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Abstract. Absolute values in magnetic resonance image data do not
say anything about the investigated tissues. All these numerical values
are relative, they depend on the imaging device and they may vary from
session to session. Consequently, there is a need for histogram normaliza-
tion before any other processing is performed on MRI data. The Brain
Tumor Segmentation (BraTS) challenge organized yearly since 2012 con-
tributed to the intensification of the focus on tumor segmentation tech-
niques based on multi-spectral MRI data. A large subset of methods
developed within the bounds of this challenge declared that they rely on
a classical histogram normalization method proposed by Nyúl et al. in
2000, which supposed that the corrected histogram of a certain organ
composed of normal tissues only should be similar in all patients. How-
ever, this classical method did not count with possible lesions that can
vary a lot in size, position, and shape. This paper proposes to perform a
comparison of three sets of histogram normalization methods deployed
in a brain tumor segmentation framework, and formulates recommenda-
tions regarding this preprocessing step.

Keywords: Magnetic resonance imaging · Brain tumor detection ·
Tumor segmentation · Histogram normalization

1 Introduction

The ever growing number of medical imaging devices cannot be followed by the
number of human experts who are able to reliably evaluate the image records.
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This is causing an intensifying need for automated algorithms that can filter out
the surely negative cases and recommend the suspected positives to be inves-
tigated by the human experts. The most important requirement for such auto-
mated algorithms is to minimize the number of false negatives, which means
that they have to be sensitive to any sort of lesions in the tissues.

Magnetic resonance imaging (MRI) is a frequently used technique in the
brain tumor detection and segmentation problem, because of its high contrast
and relatively good resolution. However, MRI has a serious drawback: the numer-
ical values in its records do not directly reflect the imaged tissues. In order to
correctly interpret the observed images, it is necessary to adapt them to the
context, which is usually performed via histogram normalization. Without this
step, comparing two intensity values from two different MRI records would be
like comparing the water amount in two bottles by checking only the depth of
the water in them and ignoring the shape of the bottles.

Several solutions have been proposed to normalize or standardize the his-
tograms of MRI records [1–5]. However, none of them were designed to tackle
with focal lesions (tumors, gliomas) that might be present. Some brain tumors
grow to 20–30% of the brain volume, which strongly distorts the histogram of
any data channel of the MRI histograms. Luckily, normal and tumor tissues
look differently in some data channels, and thus we are able to identify the pres-
ence of tumors. Normalizing the histograms in batch mode, as it is done by the
most popular technique proposed by Nyúl et al. [1] (referred to as method A1 in
the following), and expecting them to look similar whether they contain tumor
or not, is prone to damage the segmentation quality. A1 produces a two-step
transformation of intensities using some predefined intensity percentiles as land-
mark points. Several recent studies report using A1, without giving details of
its parametrization [6–16]. Few studies indicate the number of landmark points
involved: Soltaninejad et al. [17] mentioned using 12 landmarks, while Pinto
et al. [18] seem to be using the S1 setting of the method A1, see details in
Sect. 3.1. Tustison et al. [19] remarked that a simple linear transformation based
method can provide slightly better accuracy than A1, without giving details of
their method. Such simple linear transforms were applied in [20–22], without
comparing their effect to other histogram normalization methods.

This paper intends to investigate how suitable the above mentioned most
popular histogram normalization method is at preprocessing MRI data in a
brain tumor segmentation problem. In this order, three sets of algorithms are
compared:

1. Method A1, with several settings schemes that affects the number and posi-
tion of landmark points;

2. Method A2, which in fact is method A1 with landmark points defined by the
fuzzy c-means clustering algorithm [23];

3. Method A3, a simple linear transform, with a single parameter, that gener-
alizes the method employed in [20–22].

The rest of the paper is structured as follows: Sect. 2 presents the necessary
details of background works, Sect. 3 gives details of the compared algorithms,
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Fig. 1. Block diagram of the evaluation framework.

Sect. 4 provides a detailed analysis of the obtained results, while Sect. 5 concludes
the study.

2 Background

2.1 Data

This study relies on the 54 low-grade glioma (LGG) volumes of the BraTS 2016
train dataset [24,25]. All MRI records contain four data channels (T1, T2, T1C,
FLAIR), each with 155 slices of 240 × 240 isovolumetric pixels representing
one cubic millimeter of brain tissue. Records contain approximately 1.5 mil-
lion brain pixels. The ground truth provided by human experts is available for
each record, which stands at the basis of training and testing machine learning
solution deployed in the segmentation problem.

2.2 Framework

In order to evaluate various histogram normalization techniques, a framework
was built that can deploy ensemble learning methods in a tumor segmentation
problem based on MRI data. The block diagram of the framework is shown in
Fig. 1.

