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Abstract. 9–12% Cr martensitic steels are widely used for critical components
of new, high-efficiency, ultra-supercritical power plants because of their high
creep and oxidation resistances. Due to the time consuming effort of obtaining
creep properties for new alloys under high temperature creep conditions, in both
short-term and long-term testing, it is often dealt with simplified models to
assess and predict the future behavior of some materials. In this work, the total
time to produce the material fracture is predicted according to models obtained
using several linear techniques, since this property is really relevant in power
plants elements. These models are obtained based on 344 creep tests performed
on modified P92 steels. A multivariate analysis and a feature selection were
applied to analyze the influence of each feature in the problem, to reduce the
number of features simplifying the model and to improve the accuracy of the
model. Later, a training-testing validation methodology was performed to obtain
more useful results based on a better generalization to cover every scenario of
the problem. Following this method, linear regression algorithms, simple and
generalized, with and without enhanced by gradient boosting techniques, were
applied to build several linear models, achieving low errors of approximately
6.75%. And finally, among them the most accurate model was selected, in this
case the one based on the generalized linear regression technique.

Keywords: Linear regression � Generalized linear regression � Enhanced linear
regression

1 Introduction

Steel mills are highly involved in improving mechanical and creep resistance under
conditions of high temperatures and long service times in the materials used to produce
steels, among them martensitic steels of high percentage in chromium [1, 2]. Since long
service times under creep conditions will produce creep damage in steel used to steam
turbine in power plants, this improvement can enhance the efficiency of these plants.
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Optimizing of creep damage evolution can improve mechanical properties until frac-
ture, prolonging the service life of equipment operating [3–5].

The purpose of this work is to generate knowledge that allows a better under-
standing of the different elements influence in the alloy and in the metallurgical
mechanisms, allowing to improve martensitic steels materials creep properties. This
knowledge will allow easier development of new advanced steels.

Specifically, steels with a content of 9–12% Cr are studied, focusing this study to
improve creep resistance [6]. In this approach, several models will be developed to
predict the short-long-term creep behavior of new steels based on previous creep
behaviors of similar materials.

These models use a previous knowledge of the influence of each composition
element of the alloy and the thermal treatment on the fracture time, applied to predict
this life expectancy. These models have a direct application in the high-chromium
steels studied in this work, but it is also useful for a wide range of steels such as the rest
of stainless steels, microalloys, high strength and new generation steels.

Several techniques of linear regression were applied to predict material fracture life,
specifically 9–12% Cr martensitic steels based on modified P92 steels. Also, to obtain a
clear knowledge of the influence of each feature that define the composition of the
material, the thermal pretreatment applied to the material, and the creep test conditions
on the final material fracture life. In order to get this purpose, a study of the literature [7–
19] focus on creep test of Cr martensitic steels were performed, obtaining a dataset with
344 instances that was used to train and test the models. Then, several techniques like
data pre-processing, outlier detection, analysis of variance, analysis of covariance,
analysis of correlation, multivariate data visualization, and principal components anal-
ysis were applied. This step studies the influence of each attribute with the output, the
material fracture life, to finally select the most significant variables to perform the most
accurate models to solve the proposed problem. And then several linear regression
techniques were used and validated to build and select an accurate linear model that
improves the amount of knowledge of the creep behavior of 9–12%Cr martensitic steels.

Linear regression algorithms, simple (simple linear regression) and generalized
(generalized linear regression), with and without using enhanced by gradient boosting
techniques (enhanced linear regression and enhanced generalized linear regression)
were applied in this work.

These kind of methodologies that applies data analysis techniques and machine
learning algorithms is gaining interest in industrial engineering fields [20–22] where a
mathematical model that represents the problem can be helpful in the decision making.
And within of the possible engineering problems, this methodology can be used for the
development of new materials (advanced modified P92 steels) improving final prop-
erties and reducing time and money during the process.

2 Materials

In this work, short-term and long-term testing were studied. From this study, 344
instances based on these testing were contemplated based on significant information of
the composition of the material, the previous thermal treatment performed on the
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material, and the parameters that control the creep test. More specifically the studied
features were:

• Composition of the material: weight percent (wt%) of the most applied elements of
the chemical composition of modified P92 type steel according to ASTM A335 (C,
Mn, Si, Cr, Ni, Mo, P, S, W, Nb, V, N, Al, B, Co, Cu).

• Heat treatment of this steel before the creep test: temperature (NormTemp) and time
(NormTime) for normalizing, and temperature (TempTemp) and time (TempTime)
for tempering.

• Control parameters of creep test: Temperature (Temp) and strain (Strain) applied on
creep test performance.

• Time to fracture (TimeFractPoint), that is the predicted value based on the rest of
features.

Figure 1 shows the relationships between the variables under study.

