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Abstract. Data reduction techniques play a key role in instance-based
classification to lower the amount of data to be processed. Prototype gen-
eration aims to obtain a reduced training set in order to obtain accurate
results with less effort. This translates into a significant reduction in both
algorithms’ spatial and temporal burden. This issue is particularly rele-
vant in multi-label classification, which is a generalization of multiclass
classification that allows objects to belong to several classes simultane-
ously. Although this field is quite active in terms of learning algorithms,
there is a lack of prototype generation methods. In this research, we
propose three prototype generation methods from multi-label datasets
based on Granular Computing. The experimental results show that these
methods reduce the number of examples into a set of prototypes without
affecting the overall performance.
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1 Introduction

Classification is one of the most popular Data Mining topics. Its aim is to learn
from labeled patterns a model able to predict the decision class for future, never
seen before, data samples [1]. The best way to solve a classification problem is
usually to have as much information as possible. In practice, however, this is not
always the case. The performance of learning algorithms may decrease due to
the abundance of information, because many examples may be very irrelevant
to the resolution of the problem or may provide the same information [14,17].

On the other hand, the abundance of information could increase the com-
putational complexity of the method, particularly in the case of instance-based
learners such as the kNN (k Nearest Neighbors) [10] algorithm. However, it is
possible to reduce or modify the datasets without affecting the learning process,
improving process performance by reducing computational cost.

One approach to doing this is the classification based on the Nearest Proto-
type (NP) [6,12]. It is an approach in which the decision class of a new object
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is calculated by analyzing its proximity to a set of prototypes selected or gener-
ated from the initial set of objects. Strategies are needed to reduce the number
of examples of input data into a set of representative prototypes. It is possible
to say that the data reduction methods with respect to the instances are divided
into two categories: selection of prototypes [11] and generation of prototypes [25].
Prototype selection algorithms select a set of representative objects according
to a well-defined criterion, while prototype generation algorithms are capable
of generating a set of new objects in the application domain from the initial
objects.

On the other, Multi-Label Classification (MLC) is a type of classification
where each of the objects in the data has associated a vector of outputs, instead
of being associated with a single value [26,31]. ML-kNN is the first learning
method that uses the kNN rule in multi-label prediction [30]. This method finds
the k nearest neighbours in the datasets using the maximum a posteriori principle
in order to determine the label set of the test object. The solution is based on
the prior and posterior probabilities of the frequency of each label within the
k nearest neighbours. Consequently, this method has the same drawbacks of
kNN, because as the datasets increases, so does the computational cost of the
algorithm, since for each test object its distance to all existing objects in the
training set is calculated.

Despite extensive work on multi-label learning, as far as we know, only in [7] a
method of prototypes selection is proposed. In this paper, we develop three meth-
ods of prototype generation from MLC datasets. Unlike the method proposed
in [7], the three methods proposed are independent of the learning algorithm to
be used. By doing so, we rely on Granular Computing [3,4,21], and two differ-
ent ways of the granularity of the information. Two classical granulations are
condition granulation and decision granulation, to name the granularity of the
universe according to conditional attributes and decision class, respectively.

In the case of the first two methods proposed, the granulation of a universe is
performed using a similarity relation that builds similarity classes (or granules)
of objects in the universe from conditional attributes. By using similarity rela-
tions, methods can be used in the presence of mixed data, i.e., when there are
both numerical and nominal attributes. On the other hand, the third method
performs a granulation of the universe from an equivalence relation, and tak-
ing into account the different labels existing in the universe of discourse. From
this, an equivalence class (or granule) is built for each label, and a prototype is
generated for each granule.

The paper is organized as follows. Section 2 motivates our research, while
Sect. 3 presents the theoretical background on Granular Computing. Section 4
introduces the three prototype generation methods from MLC datasets, and
Sect. 5 is dedicated to evaluating the performance of the ML-kNN algorithm on
the set of prototypes generated with our methods. Finally, in Sect. 6 we provide
some concluding remarks and research directions.
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2 Motivation

Some classification algorithms, such as the ones founded on examples-based
learning, use a training set to estimate the class label, which causes the scal-
ability problems when the size of the training set increases. In this case, the
number of training objects affects the computational cost of a method [13,15].
The nearest neighbour rule is an example of a high computational cost method
when the number of examples is large [2].