In this study we worked with ensembles of binary decision trees (BDT). Each
BDT was trained to separate negative and positive pixels based on the feature
vectors of 10000 pixels that were randomly selected from the train data set.
During the training process, BDTs were allowed to place nodes at any depth
that was necessary. Most BDTs grew to a maximum depth between 20 and 25.
On the other hand, when decision were made by the trained BDTs, the average
depth of the leaf making the decision was around depth 8.

The tested histogram normalization methods (see Sect. 3) were used as the
first step of the data processing, as indicated in Fig. 1. The output of each was fed
to the further steps, and statistical evaluation results collected for comparison.

2.3 The A1 Method

The histogram normalization method proposed by Nyúl et al. [1] works as follows:
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1. The previously defined target intensity interval is denoted by [α, β].
2. A previously defined set of MRI records R is involved in the process, the

number of records is denoted by r. The histogram of each record is extracted.
3. The set of landmark points is defined, for example Λ = {plow = 1%, pL1 =

10%, pL2 = 20%, . . . , pL9 = 90%, phigh = 99%}. Let us denote the number of
inner landmark points by λ (in the previous example λ = 9).

4. For all MRI records with index i, i = 1 . . . r, the intensity values corre-
sponding to the landmark points defined in Λ are identified and denoted by
y
(i)
low, y

(i)
L1, y

(i)
L2, . . . , y

(i)
Lλ, y

(i)
high, respectively.

5. A first transformation step is performed: a linear transformation is designed
such a way that maps y

(i)
low to y

(i)
low = α, y

(i)
high to y

(i)
high = β, and applies this

linear transform to all intensity values situated between y
(i)
low and y

(i)
high in

the original histogram. The two tails of the histogram is cut, meaning that
intensity values below y

(i)
low are transformed to α, and intensity values above

y
(i)
high are transformed to β. For any j = 1 . . . λ, y

(i)
Lj is transformed to y

(i)
Lj .

6. Target intensity values for each inner landmark point with index j (j =
1 . . . λ) is computed next. These values are the same for all MRI records:

ỹLj =
1
r

r
∑

i=1

y
(i)
Lj . (1)

7. The target intensity values for the two extremes are: ỹlow = α and ỹhigh = β.
8. A final transformation is applied to the first transformed intensities such a

way, that y
(i)
low is mapped onto ỹlow, y

(i)
high is mapped onto ỹhigh, and any y

(i)
Lj

is mapped onto ỹLj for any j = 1 . . . λ. Further on, for any j = 0 . . . λ, any
intensity value y(i) ∈ [y(i)

Lj , y
(i)
L,j+1] (where y

(i)
L0 is an alias for y

(i)
low, and y

(i)
L,λ+1

is an alias for y
(i)
high) is piecewise linearly transformed to a value ỹ situated in

the interval [ỹLj , ỹL,j+1]:

ỹ = ỹLj + (ỹL,j+1 − ỹLj) × y(i) − y
(i)
Lj

y
(i)
L,j+1 − y

(i)
Lj

. (2)

The algorithm is applied to each data channel separately.

3 Methods

Three approaches are compared in this study, each involving several parameter
settings. The goal is to establish, which algorithm produces the best final seg-
mentation accuracy and what settings are needed for that. The three approaches
are presented in the following subsections.
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3.1 Method A1 with Parameter Setting Schemes

The first approach denoted by A1 applies the algorithm presented in Sect. 2.3.
Seven different parameter setting schemes were defined, they are denoted by
S1 . . . S7, and listed in Table 1. Each setting was involved in testing with values
of plow varying between 1% and 5% in steps of 0.5%. The value of phigh varied
together with plow such a way that the equality phigh + plow = 100% was held.

Table 1. Various settings for the Approach A1

Setting Landmark count (λ) Landmarks used

S1 11 plow, 10%, 20%, . . . 80%, 90%, phigh

S2 9 plow, 10%, 25%, 40%, 50%, 60%, 75%, 90%, phigh

S3 7 plow, 10%, 25%, 50%, 75%, 90%, phigh

S4 5 plow, 10%, 50%, 90%, phigh

S5 5 plow, 25%, 50%, 75%, phigh

S6 4 plow, 25%, 75%, phigh

S7 3 plow, 50%, phigh

3.2 Method A2: Landmarks Established by Fuzzy c-Means

The second approach denoted by A2 employs a very similar mechanism as A1,
but the landmark points are established by the use of the fuzzy c-means algo-
rithm. The steps of the algorithm are presented in the following:

1. The previously defined target intensity interval is denoted by [α, β]. The num-
ber of inner landmark points is set as λ ≥ 2. In this study we evaluated cases
with 2 ≤ λ ≤ 7.

