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Abstract. Hyper-Parameter configuration is a relatively novel field of
paramount importance in machine learning and optimization. Hyper-
parameters refers to the parameters that control the behavior of algo-
rithms and are not tuned directly by such algorithms. For hyper-
parameters of an optimization algorithm such as Particle Swarm Opti-
mization, hyper-parameter configuration is a nested optimization prob-
lem. Usually, practitioners needs to use a second optimization algorithm
such as grid search or random search to find proper hyper-parameters.
However, this approach forces practitioners to know about two differ-
ent algorithms. Moreover, hyper-parameter configuration algorithms also
have hyper-parameters that need to be considered. In this work we use
Particle Swarm Optimization to configure its own hyper-parameters.
Results show that hyper-parameters configured by PSO are competitive
with hyper-parameters found by other hyper-parameter configuration
algorithms.

Keywords: Hyper-parameter · Optimization · Meta-heuristic ·
Particle Swarm Optimization

1 Introduction

Search is a core concept of Artificial Intelligence and Pattern Recognition. In
this field, meta-heuristic algorithms are critical as they do not require any prior
on the fitness function, and allows to explore large search spaces. This ability is
extensively used for model fitting and several important tasks in Artificial Intel-
ligence. However, meta-heuristics are very dependent on their parameterization
and often, require experts to determine which hyper-parameters1 to modify and
how should they be tuned, meaning that for a non-expert it might be hard to
find good settings.
1 Hyper-parameters refers to the parameters that control the behavior of the meta-

heuristic algorithm and are not tuned directly by such algorithm.
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For meta-heuristics, hyper-parameters appear frequently and have a direct
impact in the convergence speed and accuracy of the algorithms [7]. Also, hyper-
parameters affect the execution time and memory cost of running the algorithm,
the quality of the model resulting from the training process, or its ability to
generalize to the unseen data. For these reasons, finding the best possible hyper-
parameters becomes crucial [13].

Hyper-parameter Optimization (HPO), is a field of paramount importance
in machine learning and optimization [5,17]. HPO basically stands for using
optimization algorithms in order to perform automatic hyper-parameter config-
uration. HPO is a difficult optimization problem. Until recently, HPO in several
areas, such as machine learning, was considered a combination of science and
art due to the high computational cost of such task [1].

There are two main approaches to HPO: manual or automatic methods.
Manually approach assumes that there exists an understanding of how the hyper-
parameters affect the algorithm. On the other hand, automatic approach greatly
reduce the need for this understanding, but they come at the expense of the
costlier computation.

In the latest years there has been an increase in the efforts to address auto-
matic HPO with very good results in contrast with manually choosing the hyper-
parameters [3,14]. In the literature, among the most popular algorithms are Ran-
dom Search (RS) [2], Sequential Model-based Algorithm Configuration (SMAC)
[8] and Tree Parzen Estimators (TPE) [3]. HPO involves two nested cycles of
optimization when configuring hyper-parameters for an arbitrary meta-heuristic
algorithm. Here we refer to the regular optimization algorithm simply as base-
algorithm. We call parent-algorithm to the optimization algorithm that deals
with choosing the hyper-parameters of the base-algorithm.

When performing HPO, the base-algorithm may need to deal with thousands
of dimensions and expensive fitness functions. For example, training a neural net-
work is an NP-hard optimization problem [12] with tens of thousands of dimen-
sions. Setting the hyper-parameters for such training algorithms is a challenge
for practitioners because standard recommendations in the literature are most
of the time useless. Trial and error is very tedious, is not reproducible for others
and is prone to produce over-fitting. Additionally, insights on the hyper-surface
structure usually are not available due to the large amount of dimensions, hence
common sense may not be applicable.

When sufficient computational resources are provided, practitioners may
choose to use a parent-algorithm (such as RS, SMAC or TPE) to perform HPO.
There are several examples of successful applications of such parent-algorithms
[3]. However, for the engineering mind this approach faces to major drawbacks:

– the practitioner needs to know the specific details of two (probably different)
optimization algorithms and

– parent-algorithms also have hyper-parameters that need to be configured,
manually most of the time.