The most popular algorithm in this category is kNN. The computational
complexity of kNN is O(nm), where n and m are the size of dataset and the
dimensionality of embedding space. Thus, these methods are computationally
very expensive on large-scale datasets. The purpose of the NP approach is to
reduce storage costs and learning technique processes based on examples. In
the literature, several papers [2,15,25] on this issue have been proposed in the
context of single-label learning.

Nevertheless, to the best of our knowledge, the only relevant work relating to
NP in the field of multi-label classification is the kNNc method described in [7]. It
works in two stages, by combining prototype selection techniques with example-
based classification. First, a reduced set of objects is obtained by prototype
selection techniques used in classical classification [18]. The goal of this stage is
to determine the set of labels which are nearest to the ones in the object to be
classified. Then, the full set of samples is used, but limiting the prediction to the
labels inferred in the previous step.

Unlike that study, this research proposes three new proposals for the gener-
ation of prototypes using different alternatives to granulate the datasets.

3 Granular Computing

Basic issues of Granular Computing may be studied from two related aspects, the
construction of granules and computation with granules. The former deals with
the formation, representation, and interpretation of granules, while the latter
deals with the utilization of granules in problem solving [22,29].

In the construction of granules, it is necessary to study a criteria for deciding
if two elements should be put into the same granule, based on available informa-
tion. Typically, elements in a granule are drawn together by indistinguishability,
similarity, proximity, or functionality [29].

With the granulation of universe, one considers elements within a granule as
a whole rather than individually. The loss of information through granulation
implies that some subsets of the universe can only be approximately described.
The Rough Set Theory (RST) [19,23] is one of the most representative theories
within Granular Computing. It deals mainly with the approximation aspect of
information granulation. It uses two main components: an information system
and an indiscernibility relation. The former is defined as IS = (U,A), where U
is a non-empty finite set of objects, and A is a non-empty finite set of attributes
that describe each object. A particular case are the decision systems where DS =
(U,A ∪ {d}), whereas d /∈ A is the decision class.



Prototypes Generation from Multi-label Datasets 145

In the classical RST, the relation of indiscernibility (R) is defined as an equiv-
alence relation [20]. From this point on, [x]R defines an equivalence class of an
element x ∈ U under R, where [x]R = {y ∈ U : yRx}, i.e. the equivalence class of
an element includes all objects in the universe indiscernible from x. Each equiv-
alence class may be viewed as a granule consisting of indistinguishable elements.
Two objects are equivalent if they have exactly the same value with respect to
a set of attributes. It means that two inseparable objects could incorrectly be
labeled as separable, making the relationship excessively strict [28].

This problems can be alleviated in some extent by extending the concept of
inseparability relation [24] and replacing the equivalence relation with a weaker
binary relation. Equation (1) shows an indiscernibility relation,

R : xRy ⇐⇒ δ(x, y) ≥ ξ (1)

where 0 ≤ δ(x, y) ≤ 1 is a similarity function. This weak binary relation states
that objects x and y are inseparable as long as their similarity degree δ(x, y)
exceeds a similarity threshold 0 ≤ ξ ≤ 1. This relation actually defines a simi-
larity class R(x) = {y ∈ U : yRx} that replaces the equivalence class.

The similarity function could be formulated in a variety of ways, for example,
δ(x, y) = 1 − ϕ(x, y) with ϕ(x, y) being the distance between objects x and y.
In reference [27] the authors studied the properties of several distance functions
which allow comparing heterogeneous instances, i.e., objects comprising both
numerical and nominal attributes.

4 Methods for the Generation of Prototypes from MLC
Datasets Based on Granular Computing

As mentioned, in MLC scenarios an object may be associated with multiple
labels. Let mlDS = (U,A ∪ L) be a multi-label decision system, where the set
U is a non-empty finite set of objects, A is a non-empty finite set of attributes
that describe each observation, and L = {L1, L2, . . . , Lk} is a non-empty finite
set of labels such that the label domain is Li = {0, 1}.

