
A Binary Variational Autoencoder
for Hashing

Francisco Mena(B) and Ricardo Ñanculef(B)

Federico Santa Maŕıa University, Santiago, Chile
francisco.mena@alumnos.inf.utfsm.cl, jnancu@inf.utfsm.cl

Abstract. Searching a large dataset to find elements that are similar to
a sample object is a fundamental problem in computer science. Hashing
algorithms deal with this problem by representing data with similarity-
preserving binary codes that can be used as indices into a hash table.
Recently, it has been shown that variational autoencoders (VAEs) can
be successfully trained to learn such codes in unsupervised and semi-
supervised scenarios. In this paper, we show that a variational autoen-
coder with binary latent variables leads to a more natural and effective
hashing algorithm that its continuous counterpart. The model reduces
the quantization error introduced by continuous formulations but is still
trainable with standard back-propagation. Experiments on text retrieval
tasks illustrate the advantages of our model with respect to previous art.

Keywords: Hashing · Variational autoencoders · Deep learning ·
Gumbel-Softmax distribution · Neural information retrieval

1 Introduction

A wide range of applications in computer science rely on similarity search, i.e.,
finding elements in a database that are similar to a given sample object [1]. The
greater availability of complex data types such as image, audio, and text, has
increased the interest for this type of search in the last years and raised the need
for methods that can reduce the processing time and storage cost of traditional
paradigms. Among these methods, hashing has emerged as a popular approach.

The main idea of hashing methods is to represent the data using binary codes
that preserve their semantic content and can be used as addresses into a hash
table. Items similar to a query can then be found by accessing all the cells of the
table that differ a few bits from the query. As binary codes are storage-efficient,
hashing can be performed in main memory even for very large datasets [11].

Hashing algorithms can be broadly categorized into data-independent and
data-dependent methods. Data-independent methods exploit properties of some
probability distributions to ensure that the similarity function of the original
space is approximately preserved by the embedding into the code space [8].
These methods usually require codes much longer than those obtained with
data-dependent techniques, that leverage data and machine learning techniques
c© Springer Nature Switzerland AG 2019
I. Nyström et al. (Eds.): CIARP 2019, LNCS 11896, pp. 131–141, 2019.
https://doi.org/10.1007/978-3-030-33904-3_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-33904-3_12&domain=pdf
https://doi.org/10.1007/978-3-030-33904-3_12

132 F. Mena and R. Ñanculef

to explicitly optimize the embedding, at the cost of some training time [12,15].
Supervised, unsupervised and semi-supervised approaches have been studied.
Supervised methods rely on explicit annotations, such as topic or similarity
labels, to learn the hash codes [9]. Unfortunately, the performance of these meth-
ods degrades quickly when there is not enough labelled data for training or it
is noisy. Unsupervised methods deal with this issue, providing learning mecha-
nisms that do not require explicit supervisory signals [12] and can thus leverage
unlabelled data, which is usually abundant and cheap [14]. Often, these methods
can be transformed into semi-supervised models that can also exploit labels if
available.

Recently, significant progress has been made in the field of deep genera-
tive models. The so-called variational autoencoder (VAE) framework [7], pro-
vides algorithms for probabilistic inference and learning that scale to very large
datasets and provide state-of-the-art performance in many tasks. A natural ques-
tion is whether these advances can be exploited to devise novel hashing algo-
rithms. It has been shown indeed that VAEs can be successfully trained to learn
hash codes [3], improving on previous techniques when labelled data is scarce.
A disadvantage of this approach is that, as conventional VAEs use a Gaussian
encoder, the continuous representation learnt by the model needs to be quan-
tized to obtain binary codes. This step introduces an error that is not account
for in the learning process and can seriously degrade information retrieval per-
formance.

In this paper, we propose to learn hash codes using a VAE with binary
latent variables that directly represent the different bits of the code assigned to
an object. The main technical difficulty of this approach, i.e. back-propagation
through discrete nodes, can be circumvent by specializing the method proposed
in [6] to handle Bernoulli distributions. Experiments on text retrieval tasks
demonstrate that this approach works well for hashing, leading to more effective
and interpretable binary codes than those produced by a continuous VAE.

