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Abstract. Hypernasality is a speech deficit that affects children with
cleft lip and palate (CLP). It is characterized by the lack of control
of the velum, which causes problems when controlling the amount of
air passing from the oral to the nasal cavity while speaking. The auto-
matic evaluation of hypernasality could help in the monitoring of speech-
language therapies and in the design of better oriented exercises. Sev-
eral articulation features have been used for the automatic detection
of hypernasal speech. This paper evaluates the suitability of classical
articulation features for the automatic classification of hypernasal and
healthy speech recordings. Two different databases are considered with
recordings collected under different acoustic conditions and with differ-
ent audio settings. Besides the evaluation of the proposed approach upon
each database separately, non-parametric statistical tests are performed
to evaluate the possibility of merging features from the two databases
with the aim of finding more robust systems that could be used in dif-
ferent acoustic conditions. The results indicate that the proposed app-
roach has a high sensitivity, which indicates that it is suitable to detect
hypernasal speech samples. We believe that promising results could be
obtained with this approach in future experiments where the degree of
hypernasality is evaluated.

Keywords: Cleft lip and palate · Hypernasality · Articulation
measures · Classification

1 Introduction

Clef and Lip Palate (CLP) is a craniofacial malformation that occurs in about
one in every 700 live births [1]. This malformation is characterized by the incom-
plete formation of tissues that separate oral and nasal cavities, which generates
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several speech disorders such as hypernasality, hyponasality, glottal stops, and
others. During speech production it is necessary to control the amount of air
that comes out through the nasal cavity. The amount of air is controlled by the
velum, which opens and closes the connection between the oral and nasal cavity
depending on which sound is intended to be produced by the speaker (e.g., nasal
or no-nasal). When there is excess of air coming out through the nasal cavity
the speech is perceived as hypernasal, which is the speech pathology suffered by
the majority of CLP children [2,3].

The evaluation of CLP patients is subjective and time-consuming because
highly depends on the speech and language therapist’s expertise. The research
community has been interested since several decades in the development of sys-
tems that allow the objective evaluation of speech in children with CLP. One
of the most suitable approach has been the use of features that reflect articula-
tion deficits. The most common ones include Mel-frequency cepstral coefficients
(MFCCs), the first two vocal formants, vowel space area (VSA), and non-linear
measures like the Teager Energy Operator (TEO). For instance, in [4] speech
recordings of CLP patients are studied with the aim of discriminating the sever-
ity of hypernasality. The extracted features were based on the fundamental fre-
quency of voice, energy content, and MFCCs. The authors reported accuracies
of up to 80.4% when discriminating four different grades of hypernasality. In [5]
the five Spanish vowels are considered to evaluate hypernasality in children with
CLP considering acoustic and noise features. The authors reported accuracies of
up to 89%. In [6] the authors introduced a method for the classification of hyper-
nasal patients and healthy control subjects using the VSA and 13 MFCCs with
their corresponding first and second derivatives. According to the authors, the
proposed approach has an accuracy of 86.89%. In [7] features based on acoustic,
noise, cepstral analysis, nonlinear dynamics [8] and entropy measures are used
for hypernasality detection. Accuracies of around 92% are reported when the
five Spanish vowels and the words coco and gato are considered.

Although articulation-related features have been extensively used in the lit-
erature to evaluate hypernasality in the speech of CLP patients, all of the works
report results on single databases. Thus, there is no evidence about the robust-
ness of those features when are used in different databases recorded in different
acoustic conditions and with different recording settings. This study evaluates
the suitability of classical articulation-related features to discriminate between
hypernasal and healthy speech signals collected from children with CLP from two
different clinics for children in Colombia, using different recording settings and
under different acoustic conditions. The features set extracted for study includes
12 MFCCs and their first and second derivatives, the first two vocal formants
(F1 and F2) and their first and second derivatives, TEO formant centralization
ratio (FCR), and VSA. Four statistical functionals are calculated upon each fea-
ture vector: mean, standard deviation, kurtosis and skewness, and two different
classifiers are evaluated: a support vector machine (SVM) and a Random Forest
(RF).
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2 Participants

