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Abstract. Today, supervised learning is widely used for pattern recog-
nition, computer vision and other tasks. In this setting, data need to be
explicitly annotated. Unfortunately, obtaining accurate labels can be dif-
ficult, expensive and time-consuming. As a result, many machine learn-
ing projects rely on labelling processes that involve crowds, i.e. multiple
subjective and inexpert annotators. Handling this noise in a principled
way is an important challenge for machine learning, called learning from
crowds. In this paper, we present a model that learns patterns of label
noise by grouping annotations. In contrast to previous art, we do not
model specific labeling patterns for each annotator but explain the data
using a fixed-size mixture model. This approach allows to handle a sparse
distribution of labels among annotators and obtain a model with less
parameters that can scale better to large-scale scenarios. Experiments
on real and simulated data illustrate the advantages of our approach.

Keywords: Learning from crowds · Mixture model ·
Multiple annotations · Clustering

1 Introduction

In the last years, artificial intelligence has been widely spread into several areas
of science and industry. Many of these applications rely on supervised learning,
i.e., methods capable to realize an input-output mapping from large amounts of
data (inputs) annotated with ground-truth labels (output). In many real-world
tasks however, obtaining accurate labels can be difficult or infeasible. Consider,
for instance, the problem of classifying a bio-medical image into a set of clini-
cal conditions of interest. The ground-truth label could only be obtained after
performing slow, expensive and invasive experiments in physical labs. Collecting
multiple subjective, but possibly inaccurate labels, from annotators of vary-
ing levels of expertise, is often more feasible and cheaper [10]. Current crowd-
sourcing platforms, such as Amazon Mechanical Turk (AMT), are making this
procedure more common, especially in computer vision and natural language
processing tasks. Unfortunately, as inexpert annotators can be inaccurate, spam-
mer or even malicious, training a traditional supervised model, with annotations
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collected in this way, is often ineffective. Similarly, simple aggregation rules such
as majority voting, that reduce crowd annotations into a single label, can fail if
the expertise of the different annotators vary significantly [12] or if, as usual in
crowd-sourcing platforms, the distribution of labels among annotators is sparse.
The problem of learning from annotations of varying reliability can be traced
back to [2]. Here, Dawid and Skene proposed a method, based on the EM algo-
rithm, that automatically detects the ability of each annotator and estimates
a consensus label that can be used to train a standard classifier. Many subse-
quent methods are extensions of this framework. For instance, Raykar et al. [7]
proposed to directly train the ground-truth predictor in the maximization step
of the EM algorithm. Kajino et al. [4] proposed to train a separate model for
each annotator and then infer a consensus model rather than consensus label.
More recently, Albarqouni et al. [1] have proposed the use of deep learning to
implement the ground-truth predictor of [7] and Rodrigues et al. [9] introduced
more simple training procedures based on back-propagation method.

A common limitation of the current models is that the number of learnable
parameters becomes very large as the number of annotators increases, limiting
their scalability to massive crowd-sourcing scenarios. In this paper, we present
a model for learning from crowds that detects patterns of label noise by group-
ing/clustering annotations together. In contrast to previous work, we do not
model specific labeling patterns for each annotator, but explain the annotations
using a fixed-size generative mixture model. As preliminary experiments confirm,
this allows to obtain a method that can scale better to large-scale scenarios and
can improve the state-of-the-art in sparse annotation scenarios.

The remainder of this paper is organized as follows: Sect. 2 formalizes the
problem and introduces the notation used in for the proposed method, that is
present in Sect. 3; Sect. 4 provides a discussion of related works; Sect. 5 experi-
mentally compares our approach with baseline methods; finally, Sect. 6 summa-
rizes the conclusions of this work.

2 Problem Statement and Notation

Consider an input pattern x ∈ X and a ground-truth label z ∈ Z observed with
probability distribution p(x) and p(z|x) respectively. The goal of a supervised
learning algorithm is to estimate the conditional p(z|x) from a set of examples
of the form S = {(x(1),z(1)), . . . , (x(N),z(N))}, where (x(i),z(i)) ∼ p(x,z) ∀i ∈
[N ]. More specifically, given a loss function Q : Z×Z → R and a hypothesis space
H ⊂ Z

X, a supervised learning algorithm attempts to minimize Ex,z (Q(f(x),z))
in H when p(x,z) is unknown and only S is given.