The rest of this paper is organized as follows. In the next section, we outline
the idea of hashing for similarity search. Related work is discussed in Sect. 3. In
Sect. 4, we present the proposed formulation. In Sect. 5, we report experimental
results, comparing the codes of our method with those of a continuous VAE.
Finally, Sect. 6 summarizes the conclusions of this work.

2 Problem Statement and Background

Similarity Search. Consider a dataset D = {x(1), x(2), . . . , x(n)}, with x(�) ∈
X ∀� ∈ [n] = {1, . . . , n}, and the problem of searching D to find elements that
are similar to some sample object q ∈ X (not necessarily in D) referred to as
query. If X is equipped with a similarity function s : X × X → R, such that the
greater the value of s, the more similar are the objects, and n is small, a simple
approach to solve this problem is a linear scan: compare q with all the elements
in D and return x(�) if s(x(�), q) is greater than some threshold θ. The value of
θ (search radius), can be given in advance, computed to return exactly k results

A Binary Variational Autoencoder for Hashing 133

or chosen to maximize information retrieval metrics such as precision and recall
[1]. If X ⊂ R

d, with small d, specialized data structures (e.g. KD-trees) perform
efficient scans when n is large. Unfortunately, if d becomes large, as in large-scale
collections of images, audio, and text, the performance of these data structures
degrades quickly [11] and novel methods are required.

Hashing. Hashing algorithms address similarity-search problems by devising an
embedding h(x) of the feature space X into the Hamming space HB = {0, 1}B ,
and substituting searches in X by searches in HB. Since binary codes can be
efficiently stored and compared, searches in HB can be orders of magnitude
faster, even using a simple O(n) linear scan. Recent data structures however
allow to search binary codes in O(1) time if B is a small constant [11]. Of course,
for this approach to make sense, the embedding has to preserve similarity.

Quantization Error. Many hashing approaches obtain h(x) by learning a con-
tinuous embedding φ(x) ∈ R

B that is then discretized by thresholding, i.e. by
computing h(x) = 1(φ(x) − b), where 1(·) denotes the indicator function. The
term ‖h(x) − φ(x)‖ is called the quantization error and can have a significant
impact in the quality of the obtained hashes for search applications [5].

Focus. We focus on learning a hash function h(·) using a deep probabilistic
graphical model that reduces the quantization error. Our final goal is to obtain
better codes for similarity search tasks focused on the unsupervised case.

3 Related Work

Up to our knowledge, the use of a deep graphical model to learn hash codes
without supervision was first proposed in [12] using a stack of restricted Boltz-
mann machines (RBM). At training time, the nodes of the deepest layer allowed
to identify topics from which the visible nodes had to generate/reconstruct the
data. The hash codes were obtained by thresholding the binary nodes of the
topic layer. The model can be seen as a stochastic autoencoder where encoder
and decoder are tied together in the same neural architecture. Unfortunately,
training this model is often computationally hard. Perhaps for this reason, most
subsequent research on hashing have adopted simpler models.

In [15], unsupervised hashing is posed as the problem of partitioning a graph
where the vertices represent training points and the edges are weighted using
similarity scores. In [8], the hash codes are obtained by projections onto random
hyperplanes related to the data by means of a kernel function. The method in
[5] computes the codes by first projecting the data into the top PCA directions
and then learning a rotation matrix that minimizes the quantization error.

The use of deterministic neural architectures for hashing that, in contrast
to [12], can be trained using efficient back-propagation, is related to [2]. Here,
a shallow autoencoder is trained to minimize the reconstruction error. In [9] a
decoder-free approach is proposed where the encoder is a feed-forward neural
net trained to maximize the variance of the binary vectors. The method in [4]

134 F. Mena and R. Ñanculef

employs a similar architecture for the encoder but changes the training objective,
introducing a linear decoder and minimizing the data reconstruction error.