2.1 CLP Manizales

This database was provided by Grupo de Control y Procesamiento Digital de
Señales - (GCyPDS) at Universidad Nacional de Colombia, Manizales. This
database contains recordings of the five Spanish vowels pronounced by children
between 5 and 15 years old. A total of 140 audio registers were collected, 84
labeled as hypernasal by a phoniatry expert and the remaining 56 were labeled
as healthy. The signals were recorded in a quiet room but under non-controlled
acoustic conditions using a non-professional audio setting with a sampling fre-
quency of 44100 Hz and 16 bit-resolution.

2.2 CLP Cĺınica Noel

This data set was recorded in the Cĺınica Noel from Medelĺın and contains record-
ings of the five Spanish vowels pronounced by children between 5 and 15 years
old. The data contain 95 audio recordings of 53 children with CLP and 42 healthy
controls (HC). All of the 53 children included in the CLP group were labeled as
hypernasal by a phoniatry expert. The recordings were collected in a quiet room
using a professional audio setting with a sampling frequency of 44100 Hz and 16
bit-resolution. Further details of this corpus can be found in [9].

3 Methods

3.1 Feature Extraction

Mel-Frequency Cepstral Coefficients (MFCCs). Since several decades,
these features have been widely used in applications for automatic speech recog-
nition and for speaker identification. However, since about a decade the MFCCs
started to be used in applications of pathological speech analysis like laryngeal
pathologies [10] and dysarthria in Parkinson’s disease [11]. The coefficients are
based on the Mel scale which considers the perceived frequency of a tone and
the actual measured frequency. The scale emulates the frequency-response of the
human hearing system.

To estimate MFCCs considers that si(k) is the ith frame of the speech signal
and Si(k) is the Discrete Fourier Transform (DFT), the mel-spectrum is [12]:

MFi[r] =
1

Ar

Ur∑

k=Lr

|Vr[k]Si[k]|2 , r = 1, 2, . . . , R (1)

where R is the number of filters, Vr[k] is a weigh function for each mel filter, Lr

and Ur are the lower and upper range of the filter, and Ar is a normalization
factor for the rth filter. The MFCC are finally found as:

MFCCi[n] =
1
R

R∑

r=1

log(MFi[r]) cos
[
2π

R

(
r +

1
2

)
n

]
(2)
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MFCCi[n] is evaluated for n = 1, 2, . . . , NMFCC where NMFCC is the number
of desired coefficients (NMFCC < R). Besides, the first and second derivatives of
MFCCs is compute. First and second derivatives of the MFCCs are also extracted
before computing the four statistical functionals, forming a 144-dimensional fea-
ture vector.

First and Second Vocal Formants (F1 and F1). These two frequencies
correspond to the first two peaks that appear, when the envelope of a voice
spectrum is calculated (typically by a linear predictive filter). F1 and F2 provide
information about resonances that occur in the vocal tract during a phonation.
Thus they are related to the shape of organs and tissues in the vocal cavity, e.g.,
the tongue. Typically, the first two formants are used to evaluate the capability
of a speaker to keep the tongue in a certain position during the phonation of
a given vowel [6]. In this study, we calculate F1 and F2 considering the spec-
tral envelope found with a Linear Predictive Coding (LPC) filter. This method
assumes that each frame, si(k), of the speech signal, can be approximated as a
linear combination of the past p samples:

ŝi =
p∑

k=1

aksi−k (3)

where a = a1, . . . , ap is a vector with p coefficients. The main aim is to minimize
the mean-square-error such that:

a = arg min
a

1
N

N∑

n=1

(ŝi − si)2 (4)

The optimal vector a that minimizes the MSE comprises the envelope of the
speech spectrum and the value of p determines the shape of such an envelope.
As in the case of the MFCC, the first and second derivatives of F1 and F2

are also calculated before computing the four statistical functional, forming a
24-dimensional feature vector.