2. A previously defined set of MRI records R is involved in the process, the
number of records is denoted by r. The histogram of each record is extracted.

3. The set of landmark points is Λ = {plow, pL1, pL2, . . . , pL,λ, phigh}, but only
plow and phigh have predefined fixed values.

4. A first transformation step is performed: a linear transformation is designed
such a way that maps y

(i)
low to y

(i)
low = α, y

(i)
high to y

(i)
high = β, and applies this

linear transform to all intensity values situated between y
(i)
low and y

(i)
high in

the original histogram. The two tails of the histogram is cut, meaning that
intensity values below y

(i)
low are transformed to α, and intensity values above

y
(i)
high are transformed to β. For any j = 1 . . . λ, y

(i)
Lj is transformed to y

(i)
Lj .

5. For all MRI records with index i, i = 1 . . . r, the transformed intensity values
undergo histogram-based quick fuzzy c-means clustering with c = λ clusters.
The obtained cluster prototypes sorted in increasing order v1, v2, . . . vλ are
then assigned as dynamically established landmark points: y

(i)
Lj = vj ∀j =

1 . . . λ.
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6. Target intensity values ỹLj for each inner landmark point with index j (j =
1 . . . λ) is computed next, using Eq. (1). These values are the same for all
MRI records.

7. The target intensity values for the two extremes are: ỹlow = α and ỹhigh = β.
8. The final transformation is applied the same way as in the original A1 algo-

rithm, presented in Sect. 2.3.

The algorithm is applied to each data channel separately.

3.3 Method A3: Linear Transform with One Parameter

The third approach denoted by A3 is a generalization of the technique proposed
in our previous paper [21]. This method uses a single linear transformation,
whose coefficients depend on the histogram of the original MRI volume. In con-
trast with the previous two approaches, the normalization of any MRI record
does not depend on other MRI records.

1. The previously defined target intensity interval is denoted by [α, β]. The
algorithm uses a parameter q which controls the compactness of the final
histogram.

2. The histogram of the current MRI record is extracted. The 25-percentile and
75-percentile intensity values are identified, and denoted by y25 and y75.

3. The target intensities for the 25-percentile and 75-percentile intensity values
are established using the formulas

ỹ25 =
1
2

[

(β + α) − β − α

q

]

and ỹ75 =
1
2

[

(β + α) +
β − α

q

]

. (3)

4. The coefficients of the linear transform y → ay + b are extracted such a
way, that y25 and y75 are transformed to ỹ25 and ỹ75, respectively, using the
formulas

a =
β − α

q(y75 − y25)
and b = ỹ25 − (β − α)y25

q(y75 − y25)
. (4)

5. Any intensity y from the input MRI volume becomes

ỹ =

⎧

⎨

⎩

α if ay + b < α
ay + b if α ≤ ay + b ≤ β
β if ay + b > β

. (5)

The algorithm is applied to each data channel separately. In our previous
works [20–22], this approach was used with parameter setting q = 5.

4 Results and Discussion

Each of the three algorithms were tested with various settings using the same
evaluation framework, having the target intensity interval bounded by α = 200
and β = 1200, corresponding to an approximately 10-bit resolution. The 54 LGG