3 Methodology

Based on the high number of variables and the complexity of the studied problem
(prediction of fracture time of P92 steels or similar materials), the proposed method-
ology is applied in two steps, first a multivariate analysis and later a linear regression.
With the final goal of predicting the material fracture time, but with an easy to
understand model that, at the same time, could show information of the influence of the
independent variables on the fracture time.
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Fig. 1. Correlation between independent variables and against the dependent variable.
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3.1 Multivariate Analysis

A multivariate analysis was performed to simplify the final models, building simpler
models and as result, making a better generalization of the problem to improve the
results in the validation stage. This analysis was conducted in five steps in order to
detect wrong instances and redundant features:

• Data pre-processing.
• Outlier detection [23].
• Analysis of correlation, variance and covariance [24].
• Multivariate data visualization.
• Principal component analysis [25, 26].

3.2 Simple Linear Regression

A probabilistic model of the expected value of an output variable is built based on
several independent variables by means of a simple multivariate linear regression
(LR) technique [27, 28] based on Eq. 1.

g ¼ b1x1 þ b2x2 þ . . .þ bnxn þ e ð1Þ

Where g is the dependent variable; xi are the independent variables; bi are the
weight of each independent variable and indicates the influence of these variables on
the dependent variable; and finally e is the bias based on a Gaussian distribution.

In this case, fracture time of the material is predicted based on 16 features that
define the composition of the material, 4 features that define the steel heat treatment,
and 2 features that define the creep test control.

3.3 Enhanced Linear Regression

Models based on simple linear regression algorithms can be improved applying gra-
dient boosting [29, 30], combining the results of several simple linear regression
models according to a cost function. This technique is call enhanced linear regression
(LRB) and calculates and uses the obtained residuals from one model evaluation to
train another model, that together make decrease the error according to a squared error
loss function. This process is repeated until the training convergence is achieved [31].
The training stage tunes two significant parameters of the algorithm: the number of
repetitions (mstop) and the shrinkage factor (shrink), to reduce a possible overtraining.

3.4 Generalized Linear Regression

Another applied technique is the generalized linear regression (GLM), which is based
in a flexible generalization of the simple linear regression. In this technique, a linking
function allows the optimization of the regression reducing the residual error but
assuming different distributions [31–36]. Beforehand, the assumption of different dis-
tributions can built more accurate models in a not linear problem, like the case of short
and long-term creep tests.
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The application of the generalized regression algorithm is based on three compo-
nents: a prediction based on a simple linear regression (Eq. 1); a linking function that is
reversible and transforms the variables according to Eq. 2; and a random component
based on the chosen distribution (Gaussian, binomial, gamma, etc.), that based on the
independent features, specifies the possible distribution of the dependent feature, η.

g ¼ g�1 lð Þ ¼ g�1 eþ b1x1 þ b2x2 þ � � � þ bnxnð Þ ð2Þ

To apply this technique, it was assumed that the distribution of the original features
of the dataset studied in this work were Gaussian, and that subsequently the three link
functions shown in Table 1 were applied.

3.5 Enhanced Generalized Linear Regression

As in the enhanced simple linear regression, models based on generalized linear
regression technique can be improved using boosting techniques. In this case, L2
boosting technique [37, 38] was applied to maximize the accuracy minimizing the
descending gradient function error. The boosted generalized linear regression algorithm
(GLRB) [39–42] obtains the residuals in an iterative way according to a squared error
loss function until the training convergence is achieved. Also, the training stage tunes
two significant parameters of the algorithm: the number of repetitions (mstop) and the
number of variables (based on the Akaike criterion), to reduce a possible overtraining
and to simplify the model.

3.6 Validation Method

A validation method to obtain comparable results from the built models was performed.
This method started with a normalization between 0 and 1 of the instances that formed
the dataset. The benefits of this normalization were two: first that the range of the
weight that each feature had in the output variable were equal in such a way that the
impact of the features in the prediction could be observed in an easy way; and second
that the final accuracy could be improved. Later, a training-testing simple validation
method was conducted, where an 80% of the original dataset was randomly selected to
build and train the models and the remaining 20% of the original dataset were used to
test and validate the models. In the training stage, trying to avoid overtraining, 10-fold
cross validation was performed. This cross validation allows having a more trustful
error to make a preliminary selection of the obtained models from the parameters
tuning. In this way, the most accurate models during training stage were selected to be

Table 1. Link functions that were applied on this technique

g ¼ g lð Þ l ¼ g�1 gð Þ
Log logel eg

Logit loge
l

1�l
1

1þe�g

Inverse l�1 g�1
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tested and validated with the testing dataset. And finally based on these last results, the
model with lower error in the testing stage was selected.

The work conducted in this study was performed using the statistical software tool
R x64 v3.4.1 [43].

