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Abstract. A face spoofing attack occurs when an intruder attempts
to impersonate someone with a desirable authentication clearance. To
detect such intrusions, many researchers have dedicated their efforts to
study visual liveness detection as the primary indicator to block spoofing
violations. In this work, we contemplate low-power devices through the
combination of Fourier transforms, different classification methods, and
low-level feature descriptors to estimate whether probe samples corre-
spond to spoofing attacks. The proposed method has low-computational
cost and, to the best of our knowledge, this is the first approach asso-
ciating features extracted from both spatial and frequency domains. We
conduct experiments with embeddings of Support Vector Machines and
Partial Least Squares on recent and well-known datasets under same and
cross-database settings. Results show that, even though devised towards
resource-limited single-board computers, our approach is able to achieve
significant results, outperforming state-of-the-art methods.

Keywords: Face spoofing · Liveness detection · Fourier transform ·
Machine learning · Biometrics

1 Introduction

Biometric techniques seek for recognizing humans taking into account their
intrinsic behavioral or observable aspects, ranging from face and fingerprint to
iris and voice. Even though the biometric authentication field has prospered sig-
nificantly in the recent years, experts claim that new technologies are constantly
susceptible to malicious attacks and can be exposed to emerging high-quality
spoof mechanisms [18].

Spoofing, also known as copy or presentation attack, is a real threat for bio-
metric systems. More precisely, it occurs when an intruder attempts to imper-
sonate someone who holds a desirable authentication clearance. The criminal
usually employs falsified data to bypass the security procedure and gain illegit-
imate access. As a countermeasure to copy attacks, some researchers dedicate
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their efforts to study human liveness detection as the leading indicator to antic-
ipate spoofing violations [10,15,16,19,28].

In general, a spoofing attack involves the display of still or motion pictures
of authentic users registered in a set of known individuals present in a face
recognition system. These images are easily acquired since the person’s face is
probably the most typical biometric model due to its noninvasive and availabil-
ity characteristics when compared to others, such as fingerprint and iris. With
the expansion of surveillance cameras and the increasing number of people dis-
tributing personal pictures on social networks, it is practically impossible to keep
faces from spreading out [12]. Thus, face spoofing has become an easy approach
to deceive biometric-based applications.

This paper is inspired on the works of Pinto et al. [20] and Vareto et al. [26].
However, due to the high demand for low computational-cost algorithms to be
embedded on low power devices (e.g., IoT devices), we devise an anti-spoofing
algorithm for limited-resource equipments. We propose a spoofing detection app-
roach that associates simple handcrafted features extracted from spatial and
frequency domains. Classifiers act as bootstrap aggregating meta-algorithms to
achieve competitive results on the five most prominent benchmarks, to mention
a few, msu-mfsd [27], oulu-npu [5] and siw [14] datasets. We conduct cross-
dataset experiments in the interest of assessing the method’s generalization and
verify how it responds to “unfamiliar” media presentations. This work compares
the proposed method with state-of-the-art approaches and investigates how much
display devices and image capture quality have an impact on our results.

To the best of our knowledge, this is the first approach associating features
extracted from the spatial and frequency domains to tackle the spoofing detec-
tion problem. The leading premise is that modeling the association between
spatial and frequency domains can be suitable for improving the accuracy and
robustness of face anti-spoofing tasks. We assume that authentic and counterfeit
biometric data enclose distinct noise signatures derived from the media acqui-
sition. In fact, we believe that the combination of different feature descriptors
contributes to achieving higher performance considering that they acquire dis-
tinctive characteristics, which are capable of enriching the classifier’s robustness
and generalization potential.

The main contributions of this work are: (1) combination of classification
models fitted on randomly generated subsets in a bootstrap aggregating mode;
(2) aggregation of features extracted in spatial and temporal domains; (3) effi-
cient method for image and video-based copy attack receiving as input high-
resolution videos; (4) low complexity and computational cost algorithm, capa-
ble of being deployed in embedded systems and computers with small processing
capabilities; (5) clear study and experimental evaluation of the proposed app-
roach considering fundamental feature descriptors, such as glcm [11], hog [8]
and lbp [17].
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2 Related Works

In the past years, Deep Neural Networks (dnn) have confirmed to be effective
in several computer vision and biometric problems. Feng et al. [9] extract deep
features from a convolutional neural network to identify real and fake faces. Simi-
larly, Li et al. [13] employ a multiple-input hierarchical neural network combining
either shearlet or optical-flow-based features. Valle et al. [25] present a transfer
learning method using a pre-trained dnn model on static features to recognize
photo, video and mask attacks. Liu et al. [14] combine dnn and Recurrent Neu-
ral Networks (rnn) to estimate the depth of face images along with rppg signals
to boost the detection of unauthorized access.

