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1 Faculty of engineering, Universidad de Antioquia UdeA,
Calle 70 No. 52-21, Medelĺın, Colombia
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Abstract. This paper proposes a methodology for automatic detec-
tion of speech disorders in Cochlear Implant users by implementing a
multi-channel Convolutional Neural Network. The model is fed with a
2-channel input which consists of two spectrograms computed from the
speech signals using Mel-scaled and Gammatone filter banks. Speech
recordings of 107 cochlear implant users (aged between 18 and 89 years
old) and 94 healthy controls (aged between 20 and 64 years old) are con-
sidered for the tests. According to the results, using 2-channel spectro-
grams improves the performance of the classifier for automatic detection
of speech impairments in Cochlear Implant users.
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1 Introduction

Speech disorders affect the communication ability of people affected by certain
medical conditions such as hearing loss, laryngeal and oral cancer, neurodegen-
erative diseases such as Parkinson’s disease, and others. For the case of hear-
ing loss, there are different treatments available depending on the degree and
type of deafness. Cochlear Implants (CIs) are the most suitable devices when
hearing aids no longer provide sufficient auditory feedback. However, CI users
often experience alteration in speech even after rehabilitation, such as decreased
intelligibility and changes in terms of articulation [1]. Thus, the development
of computer aided systems will contribute to support the diagnosis and moni-
toring of speech. In the literature, few studies have addressed acoustic analysis
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of speech of CI users by implementing machine learning methods. In [2] speech
intelligibility of 50 CI users is evaluated using an automatic speech recognition
system and compared with 50 Healthy Controls (HC). Recently in [3] automatic
classification using Support Vector Machines (SVM) between 20 CI users and 20
healthy speakers was performed in order to evaluate articulation disorders con-
sidering acoustic features. For the case of pathological speech detection, CNNs
have outperformed classical machine learning methods [4–6]. In these studies, the
conventional method is to perform time-frequency analysis by computing spec-
trograms over the speech signals to feed the CNNs with single channel inputs.
However, using one channel as input may limit the potential of the model to
learn more complex representations of speech signals.

In this study we propose a deep learning-based approach for the automatic
detection of disordered speech in postlingually deafened CI users, i.e, when hear-
ing loss occurs after speech acquisition. The method consists of 2-channel spec-
trograms as input to a CNN. Time-frequency analysis is performed considering
Mel-scaled and Gammatone spectrograms, which are computed from short-time
segments extracted from the recordings. These segments are defined as the tran-
sitions from voiceless to voiced sounds (onset) and voiced to voiceless sounds
(offset). Our main hypothesis is that using the spectrograms as a 2-channel input
will allow the CNN to complement the information from the two time-frequency
representations. On the one hand, Mel-based features have been established as
the standard feature set for different speech and audio processing applications.
On the other hand, previous studies have shown that Gammatone-based features
are more robust to noise compared with Mel features [7].

The rest of the paper is organized as follows: Sect. 2 includes details of the
data and methods. Section 3 describes the experiments and results. Section 4
provides conclusions derived from this work.

2 Materials and Methods

2.1 Data

Standardized speech recordings of 107 CI users (56 male, 51 female) and 94
HC (46 male, 48 female) German native speakers are considered for the exper-
iments. All of the CI users and 31 of the 94 healthy speakers were recorded
at the Clinic of the Ludwig-Maximilians University in Munich (LMU), with a
sampling frequency of 44.1 kHz and a 16 bit resolution. The recordings of the
remaining 63 HC speakers were extracted from the PhonDat 1 (PD1) corpus
from the Bavarian Archive For Speech Signals (BAS), which is freely available
for European academic users1. For this corpus, the subjects were labeled as“old”
and “young”, however, the age of the speakers is not included in the descrip-
tion of the dataset. Speech recordings from the BAS corpus have a sampling
frequency of 16 kHz. The mismatch in the acoustic conditions of the BAS corpus
and our recordings is addressed in Sect. 2.2. The speech recordings include the

1 http://hdl.handle.net/11858/00-1779-0000-000C-DAAF-B.
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reading of Der Nordwind und die Sonne (The North Wind and the Sun) text.
Information about the subjects considered in this study is presented in Table 1.

