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Abstract. A novel supervised Laplacian eigenmap algorithm is pro-
posed especially aiming at visualization of multi-label data. Supervised
Laplacian eigenmap algorithms proposed so far suffer from hardness in
the setting of parameters or the lack of the ability of incorporating the
label space information into the feature space information. Most of all,
they cannot deal with multi-label data. To cope with these difficulties, we
consider the neighborhood relationship between two samples both in the
feature space and in the label space. As a result, multiple labels are con-
sistently dealt with as the case of single labels. However, the proposed
algorithm may produce apparent/fake separability of classes. To miti-
gate such a bad effect, we recommend to use two values of the parameter
at once. The experiments demonstrated the advantages of the proposed
method over the compared four algorithms in the visualization quality
and understandability, and in the easiness of parameter setting.

Keywords: Supervised Laplacian eigenmap · Multi-Label data ·
Feature and label spaces

1 Introduction

In recent years, various kinds of information, such as location information, search
history, and videos, have been converted to numerical/categorical/binary data.
Those data are often expressed by vectors of a high dimension. Therefore, it is
difficult for us to observe directly the data in order to grasp how data are dis-
tributed and what relationship exists among data. To make use of our high-order
brain functions and intuition to analyze such data, dimension reduction into a
two- or three-dimensional space is effective. Dimension reduction, not limited to
two- or three-dimensional, is also useful to avoid the “curse of dimensionality”,
a common obstacle in regression and classification. Many visualization methods
proposed so far are categorized into two of unsupervised methods and super-
vised methods. They are furthermore divided into two of linear and nonlinear
methods. The unsupervised methods do not use class labels as seen in principal
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component analysis (PCA) and multidimensional scaling (MDS). PCA is a lin-
ear mapping and maximizes the variance of mapped data. MDS is a nonlinear
mapping and preserves the distance between data, before and after mapping, as
much as possible. On the other hand, the supervised methods use class labels as
supervision information. Fisher linear discriminant analysis (FLDA) is a repre-
sentative example. FLDA is a linear mapping and minimizes the ratio of within-
class variance to between-class variance in the mapped data. The visual neural
classifier [5] is an example of supervised nonlinear method.

Unsupervised methods are useful for revealing hidden structure, typically
manifolds formed from data. On the contrary, supervised methods are effective
for revealing the separability of classes. Linear-methods keep the linear structure
of data but cannot express the manifold structures with varying curvature. On
the other hand, nonlinear-methods can effectively catch the manifold structure
but may produce fake structure which can mislead the analysts. Laplacian Eigen-
maps (LEs), our main concerns, are, originally unsupervised, nonlinear mappings
and preserve the neighbor relationship of data by graph Laplacians over adja-
cency graphs. In this paper, we propose a novel supervised LE, which combines
feature and label information into a single neighborhood relation between data.

2 Related Works

In this section, we provide an overview of supervised LEs. So far, CCDR [2], Con-
straint Score [8], S-LapEig [4] and S-LE [6] have been proposed. In the following,
the detail of each algorithm will be introduced. Note that some parameter sym-
bols are changed from the original papers for keeping consistency through this
paper. In fact, k is used in common for the number of nearest neighbors, σ2 for
a variance of an exponential, τ2 for a variance of a second exponential, β for a
parameter on label-agreement, and λ for a parameter on the balance between
feature space and label space information. In addition, necessary parameters of
each algorithm are also shown with the name.

2.1 Laplacian Eigenmaps: LE(k) (Original LE)

Given n data points {xi}ni=1 in a high-dimensional space R
M , the original LE

[1] maps them into points {zi}ni=1 in a low-dimensional space R
m on the basis of

a neighbor relation represented by {wij(≥ 0)}ni,j=1 over {xi}ni=1 in such a way
to minimize

JLE =
∑

i

∑

j

||zi − zj ||2wij . (1)

This formulation corresponds to graph Laplacian with the adjacency relation
W = (wij). Typically, W is given by

wij =

{
exp(−‖xi − xj‖2/σ2) (xi ∈ kNN(xj) ∨ xj ∈ kNN(xi))
0 (otherwise)

,
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where xi ∈ kNN(xj) shows that xi is a member of k nearest neighbors of xj .
Let Z be a matrix of n × m and let zT

i (‘T ’ denotes the transpose) be the
ith row. Then JLE becomes JLE = 2tr ZTLZ (‘tr’ denotes the trace), where
L = D − W with D = diag(

∑
j w1j , . . . ,

∑
j wnj). We can find {zi}ni=1 by min-

imizing tr ZTLZ, subject to ZTDZ = I. The solution is given by solving the
generalized eigenvalue problem, LZ = DZΛ, and, avoiding the trivial eigenvec-
tor of 1 with λ = 0, the second to (m + 1)th smallest (in the corresponding
eigenvalue) eigenvectors are used for Z. Note that L is positive semi-definite.