Some authors carry on working on long-established traditional approaches,
dealing with handcrafted feature extraction and learning design: Pinto et al. [20]
explore the spatial domain during the recapture process as it takes over the noise
with Fourier transforms followed by visual rhythm algorithms and the extraction
of gray-level co-occurrence matrices. Wen et al. [27] come up with an algorithm
built on image distortion analysis and low-level feature descriptors. It consists
of an embedding of svm classification algorithms evaluated on cross-dataset sce-
narios. Pinto et al. [19] extract low-level feature descriptors gathering temporal
and spectral information across biometric samples. Boulkenafet et al. [3,4] detect
copy attacks using color texture analysis and low-level descriptors via exploring
luminance and chrominance information of each image color channel separately.

Even though handcrafted features may end up being restricted to specific
datasets domains, they are commonly faster and present lower memory usage
than dnn-based methods, especially when it comes to resource-limited equip-
ments. Most neural networks are not invariant to image rotation or scale and
may fail to manage scenarios consisting of differing capturing instruments, illu-
mination conditions and shooting angles [2]. In addition, top performing dnns
tend to suffer from either low speed or being too large to fit into single-board
computers, preventing their deployment on remote applications. On the contrary
of deep neural networks, both traditional features and straightforward classifiers
employed in our approach do not require cloud processing services or powerful
dedicated servers since embedded devices are capable of running the proposed
low-cost standalone algorithm fast enough to be employed in real environments.

3 Proposed Approach

We propose an approach that captures visual noise signatures in both spatial and
frequency domains. First, the method extracts low-level features with glcm [11],
hog [8] and lbp [17]. Then, an ensemble of classifiers is created as we group
several identical classifiers to enhance the method’s overall efficacy [6]. Figure 1
illustrates the steps that compose the proposed approach.

Different feature descriptors make it possible to combine color, gradient mag-
nitude and texture information, providing complementary evidence for presenta-
tion attacks. More precisely, glcm is a statistical descriptor that analyses spatial
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Fig. 1. Overview of the proposed face spoofing detection approach – Training: glcm,
hog and lbp descriptors are extracted from the frames of the videos available for train-
ing. These features are concatenated and used for learning several classification models
in an embedding fashion. Distinct models are learned containing different video sam-
ples in each subset. Test: The same features are extracted from the probe video frames
and projected to all binary classifiers. Then, it executes a score fusion on the classifiers’
responses to determine whether the probe video refers to an authentic presentation.

relationship of pixels and may identify noise artifacts originated from the recap-
turing process. hog captures regions of abrupt intensity changes around edges
and corners, such as screen frames and picture borders, through the magnitude
of gradients. lbp evaluates color and texture patterns in search of crude attacks
as it compares pixels with their surrounding points in different colorspaces.

3.1 Feature Extraction

The feature extraction process explores distinct spatial colorspaces and frequency
domain to gather discriminating spoofing patterns. The procedure starts convert-
ing every rgb colorspace video frame into hsv, ycrcb and gray-scale images. On
the contrary of the rgb color model, which holds high correlation among color
components, hsv and ycrcb are capable of isolating luminance from chromi-
nance and more robust to illumination variations [21].

As the rgb video frame is converted into hsv and ycrcb images, the method
locates the region of interest, which is delimited on the subject’s face. The app-
roach extracts lbp descriptors from each hsv and ycrcb image color channel in
an attempt to gather color and texture distinctive information. In fact, it com-
putes local texture representation from all color bands comparing every pixel
with its surrounding neighborhood of pixels. Both hsv and ycrcb correspond-
ing feature descriptors derive from the integration of each channel’s histogram
that accounts for the number of times every lbp pattern occurs [4].

Monochromatic video frames go through low-pass filtering techniques (blur-
ring) for artifact and noise reduction. Residual noises are then obtained by sub-
tracting a gray-scale image and its slightly blurred version [20]. A logarithmic-
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Fig. 2. Comparison among Fourier spectra extracted from different presentation
images. Note that there are some artifacts spread throughout print and replay attacks.

scaled Fourier transform function Flog(v, u) decomposes each residual image
r(x, y) of size M × N into its sine and cosine components where each pixel
constitutes a frequency from the spatial domain as

Flog(v, u) = log(1 + |
M−1∑

x=0

N−1∑

y=0

r(x, y)e−j2π[ vx
M +uy

N ]|).