Recently, [3] have proposed to obtain hash codes by first training a standard
VAE [7], i.e., a stochastic autoencoder, and then thresholding the continuous
latent representation around the median. This method, called Variational Deep
Semantic Hashing (VDSH), improve the results of previous unsupervised tech-
niques besides being more scalable and stable than [12]. A discrete VAE is pre-
sented in [13] for discovering topics in text documents. In this model only one
topic can be active at the same time and thus it cannot be directly used for
hashing in a way we can easily conceive.

4 Proposed Method

We propose to learn the hash function h : X → HB using a variational autoen-
coder (VAE) framework [7], in which the hash code b ∈ {0, 1}B assigned to a
data object x is treated as a random variable and it is generated according to
a conditional probability distribution qφ(b|x), with parameters φ. In standard
VAE, the distribution qφ(b|x) is called the encoder, and it is typically a Gaus-
sian N (μ(x), σ(x)) where μ(x), σ(x) are modeled by a neural net f(x;φ). Our
difference here is that the latent variable b is no longer continuous but binary.

A first advantage of a binary VAE formulation for hashing is interpretability.
The latent variables bi ∈ {0, 1}, can be directly understood as the bits of the
code assigned to x. If b is Gaussian, as in [3], the relationship between the
hash code and the representation learnt by the model is more ambiguous. A
second advantage regards the smaller error introduced by the quantization step
required to transform the latent representation into a binary hash code. The
method proposed in [3] uses a thresholding operation around the median of the
Gaussian that incurs significant quantization error and can seriously degrade
the search performance (see Fig. 1 for an illustration). If the latent variables
are binary, the quantization step is no longer required and the codes used for
hashing are the same codes optimized in the learning process. Unfortunately, the
presence of discrete random variables, makes optimization more difficult. Below
we explain how our model, called Binary-VAE (B-VAE), addresses this problem.

4.1 Model Architecture and Learning Goal

Since b is now binary, we let the encoder qφ(b|x) be a multi-variate Bernoulli dis-
tribution Ber(α(x)), where the probabilities α(x) = p(b = 1|x) are represented
and learnt using a neural net f(x;φ). We can train this model by defining an
auxiliary decoder pθ(x|b) that reconstructs an input pattern x from the binary
code b assigned to it. The form of pθ(x|b) depends on the type of data. For
instance, in text hashing, it can be chosen to be a Multinomial distribution on
the words/tokens of a document x, p(x|b) =

∏
w∈x p(w|b)nw , where nw is the

frequency of w. Just like the encoder, the probabilities p(w|b) can be learnt using
a neural net g(b; θ).

A Binary Variational Autoencoder for Hashing 135

−2 0 2
0.0

0.1

0.2

0.3

0.4

0.5

STANDARD GAUSSIAN
Quantization Error = 0.698

0.0 0.5 1.0
0.0

0.1

0.2

0.3

0.4

0.5

GUMBEL HIGH TEMPERATURE
Quantization Error = 0.111

0.0 0.5 1.0
0.0

0.1

0.2

0.3

0.4

0.5

GUMBEL LOW TEMPERATURE
Quantization Error = 0.009

Fig. 1. 1-bit quantization of a Gaussian variable (standard VAE) and two Gumbel-
Softmax variables (B-VAE) at different temperatures. In practice, all the yellow/green
points are rounded to 0/1 to obtain binary codes. A Gumbel-Softmax distribution
at low temperature reduces the quantization error inducing a saturation around 0/1.
(Color figure online)

The composition of pθ(x|b) and qφ(b|x) leads to a stochastic auto-encoder
with parameters φ and θ that can be learnt by maximizing the data log-likelihood
�(θ, φ;D). Unfortunately, since b is unobserved, optimizing � is difficult. VAEs
are instead trained to maximize a lower bound of �(θ, φ;D), as for a point x(�)

�(θ, φ;x(�)) ≥L = Eqφ(b|x(�))

[
log pθ(x(�), b) − log qφ(b|x(�))

]

L = Eqφ(b|x(�))

[
log pθ(x(�)|b)

]
− DKL

(
qφ(b|x(�))||pθ(b)

)
, (1)

where the first term of L corresponds to the expected reconstruction error and
the second enforces the consistency between the posterior implemented by the
encoder qφ(b|x) and some prior pθ(b), using the KL divergence. For common
choices of pθ(b), the KL divergence can be integrated analytically, which leads
to expressions easy to differentiate. However, traditional (Monte-Carlo) esti-
mators of the first term in (1), lead to unstable gradients [7]. The framework
presented in [7] solves this problem using the so-called re-parametrization trick.
Unfortunately, this method does not apply to discrete latent distributions and
so we need a more specialized method.