Table 1. Information of the speakers. HC-clinic: healthy speakers recorded in the clinic.
HC-BAS: healthy speakers extracted from the BAS repository. μ: mean. σ: standard
deviation

CI HC-clinic HC-BAS

Male Female Male Female Male Female

N. speakers 56 51 11 20 35 28

Range of age 18–89 28–84 26–53 20–64 - -

Age (μ ± σ) 65 ± 16 62 ± 15 35 ± 9 37 ± 13 - -

2.2 Preprocessing

The first step is to remove any possible DC offset induced by the microphone
and to re-scale the amplitude of the speech signals between −1 and 1. Then, a
noise reduction method and a compression technique are applied to normalize
the acoustic conditions of the recordings from the clinic and BAS. Then, onset
and offset transitions are extracted to model speech disorders in CI users. The
details of the methods implemented are as follows:

Noise Reduction. Background noise is removed using the SoX codec2. The
noise reduction algorithm is based on spectral gating, which consists in obtaining
a profile of the background noise to enhance the quality of the audio. In order
to get the profile, the Short-Time Fourier Transform (STFT) is computed over
short-time frames extracted from a noisy signal (silence region from the recording
to be denoise). Then, the mean power is computed over each point of the STFT
in order to get thresholds per each frequency band. The STFT of the complete
signal is calculated and the sounds with energies lower than the thresholds are
attenuated for noise reduction. For more details regarding the implementation,
please refer to the official SoX website.

Compression. The GSM full-rate compression technique is considered to nor-
malize the acoustic conditions of the recordings from the clinic and the BAS
repository [8]. The denoised speech signals are down-sampled to 8 kHz and the
resolution is lowered to 13 bits, with a compression factor of 8. Additionally,
a bandpass filter between 200 Hz and 3.4 kHz is applied in order to meet the
specifications of a GSM transmission network. Figure 1 shows the STFT spec-
trograms of a speech recording before and after applying noise reduction and
compression. The figures correspond to a speech segment of 600 ms extracted
from the speech signal of one of the healthy speakers recorded in the clinic.
2 http://sox.sourceforge.net/.

http://sox.sourceforge.net/
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Fig. 1. Time-frequency representation of a segment from a speech signal. The figure
shows (A) the original signal, (B) the signal after noise reduction, and (C) the signal
after compression.

Segmentation. Speech signals are analyzed based on the automatic detection
of onset and offset transitions, which are considered to model the difficulties of
the patients to start/stop the movement of the vocal folds. The method used to
identify the transitions is based on the presence of the fundamental frequency
of speech (pitch) in short-time frames as it was shown in [9]. The transition is
detected, and 80 ms of the signal are taken to the left and to the right of each
border, forming segments with 160 ms length (Fig. 2).
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Fig. 2. ONSET and OFFSET transition frames.

2.3 Acoustic Analysis

Acoustic features are extracted from the onset/offset transitions based on two
different auditory filter banks. First, acoustic features are extracted by applying
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triangular filters on the Mel scale. Frequencies in Hz can be converted to Mel
scale as:

M(fHz) = 1125 ln(1 + fHz/700) (1)

In the second approach, features are extracted using Gammatone filter banks,
which are based on the cochlear model proposed in [10]. The model consists of
an array of bandpass filters organized from high frequency at the base of the
cochlea, to low frequencies at the apex (innermost part of the cochlea). The
Gammatone filter bank is defined in the time domain by Eq. 2 as:

g(t) = atn−1 exp(−2πbt) cos(2πfct + φ) (2)

Where fc is the filter’s center frequency in Hz, φ is the phase of the carrier in
radians, a is the amplitude, n is the order of the filter, b is the bandwidth in Hz,
and t is the time. The number of filters used for both Mel-scale and Gammatone
based features is n = 64. The Gammatone filters are implemented following the
procedure described in [11]. Features are extracted from the transitions using
Hanning windows of 20 ms length with a time step of 5 ms.

2.4 Baseline Model

Mel-Frequency Cepstral Coefficients (MFCCs) and Gammatone-Frequency Cep-
stral Coefficients (GFCC) are extracted by dividing the transitions into short-
time segments X = {x1, . . . , xn}. Then, the Mel/Gammatone filter bank is
applied and the discrete cosine transform is calculated upon the logarithm of
the energy bands using Eq. 3.

coef[k] = 2
n−1∑

i=0

xf [i] cos(πk(2i + 1)/2n) (3)

Where k are the coefficients and xf is the resulting signal after applying the
filter banks. In this work, 13 MFCCs (including the energy of the signal) and 12
GFCCs are considered. The mean, standard deviation, kurtosis, and skewness are
computed from the descriptors. The automatic classification between CI users
and HC speakers is performed with a radial basis SVM with margin parameter
C and a Gaussian kernel with parameter γ. C and γ are optimized through a
grid-search up to powers of ten with 10−4 < C < 104 and 10−6 < γ < 103. The
selection criterion is based on the performance obtained in the training stage.
The SVM is implemented with scikit-learn [12].