The employed low-level feature descriptors provide great accuracy vs. speed
trade-off due to their fast computation. The gray-scale image and its corre-
sponding spectrum generate hog and glcm features, respectively, whereas lbp
descriptor receives hsv and ycrcb image color bands. hog carries shape infor-
mation by counting occurrences of gradient orientation using histograms while
glcm measures the residual image texture with the generation of co-occurring
gray-scale values at a determined offset. As shown in Fig. 1, we concatenate
hog and lbp features from the spatial-domain with glcm information from the
log-scaled Fourier spectrum to build a robust feature descriptor.

3.2 Classification Methods

Instead of learning a unique binary classifier, we learn a set of models as it
seems to be more appropriate to handle contrasting chromatic distortions and
to reduce the risk of overfitting. The classification embedding consists either of
Support Vector Machines (svm) [24] or Partial Least Squares (pls) [22] learning
algorithms. While the former chooses the hyperplane that maximizes the distance
to the nearest data points, the latter weights features to discriminate throughout
different classes and handle high-dimensional data.

During the training stage, the proposed method employs several identical
binary learning algorithms trained on random subsets of the training set to cre-
ate an array of classifiers C. It guarantees a balanced division within each classi-
fication model since v genuine live and v presentation attack videos are randomly
selected, with replacement, out of all video samples available for training. Then,
it fits the learning algorithm on the extracted features where the positive class
only contains “authentic” feature vectors and the negative class holds features
extracted from copy attacks. This process is repeated k times, where k = |C| is
a user-defined parameter that defines the number of classification models.

In the prediction stage, the method projects every single frame onto all classi-
fication models as it iterates over the probe video. For each frame, the algorithm
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computes the ratio of the number of positive responses attained to the total num-
ber of classification models k. If most c ∈ C classifiers return positive responses,
it implies that the frame is likely to be a bona fide (authentic) sample. Otherwise,
if they return negative responses, then the probe sample is likely to belong to a
spoofing attack. As the approach examines multiple frames of a probe video, it
obtains the numerical mean of all frame ratio scores. A probe video is considered
authentic if the averaged ratio score of all frames satisfies a threshold t (t would
be chosen according to the biometric system specifications).

4 Experimental Results

This section contains an objective evaluation of the proposed algorithm, which
generates many binary classification models combined with a majority voting
scheme that determines whether a query image corresponds to a legitimate image
or a spoofing attack.

Table 1. Evaluation on different siw protocols with an increasing number of pls clas-
sification models (pls approach). Note that the method becomes more discriminative
with the addition of classifiers.

Protocol Metric 50 100 200

1 apcer 0.68 ± 0.00 0.14 ± 2.17 0.00 ± 0.00

bpcer 4.67 ± 0.00 2.17 ± 0.00 0.67 ± 0.00

2 apcer 11.70 ± 10.73 7.86 ± 6.84 3.93 ± 4.14

bpcer 3.34 ± 4.74 1.29 ± 1.16 0.66 ± 1.10

3 apcer 17.37 ± 14.53 10.59 ± 7.72 6.99 ± 1.68

bpcer 4.92 ± 4.09 2.17 ± 1.67 1.17 ± 0.33

Feature Descriptors. Three feature descriptors are employed in this work: The
glcm texture descriptor [11] is computed with directions θ ∈ {0, 45, 90, 135}
degrees, distance d ∈ {1, 2}, 16 bins and six texture properties: contrast, dis-
similarity, homogeneity, energy, correlation, and angular second moment. The
hog shape descriptor [8] is set with 96 × 96 cells and holding eight orientations.
Lastly, the lbp texture descriptor [17] comprises 256 bins, a radius equal to 1,
and eight points arranged in a 3 × 3 matrix thresholded by its central point.
Their low complexity and computational cost endorse our method so that it can
be deployed to embedded systems with reduced processing capabilities.

Spoofing Datasets. For a thorough evaluation, we select datasets with distinct
protocols, medium characteristics and different lighting conditions. Therefore,
experiments are carried out on five benchmarks: casia-fasd [29], msu-mfsd [27],
oulu-npu [5], replay-attack [7] and siw [14]. casia-fasd, msu-mfsd and
replay-attack are traditional benchmark databases made up of genuine live
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recordings and distinct spoofing attack shots captured by distinct cameras in
different scenarios. Both oulu-npu and siw are recent datasets containing full
high-definition videos of multiethnic individuals and featuring 30-fps live and
presentation attack videos.