4.2 Re-parameterization via Gumbel-Softmax

As shown [10], the so-called Gumbel-Softmax distribution proposed in [6], can
be adapted to obtain a continuous approximation of Bernoulli random variables.
Indeed, with σ(ξ) = 1/ (1 + exp(−ξ)), if bi,� ∼ Ber

(
αi(x(�))

)
, εi ∼ U(0, 1)

∀i ∈ [B], we have that

b̂i,� = σ

((

log
αi(x(�))

1 − αi(x(�))
+ log

εi

1 − εi

)

/λ

)

, (2)

136 F. Mena and R. Ñanculef

converges to bi,� in the sense that P (limλ→0 b̂i,� = 1) = αi(x). Thus, we can
take samples of b̂i,� to obtain approximate samples of bi,�. As depicted in Fig. 1,
at low temperatures λ, the probability of getting samples which are not 0 or
1 is very small, because (2) saturates at the extremes. Since, in addition, b̂i,�

is a deterministic transformation of the auxiliary random variable ε, that does
not depend on the encoder parameters φ, we can estimate Eqφ

[log pθ(x|b)] by
sampling p(ε). This leads to stable gradients in terms of the model parameters
(φ, θ), and then back-propagation can be used to train our VAE. According to
the experimentation of [6,10] a good value of λ is 2/3.

4.3 Priors

As in traditional VAEs, we introduce a prior pθ(b) that helps to regularize the
learning process. We propose to adopt the non-informative Bernoulli distribu-
tion, pθ(bi) = Ber(0.5)∀i ∈ [B]. The interpretation of this prior is a preference
for balanced hash codes: in average, half of the data points will have bit bi active
and half inactive. With this choice, the KL divergence in (1), for a data point
x, can be calculate analytically and leads to

DKL (qφ(b|x)||pθ(b)) =
∑B

i
Eqφ(bi|x) [log qφ(bi|x)] − Eqφ(bi|x) [log pθ(bi)]

= B · log 2 +
∑B

i
αi(x) · log αi(x) + (1 − αi(x)) · log (1 − αi(x)), (3)

where the second term represent the regularization factor, expressed as the nega-
tive binary entropy (−H(αi)) of the distribution over the binary latent variables.

Fig. 2. Illustration of the forward (orange) and backward (red) pass implementing the
proposed method as a deep neural net. The dashed line represents a stochastic layer.
(Color figure online)

A Binary Variational Autoencoder for Hashing 137

4.4 Implementation

We illustrate in Fig. 2 the neural net architecture of our method. As other VAEs
[7], it can be easily trained with vanilla back-propagation. Only the forward pass
requires passing through stochastic layers.

4.5 Hashing

As our encoder is stochastic, we need to sample qφ(b|x) to obtain hash codes.
Note that as we model b ∼ Ber(α(x)), we always obtain binary codes. A dis-
cretization is no required. However, in practice one may prefer deterministic
codes. In that case, we can take the expected value of the stochastic repre-
sentation α(x) and compute b = 1(α(x) − 1

2), where the threshold value 1
2 is

consistent with the model priors. This quantization procedure does not degrade
significantly the codes learnt by our model, because in the training procedure,
the encoder has learnt probabilities α(x) that are very close to 0 or 1. As shown
in Fig. 1 at low temperatures the saturation around 0/1 comes naturally.

5 Experiments

We evaluate our method on text retrieval tasks, previously used to assess
hashing algorithms [3,16], and defined on three well-known corpora: 20 News-
groups, containing 18000 long documents organized into 20 mutually exclusive
classes; Reuters21578, containing 11000 news documents annotated with 90 non-
exclusive tags (topics); and Google Search Snippets, with 12000 short documents
organized into 84 mutually exclusive classes (domains). Please check [3,16] for
details.