Prototype-based classification determines the value of the decision class of
a new object by analyzing its similarity to a set of prototypes generated from
the initial set of objects. By doing so, we must define what is considered to be
a decision class in the MLC context. For example,

– Each combination Ci of labels represents a decision value. For example, let
L = {L1, L2, L3} denote the set of labels, a combination of labels could be
“101”, pointing out that the object belongs to the labels L1 and L3, then
“101” defines a decision class, so that all objects associated with labels L1

and L3 belong to that decision class.
– Each label (Li) is considered a decision value, so that all the objects associated

that label belong to this decision class. According with this definition, in the
example above there are three decision classes.
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The basic idea of the first two proposed algorithms below is similar. Both
are iterative algorithms in which a similarity class is built using the similarity
relationship defined in Eq. (1). An object may belong to several similarity classes
at the same time. However, when an object is included in a similarity class, it
is not taken into account to build a new similarity class from it. Each similarity
class consists of a granule that is used to build a prototype.

From this, a prototype or centroid is built for a set of similar objects. Each
prototype is composed of both conditional and label attributes. To add their
information both by condition (attribute values) and by decision (labels values)
an aggregation operator is used. In the case of conditional attributes, the average
can be used as the aggregation operator if the attribute value is numeric, or the
mode if the attribute value is nominal.

The way in which the part of the prototype related to the labels is built dif-
fers between the two algorithms, exactly based on what is considered a decision
class. In the case of Algorithm 1 each combination of labels represents a deci-
sion value, however Algorithm 2 considers each label independently as a decision
value. In this way, the first algorithm builds its decision class from the most
common combination of labels in the granule, while the second algorithm does
it taking into account the labels independently. The resulting prototype will have
as decision values the most common labels of the objects in the granule.

Algorithm 1. GP1mlTS
1: Initialize objects’ counter

Used [i] = 0 i=1,..., n
PrototypeSet = ∅

2: While ∃i : Used [i] = 0
j = i
Construct the similarity class R(Oj)
Construct a vector P = [Pcond, Pdec] from all objects in R(Oj)

Pcond is calculated from the set of values of the attributes (A) of all objects
in R(Oj) and using an aggregation operator
Pdec is calculated from the most common label combination (C) among
all existing label combinations in the objects in R(Oj)

PrototypeSet = PrototypeSet ∪ P
Used [j] = 1 for all the objects in R(Oj)

3: Return PrototypeSet

In contrast to the first two algorithms, the third algorithm performs a different
granulation of the universe. In this case, the decision class of the objects is taking
into account to build the granulation of the data. The basic idea is to perform a
granulation of the universe taking into account the labels instead of the condition
attributes. Therefore, a granule is built for each label, so it will include all objects
that are labeled with that decision label.

The partition and the covering of an information space are two common types
of granulation of the universe [9]. The granulation obtained by this algorithm is
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Algorithm 2. GP2mlTS
1: Initialize objects’ counter

Used [i] = 0 i=1,..., n
PrototypeSet = ∅

2: While ∃i : Used [i] = 0
j = i
Construct the similarity class R(Oj)
Construct a vector P = [Pcond, Pdec] from all objects in R(Oj)

Pcond is calculated from the set of values of the attributes (A) of all objects
in R(Oj) and using an aggregation operator
Pdec = {L1, L2, . . . , Lk}, where Lk = 1 if most of the objects in R(Oj)
are labeled with that label, otherwise Lk = 0

PrototypeSet = PrototypeSet ∪ P
Used [j] = 1 for all the objects in R(Oj)

3: Return PrototypeSet

a covering, since any objects could belong to two or more information granules.
A prototype is then generated for each granule similar to the Algorithm2. This
procedure is formalized in Algorithm3.