2.5 Proposed Model

Mel-scaled and the Gammatone spectrograms (Cochleagram) are computed from
the onset/offset transitions by applying the filter banks described before. Then,
the spectrograms are combined into a 2-channel tensor to fed the CNN, which
is implemented using PyTorch [13]. From the documentation, it can be observed
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that the output of the convolutional layer for an input signal (Bs,Cin,H,W ) is
described as:

h(Bsi, Coutj ) = bias(Coutj ) +
Cin−1∑

k=0

ω(Cout, k) ∗ input(Bsi, k) (4)

Where Bs is the batch size (Bs = 100), ω are the weights of the network, C
is the number of channels (C = 2) of the input tensor, H is the height of the
input signal (H = 64, number of filter banks), and W is the width of the input
signal (W = 28, number of frames in the onset/offset transitions). The architec-
ture of the CNN implemented in this study is summarized in Fig. 3. It consists
of two convolutional layers, two max-pooling layers, dropout to regularize the
weights, and two fully connected hidden layer followed by the output layer to
make the final decision using a softmax activation function. The CNN is trained
using the Adam optimization algorithm [14] with a learning rate of η = 10−4.
The cross–entropy between the training labels y and the model predictions ŷ is
used as the loss function. The size of the kernel in the convolutional layers is
kc = 3 × 3. For the pooling layers the kernel’s size is kp = 2 × 2. None of the
network hyper-parameters are optimized in order to have comparable models
across experiments.

Fig. 3. Architecture of the CNN implemented in this study. The size of the kernel in the
convolutional (Conv. i) and pooling layers (Max. pool) is 3× 3 and 2× 2, respectively.

3 Experiments and Results

The SVMs and CNNs are tested following a 10-Fold Cross-validation strategy.
The performance of the system is evaluated by means of the accuracy (Acc), sen-
sitivity (Sen), and the specificity (Spe). The SVM and the multi-channel CNN
are trained with features/spectrograms extracted from onset and offset transi-
tions, individually. Table 2 shows the results obtained for the baseline model. It
can be observed that the accuracies are higher for the offset transitions, when
MFCCs and GFCCs are considered to train the SVMs individually, however, the
best performance is achieved when the two feature sets are combined (Onset-
Acc = 82.4%; Offset-Acc = 83.4%). Additionally, note that the sensitivity values
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Table 2. Classification results for the SVM trained with MFCCs and GFCCs features.
Acc: accuracy. Sen: sensitivity. Spe: specificity. Fusion: combination of MFCCs and
GFCCs features.

Segment Features Acc (%) Sen (%) Spe (%)

Onset MFCC 80.6 85.2 76.0

GFCC 75.3 78.7 72.0

Fusion 82.4 86.0 78.7

Offset MFCC 83.4 93.5 73.5

GFCC 82.8 88.8 76.9

Fusion 83.4 91.7 75.2

are higher in all of the experiments. This can be explained considering that the
speech of some of the CI users may be not affected, thus, it is closer to the
speech of healthy speakers. Table 3 shows the results obtained with the pro-
posed approach. In general, the accuracies of the CNNs are higher than those of
the baseline model. This is mainly because the CNNs are able to classify more
CI users, which is not the case for the HC. As explained before not every CI
users may present speech deficits, thus, it is not expected that the classifiers
discriminate all of the speakers correctly. Nevertheless, it can be observed that
the combination of the Mel-spectrogram and Cochleagram into a 2-channel ten-
sor is suitable for the automatic detection of speech deficits. Additionally, note
that this methodology is not restricted only to analyze speech of CI users, but
it can be adapted to study other pathologies or to recognize other paralinguistic
aspects from speech signals such as emotions.

Table 3. Classification results for the CNNs trained with Mel-spectrograms and
Cochleagrams. Acc: accuracy. Sen: sensitivity. Spe: specificity. Fusion: 2-channel
spectrograms (Mel-spectrogram–Cochleagram).

Segment Inputs Acc (%) Sen (%) Spe (%)

Onset Mel-spectrogram 83.5 98.1 68.8

Cochleagram 85.4 95.4 75.4

Fusion 86.8 98.2 75.4

Offset Mel-spectrogram 85.9 96.4 75.5

Cochleagram 86.8 96.3 77.3

Fusion 86.8 97.3 76.3

4 Conclusions

In this paper we presented a methodology for automatic detection of speech
deficits in CI users using multi-channel CNNs. The method consists in combining
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two types of time-frequency representations into a 2-channel tensor which is
used to fed a CNN. In order to do this, Mel-spectrograms and Cochleagrams
are computed from onset and offset transitions extracted from the recordings
of CI users and healthy speakers. Cepstral coefficients and SVM classifiers were
considered for comparison. According to the results, it is possible to differentiate
between CI users and HC with accuracies of up to 86.8% when the multi-channel
CNN is considered. We are aware of a mismatch regarding the age of the CI
users and HC. Currently, we are collecting more HC, however, we don’t expect
the outcome of the experiments to change. Additionally, note that the multi-
channel CNN may be suitable for other speech processing tasks such as emotion
detection or as the feature stage for speech recognition. Future work should
include more time-frequency analysis such as Perceptual Linear Prediction and
the analysis of other pathologies in other to validate the proposed approach.
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