Pre-processing. Documents are pre-processed by removing extra-spaces, stop-
words and any character that is not a letter. We then lower-case and lemmatize
the text, removing lemmas of length smaller than 3. The 104 most frequent
lemmas are used to get a term frequency representation tfd of each document. As
shown in [3], a change on this approach does not lead to significant improvements.
Early experiments reveled however that the transformation log (tfd + 1) helped
to make training more stable and thus was applied from there on.

Evaluation Protocol. As the test set was provided, a split was done on the
rest of documents to create training and validation sets (75%/25%). The model
was trained on the training set and used to embed the corpus into the Hamming
space. Based on this embedding, each test or validation document was then
provided to the system as a query and used to retrieve similar documents from
the training set. Two items were considered similar if they have at least one label
in common. We consider two querying methods: (1) top-K: retrieve K = 100
documents whose hash codes are the most similar to the hash of the query, and
(2) ball search: retrieve all the documents at a Hamming distance of at most θ
bits. The results are evaluated using precision (P) and recall (R).

138 F. Mena and R. Ñanculef

Table 1. Precision (P) and recall (R) of alternative architectures on 20 Newsgroups.

VDSH Base P = 0.284 R = 0.193 B-VAE Base P = 0.316 R = 0.216
VDSH Symmetric P = 0.277 R = 0.189 B-VAE Symmetric P = 0.353 R = 0.241

Table 2. Precision and recall on the validation set using the first querying mechanism
(top-100). As for selecting the bits B, the best results are presented in bold.

Precision Recall

Dataset Method 4 bits 8 bits 16 bits 32 bits 4 bits 8 bits 16 bits 32 bits

Newsgroup VDSH 0.213 0.251 0.285 0.299 0.147 0.172 0.196 0.205

B-VAE 0.325 0.338 0.340 0.359 0.225 0.232 0.232 0.246

Reuters VDSH 0.452 0.517 0.496 0.495 0.142 0.188 0.178 0.183

B-VAE 0.587 0.569 0.599 0.602 0.193 0.198 0.224 0.233

Snippets VDSH 0.389 0.426 0.352 0.341 0.109 0.119 0.099 0.096

B-VAE 0.475 0.436 0.401 0.404 0.138 0.123 0.113 0.114

Baseline and Architecture. We adopt the VAE recently proposed in [3] as
our baseline with the original architecture for encoder and decoder. We adopt
the same architecture for our encoder, but, inspired by [12], we define the
decoder to obtain a symmetric model. As shown in Table 1, imposing symme-
try improves the performance of our method (B-VAE) but slightly worsens the
baseline (VDSH).

Results. In Table 2, we investigate the effect of the number of bits B in the
validation set. We can see that the proposed method outperforms the baseline
in all the cases, with an advantage both in terms of precision and recall. As noted
also by [3], the best results are not always obtained with a greater number of bits,
probably due to over-fitting. If we reduce the number of bits, our method seems
to be more robust in the results compared to the baseline, which, in general,
suffers a more clear impact in terms of performance. After these experiments on
the validation set, we fix the number of bits to B = 32.

Table 3. Precision and recall on the
test set using the first querying mech-
anism (top-100). Best results in bold.

Dataset Method Precision Recall

Newsgroups VDSH 0.319 0.084
B-VAE 0.441 0.116

Reuters VDSH 0.556 0.174
B-VAE 0.698 0.246

Snippets VDSH 0.297 0.099

B-VAE 0.381 0.127

Table 4. Examples of most probable
words by activating a bit on the hash
code.