For meta-heuristics, that do not impose restrictions (such as derivatives or
convexity) on the fitness function, tuning its own hyper-parameters may be
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a good approach to perform HPO. In this case, the parent-algorithm hyper-
parameters also need to be somehow configured. However, the small number of
hyper-parameters, usually less than ten, makes standard recommendations in the
literature more suitable. Even if standard recommendations do not produce good
results, the practitioner may use its experience about the meta-heuristic and
three-dimensional insights to come up with a working set of hyper-parameters
for the parent-algorithm.

In this paper, we deal with the problem of automated HPO of Particle Swarm
Optimization (PSO) meta-heuristic algorithm by using the same meta-heuristic
as parent-algorithm. We tested this approach with several artificial benchmark
functions for optimization. Our meta-heuristic HPO of meta-heuristics approach
is able to find hyper-parameters that leads to more stable and accurate opti-
mization of the base-algorithm when compared with RS, SMAC and TPE as
parent-algorithms. The main limitation of this work is that we only consider
continuous hyper-parameters.

In the Sect. 2 we discuss the state of the art on hyper-parameter optimiza-
tion algorithms. In Sect. 3 we describe PSO algorithm in detail and in Sect. 4
we present the benchmark test functions to be optimized by PSO. Section 5
presents the experimental results when comparing the stability and accuracy of
our HPO approach. Finally, some conclusions and recommendations are given.
Throughout this article we use x for scalars, w for vectors and X for sets.

2 Automatic Hyper-parameter Optimization

There are at least two kind of methods to perform automatic HPO: model-
free and model-based methods. Model-based techniques build a surrogate model
of the hyper-parameter space through its careful exploration and exploitation.
Alternatively, model-free algorithms do not utilize the knowledge about the solu-
tion space extracted during optimization.

2.1 Model-Free Methods

Model-free approaches are characterized by not utilizing the knowledge about
the solution space extracted during the optimization. This lack of adaptability
makes them simple to implement at the expense of poor results for large hyper-
parameter spaces.

RS: is a trivial to implement alternative to Grid Search [2], more convenient
to use and faster to converge to an acceptable set of hyper-parameters. There
are approaches designed to enhance RS capabilities, for example, the random
sampling can be intensified in the neighborhood of the best hyper-parameters.
Finally, there are hybrid algorithms to couple RS with other techniques for
refining its performance,for example, manual updates provided by an expert
[2,9].
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2.2 Model-Based Methods

Model-based methods build a model of the fitness function, and then elaborate
hyper-parameter values by performing optimization within this model. Most of
such techniques use a Bayesian regression model turning this problem into a
trade-off between the exploration and exploitation.

SMAC is a model-based method for optimizing algorithm hyper-parameters
[8]. SMAC is effective for HPO of machine learning algorithms, scaling better to
high dimensions and discrete input dimensions than other algorithms [11].

TPE method sequentially construct models to approximate the performance
of hyper-parameters based on historical measurements, and then subsequently
choose new hyper-parameters to test based on this model. This optimization
approach is described in detail in [3].

3 Particle Swarm Optimization

PSO is a population based meta-heuristic algorithm [4]. PSO has several hyper-
parameters such as: global contribution (α), local contribution (β), maximum
speed (vmax) and minimum speed (vmin). Let q be the number of particles in
the population, wi ∈ IRn a particle’s position in the search space and f(wi) the
fitness value of the particle.