Histogram Normalization for Brain Tumour Segmentation 381

Table 2. Overall Dice scores obtained using Approach A1 using various settings

Approach A1 Setting plow set to

1% 1.5% 2% 2.5% 3% 3.5% 4%

S1 80.456% 80.410% 80.577% 80.472% 80.096% 79.824% 79.229%

S2 80.420% 80.489% 80.553% 80.519% 80.251% 79.916% 79.333%

S3 80.409% 80.537% 80.543% 80.612% 80.239% 79.865% 79.183%

S4 79.937% 80.133% 80.213% 80.257% 79.726% 79.317% 78.803%

S5 81.254% 81.459% 81.545% 81.518% 80.939% 80.619% 80.194%

S6 81.051% 81.363% 81.543% 81.404% 81.014% 80.581% 80.370%

S7 80.723% 80.972% 81.474% 81.364% 80.959% 80.631% 80.129%

Table 3. Overall Dice scores obtained using Approach A2 using various settings

Approach A2 Setting plow set to

1% 1.5% 2% 2.5% 3% 3.5% 4%

λ = 2 81.862% 82.122% 82.058% 81.991% 81.789% 81.561% 81.312%

λ = 3 81.829% 81.902% 81.958% 82.137% 81.857% 81.612% 81.105%

λ = 4 80.819% 81.494% 81.707% 81.789% 81.800% 81.548% 81.223%

λ = 5 79.289% 80.928% 81.150% 81.322% 81.077% 81.137% 81.085%

λ = 6 80.421% 80.426% 80.527% 80.732% 81.029% 81.012% 80.511%

λ = 7 80.965% 80.991% 80.668% 80.459% 80.722% 80.665% 80.722%

volumes of the BraTS 2016 data set underwent a ten-fold cross validation using
the BDT ensemble based classifier algorithm described in Sect. 2. Each ensemble
consisted of 125 BDTs, each trained with 10000 randomly selected feature vectors
from the train data, out of which 92% were negatives and 8% positives. From
104 generated features (for each of the 4 observed channels: minimum, maxi-
mum and average extracted from 3 × 3 × 3 neighborhood; average and median
extracted from planar neighborhoods of size ranging from 3 × 3 to 11 × 11; four
directional gradients and eight directional Gabor wavelet values) the 13 most rel-
evant features (minimum, maximum and average of T2 and FLAIR, maximum
and average of T1C, and minimum of T1 from 3 × 3 × 3 neighborhood; average
of T1C, T2 and FLAIR from 11×11 neighborhood; average of FLAIR from 3×3
neighborhood) were included into the feature vector, details are presented in our
previous paper [22]. The outcome of the classification produced by the ensemble
underwent a post-processing that relabeled each pixel according to the neighbors
of the pixel. Those pixels were declared final positives, which had at least one
third of its neighbors declared positive by the ensemble. The main evaluation
criterion is the Dice score (DS), which is defined as DS = 2TP/(2TP+FP+FN),
where TP, FP, and FN represent the number of true positives, false positives,
and false negatives, respectively. Average Dice scores for each MRI record were
established after the ten-fold cross-validation. Finally, the overall Dice score was
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Table 4. Overall Dice scores obtained using Approach A3 using various settings

q = 2.5 q = 3 q = 3.5 q = 4 q = 4.5 q = 5 q = 5.5 q = 6 q = 7

80.844% 81.517% 82.024% 82.350% 82.395% 82.249% 82.233% 82.103% 82.070%
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Fig. 2. Dice scores obtained on individual LGG records, the best performance of the
three approaches plotted one against another: (a) A2 vs. A1; (b) A3 vs. A1.

computed for each approach and setting, based on all pixels from all volumes.
Results are exhibited in Tables 2, 3 and 4.

The best achieved overall Dice score (ODS) is 82.395%. Most of the evaluated
approaches and settings led to ODS values over 80%. The classical A1 approach
hardly achieved 81.5%, with its best setting that used the landmark set {plow =
2%, 25%, 50%, 75%, phigh = 98%}, where the middle landmark point is virtually
optional. A larger number of landmarks, as used for example in [17,18], in our
studies led to ODS around 80.5%, which is well below optimal.

The A2 approach achieved best ODS values around 82%, when using 2 or
3 inner landmarks, plow ranging between 1.5% and 2.5%. The accuracy is finer
than in case of approach A1, while the best scenario is quite similar.

The A3 approach has a wide interval of its parameter, where the algorithm
scores ODS values above 82%. The best accuracy was achieved at q = 4.5, which
means that in each data channel of the MRI records, all original intensity values
are subject to linear transformation into the target interval [200, 1200] such a
way, that the 25-percentile is mapped to 578, the 75-percentile to 822, and the
tails of the transformed histogram is cut at 200 and 1200. The normalization of
any histograms occurs independently, it does not depend on the histograms of
other records or other data channels.

Figure 2 exhibits the comparison of the three approaches, when applied to
individual MRI volumes. Each approach is represented with its overall best set-
ting. This figure also shows that A3 and A2 can perform slightly better than
A1, but the slight superiority comes in average only, because the segmentation
accuracy of individual MRI records can be either better of worse, with virtually
same probability. Tests have confirmed the observation of Tustison et al. [19],
who remarked that a well designed simple linear transformation performs better
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than previous algorithms like A1, in such tumor segmentation problems. Fur-
ther tests involving more data, more algorithms, and further quality indicators
could provide stronger evidence of this superiority. Our results do not mean that
A3 leads to better accuracy than the frequently used A1 in all segmentation
problems. But when the goal is tumor detection, it is recommendable to apply
histogram normalization via approach A3.

5 Conclusions

This study investigated the effect of various histogram normalization methods
upon the final accuracy in an MRI data based brain tumor segmentation prob-
lem. Two approaches were proposed and compared to the most frequently used
and most cited such algorithm. Tests have revealed a slight superiority of both
proposed algorithms, compared to the previous one.
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