In learning from crowds, one has the same objective, but the ground-truth
labels z(i) corresponding to the input patterns x(i) are not observed. Instead, one
is given multiple noisy labels Li = {y

(1)
i , . . . ,y

(Ti)
i }, y

(�)
i ∈ Z for each training

pattern x(i). These labels have been collected from Ti annotators and do not
follow the ground-truth distribution p(z|x), but are observed according to an
unknown labelling process p(y(�)|x,z), which is another objective to study.
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In general, the annotations Li for a pattern x(i) come from a subset Ai of
the set of all the annotators A participating on the labelling process. A common
assumption is that Ai = A (dense scenario). A more challenging problem is
the scenario in which a variable number of labels is collected by data point and
annotator, i.e. |Ai| �= |Aj | < |A| = T (the sparse scenario). Furthermore, we
are interested in the so-called Global scenario, in which we are given Li, but we
do not know which annotators provided the labels i.e., we know |Ai| but not Ai.
The opposite scenario, referred to as Individual , allows to study the properties
of each annotator separately.

Focus. For sake of simplicity, we concentrate in the pattern recognition case,
that is, we let Z be a small set of K categories or classes {c1, c2, . . . , cK}.

3 Proposed Method

3.1 Model Specification

As in previous works, we represent the ground-truth label as a latent/hidden
variable z with (unknown) probability distribution p(z|x). To explain an anno-
tation y ∈ Z, assigned to an input pattern x, we propose a generative finite
mixture model (GMM) of the form

p(y | x) =
∑M

m=1
p(y | x, g = m) · p(g = m | x) =

∑M

m=1
pm(y|x) · αm, (1)

where pm(y|x) represents one of M possible sub-models, g is a categor-
ical random variable with values in [M ] = {1, 2, . . . ,M} identifying the
group/component that generated the observation y, and αm = p(g = m) is
the a-priori probability that pattern x is annotated according to pm(y|x). Note
that we are assuming that the mixing coefficients αm are independent of x. If
we relax this assumption, we obtain a mixture of experts model (MOE) with
gating functions αm(x).

The components p1(y|x), . . . , pM (y|x) in (1) represent different annotation
patterns that can occur in the labelling process. They may correspond to clus-
ters/groups of annotators that follow similar rules to annotate data or groups of
annotations for which similar mistakes were made. The relationship between an
annotation y and the ground-truth z for x is obtained as follows

pm(y = j | x) =
∑K

k=1
p(y = j,z = k | x, g = m) (2)

=
∑K

k=1
p(y = j | g = m,z = k) · p(z = k | x),

where K is the number of classes and the second line was obtained by assum-
ing that y is conditionally independent of x given z, in order to keep a simple
model. Indeed, this simplification allow us to parametrize pm(y|x) using only K2
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parameters per sub-model and a single predictive model f(x; θ) that approxi-
mates the ground-truth distribution p(z|x), as Table 1 summarized. Substituting
(2) into (1), we obtain the specification of the proposed model for annotation y

p(y | x) =
∑K

k=1

∑M

m=1
p(y | g = m,z = k) · p(z = k | x) · p(g = m) (3)

3.2 Learning Objective

We start by introducing a data representation that full-fills the requirements of
the Global and sparse scenarios defined in Sect. 2. We define r(i) to be the K-
dimensional vector whose components r

(i)
j are the frequencies of label cj among

the annotations Li of a pattern x(i). If we assume that those annotations are
conditionally independent given x(i), we obtain that r(i) follows a Multinomial
distribution with sample size Ti and probabilities pij = p(y = j|x(i)) given by the
model parametrization (see Table 1) on Eq. (3). The conditional log-likelihood
of the data G = {(x(i); r(i))}N

i=1 is thus given by

�(Θ) =
∑N

i
log pΘ(r(i) | x(i)) =

∑N

i
log

(
const ·

∏K

j=1
pΘ(y = j | x(i))r

(i)
j

)

= const +
∑N

i

∑K

j
r
(i)
j · log pΘ(y = j | x(i))

= const +
∑N

i

∑K

j
r
(i)
j · log

(∑
m,k

β
(m)
k,j · fk(x(i); θ) · αm

)
. (4)

The parameters of the proposed model, called Crowd Mixture Model (CMM), can
be learnt to maximize �(Θ). Unfortunately, due to the log-sum, this optimization
is not straightforward. We address this issue using the EM algorithm [3].