Algorithm 3. GP3mlTS
1: PrototypeSet = ∅
2: For each Li ∈ L

Construct the equivalence class [Li]R
Construct a vector P = [Pcond, Pdec] from all objects in [Li]R

Pcond is calculated from the set of values of the attributes (A) of all objects
in [Li]R and using an aggregation operator
Pdec = {L1, L2, . . . , Lk}, where Lk = 1 if most of the objects in [Li]R
are labeled with that label, otherwise Lk = 0

PrototypeSet = PrototypeSet ∪ P
3: Return PrototypeSet

5 Results and Discussion

In this section, we explore the performance of our prototype generation methods
when coupled with the ML-kNN classification algorithm. To accomplish that,
we use Hamming Loss (HL) metric which is a well-known performance measure
in MLC scenarios [16]. This metric is defined as follows,

HL =
1
n

1
k

n∑

i=1

|YiΔZi| (2)

where Δ operator returns the symmetric difference between Yi (the real label
set of the ith instance) and Zi (the predicted one).



148 M. Bello et al.

To perform the simulations, we rely on 12 multi-label datasets taken from the
well-known RUMDR [8] repository. Table 1 summarizes the number of instances,
attributes, and labels for each dataset. In the adopted datasets, the number of
instances ranges from 1,675 to 10,491, the number of attributes from 294 to
1,836, and the number of labels from 6 to 400.

Table 1. Characterization of the MCL datasets used in our study.

Domain Instances Attributes Labels

bibtex(D1) Text 7395 1836 159

corel5k(D2) Images 5000 499 374

enron(D3) Text 1702 1001 53

scene(D4) Images 2407 294 6

stackex chemistry(D5) Text 6961 540 175

stackex chess(D6) Text 1675 585 227

stackex cooking(D7) Text 10491 577 400

stackex cs(D8) Text 9270 635 274

stackex philosophy(D9) Text 3971 842 233

We also studied the reduction coefficient, Red(.) [5]. This measure, in Eq. (3)
indicates by how much the number of objects is reduced, that is, the proportion
between the size of the set of prototypes (P ) and the universe (U),

Red(.) =
|U | − |P |

|U | ∗ 100 (3)

Figure 1 displays the reduction coefficient achieved once the proposed proto-
type generation methods are used on each dataset. In this experiment, we have
adopted the Heterogeneous Euclidean-Overlap Metric (HEOM), which computes
the normalized Euclidean distance between numerical attributes and an overlap
metric for nominal attributes [27]. The similarity threshold ξ used in Eq. (1)
ranges from 0.85 to 0.95.

It is worth mentioning that, for each datasets, we have estimated the HL
value by using a 10-fold cross validation scheme. For each fold, this procedure
splits the whole training set into two data pieces, namely, the training set and the
test set. It should be highlighted that, while the training set is used to generate
the set of prototypes. The test set is never modified so that it only serves to
compute the HL associated with the current fold.

From the results in Fig. 1 we can conclude that our methods achieve a reduc-
tion rate higher than 20% in most problems. The GP1mlTS and GP2mlTS
methods have a similar behaviour. However, the GP3mlTS method reports
reduction coefficients even higher than 90%. On the other hand, Fig. 2 displays
the HL values achieved by the ML-kNN method with the original multi-label
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datasets, and the results obtained after using the set of prototypes generated by
each of the methods proposed in this paper.

The results show that the prototypes generated for each dataset leads to HL
values similar to those obtained with the original dataset. Only in the case of the
scene dataset there is a significant difference in the LH value, especially when we
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Fig. 1. Reduction percent achieved by each edition method.
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Fig. 2. HL values achieved by the ML-kNN method.
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use the set of prototypes generated by the GP3mlTS method with respect to the
original dataset. This is due to the fact that this dataset has few labels (exactly
6 labels), thus only a few prototypes are generated. In short, the results showed
that our proposal provides a suitable trade-off between algorithm’s performance
and the number of training examples in the dataset.

6 Concluding Remarks

The Prototype Generation algorithms have proved their usefulness by improving
some kNN issues such as computational time, noise elimination or memory use.
Although the extensive work in multi label classification, as far as we know,
the topic of prototype generation has not received any attention so far. This
paper proposes three methods based on Granular Computing for the generation
of prototypes.

After analyzing the reduction coefficient, it could be concluded that the pro-
posed methods achieve a significant reduction of the datasets from the resulting
prototypes, while preserving the efficacy of the ML-kNN method in most case
studies.

The set of prototypes generated by these methods could be used as a learning
set for other learning algorithms, even those not intended for example-based
learning.
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