Evaluation Metrics. We employ ISO/IEC 30107-3 metrics [1] called Attack
Presentation Classification Error Rate, apcer = 1

VPA

∑VPA

i=1 (1−Resi); and Bona

Fide Presentation Classification Error Rate, bpcer = 1
VBF

∑VBF

i=1 (Resi). VPA

indicates spoofing attacks whereas VBF outlines authentic presentations. Resi

receives 0 when the i-th probe video is considered an bona fide presentation
and 1 otherwise. On cross-datasets evaluations, it is customary to employ Half
Total Error Rate, hter = far+frr

2 , which is half the sum of the False Rejection
Rate (frr) and the False Acceptance Rate (far) [14,23]. The reader must bear
in mind that the closer apcer, bpcer and hter values get to zero, the more
accurate the described methods are.

Evaluation Setup. Experiments were conducted on a Raspberry Pi 3 Model
B and on a Linux virtual machine to assess the performance of the proposed
approach on different machines. First, we analyzed the method on a cpu-based
machine consisting of eight 2.0 ghz-core processors and 16 gb ram memory, but
no more than 600 mb was required on test time. Then, we migrated to the Rasp-
berry, a single-board microcomputer with a 1.2 ghz Quad Core cpu and 1 gb
ram memory. Higher frame rates could be achieved with graphical processing
units, but it would demand the acquisition of more advanced hardware.

Table 2. apcer and bpcer results (%) on siw protocols.

Protocol Method apcer bpcer average

1 Deep models [14] 3.58 3.58 3.58

pls approach 0.00 ± 0.00 0.67 ± 0.00 0.33 ± 0.00

svm approach 0.00 ± 0.00 0.33 ± 0.00 0.16 ± 0.00

2 Deep models [14] 0.57 ± 0.69 0.57 ± 0.69 0.57 ± 0.69

pls approach 3.93 ± 4.14 0.66 ± 1.10 2.24 ± 3.30

svm approach 8.09 ± 1.02 1.00 ± 0.44 2.88 ± 3.21

3 Deep models [14] 8.31 ± 3.81 8.31 ± 3.80 8.31 ± 3.81

pls approach 6.99 ± 1.68 1.16 ± 0.33 1.55 ± 0.05

svm approach 6.03 ± 1.22 0.67 ± 0.24 3.36 ± 0.73

Results Analysis. The algorithm proposed in Sect. 3 is evaluated according
to the protocols available in the literature and following the datasets instruc-
tions. For databases containing only training and test sets, like siw dataset, we
reserve ten percent of all samples available for training to establish an auto-
matic adaptive threshold t. Differently, oulu-npu and replay-attack contain
a development set destined to parameter calibrations.
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Table 3. apcer and bpcer results (%) on oulu-npu protocols.

Protocol Method apcer bpcer average

1 Deep models [14] 1.60 1.60 1.60

Gradiant [2] 1.30 12.50 6.90

pls approach 5.50 ± 2.11 9.79 ± 3.37 7.64 ± 2.74

2 Deep models [14] 2.70 2.70 2.70

Gradiant [2] 6.90 2.50 4.70

pls approach 2.13 ± 1.07 3.61 ± 1.21 2.87 ± 1.14

3 Deep models [14] 2.70 ± 1.30 3.10 ± 1.70 2.90 ± 1.50

Gradiant [2] 2.60 ± 3.90 5.00 ± 5.30 3.80 ± 2.40

pls approach 3.12 ± 2.58 8.51 ± 6.20 5.81 ± 4.39

4 Deep models [14] 9.31 ± 5.60 10.4 ± 6.00 9.50 ± 6.00

Gradiant [2] 5.00 ± 4.50 15.0 ± 7.10 10.0 ± 5.01

pls approach 17.8 ± 9.83 9.37 ± 4.31 13.5 ± 7.07

We evaluate the method’s behavior by increasing the number of pls clas-
sification models. According to the results showed in Table 1, as the number
of classifiers increases, the method becomes more discriminative. Therefore, in
the remaining experiments, we set the number of classification models to 200.
Tables 2 and 3 show the results obtained on the siw and oulu-npu datasets,
respectively. The proposed approach achieves state-of-the-art results on siw Pro-
tocols 1 and 3 and competitive results on Protocol 2. Moreover, the method
attains precise results on three out of four oulu-npu Protocols.

