing the pooling layer, and changing the convolu-
tion stride from one to two (GEINet no-pool); and

3. A third model based on the first one, but replacing the pooling layer for
a convolution layer of stride two, acting as a dimensionality reducer. This
model doubles the number of convolution layers in comparison to the other
two (Double-conv).

Figure 2 depicts the architectures of the neural networks proposed in this work.

Fig. 2. Architecture of the neural networks proposed in this work.

We followed the protocol described by Shiraga et al. [23] to construct the
energy images, which consists of taking four consecutive video silhouette masks
to further obtaining their pixel-wise averages.

4 Methodology

In this section, we described the methodology employed to validate the robust-
ness of the proposed approach. The equipment used in the paper was an Intel
Xeon Bronze R© 3104 CPU with 6 cores (12 threads), 1.70 GHz, 96 GB RAM
2666 Mhz, and GPU Nvidia Tesla P4 8 GB. The framework MXNet [1] was
used for the neural network architecture implementation. We provided a bet-
ter description of data sets used, models, and the evaluation protocol in the
following subsections.
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4.1 Data Set

We considered the “OU-ISIR Gait Database, Large Population Dataset
(OULP)” [10], which consists of silhouettes from 3, 961 people from several ages,
size, and gender, walking on a controlled environment. Data have been collected
since March 2009 through outreach activity events in Japan and recorded at 30
frames per second, from four different angles: 55, 65, 75 and 85 degrees. The
original images have a resolution of 640 × 480 pixels, but the silhouettes were
further cropped originating another set of image with a resolution of 88 × 128
pixels. In this work, we resized the images to a resolution of 44 × 64 pixels for
the sake of computational load.

4.2 Evaluation Protocol

We performed the cross-validation protocol described by Iwama et al. [10]. The
dataset is divided into five subgroups of 1, 912 people each, and each subset i
is further divided into two equal parts of 956 individuals, hereinafter called gi1
and gi2, respectively, ∀i = 1, 2, . . . , 5. The former group (gi1) is used for feature
extraction purposes using the proposed approaches and baseline, and the latter
set (gi2) is employed for the classification step. Each subset is further divided
in half, i.e., gi1 = gTi1 ∪ gVi1 and gi2 = gTi2 ∪ gVi2, where gTij and gVij stand for
training and validating sets, respectively, ∀j = 1, 2. In this work, we opted to
use two fast and parameterless techniques for the classification step: the well-
known nearest neighbor (NN) [2] and the Optimum-Path Forest (OPF) [18,19]2.
Figure 3 depicts the aforementioned protocol.

As mentioned earlier, the dataset provides four camera angles: 55◦, 65◦, 75◦,
and 85◦. Therefore, we opted to use a cross-angle methodology, i.e., we used a
given angle for training purposes and all angles to evaluate the models. Each
video contains between 15 and 45 frames, but we used only 4 to build the gait
energy images3. To train the neural networks, in each batch iteration, we selected
four random contiguous frames. For evaluation purposes, we divided the videos
into consecutive non-overlapping clips and further classified each. The final pre-
diction is the mode of all predictions in the sequence.

Since the networks are trained with a single video from each subject, we
employed data augmentation to improve training diversity. For this purpose, we
employed four image transformations, each with 50% chance of occurring inde-
pendently: horizontal flip, Gaussian noise with zero mean and standard deviation
as of 0.02, as well as random vertical and horizontal black stripes of width 3.
Additionally, the random temporal cropping step functions as augmentation.
Lastly, due to the low number of videos and the high number of possible vari-
ations in the augmentation step, we trained the networks on 12, 500 epochs. In
addition, we considered three measurements: (i) training and (ii) classification

2 We used the Python OPF implementation available at https://github.com/
marcoscleison/PyOPF.

3 We observed that only four images were enough to obtain a reasonable energy image.

https://github.com/marcoscleison/PyOPF
https://github.com/marcoscleison/PyOPF
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Fig. 3. Protocol adopted in the work, as described by Iwama et al. [10]. The dataset
is divided into 5, and each part is further subdivided twice: one is used for feature
learning and the other for classification. Then the parts are switched, so that there are
a total of 10 evaluation steps.

times, and (iii) accuracy. Notice we used the Wilcoxon signed-rank test [25] for
the statistical analysis of each measurement.