The speed of a particle in the population is given by Eq. 1 where w∗ ∈
IRn is the position of the particle with the lowest fitness function value in the
population and wi∗ ∈ IRn is the position where wi achieved its lowest fitness
function value. Particle w∗ is known as best-global particle and w∗

i as best-so-far
particle of wi.

vi ← γvi + αω1 � w∗ + βω2 � wi∗ (1)

The parameter γ is known as speed parameter such as vmin ≤ γ ≤ vmax. The
vectors ω1 and ω2 are randomly generated by means of an uniform distribution
such as ω1,i ∼ U(0, 1) and ω2,i ∼ U(0, 1). Finally, a particle’s position is updated
according to Eq. 2:

wi ← wi + vi (2)

Due to the diversity of PSO algorithms in the literature, we provide further
details on the implementation used in this work as described in Algorithm 1. In
step 1 the population is randomly generated. After that, in steps 2 and 3 the best-
so-far positions of each particle and the best-global position of the population
are set. The algorithm is considered in a convergence state after reaching a given
number of fitness function evaluations determined by the value of η in step 5.

For each iteration of PSO algorithm, the best-so-far and best particles are
updated in steps 10 and 13. Then, for each particle in the population a new
position is calculated in steps 7–8 and the speed parameter is linearly decreased
in step 17. Finally, the best particle of the population is returned in step 20.
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Algorithm 1. Particle Swarm Optimization Algorithm.
1: Initialize population randomly
2: Set best-so-far particles such as wi∗ ← wi

3: Set best-global particle w∗ ← argminw i(f(wi)) for 1 ≤ i < q
4: Set speed param value at the maximum speed: γ ← vmax

5: while Fitness function evaluations( ) < η do
6: for j = 1 : q do
7: Calculate speed of particle j according to Equation 1
8: Update position of particle j according to Equation 2
9: if f(wj) < f(wj∗) then

10: Update wj∗ ← wj

11: end if
12: if f(wj) < f(w∗) then
13: Update w∗ ← wj

14: end if
15: end for
16: if γ > vmin then
17: Reduce linarly the speed param: γ ← γ · 0.99
18: end if
19: end while
20: return Best particle in the population w∗

PSO have at least four continuous hyper-parameters: local contribution,
global contribution, maximum speed and minimum speed. In addition, PSO also
have several other hyper-parameters of non-continuous nature, e.g. the number
of particles in the population, the number of evaluations of the fitness function to
archive convergence, the lower and upper bounds of the search space, etc. Here
we will only deal with the four continuous hyper-parameters while tuning the
others manually. Let w̄i ∈ IR4 be a vector that contains the hyper-parameters
of PSO algorithm and f̄(w̄i) the quality of a given set of hyper-parameters, the
hyper-parameter configuration problem can be defined as:

w̄∗ ← argminw̄i∈IR4

[
f̄(w̄i)

]
(3)

In Eq. 3, f̄(w̄i) = f(w∗) where w∗ is the result of optimizing f(wj) by
means of PSO with hyper-parameters w̄i. Notice here the two nested cycles of
optimization: in the outer cycle we try to minimize f̄(w̄i) while in the inner
cycle we try to minimize f(w). While the outer cycle may be solved with GS,
TPE or SMAC, here both optimization cycles are solved by PSO.

Several standard recommendations for PSO hyper-parameters are available in
the literature. Here we will consider such recommendations for hyper-parameter
configuration in order to compare such recommendation with automatic HPO.
Some of the PSO recommendations come in the form of a general heuristic,
for example, α + β ≤ 4 [16]. Here we will consider the following more specific
recommendations:
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– From [16], we denote STD.R.1 to the hyper-parameter set: α = 0.5, β =
0.5, vmin = 0, vmax = 1.2.

– From [6], we denote STD.R.2 to the hyper-parameter set:, α = 2, β =
2, vmin = 0.9, vmax = 0.9.

4 Optimization Benchmark Problems

In this section we describe a set of optimization problems to be solved by
base-algorithms. In the literature, several benchmark test functions for opti-
mization have been suggested. We considered five properties regarding to
the test functions: continuous/discontinuous, differentiable/non-differentiable,
separable/non-separable, scalable/non-scalable and uni-modal/multi-modal [10,
15]. The following list enumerate benchmark test function used in this work and
its properties, in all cases consider that w ∈ IRn.