3.3 Training Procedure

By the Jensen inequality, we can consider any bi-variate distribution qij(g,z)
assigning annotations among groups and ground-truth categories, to obtain the
following lower bound of �(Θ)

Table 1. Model parametrization. Entry (k, j) of β(m) represents the probability
that a pattern of class z = k is annotated as y = j by the group/component g = m.
The model f(x; θ), used to predict the ground-truth of x, may have many parameters
|θ|, but this number is independent of the number of annotators T .

Term Model # Parameters

p(g) Mixing coefficients αm = p(g = m) M − 1

p(y|g, z) Confusion matrix β(m) for group m MK(K − 1)

p(y = j|g = m, z = k)

p(z|x) Neural net f(x; θ) Indep. of T
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�(Θ) ≥ const +
∑

i,j

r
(i)
j

⎡

⎣
∑

m,k

qij(m, k) · log

(
β
(m)
k,j · fk(x(i); θ) · αm

qij(m, k)

)⎤

⎦ . (5)

The EM algorithm now follows easily. In one step, we improve our estimate
of qij(·) to make the bound tight. Then, we optimize the lower bound in the
model parameters Θ. The iteration of these two steps is guaranteed to converge
to a local maximum of �(Θ). Exact solutions for our model are provided below.

E-step. For grouping the annotations based on ground-truth, we obtain

qij(m, k) = 1
Nij

β
(m)
k,j fk(x(i); θ)αm, with Nij =

∑

m′,k′
β
(m′)
k′,j fk′(x(i); θ)αm′ .

M-step. For the mixing coefficients and confusion matrices, we obtain

αm =

∑
ij r

(i)
j · qij(m, ·)
∑

ij r
(i)
j

, β
(m)
k,j =

∑
i qij(m, k) · r

(i)
j

∑
ij′ qij′(m, k) · r

(i)
j′

, (6)

where qij(m, ·) =
∑

k qij(m, k), then confusion matrix is a weighted average of
annotations of that group. Now, defining qij(·, k) =

∑
m qij(m, k) and r̄

(i)
k =∑

j qij(·, k)r(i)
j , we obtain the following objective to minimize for the neural net:

J(θ) =
∑

i,k
−r̄

(i)
k · log fk(x(i); θ) ∝

∑
i
H

(
p̄(i), f(x(i); θ))

)
, (7)

where H(·, ·) is the categorical cross-entropy loss between the neural net and a
“consensus” distribution on the categories, p̄

(i)
k = r̄

(i)
k /

∑
k′ r̄

(i)
k′ , which has been

computed for x(i) considering the confusion matrices and the mixing coefficients.

3.4 Group Assignment

Our model allows to cluster annotations and annotators, even outside the train-
ing data. Given any set of annotations L = {Li} for a pattern x(i), we can
compute the probability that these annotations were generated by the compo-
nent pm in our model as

p (g = m|L,X) =
p (L|g = m,X) p(g = m|X)∑

m′ p (L|g = m′,X) p(g = m′|X)
=

pm(y(�)
i |x(i))αm

∑
m′ pm′(y(�)

i |x(i))αm′
.

The probability p(g = m|a) that an annotator a belongs to the group m can be
estimated with all her annotations. In addition, we can estimate the confusion
matrix of an annotator as βa =

∑
m p(g = m|a) · β(m).
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4 Related Work

Existing methods to deal with multiple annotations can be grouped as follows.

Simple Aggregation Methods. These methods use simple summary statistics
to reduce the crowd annotations into a single label that can be accepted by
standard classifiers. The most used technique of this type is Majority Voting
(MV), which has two versions in classification problems [8]: hard-MV, that selects
the most frequent class among the annotations, and soft-MV, that defines the
output of prediction as the relative frequency of the classes. As shown in [12], the
accuracy of MV methods is limited if the annotators have very different levels
of accuracy or in cases in which data points do not have many annotations.