2.2 Classification Constrained Dimensionaly Reduction:
CCDR(k, σ2, λ)

CCDR [2] introduces a hypothetical node for each class, called a class center,
and requires the points of the same class to gather around the class center in the
mapped space. Let μk ∈ R

m be the class center of class k in the mapped space
and C = (cki) be the class membership matrix, i.e., cki = 1 if xi ∈ R

M has label
k and cki = 0 otherwise. CCDR minimizes the cost function

JCCDR = λ
∑

i,j

||zi − zj ||2wij + (1 − λ)
∑

k,i

||μk − zi||2cki, (2)

where

wij =

{
exp(−‖xi − xj‖2/σ2) (xi ∈ kNN(xj) ∨ xj ∈ kNN(xi))

0 (otherwise)
, cki =

{
1 (yi = k)

0 (yi �= k)
.

Here yi is the class label of xi and λ (0 ≤ λ ≤ 1) is a balance parameter between
feature space information and label space information. In [2], σ2 is determined
as ten times the average of the squared nearest neighbor distances and λ = 1/2.

2.3 Constraint Score: CS(β)

The Constraint Score [8] is not proposed directly for dimension reduction nor
visualization, but for feature selection. However, we can use the criterion for LE.
In fact, it is a näıve way to deal with sample pairs of different classes: if the
classes are the same, then multiply +1 to (1), otherwise −1.

Although two cost functions, division type and subtraction type, are shown
in [8], we consider only the subtraction type that minimizes the cost function

JCS =
∑

i,j

||zi − zj ||2wM
ij − β

∑

i,j

‖zi − zj‖2wC
ij ,

where wM
ij = 1l(yi = yj) and wC

ij = 1l(yi �= yj) (1l(·) is the indication function
that takes 1 if the argument is true, 0 otherwise).
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2.4 S-LapEig(k, σ2, τ2)

S-LapEig [4] modifies the distance between data points {xi}ni=1 in the original
space such that data of the same class label become closer and data of the
different class labels become more distant. The criterion to minimize is the same
as the original LE: JS-LapEig = JLE. However, the weight is determined at two
stages as

wij =

{
exp(−d2(xi,xj)/σ2) (xi ∈ kNN(xj) ∨ xj ∈ kNN(xi))
0 (otherwise)

,

where

d2(xi,xj) =

{
1 − exp(−‖xi − xj‖2/τ2) (yi = yj)
exp(‖xi − xj‖2/τ2) (yi �= yj)

.

Here τ2 is taken as the square of the average Euclidean distance between all
pairs of data points in [4].

2.5 S-LE(σ2, β)

S-LE [6] computes the adjacency matrix W as follows. Let AS(xi) = 1/n ·∑n
j=1 s(xi,xj), where s(xi,xj) = exp

(−‖xi − xj‖2/σ2
)
. If (s(xi,xj) >

AS(xi)) ∧ (yi = yj), then xj is judged as the neighbor of xi and denoted
by xj ∈ Nw(xi). On the contrary, if (s(xi,xj) > AS(xi)) ∧ (yi �= yj), then
xj ∈ Nb(xi). Under these definitions, S-LE maximizes (not minimizes)

JSLE = β
∑

i,j

||zi − zj ||2wB
ij − (1 − β)

∑

i,j

||zi − zj ||2wW
ij ,

where

wW
ij =

{
s(xi, xj)(xi ∈ Nw(xj) ∨ xj ∈ Nw(xi))

0 (otherwise),
, wB

ij=

{
1(xi ∈ Nb(xj) ∨ xj ∈ Nb(xi))

0(otherwise)
.