Teager Energy Operator (TEO). Consider the signal x(n). Its associated
TEO was defined in [13] as:

Ψ [x(n)] = x2(n) − x(n + 1)x(n − 1) (5)

One of the most important characteristics of TEO is the sensibility to com-
posed signals. If we consider a composed signal as x(n) = s(n) + g(n), the TEO
is computed as:

Ψ [x(n)] = [s(n) + g(n)]2 − [s(n + 1) + g(n + 1)][s(n − 1) + g(n − 1)] (6)

if a cross-correlation term (Ψcross[s(n), g(n)]) between the two signals is con-
sidered as Ψcross[s(n), g(n)] = s(n)g(n) − g(n + 1)s(n − 1), we obtain:

Ψ [x(n)] = Ψ [s(n)] + Ψ [g(n)] + Ψcross[s(n), g(n)] + Ψcross[g(n), s(n)] (7)
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Equation 7 shows that the superposition theorem does not apply to TEO.
This property is useful in cases where the original signal is composed by several
components. A regular speech spectrum has a typical profile where its peaks
are characterized by the vocal formants. In the case of a hypernasal speech
spectrum, additional peaks (additional formants) appear and also additional
anti-formants (additional valleys in the speech spectrum) appear. TEO seems
to be a good strategy to model such additional components that result in the
spectrum of hypernasal signals [14]. The TEO is extracted from windows of
40 ms-length, then the four statistical functionals are computed to create a
4-dimensional feature vector per speaker.

Formant Centralization Ratio (FCR) is an alternative measure to represent
articulatory problems in speakers. It offers the advantage of maximizing the
sensitivity to vowel centralization and minimizing the sensitivity to inter-speaker
variability. Thus, provides more robust and stable information of the vowel space
produced by a speaker. The FCR was proposed in [15] as:

FCR =
F2u + F2a + F1i + F1u

F2i + F1a
(8)

Where F1a, F2a, F1i, F2i, F1u and F2u are the first and second format of the
corner vowels /a/, /i/ and /u/ respectively.

Vowel Space Area (VSA) is the most common way of measuring vowel cen-
tralization using F1 and F2 of corner vowels (/a/, /i/, /u/). It is given by the
area of the triangle formed by the vertexes (F1, F2) in the vowel space created
for the three corner vowels. VSA is computed as [15]:

VSA =
∣∣∣∣
F1i(F2a − F2u) + F1a(F2u − F2i) + F1u(F2i − F2a)

2

∣∣∣∣ (9)

Figure 1 shows the resulting vocal triangle for two different children from the
two databases. Note that in both cases the triangle of the patients is compressed
which is a typical indicator of reduced articulation capability.
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Fig. 1. Vocal triangle computed for two different children from the two databases.
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At the end of the feature extraction procedure, each vowel pronounced by
each speaker is modeled by a 172-dimensional feature vector. Additionally, FCR
and VSA are calculated per speaker. Since the five Spanish vowels are considered
together, each speaker is finally represented by a 862-dimensional feature vector.

3.2 Classification

With the aim of comparing the robustness of two different classification
approaches, two classifiers are considered: a Support Vector Machine (SVM) with
a Gaussian kernel, and a Random Forest (RF). The parameters of the classifiers
were optimized following a 5-fold cross-validation strategy, where 4 folds were
used for training and the remaining one for test. Within the 4 folds used for train-
ing, another 5-fold cross validation was performed. The optimization criterion is
based on the accuracy in training. The parameters were optimized using a grid-
search over the training folds. For SVM, C and γ ∈ {10−6, 10−5, . . . , 104} and for
RF, the number of trees N ∈ {5, 10, 20, . . . , 100} and the depth of the decision
trees D ∈ {2, 5, 10, 20, . . . , 100}. Optimal parameters are selected according to
the mode across the 5-fold cross-validation procedure.