Methods Without Predictive Model. These techniques also reduce crowd
annotations into a single label and train a predictive model in a separate step.
However, they devise specialized techniques to deal with annotators of varying
expertise. A pioneer method is the algorithm of Dawid and Skene (DS) [2].
Here, the ability of each annotator is represented using a confusion matrix that
can be learnt, together with the ground-truth of the training data, using the EM
algorithm. Recently, [13] proposed an initialization method for the EM algorithm
that allows to speed-up DS.

Methods with Predictive Model. These methods learn the ground-truth
of the training data and the predictive model f approximating p(z|x) jointly,
which avoids a second learning stage and allows the model f to learn labelling
patterns that depend on x. For instance, Raykar et al. [7] extended DS, using
a logistic regression model to implement p(z|x). Almost simultaneously, Yan et
al. [11] proposed to use a logistic model to predict the ability of the annotators.
A method that avoids the use of the EM algorithm is presented by Kajino et al.
[4]. It trains a logistic model for each annotator and then creates a consensus
model. Unfortunately the complexity of [4,11] is increased considerably due to
the large number of parameters per annotator. Addressing this issue, [8] proposed
to change the latent variable of [6], modeling the reliability of each annotator.
The main assumption is that an annotator provides completely random labels
or annotates data according to a common baseline model. Unfortunately, this
assumption represents two extreme possibilities that rarely take place in practice.

Deep Learning. Recent works have proposed the use of neural network models
to implement p(z|x). For example, [1] extends [7] using a convolutional net and
applies the model to a real cancer detection problem. [5] presents two methods
that avoid the effect of label noise in neural network training. Unfortunately, a
single confusion matrix is considered and it needs to be known before training.
It is not evident how to use this method with multiple inaccurate annotators.
Rodrigues et al. [9] encode the confusion matrices as additional weights of the
neural network, avoiding the use of the EM algorithm. Unfortunately, the size
of the so-called “crowd layer” grows linearly in the number of annotators.

Discussion. As pointed out in [14], nowadays there is no method that is superior
to the others in all the cases, because different assumptions have to be fulfilled
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to achieve good results. However, algorithms using a confusion matrix, as our
method, to represent the ability of the annotators perform experimentally better
than the others [14]. However, while almost all methods focus on modeling each
annotator separately (Individual scenario), we propose a model with a fixed
number of components, into which annotations and annotators can be allocated.
As shown in Table 1 this makes the number of parameters independent of T .
Besides computational efficiency, grouping annotations allows to increase statis-
tical efficiency, especially in scenarios where annotators provide a small number
of labels and so the estimation of the confusion matrices has to be performed
using very few data.

5 Experiments

We evaluate our method on real and simulated scenarios, comparing it against
four baselines from the state-of-the-art: DL-DS [2], DL-EM ([1] and generalized
in [9]), and both versions of MV [8]: hardMV and softMV. We also include the
upper bound performance of a model trained with the ground-truth, referred to
as Ideal. In the vein of latest works, all the methods employ neural networks to
implement the ground-truth predictor. All our code is made publicly available1.

Simulated Scenario. To compare the methods on a controlled scenario, we
simulated a crowd-sourcing process with annotators of varying expertise. Fol-
lowing [4,8], we simulated M levels of ability, by training a neural net on the
ground-truth and randomly perturbing its weights with different levels of noise.
As we use a confusion matrix to represent the ability of annotators, the matrix
of each perturbed model was first calculated. Then, we created T annotators
by selecting one of the M ability levels according to a probability distribution
p(g). To simulate sparse annotations, each data point is labelled by a random
subset of the annotators Ti such that, in average, we obtain T̄i annotators per
point and a density of Dt ≈ N · T̄i/T labels per annotator. Each annotator
provides a label based on the ground-truth and her ability, i.e, the confusion
matrix of the group. This annotation process is applied in two different fla-
vors. In Setup (1), we simulate three uncorrelated isotropic Gaussians (repre-
senting classes), with 1000 data points each, centered on (−0.5; 0), (0.5; 0) and
(0; 0.5), with σ2 = 0.42 (homocedasticity). We set T̄i = 5, M = 3 (experts,
inexperts, spammers), and p(g) = (0.25; 0.55; 0.20). In Setup (2): we use the
well-known CIFAR-10 dataset, composed of 60000 real images, classified into 10
categories, and set T̄i = 3, M = 4 (experts, inexperts, highly inexpert, spam-
mers), p(g) = (0.20; 0.45; 0.15; 0.20).