Newsgroup Reuters Snippets

bit 9 bit 31 bit 25

Complexity Device Interaction

Heterosexual Recognize Biogeography

Likelihood ResponsibilityComposer

Inconsistent Analyze Radiology

Skeptic Printing Gymnastics

Presidential Undoubtedly Patient

HomosexualityProjecting Strength

A Binary Variational Autoencoder for Hashing 139

In Table 3, we compare the test performance of the methods, using the first
querying mechanism (top-K). We can see that the proposed method outperforms
the baseline in all the datasets, with a large (absolute) improvement in terms
of precision and a more conservative but systematic (absolute) improvement
in terms of recall. This demonstrates the practical advantage of using binary
latent variables for hashing. In relative terms, the precision improves ∼38% in
Newsgroups, ∼26% in Reuters and ∼28% in Snippets, while recall improves
∼38% in Newsgroups, ∼47% in Reuters and ∼28% in Snippets.

In Fig. 3, we show the performance of the different methods using the second
querying mechanism, ball search, on the test set. The advantage of the proposed
method is robust to the choice of the search parameter (radius) θ (which is
problem dependent); leading to a better precision and recall in almost all the
cases. We can also see the advantage of using the second querying mechanism
instead of the first one. For example, using θ = 8 (bits) in Reuters, our method
can increase the recall from ∼0.25 to ∼0.55 without significantly reducing the
precision. Using θ = 6 (bits) in Snippets, our method can increase the precision
from 0.38 to approx ∼0.5, keeping the advantage in terms of recall.

Interpretation of the Hash Codes. To illustrate the interpretability of our
model, we sketch in Table 4 results of experiments in which we have activated
a bit of the latent representation and ranked the words according to the proba-
bilities predicted by the decoder. In Newsgroups, bit 9 seems to detect political
discussions regarding sexuality. In Reuters, bit 31 captures computer-related
concepts. In Snippets, bit 25 seems to detect terms associated with health or
sport.

Effect of Priors. It is worth mentioning that in all the experiments we have
observed that the hash tables produced by our method are well-balanced, i.e.,
the number of documents colliding into a cell is approximately constant. This is
important for computational efficiency [11] and attributed to the model priors.

Fig. 3. Precision (circles) and recall (triangles) using the second querying mechanism
(ball search). Points are obtained using different values of θ. Green curves is for our
method (B-VAE) and blue curves are for the baseline (VDSH). (Color figure online)

140 F. Mena and R. Ñanculef

0 25 50 75 100

2.5

5.0

7.5

10.0

12.5

15.0

STANDARD GAUSSIAN

0 2 4 6 80

2.5

5.0

7.5

10.0

12.5

15.0

GUMBEL HIGH TEMPERATURE

-5 0 5 10 15

2.5

5.0

7.5

10.0

12.5

15.0

GUMBEL LOW TEMPERATURE

Fig. 4. Similarity before thresholding (x-axis) and after tresholding (y-axis) for 105

pairs of samples drawn from different latent distributions (32-bits).

Table 5. Accuracy score on training and testing set, using the representation obtained
before and after thresholding is done. Best results on each set are presented in bold.

Dataset Method Before Thresholding After Thresholding

Train Test Train Test

Newsgroup VDSH 93.46 78.15 69.61 62.74

B-VAE 69.61 67.87 68.11 63.52

Reuters VDSH 92.63 82.51 63.67 65.80

B-VAE 69.51 69.48 71.36 70.84

Snippets VDSH 96.79 80.72 70.67 69.42

B-VAE 85.98 83.46 86.56 82.66

Effect of Thresholding. In Fig. 4 we compare the distance between codes
before and after quantization (Euclidean and Hamming respectively), computed
on samples drawn from different distributions. We observe that Gumbel-Softmax
samples at low temperature lead to similarities well correlated before and after
quantization. This contrasts with samples drawn from the distribution employed
by standard VAEs. On Table 5, we measure the classification accuracy obtained
by using the latent representations with a KNN classifier. Here we can see that
our embedding has quite similar performance before and after thresholding,
besides getting a quite low generalization error (difference between train and
test). We can also see that the superiority of the continuous VDSH represen-
tation is lost after thresholding. All this suggests that a standard VAE has an
advantage if a continuous representation is required but the binary VAE we pro-
pose is better suited for applications where a binary representation is required,
as in hashing.