1. De Jung function:

f1(w) =
n∑

i=0

wi
2 (4)

has a global minima in f1(0, ..., 0) = 0. De jung is continuous, differentiable,
separable, scalable and multi-modal. A commonly used search domain is 0 ≤
wi ≤ 10.

2. Ackley function:

f2(w) = −20e0.02
√

n−1
∑n

i=0 w2
i − en−1 ∑n

i=0 cos(2πwi) + 20 + e (5)

has a global minima in f2(0, ..., 0) = 0. Ackley is continuous, differentiable,
non-separable, scalable and multi-modal. A commonly used search domain is
−35 ≤ wi ≤ 35.

3. Grienwangk function:

f3(w) =
n∑

i=0

w2
i /4000 −

n∏

i=0

cos(wi/
√

i) + 1 (6)

has a global minima in f3(0, ..., 0) = 0. Griendwangk is continuous, differ-
entiable, non-separable, scalable and multi-modal. A commonly used search
domain is −100 ≤ wi ≤ 100.

4. Rastrigin function:

f4(w) = 10n +
n∑

i=0

w2
i − 10 cos(2πwi) (7)

has a global minima in f4(0, ..., 0) = 0. Rastrigin is continuous, differen-
tiable, separable, scalable and multi-modal. A commonly used search domain
is −5.12 ≤ wi ≤ 5.12.
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5. Rosenbrock function:

f5(w) =
n−1∑

i=0

[100(wi+1 − w2
i )2 + (wi − 1)2] (8)

has a global minima in f5(1, ..., 1) = 0. Rosenbrock is continuous, differen-
tiable, non-separable, non-scalable and multi-modal. A commonly used search
domain is −30 ≤ wi ≤ 30.

6. Schwefel function:

f6(w) = −1/n
n∑

i=0

wi sin
√

|wi| (9)

has a global minima in f6() = −418.983. Schwefel is continuous, differen-
tiable, separable, scalable and multi-modal. A commonly used search domain
is −500 ≤ wi ≤ 500.

7. Styblinski-Tang function:

f7(w) = 0.5 ∗
n∑

i=0

w4
i + 16w2

i + 5wi (10)

has a global minima in f7(−2.903534, ...,−2.903534) = −78.332. Styblinski-
Tang is continuous, differentiable, non-separable, non-scalable and multi-
modal. A commonly used search domain is −5 ≤ wi ≤ 5.

8. Step function:

f8(w) =
n∑

i=0

(	wi + 0.5
)2 (11)

has a global minima in f8(0, ..., 0) = 0. Step is discontinuous, non-
differentiable, separable, scalable and uni-modal. A commonly used search
domain is −100 ≤ wi ≤ 100.

9. Alpine function:

f9(w) =
n∑

i=0

|wi sin(wi) + 0.1wi| (12)

has a global minima in f9(0, ..., 0) = 0. Alpine is continuous, non-
differentiable, separable, scalable and uni-modal. A commonly used search
domain is 10 ≤ wi ≤ 10.

5 Results and Discussion

This section describes the experimental setup and results of the proposed PSO
continuous hyper-parameter optimization approach. We compare quality of PSO
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hyper-parameters from configured with RS, SMAC, TPE and PSO it self. More-
over, we present a comparison of automatic hyper-parameter optimization with
standard recommendation in the literature: STD.R.1 and STD.R.2.

Base PSO was configured with a population size of 40 particles and a search
domain based on the literature recommendation (see Sect. 4). For PSO as base-
algorithm, we consider convergence when the number of fitness function eval-
uations is above 4.0E+4. For parent-algorithms (RS, SMAC, TPE and PSO),
we consider convergence when number of fitness function evaluations is above
100. For PSO as parent-algorithm the population size is of 10 particles and the
search domain is defined in the interval [0, 2]. Hyper-parameters for PSO as
parent-algorithm are configured according to STD.R.1.

Fig. 1. Accuracy of PSO when considering different parent-algorithms for HPO.