The cross-database analysis provides an insight into countermeasure meth-
ods’ generalization power. In this sort of scenario, an algorithm is trained and
tuned in one of the datasets and tested on the others. Table 4 presents the cross-
testing hter [1] performance for both pls and svm methods on the traditional
benchmarks. The pls-based method also achieves a hter of 34.44 ± 3.91 when
trained on siw and tested on oulu-npu, and 17.55 ± 1.47 vice versa. Results
show that datasets tend to hold some bias regardless of their protocols due to
the intrinsic and specific information enclosed in each dataset, culminating in a
significant accuracy reduction when compared to same-database evaluations.

Computational Cost Evaluation. In constrast to most recent spoofing detec-
tion works in the literature, where deep neural networks benefit from “unlimited
computational resources” and high-bandwidth video transmissions, our method
is devised towards resource-limited single-board computers in order to reduce
network communication. glcm, hog and lbp descriptors appear to carry rele-
vant forensic signature information of image and video-based spoofing detection
since results show that the combination of spatial and frequency-based descrip-
tors contributes to achieving both competitive and state-of-the art results.
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Table 4. Cross-dataset evaluation (%) presenting hter metric on casia-fasd, msu-
mfsd and replay-attack datasets.

Training Set casia-fasd msu-mfsd replay-attack

Test Set msu-mfsd replay-attack casia-fasd replay-attack casia-fasd msu-mfsd

Color lbp [3] 36.6 47.0 49.6 42.0 39.6 35.2

Color
texture [4]

20.4 30.3 46.0 33.9 37.7 34.1

Spectral [19] - 34.4 - - 50.0 -

Deep
models [14]

- 27.6 - - 28.4 -

pls approach 19.2± 1.6 30.1± 0.7 28.2± 0.7 37.1± 3.2 35.6± 0.4 34.5± 2.3

svm approach 17.3± 1.1 42.6± 2.5 34.8± 0.8 42.6± 1.7 38.3± 2.0 35.4± 1.9

Many researchers have neglected to deliver biometric applications that are
able to run on low-power devices [9,13,14,25]. As we take IoT devices into
account, the proposed algorithm presents low computational cost, being able
to process up to 4.31 ± 0.031 frames per second (fps) when considering the
Raspberry Pi environment. As a comparison, it runs at 32.55 ± 0.96 fps in the
CPU-based computer. Both when the number of classifiers k is set to 100. Such
frame rate, 4.31 fps, make it feasible for tech developers to implement and run
biometric IoT technologies in real environments.

When we consider the above frame rate specification and the average amount1

paid for the following devices: a Raspberry Pi 3 Model B ($35.00), identical to
the microcomputer evaluated; an Intel i5 2.8ghz processor with 16gb ram
($400.00), similar to the virtual machine tested; and an Intel i7 3.2ghz cpu
with 16gb ram and a GeForce gtx 1080ti ($1600.00), assuming an equivalent
frame rate of 32.55, since most quality cctv cameras record videos between
15 and 30 fps. Then, the price paid per fps on the aforementioned machines
would be around $8.12, $12.28 and $49.15, respectively. Therefore, running the
designed approach on a single-board computer, such as Raspberry Pi, provides
better performance per cost than executing in more robust machines.

5 Conclusions

This work2 proposed a fast and low-memory spoofing detection algorithm and
demonstrates how it performs in an experimental setup to emulate real-world sce-
narios. The proposed algorithm is fast and works well on single-board computers
with high-resolution videos and is able to achieve state-of-the-art performance
on widely explored databases.

We conduct an objective investigation on how far spatial and frequency-based
descriptors can get when combined with multiple classification models. If fact, we
work out two approaches (embeddings comprised of either Partial Least Squares

1 Prices taken from official Raspberry Pi resellers and BestBuy Retail Store.
2 Proposed method available at https://github.com/rafaelvareto/Spoofing-CIARP19.

https://github.com/rafaelvareto/Spoofing-CIARP19
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or Support Vector Machines) to infer that the association of long-established
feature descriptors accomplish great performance in same-database settings. An
investigation carried out on different datasets show that the accuracy tends to
degrade significantly.

Despite the great progress in several biometric research areas, existing anti-
spoofing approaches have shown lack of generalization in cross-dataset condi-
tions, which best represents real-world scenarios. As future directions, we plan
to add extra feature descriptors, include other relevant spoofing datasets and
learn spatial-temporal representations.
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