3 Supervised Laplacian Eigenmaps

Almost all supervised LE algorithms that we refer to in Sect. 2 basically separate
a pair (xi,xj) into a same-class pair or a different-class pair and evaluate them
separately. Therefore, we need to pay a special attention to the difference of the
number of two kinds of pairs. In addition, some algorithms cannot control the
degree to which we mix the label information and the feature information. Most
of all, they cannot deal with multi-label datasets where a single data is associated
with multiple class labels. Only CCDR can deal with multi-label data, if we want
to do that, but it has its own problem as will be discussed later. For the other
three algorithms, it is also not easy to extend because they deal with sample pairs
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differently depending on if they share the same class or not. To cope with these
limitations, we propose a novel supervised LE, called the Supervised Laplacian
Eigenmaps for Multi-Label datasets (shortly, SLE-ML), for visualization mainly.
We combine neighbor information in the feature space and that in the class-label
space into one with a balance parameter λ (0 ≤ λ ≤ 1).

3.1 Supervised Laplacian Eigenmaps for Multi-label Datasets:
SLE-ML(k, λ)

SLE-ML minimizes the same cost function as the original LE using a different
weight

JSLE-ML = λ
∑

i,j

||zi − zj ||2wF
ij + (1 − λ)

∑

i,j

||zi − zj ||2wL
ij , (3)

where

wF
ij = (1l(xi ∈ kNN(xj)) + 1l(xj ∈ kNN(xi))) /2, and wL

ij =
|yi ∧ yj |
|yi ∨ yj | .

Here, superscript ‘F’ stands for “feature space” and ‘L’ stands for “label
space”. In addition, wL

ij is the Jaccard similarity coefficient, the ratio of common
labels to the union of their labels, and takes a value between 0 and 1. For a single
label problem, wL

ij = 1 if data points i and j share the same label, and wL
ij = 0

otherwise. The original (unsupervised) LE is a special case of SLE-ML with
λ = 1.0. Unlike many of previous supervised LEs that take a trade-off in the
feature space between same-class pairs and different-class pairs, SLE-ML take a
trade-off of similarity between the feature space and the label space.

3.2 Parameters

All algorithms have their own parameters: CCDR(k, σ2, λ), CS(β), S-
LapEig(k,σ2,τ2), SLE(σ2, β), and SLE-ML(k, λ). It is often critical to choose
an appropriate value for each parameter. We first discuss how to determine the
values and how sensitive they are to the results. The variance parameters σ2 and
τ2 are often determined from data. A typical way is to use the average squared
Euclidean distance between all pairs of data points. As for the value of k, we
need to use the same value in common to all algorithms. In the following exper-
iments, the value of k is set to 1.5 times the average sample size per class in
order to relate each sample to other samples of different classes. As for the other
parameter, β (as for the label agreement) and λ (as for trade-off between feature
and label information), we need to be more careful about the setting. Let us
consider β in CS(β) and S-LE(σ2, β). When the number of classes is large, the
cases when two samples have the same label are far less than the counter part.
So, we have to set the value of β in accordance with the given dataset. When
we consider supervised LEs, the most important thing is how we incorporate
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the label information into feature information. In contrast to LE that uses the
feature information only, if we use the label information only, then all the points
of the same label concentrate on a single point in the mapped space, as seen in
SLE-ML(k, λ = 0.0). Therefore, we need to be careful about the value of λ more
than the other parameters. CCDR(k, σ2, λ) has the same parameter λ, but it
has another problem. The criterion (2) has two terms: the size of the first term
is O(n2) and the size of the second term is O(Kn) where K is the number of
classes. Therefore, if K 	 n or its converse (as seen in extreme multi-label prob-
lems), the effect of the same value of λ changes. So, it needs to be set carefully.
In SLE-ML(k, λ), the two terms in (3) have the same size of O(n2). Therefore,
we do not need to be careful about the number of classes and can consider the
value of λ independently of datasets. That is, SLE-ML is problem-independent.
The algorithms except for CCDR(k, σ2, λ) and SLE-ML(k, λ) do not have even
a trade-off parameter between feature and label information. This means we
cannot control it.

Table 1. Datasets. (A) stands for artificial datasets and (N) for natural datasets. In
the artificial datasets, garbage features are added; 7 for Torus and 8 for Clusdat.

Dataset #samples #classes #samples in each class #features (Intrinsic)

Torus (A) 1000 2 500 500 10 (3)

Clusdat (A) 1600 2 800 800 10 (2)

Digits (N)† 1797 10 178 182 · · · 180 64 (64)

Scene (N)‡ 1211 6(14) 194 165 · · · 1 294(294)

†:UCI Machine Learning Repository [3]
‡:Mulan: A Java Library for Multi-Label Learning [7]

4 Experiments

We evaluated the performance of the proposed method on several high-
dimensional datasets (Table 1). The dataset digits consist of 1797 images of
hand-written digits (0–9). In our experiments, the parameter k for nearest neigh-
bors was set to 1.5 times the average number of samples of each class as described
before.