5 Results

In this section, we presented the experimental results and discussion. We showed
that replacing the pooling layer by a larger convolutional stride is sufficient to
obtain a good trade-off between computational load and accuracy. As aforemen-
tioned, in this paper we evaluated three models and compared their performance.

5.1 Accuracy

We evaluated how the models perform when predicting with different camera
angles. All the training step was performed on a single camera angle and the same
for the classifier. Therefore, the idea is to predict gaits from all four viewpoints.
Tables 1 and 2 depict the accuracy results using NN and OPF, respectively. The
results concern the average from all five folds, as described in Sect. 4.2. It is worth
noticing that, the closer the test angle is to 90◦, the better the overall accuracy
is, i.e., when the camera records the actor from the side view. As expected, the
accuracies tend to be higher when the train and test angles are the same.
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Table 1. Mean accuracies using NN classifier.

Train angle Method Test angle

55 65 75 85

55 GEINet 88.77 88.56 87.51 88.35

GEINet no-pool 87.82 87.26 86.05 87.34

Double-conv 88.28 88.18 86.86 86.51

65 GEINet 85.61 89.52 90.27 90.88

GEINet no-pool 83.56 88.41 88.87 89.77

Double-conv 84.21 89.23 89.06 90.00

75 GEINet 79.71 86.80 90.29 91.59

GEINet no-pool 79.54 87.13 90.15 91.78

Double-conv 80.00 87.49 89.83 91.11

85 GEINet 72.57 78.85 87.07 91.42

GEINet no-pool 73.37 79.48 87.15 91.17

Double-conv 75.71 80.48 87.59 91.44

Table 2. Mean accuracies using OPF classifier.

Train angle Method Test angle

55 65 75 85

55 GEINet 88.14 88.01 87.02 88.14

GEINet no-pool 87.36 86.99 85.67 87.07

Double-conv 87.55 87.89 86.34 86.19

65 GEINet 85.12 89.08 89.81 90.48

GEINet no-pool 82.80 88.08 88.26 89.41

Double-conv 83.62 88.70 88.85 89.52

75 GEINet 79.27 86.09 89.79 91.28

GEINet no-pool 79.16 86.67 89.67 91.42

Double-conv 79.27 86.57 89.54 90.61

85 GEINet 71.99 78.10 86.36 90.86

GEINet no-pool 72.87 78.81 86.97 90.86

Double-conv 75.17 79.95 87.05 91.05

When replacing the pooling layer from GEINet by a stride in its convolution
layer, the accuracy results go down marginally – around 1%. Besides, Wilcoxon
test returned a p-value around to 10−7, indicating they probably do not diverge.
Trading the pooling step by a new convolutional layer with stride as of 2 results
in slightly better results, but still not quite better than the original model. The
Wilcoxon test outputted a p-value as of 0.102, indicating that their distribution
might be similar as well.
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5.2 Execution Time

Since the protocol employed in this paper establishes ten runs, and the mod-
els were trained once for each angle, each model has 40-time measurements.
Therefore, all results presented in this section correspond to the average of all
runs.

Table 3 presents the network training and inference times. Although the non-
pooling model achieved slightly smaller accuracies than the original one, its
training time is considerably lower. The reduction from 3, 753 seconds to 3, 322
corresponds to a gain of 11.5%, while such gain was 8.3% for inference purposes.

Table 3. Training and inference times: replacing the pooling layer by a convolutional
stride resulted in considerably faster training time.

Training time

Model Per epoch (s) Total (s) Inference Time (s)

GEINet 0.300 3,753.71 0.108

GEINet no pool 0.266 3,322.18 0.099

Double-conv 0.320 4,004.93 0.109

6 Conclusion and Future Works

In this work, we introduced two variants of a simple but efficient model for gait
recognition purposes (GEINet): one replaces the pooling layers by a convolu-
tional stride (GEINet no-pool), and the other replaces the pooling layers by a
convolutional layer with stride (double-conv). We showed the non-pooling ver-
sion achieved slightly smaller accuracies than GEINet, but with a considerable
speed-up (11.5%). On the other hand, the double-conv model ran 6.3% slower
without any perceptible gain in accuracy. Regarding future works, we intend to
use GEI to identify people directly from the video streams. Besides, different
activation functions shall be investigated too.
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