3.7 Accuracy Criteria

Models accuracy must be measured in order to evaluate the performance of the model
prediction. There are several criteria to measure this accuracy when models predict a
numeric feature. Some of the most used criteria are computational validation errors,
that calculate the relation between the values predicted by the model and the real values
measured during the performance of creep tests. In this case, the following criteria were
applied:

• Mean absolute error (MAE) (Eq. 3)

MAE ¼ 1
n

Xd

k¼1

mk � pkj j ð3Þ

• Root mean squared error (RMSE) (Eq. 4)

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xd

k¼1

mk � pkð Þ2
vuut ð4Þ

• Correlation coefficient (CORR) (Eq. 5)

CORR ¼
Pd

k¼1
pk�pð Þ� mk�mð Þ

n�1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pd

k¼1
pk�pð Þ2
n�1

r

�Pd
k¼1

mk�mð Þ2
n�1

ð5Þ

Where d is the number of instances used from the database to validate the model, m
are the real values, p are the predicted values, m ¼ 1

n
Pd

k¼1 mk and p ¼ 1
d
Pd

k¼1 pk.

4 Results and Discussion

The dataset of 9–12% Cr martensitic steels based on modified P92 standard specifi-
cation was formed from a set of creep experiments obtaining from the related literature.
The studied features and ranges were selected according to the proposed in the standard
specification of the rule. Previously to apply the validation method, a multivariate
analysis was performed on the dataset. Then, based on the results of the multivariate
analysis the final dataset was set, and like it was commented previously the dataset was
split in two new datasets, the training dataset and the testing dataset. Using the training
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dataset, the models were built applying 10-fold cross validation process combined with
a tuning of the most significant parameters of each algorithm. This process allows to
optimize the final accuracy that subsequently will be tested and validate using the
testing dataset. One example of the results obtained during the training process, using
cross validation and parameter tuning is shown in Fig. 2.

After the analysis of this parameter tuning, the final results obtained during the
training stage are listed in Table 2.

After the selection of the parameter values to be used in each algorithm during the
training stage to improve the accuracy criteria, the models were built. And then were
tested with the 20% of the instances that were split previously from the initial dataset
and were never used on the training stage. The validation with this testing dataset gives
a better idea of the generalization of the problem since these instances were not used to
built the models. The results obtained during the testing and validation stages are
shown in Table 2.
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Fig. 2. RMSE obtained during the training stage for the boosted linear regression algorithm.
Boosting iterations and shrinkage are tuned.

Table 2. Results obtained during training and testing stage

Method Training Testing
RMSE (%) CORR (%) MAE (%) RMSE (%) CORR (%)

LR 11.59 28.56 7.35 10.22 16.54
LRB 10.80 28.73 7.21 10.20 15.60
GLM 8.74 56.29 4.08 6.75 59.91
GLRB 10.91 26.84 6.77 9.56 17.20
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In this case, the model that gets the most accurate results during the training stage
gets the most accurate results during the testing stage. That means that a possible
overfitting during the training stage is avoided using 10-fold cross validation, and also
that the results obtaining during the validation indicate that the model based on GLM
algorithm has an accurate generalization of the problem. That shows that the prediction
of the fracture time on modified P92 steels is reliable according to the obtained error.

Then, the model based on the GLM algorithm gets the best performance during all
the proposed stages. For this reason, the linear regression model that is defined in Eq. 6
can be considered like an accurate predictor of the material fracture life expectancy,
with a RMSE of 6.75% and a correlation of 59.91% based on the testing stage results.

g TimeFractPointð Þ ¼ 27:0059� 14:9172 � Cþ 6:0532 �Mn� 13:4758 � Si
þ 13:6218 � Cr � 8:7845 � Ni� 15:7346 �Moþ 4:7883 � P
� 2:6898 � S� 11:5633 �Wþ 1:0100 � Nbþ 2:7595 � V
� 7:8088 � N� 9:5136 � Al� 0:8844 � B� 10:0950 � Co
� 0:8578 � Cu� 1:8980 � NormTemp� 6:5165 � NormTime

þ 3:1603 � TempTempþ 11:1225 � TempTime� 13:4885

� Temp� 17:4532 � Strain

ð6Þ

5 Conclusions

The results show that linear modeling techniques can predict some material properties,
such as fracture time in creep conditions, with high accuracy. And not only a good
prediction can be obtained, also and based on the join of multivariate data analysis
techniques and linear model prediction a hidden knowledge of the process can be
obtained. In this case, obtained models predict fracture time of 9–12% Cr martensitic
steels with low errors of approximately a RMSE of 6%. Also the most influential
variables in the process have been detected, and their weight in the process was
determined. Therefore, it can be concluded that these techniques are useful in industrial
problems, such as the one presented, and of significant help for developers of new
materials in order to improve the final properties of the product.

Acknowledgment. The authors wish to thanks to the Basque Government through the KK-
2018/00074 METALCRO.
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