Real Data. To evaluate the methods on a real crowd-sourcing scenario, we
followed the setup of [9] on the LabelMe dataset. It contains 2688 images of
256 × 256 resolution, labelled into 8 possible classes by T = 59 annotators on
Amazon Mechanical Turk. Each image has T̄i = 2.6 annotations in average,
which leads to a density of Dt = 43.2 labels per annotator.
1 https://github.com/FMena14/MixtureofGroups.

https://github.com/FMena14/MixtureofGroups
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Table 2. Test accuracy of the different methods on a simulated crowd-sourcing scenario
for values of T (columns) ranging from T = 100 to T = 10000. Marker † represents
that the method could not be executed due to insufficient memory (16 GB available).

Setup (1) Setup (2)

Method 100 500 1500 3500 6000 10000 100 500 1500 3500 6000 10000

softMV 69.34 66.21 66.87 68.48 67.00 66.49 63.35 65, 90 63.59 60.07 63.21 64.20

hardMV 79.57 82.49 80.51 81.57 74.30 79.07 71.09 69, 50 68.48 69.09 70.08 66.01

DL-DS 94.66 93.89 92.28 90.00 89.69 85.13 71.33 68, 49 68.08 66.86 † †
DL-EM 93.97 93.99 92.18 88.27 76.47 67.01 81.38 80, 42 77.81 69.81 † †
CMM 90.53 91.07 91.66 90.45 90.26 90.46 78.83 78, 36 79.35 77.92 78.45 78.96

Ideal 94.75 83.77

Table 3. Performance of the different methods in a real crowd-sourcing scenario
(LabelMe). Marker � represents no change with respect to the Individual setting.
Acc. stands for Accuracy. Iters stands for iterations to converge.

Individual setting Global setting

Method Iters Train Acc. Test Acc. I-JS G-JS Iters Train Acc. Test Acc. G-JS

softMV 9.2 83.32 81.69 0.216 0.024 � � �
hardMV 11.8 80.34 79.95 0.225 0.035 � � �
DL-DS 10.6 84.30 83.57 0.153 0.036 4.1 12.63 14.08 0.473

DL-EM 3.9 85.18 83.07 0.295 0.259 3.0 78.02 75.92 0.467

CMM 7.2 84.58 83.10 0.234 0.054 � � �
Ideal 8 97.90 92.09 � �

Training and Evaluation Details. All the methods are trained until conver-
gence (change in loss or parameters below a threshold) up to a maximum of 50
iterations. To obtain more significant results, we perform 20 runs of each exper-
iment and average the results. The initialization of the EM algorithm is done
with softMV and, for our model, a K-means clustering is previously done over
annotations. Multiple restarts (20) was applied for DL-EM and our method. In
the M step, the neural nets are executed one epoch using the Adam optimizer. To
implement the predictive model f(z; θ), we choose an architecture that, accord-
ing to previous works, is known to be appropriate for each dataset. As, for all
the datasets, the ground-truth is available, we evaluate the methods measuring
the Accuracy of the predictive model on the test set. To evaluate the ability of
the method to estimate the confusion matrices, on the train set, we compute the
Jensen-Shannon divergence in two variants. We measure the I-JS, the average
divergence between the real and the predicted matrices of each annotator, as well
as G-JS, the divergence between the real and predicted global matrices, that
represent the behavior of all the annotators/annotations in the labelling process.
On real dataset, the M chosen is the one with the highest log-likelihood.
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Table 4. Metrics on con-
fusion matrices found on
LabelMe dataset.

Group αm Isim H

1 0.99 0.91 0.48

2 0.01 0.02 2.08

3 0.00 0.03 2.08

Group 1 Group 2 Group 3

Fig. 1. Confusion matrices found on LabelMe dataset.