3.3 Statistical Analysis and Merging of Features

Apart from calculating the features and performing the classification between
the two classes, we wanted to evaluate the possibility of merging those features
extracted from two different datasets that were collected under different acous-
tic conditions. The analysis to decide which features were able to be merged
between datasets was performed according to Kruskal-Wallis statistical tests.
The null hypothesis was that the given feature has the same distribution in both
databases. Thus, if the p-value < 0.05 the null hypothesis is rejected. The test
was applied over all features of both databases and only the features that suc-
cessfully passed the test (p-value ≥ 0.05) were included in the merging process.
At the end of the procedure a total of 508 features passed the test.

4 Experiments and Results

In this study three experiments are performed: (1) classification of CLP vs. HC
with the Manizales database, (2) classification of CLP vs. HC with the Cĺınica
Noel database and (3) classification of CLP vs. HC with the fusion of both
databases only considering those features that successfully passed the statistical
test.

4.1 Experiment 1 - Manizales DB

Results for the classification of CLP patients vs HC subjects are presented in
Table 1. Note that the best results are always obtained using the SVM.
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Figure 2 shows histograms of the scores obtained during the classification
process. Additionally, Receiver Operating Characteristic (ROC) curves obtained
with the two classifiers are also included. Note that the scores in an SVM are
the distance of each sample to the separating hyperplane. For RF the scores are
the probability of a sample to belong to the selected class. From the histograms
it is possible to observe that most of the CLP patients are correctly classified,
which confirms the high sensitivity obtained in the experiments (96.4%). For the
HC subjects the result is not as high but still competitive with a specificity of
89.6%. The values of AUROC allow to perform a more compact analysis of the
system’s performance considering the classification accuracy of the two classes
at the same time (sensitivity and specificity).

Table 1. CLP vs. HC using the Manizales DB

Classifier ACC [%] Sen [%] Spe [%] AUROC Parameters

SVM 93.6 ± 6 96.4 ± 5 89.6 ± 9 0.99 C = 10, γ = 10−4

RF 86.4 ± 5 95.2 ± 6 73.0 ± 16 0.96 D = 2, N = 10

ACC: accuracy in the test set, AUROC: Area under ROC curve. Sen: Sen-
sitivity,
Spe: Specificity.
C and γ: complexity parameter and bandwidth of the kernel in the SVM
classifier.
N and D: Number of trees and depth of the decision trees in the RF classifier
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Fig. 2. Histograms of the scores and ROC curves (Manizales DB)

4.2 Experiment 2 - Cĺınica Noel DB

The results obtained with the two classifiers with data of the Cĺınica Noel are
indicated in Table 2. Similar to Experiment 1, Fig. 3 the histograms of the scores
and the ROC curves are presented. Note that as in the experiments with the
other dataset, the best results are obtained with the SVM. This result confirms
the robustness of these classifiers, which have been extensively used in the lit-
erature in problems of pathological speech processing. When this results are
compared to those presented in Fig. 2, the histograms have a larger overlapping
which reduces the performance of the classifiers.
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Table 2. CLP vs. HC using the Cĺınica Noel DB

Classifier ACC [%] Sen [%] Spe [%] AUROC Parameters

SVM 84.3 ± 7 90.8 ± 6 76.6 ± 11 0.90 C = 10, γ = 10−4

RF 76.9 ± 7 88.4 ± 16 62.6 ± 19 0.85 D = 10, N = 70

ACC: accuracy in the test set, AUROC: Area under ROC curve. Sen: Sensi-
tivity,
Spe: Specificity.
C and γ: complexity parameter and bandwidth of the kernel in the SVM
classifier.
N and D: Number of trees and depth of the decision trees in the RF classifier
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Fig. 3. Histograms of the scores and ROC curves (Cĺınica Noel DB)