6 Conclusions

We have investigated the use of a variational autoencoder with binary latent
variables to learn hash codes. This formulation is easy to interpret, reduces the

A Binary Variational Autoencoder for Hashing 141

quantization error of thresholding continuous codes, and consents the use of
back-propagation for training. Experiments on unsupervised text hashing show
that the method is more effective for information retrieval than its continuous
counterpart, even if the representation of a standard VAE can have an advantage
before discretization. In future work, we plan to evaluate the model on image
retrieval tasks using convolutional nets and to handle semi-supervised scenarios.

Acknowledgement. F. Mena thanks the Programa de Iniciación Cient́ıfica PIIC-
DGIP of the Federico Santa Maŕıa University for funding this work.

References

1. Baeza-Yates, R., Ribeiro-Neto, B.: Modern Information Retrieval. ACM Press,
New York (1999)

2. Carreira-Perpinán, M.A., Raziperchikolaei, R.: Hashing with binary autoencoders.
In: Proceedings of the CVPR, pp. 557–566 (2015)

3. Chaidaroon, S., Fang, Y.: Variational deep semantic hashing for text documents.
In: Proceedings of the 40th SIGIR, pp. 75–84. ACM (2017)

4. Do, T.-T., Doan, A.-D., Cheung, N.-M.: Learning to hash with binary deep neural
network. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS,
vol. 9909, pp. 219–234. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
46454-1 14

5. Gong, Y., Lazebnik, S., Gordo, A., Perronnin, F.: Iterative quantization: a pro-
crustean approach to learning binary codes for large-scale image retrieval. IEEE
Trans. Pattern Anal. Mach. Intell. 35(12), 2916–2929 (2013)

6. Jang, E., Gu, S., Poole, B.: Categorical reparameterization with Gumbel-softmax.
In: Proceedings of the ICLR (2017)

7. Kingma, D.P., Welling, M.: Auto-encoding variational Bayes (2013)
8. Kulis, B., Grauman, K.: Kernelized locality-sensitive hashing. IEEE Trans. Pattern

Anal. Mach. Intell. 34(6), 1092–1104 (2012)
9. Liong, V.E., Lu, J., Wang, G., Moulin, P., Zhou, J.: Deep hashing for compact

binary codes learning. In: Proceedings of the CVPR, vol. 2015, pp. 2475–2483
(2015)

10. Maddison, C.J., Mnih, A., Teh, Y.W.: The concrete distribution: a continuous
relaxation of discrete random variables. arXiv preprint arXiv:1611.00712 (2016)

11. Norouzi, M., Punjani, A., Fleet, D.J.: Fast exact search in hamming space with
multi-index hashing. IEEE PAMI 36(6), 1107–1119 (2014)

12. Salakhutdinov, R., Hinton, G.: Semantic hashing. Int. J. Approximate Reasoning
50(7), 969–978 (2009)

13. Silveira, D., Carvalho, A., Cristo, M., Moens, M.F.: Topic modeling using vari-
ational auto-encoders with Gumbel-softmax and logistic-normal mixture distri-
butions. In: International Joint Conference on Neural Networks (IJCNN). IEEE
(2018)

14. Wang, J., Kumar, S., Chang, S.F.: Semi-supervised hashing for large-scale search.
IEEE Trans. Pattern Anal. Mach. Intell. 34(12), 2393–2406 (2012)

15. Weiss, Y., Torralba, A., Fergus, R.: Spectral hashing. In: NIPS (2009)
16. Xu, J., et al.: Convolutional neural networks for text hashing. In: Proceedings of

the IJCAI 2015 (2015)

https://doi.org/10.1007/978-3-319-46454-1_14
https://doi.org/10.1007/978-3-319-46454-1_14
http://arxiv.org/abs/1611.00712

	A Binary Variational Autoencoder for Hashing
	1 Introduction
	2 Problem Statement and Background
	3 Related Work
	4 Proposed Method
	4.1 Model Architecture and Learning Goal
	4.2 Re-parameterization via Gumbel-Softmax
	4.3 Priors
	4.4 Implementation
	4.5 Hashing

	5 Experiments
	6 Conclusions
	References