Results on the Simulated Data. Table 2 shows the accuracy obtained by the
different methods in the simulated scenario, as we vary the number of annotators
T . Consistent with previous results [14], we observe that learning-based methods,
can significantly improve on simple aggregation techniques such as MV. It can
also be seen that, as T grows and thus the number of labels per annotator
(Dt ∝ T̄i/T ) decreases, the methods DL-EM and DL-DS suffer a sharp fall in
performance. In contrast, in both setups, the accuracy of our method is more
robust to a change in the density of annotations. We attribute this result to the
fact that DL-EM and DL-DS need to estimate a separate sub-model for each
annotator (confusion matrix) and thus require that Dt keeps high in order to
maintain their accuracy. In contrast, the number of estimated components in
our method is independent of T . When the number of annotators is small, our
method is competitive, but it is outperformed by more complex models. However,
when T is greater than some threshold, in this case 3500, our method achieves
the best performance. In some extreme cases, existing learning-based methods
cannot be executed due to the large number of parameters in the formulation.

Results on Real Data. We report the results of the LabelMe dataset (using
M = 3) in Table 3. We experiment with the Individual and Global settings
introduced in Sect. 2. In the first scenario, we know which annotators provided
which labels, thus having a quite dense setting. In the second scenario, we do not
have that information and thus the annotations are treated independently, lead-
ing to a density of Dt = 1 (where T grows to 2547 and T̄i keeps). In the denser
case, all the learning-based methods achieve a similar test accuracy (∼83%).
In the sparse setting however, the accuracy of DL-EM and DL-DS suffers an
important decrease (∼78% and ∼13% respectively), while the accuracy of our
method and MV is robust to this change. This shows the disadvantage of meth-
ods that model each annotator separately compared to methods based on a
Global representation that can group annotations together.

Groups Analysis. We visualize in Fig. 1 the confusion matrices found by our
method in the LabelMe dataset. We also show in Table 4 the entropy of the
confusion matrices H, their similarity Isim with respect to the identity matrix
(computed as 1 minus the normalized JS divergence, to obtain a number in
[0, 1]) and the value of the mixing coefficients αm (prevalence of each group).
We conclude that the method found a group of annotators with a quite expert
behavior (high Isim, low H) with a presence of 99%, and a group of spammers
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(quite high entropy) with a prevalence of 1%. The third component has an
insignificant presence in the mixture (αm = 0 rounding at two decimals) which
shows that the method can easily adapt if the number of real groups in the data
is lower than those specified into the model. Figure 2 presents visual examples
of good and bad predictions of the confusion matrix corresponding to individual
annotators (see formulae in Sect. 3.4) and the global confusion matrix.

a) Individual: I-JS =
0.150, p(g|a) = (1; 0; 0).

b) Individual: I-JS =
0.232, p(g|a) = (1; 0; 0).

c) Global: G-JS = 0.047,
p(g) = (0.99; 0.01; 0.00).

Fig. 2. Examples of confusion matrices (True vs Estimated) on LabelMe dataset.

Memory consumption Execution time per iteration

Fig. 3. Comparison by increasing T on simulated data setup (1). DL-EM is presented
in blue and our (CMM ) is presented in green. (Color figure online)

Computational Efficiency. In Fig. 3, we compare the execution time and
memory consumption of CMM and DL-EM in the simulated setup (1) sce-
nario. In contrast to CMM, the computational complexity of DL-EM increases
monotonically with the value of T . This shows that our method can scale better
to scenarios with a large number of annotators as expected from its formulation.

6 Conclusions

We presented a model for learning from crowds that, in contrast to existing
methods, does not represent annotators separately but has a fixed number of
components into which annotations can be grouped together. Our experiments
show that this model achieves competitive accuracy in scenarios with several
labels per annotator, but can outperform the baselines when the distribution of
labels is sparse. The method is more scalable than other approaches in cases with
large number of annotators, also adapts naturally when the amount cannot be
determined because the individual annotations are not present. In future work,
we plant to extend our method in order to avoid the use of the EM algorithm.
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