4.3 Experiment 3 - Fusion of both DB

Only those features that successfully passed the Kruskal-Wallis test explained
in Sect. 3.3 are considered in this experiment. The results obtained with the
resulting sub-set of features in the Cĺınica Noel and Manizales databases are
included in Tables 3 and 4. The results after merging both datasets are presented
in Table 5. Note that the results after selecting those features that passed the
statistical tests are lower than those obtained when considering the complete
set of features. This result can be likely explained because only features robust
against different acoustic conditions were included after the statistical test, hence
those features are not necessary the most suitable to model articulation deficits.
On the other hand, Table 5 indicates that when the two databases are merged the
results improve. It seems like the difference in the acoustic conditions of the two
databases allow the selected features to complement among them and the result
is the improvement in the classification accuracies compared to those obtained
when the selected features are used upon each database separately. Figure 4
shows the histograms of the scores obtained in the classification process and the
ROC curves. Similarly to the previous experiments, there is a high sensitivity
obtained with both classifiers. This result indicates that the proposed approach
is suitable to detect CLP patients then it seems to be sensitive to articulation
deficits exhibited by children with CLP. We think that it could be used in future
studies to evaluate the degree of nasalization. We are currently collecting more
data with those labels with the aim of performing these kinds of experiments.
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Table 3. CLP vs. HC using the Manizales DB with selected features

Classifier ACC [%] Sen [%] Spe [%] AUROC Parameters

SVM 79.2 ± 4 90.4 ± 8 62.8 ± 6 0.86 C = 10, γ = 10−4

RF 70.1 ± 7 92.8 ± 2 36.0 ± 16 0.80 D = 90, N = 30

ACC: accuracy in the test set, AUROC: Area under ROC curve. Sen: Sen-
sitivity.
Spe: Specificity.
C and γ: complexity parameter and bandwidth of the kernel in the SVM
classifier.
N and D: Number of trees and depth of the decision trees in the RF classifier

Table 4. CLP vs. HC using the Clinica Noel DB with selected features

Classifier ACC [%] Sen [%] Spe [%] AUROC Parameters

SVM 73.5 ± 5 84.8 ± 8 59.2 ± 11 0.78 C = 102, γ = 10−5

RF 68.2 ± 12 79.0 ± 10 54.8 ± 19 0.79 D = 60, N = 60

ACC: accuracy in the test set, AUROC: Area under ROC curve. Sen: Sensitiv-
ity,
Spe: Specificity.
C and γ: complexity parameter and bandwidth of the kernel in the SVM clas-
sifier.
N and D: Number of trees and depth of the decision trees in the RF classifier

Table 5. CLP vs. HC using the merged DB with selected features

Classifier ACC [%] Sen [%] Spe [%] AUROC Parameters

SVM 83.4 ± 2 91.2 ± 5 72.4 ± 9 0.90 C = 10, γ = 10−3

RF 80.0 ± 4 92.8 ± 2 62.2 ± 9 0.89 D = 2, N = 70

ACC: accuracy in the test set, AUROC: Area under ROC curve. Sen: Sen-
sitivity,
Spe: Specificity.
C and γ: complexity parameter and bandwidth of the kernel in the SVM
classifier.
N and D: Number of trees and depth of the decision trees in the RF classifier
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Fig. 4. Histograms of the scores and ROC curves (merged DB)
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5 Conclusions

The proposed approach, based on articulation measures is effective for the clas-
sification of hypernasality in children. High accuracies were obtained with the
SVM classifier (above 90%) in the two databases. When Kruskal-Wallis tests
are applied as the selection criterion to include features before merging the
two databases, accuracies of around 80.0% are obtained. The scores obtained
with the Cĺınica Noel DB show less separability between CLP patients and HC
patients. Conversely, the results obtained with the Manizales DB are higher and
the associated histograms show less overlapping between the two classes. This
can be likely explained due to the difference in the acoustic conditions of both
databases. The sensitivity of the model was consistently high along the three
experiments presented in this paper. This result may indicate that the proposed
approach is suitable to evaluate the degree of hypernasality. Further research
with more data and additional labels are required to confirm this hypothesis.
Our team is currently working on the collection of more speech samples such
that allow the evaluation of different degrees of hypernasality considering sus-
tained vowel phonations and continuous speech signals.
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