Figure 1 shows the accuracy of PSO when considering different benchmark
optimization problems after performing hyper-parameter configuration by means
of different parent-algorithms. The bottom and top lines in the box plots repre-
sents the first and third quartiles, the line in the middle represents the median
of 10 measurements and the whiskers represent standard deviation. The small
square represents the average of the measurements and the (x) marks represent
the maximum and minimum value.

In Table 1 we a summary of the accuracy of PSO when considering differ-
ent benchmark optimization problems. The presented accuracy values are the
averages of 10 measurements. In addition, we show the global best for each
optimization problem.
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Table 1. Accuracy of PSO algorithm with hyper-parameters optimized by different
parent-algorithms.

Fitness function BEST SMAC TPE RS PSO STD.R.1 STD.R.2

De jung 0.00E+00 0.00E+00 6.63E−01 2.63E+00 0.00E+00 3.96E+02 2.69E+03

Ackley 0.00E+00 2.08E+01 2.56E+00 1.98E+00 3.26E+00 8.75E+00 1.45E+01

Grienwangk 0.00E+00 5.40E+01 1.54E−01 5.56E−02 7.02E-01 1.12E+00 1.67E+00

Rastrigin 0.00E+00 2.35E+02 5.06E+02 4.10E+02 1.28E+02 1.24E+03 3.67E+03

Rosenbrock 0.00E+00 4.28E+04 8.44E+02 1.11E+03 1.85E+05 4.43E+05 1.42E+07

Schwefel −4.18E+02 −5.31E+01 −3.41E+00 −3.35E+00 −2.42E+02 −2.04E+00 −1.05E+00

Styblinski tang −7.81E+01 −1.08E+01 −3.00E+00 1.57E+01 −1.45E+01 5.79E+03 8.92E+04

Step 0.00E+00 4.24E+2 1.30E+01 1.16E+02 4.43E+02 5.27E+02 2.61E+03

Alpine 0.00E+00 2.13E+02 2.54E+01 1.82E+01 5.33E+00 8.11E+01 2.42E+02

We use the non-parametric Friedman test of differences among repeated mea-
sures to find statistical significant differences between parent-algorithms SMAC,
TPE, RS, PSO and standard recommendations STD.R.1 and STD.R.2. The
results of this test rendered a Chi-square value of 10.54 which was significant for
a p-value < 0.01. This way we reject the null hypothesis, hence, the means of
the results of two or more algorithms are not the same.

Furthermore, we conduct a Benferroni-Dunn test to compare the control
parent-algorithm (PSO) with the other alternatives for hyper-parameter config-
uration. This way, we reject the null hypothesis of similar means for PSO vs.
STD.R.1 (Chi-square value of 2.83 which was significant for a p-value = 0.022)
and for PSO vs. STD.R.2 (Chi-square value of 4.09 which was significant for a
p-value < 0.01). For PSO vs. SMAC, PSO vs. TPE and PSO vs. RS we accept
the null hypothesis which means that in such cases the mean of the results of
the control method against each other groups is equal.

As can be seen, for each optimization problem, automatic HPO always out-
performs standard recommendation in the literature with statistical significant
differences. In addition, PSO obtains as average better results than RS, SMAC
and TPE although we don’t see statistical significant differences. Also, the com-
putational cost (execution time) of the parent-algorithms are very similar.

6 Conclusions and Recommendations

In this paper, we compare different strategies to perform HPO of PSO. We
observe that automatic HPO provides better results than standard recommen-
dation in the literature. Moreover, optimizing PSO hyper-parameters with PSO
it self proved to be a competitive approach when compared with popular HPO
algorithms such as RS, SMAC or TPE. This approach has the advantage that
the practitioner do not need to consider several optimization algorithms in order
to find proper hyper-parameters. However, the main limitation of this work is
that only continuous hyper-parameters can be configured with this approach.
Future research should investigate hybrid meta-heuristic approaches that allow
to consider not only continuous hyper-parameters.
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