Figure 1 is the visualization result of digits by SLE-ML. To confirm the
effect of the parameter λ, we varied the value from 0 to 1 by step 0.2. We see
that λ = 1.0 (the feature space only) derives the same mapping as LE, and
λ = 0.0 (the label space only) derives the class-isolated mapping. For a middle
value of λ, we can see the result by a trade-off between feature and label spaces.
It should be noted that a smaller value of λ tends to enhance the separability
among classes more than the reality. So, we recommend to use two values of λ
as λ = 0.5 and 0.9 at once for analyzing data. We compared four algorithms,
CCDR, CS, S-LapEig and S-LE, with SLE-ML. The parameters were chosen so
as to produce almost the best results except for SLE-ML. In Fig. 2, the results of
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(a) λ = 0 (b) λ = 0.2 (c) λ = 0.4

(d) λ = 0.6 (e) λ = 0.8 (f) λ = 1.0

Fig. 1. Effect of the balance parameter λ in the proposed SLE-ML in digits dataset
(Each color corresponds to a class as seen in the case of λ = 0.4). (Color figure online)

(a) CCDR (b) S-LE (c) S-LapEig

Fig. 2. Visualization of digits by three algorithms

CCDR, S-LE and S-LapEig are shown. Since CS did not produce any good result,
the result is not shown. We see that a high separability of classes is visualized by
CCDR, S-LapEig and SLE-ML(λ = 0.4, 0.6). The other algorithms fail to reveal
the separability that actually exists. In the following, therefore, we compared
these three only.

To make clear the difference of those algorithms, we visualized two artificial
datasets Torus and Clusdat. Note that these data are contaminated by garbage
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(a) Torus (untouched two rings)
(b) Clusdat (faintly touched two

moon-like distributions)

(a) CCDR (b) S-LapEig (c) SLE-ML(λ = 0.5) (d) SLE-ML(λ = 0.9)

Fig. 3. Visualization of Torus

features. The results are shown in Figs. 3 and 4. We see that CCDR and SLE-ML
(λ = 0.9) expose the manifold structure to some extent, while SLE-ML (λ = 0.5)
and S-LapEig succeed to show the separability.

Next we dealt with multi-label datasets. Figure 5 is the visualization result
of scene by SLE-ML (λ = 0.5). We observe that multi-label data are mapped
the same as single-label data. In Fig. 5, we see that data with two labels {Fall
foliage, Field} locate in the middle of data with {Fall foliage} and data with
{Field}. Such an observation reveals the relationship between a composite class
and its component classes in the original feature space.

(e) CCDR (f) S-LapEig (f) SLE-ML(λ = 0.5) (f) SLE-ML(λ = 0.9)

Fig. 4. Visualization of Clusdat

5 Discussion

The proposed SLE-ML is advantageous to the compared four algorithms in the
sense that the results give more information than the others. This is mainly
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(a) {Fall foliage, Field} � (b) {Beach, Urban} �

(a) SLE-ML (λ = 0.5) (b) Relationship between some
multi-labels and its children single labels

Fig. 5. Visualization of scene with multiple labels.

because the control parameter λ is intuitive and the multiple results with differ-
ent values of it help us to analyze data. However, there still remain many more
challenges that the original LEs had and maybe many LEs still have. First of all,
we need to resolve the “out-of-sample” problem. Since the mapping in SLE-ML
is not explicit, we cannot apply this mapping to a newly arrived data. We are
now thinking to simulate the mapping linearly or nonlinearly. If it is succeeded,
we may choose the parameter value under which separability is held high. Next,
we need to cope with “imbalance problem.” SLE-ML needs to be modified to
emphasize minority classes. Last, we have to devise some way to visualize a
hundred of thousands of data and data with a large number of multiple labels.

6 Conclusion

In this paper, we have proposed a novel supervised Laplacian eigenmap algorithm
that can handle multi-label data in addition to single-label data. The experiment
demonstrated the advantages of the algorithm over the compared the state-of-
the-art algorithms in the visualization quality and understandability, and in the
easiness of parameter setting.

In the proposed algorithm, we combine the feature information and the label
information into one, and control the balance by a parameter. To mitigate the
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risk of being cheated by an apparent separability with a small value of the
parameter, we recommend to use two different values of the parameter at once.
We also analyzed how appropriately we can give the values in the parameters of
previous four algorithms and, as a result, pointed out some careful points.
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