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Abstract. The problem of determining what information to trust is cru-
cial in many contexts that admit uncertainty and polarization. In this
paper, we propose a method to systematically reason on the trustwor-
thiness of sources. While not aiming at establishing their veracity, the
method allows creating a relative reference system to determine the trust-
worthiness of information sources by reasoning on their knowledgeability,
popularity, and reputation. We further propose a formal rule-based set
of strategies to establish possibly negative trust on contradictory con-
tents that use such source evaluation. The strategies answer to criteria of
higher trustworthiness score, majority or consensus on the set of sources.
We evaluate our model through a real-case scenario.

1 Introduction

Assessing information quality is a challenging task. Assuming a minimal defini-
tion of information as ‘data + semantics’, assessing its quality means to establish
fitness for purpose for a given piece of information. Given the huge number of
possible purposes and to make its computation feasible, information quality is
often broken down into ‘dimensions’ [13], like accuracy, precision, completeness.
Despite its complexity, humans deal with quality on a daily basis using heuristics
to approximate ideal values and using them as a proxy for deciding whether to
trust information or not. Notwithstanding the possibility of being deceived by
our heuristics, a formalization of such strategies is a useful tool for understand-
ing and prediction. We provide here a framework to mimic such strategies and
a relative reference system of sources. When an oracle or fact-checking service
is available, such a reference system can be turned into an absolute one, i.e.,
determining which sources are veracious and which not. Otherwise, our result
will still provide a relative ranking of the importance of sources. This task relies
on providing appropriate understandings of trust and trustworthiness.

Among the large number of its definitions in the literature, for our purpose
trust on contents can be minimally identified with the result of a consistency
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assessment: a piece of information consistent with the agent’s current set of
beliefs or knowledge base is trusted when it allows to preserve other informa-
tion considered truthful. This approach requires a methodology to deal with
inconsistent information and it calls upon the problem of assessing source trust-
worthiness. The logic (un)SecureND [20] provides a mechanism to deal with this
aspect through the introduction of separate protocols to deal with failing con-
sistency. An agent A reading a piece of information φ from an agent B, where
φ is inconsistent with A’s knowledge base, has two possibilities: (1) distrust : to
reject φ and preserve ¬φ and its consequences; and (2) mistrust : to remove ¬φ
from her profile and to accept φ. (un)SecureND does not have a selection mech-
anism for either form of negated trust. In real case scenarios, the choice between
distrust and mistrust will be determined by evaluating the source. While trust
is the mechanism to establish admissible consistent information, we call trust-
worthiness the assessment quality on sources. We introduce an ordering function
and several decision strategies aiming at providing computational mechanisms to
mimic the subjective quality assessment process called trustworthiness. Through
any of these mechanisms, A can decide whether the estimated trustworthiness of
B is high enough to trust the new information φ. Consider a simplified scenario,
with a finite set of sources sharing information on a common topic and referenc-
ing each other (to a lesser or greater degree): some of them will be in conflict
and some will be consistent with one another. We identify three dimensions:

– Knowledgeability : the number of sources to whom a source B refers. This
value is used as an indicator of B’s knowledge of other views;

– Popularity : the number of sources referring to B. This counts the number of
inbound links, and it does not involve their polarity. Citing a source, even to
attack it, is seen as an indication of the popularity of the latter;

– Reputation: the proportion between positive and negative evaluations of B.

These dimensions are used for assessing the trustworthiness of B, to compare
contradictory sources by a receiver, and to formulate decision strategies.

The paper continues as follows. Section 2 describes formal preliminaries,
Sect. 3 describes the different strategies available to resolve the presence of con-
tradictory contents, Sect. 4 translates these strategies in implementable rule-
based protocols, Sects. 5 and 6 present and discuss a use case implementation of
the proposed logic. Section 7 surveys related work, and Sect. 8 concludes.

2 Formal Preliminaries

Consider a set of sources S and a (possibly partial) order relation ≤t over sources
S × S expressing source trustworthiness; once defined, this is used as a proxy
to establish trust in contents in the rule-based semantics presented in Sect. 4.
We define the trustworthiness order ≤t as a function over three dimensions:
reputation, popularity, and knowledgeability.

Reputation is an order relation ≤R over sources S × S: intuitively, S ≤R S′

means that source S ∈ S has at least the same reputation as S′ ∈ S. For
simplicity, reputation is evaluated on the following criteria:
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– we denote with w(S)S′ a fixed weight of S received by S′;
– w = {1,−1}, respectively for a positive and a negative assessment;
– we denote each w(S)S′ = 1 as pos and each w(S)S′ = −1 as neg;
– for any source S ∈ S, a reputation assessment r(S) by other sources in S is

r(S) =
|pos| + 1

|pos| + |neg| + 2

We note that instead of computing the simple ratio of positive assessments over
the total number of assessments, we add a smoothing factor like in Subjective
Logic [15]. This allows us to represent assessment as performed in a ‘semi-closed
world’: we base ourselves on the evidence at our disposal, but our sample is
limited. The smaller our sample, the more the resulting reputation will be close
to the neutral prior 0.5, since no prior knowledge is available to believe the
source is fully trustworthy or untrustworthy. The larger our sample, the more
the weight of the sample ratio will count on the reputation estimation. On the
basis of the reputation assessment, we establish the corresponding order on S:

Definition 1 (Reputation). For any S, S′ ∈ S, S ≤R S′ ↔ r(S) ≥ r(S′)

A second-order relation ≤P over sources S×S is defined: intuitively, S ≤P S′

means source S has at least the same popularity as S′, where popularity reflects
the number of sources which refer to S. We denote the referenced sources as
outbound links and the referencing sources as inbound links; non-referenced or
non-referencing sources are denoted as missing links. Note that ∀S, S′, if S ∈
outbound links(S′) and S′ ∈ outbound links(S), we can assume both sources
have explicit knowledge of each other’s information. We assume this fact and
express that S′ reads from S (or alternatively that S writes to S′) as S′ ∈
outbound links(S). Note that in the calculus presented in Fig. 1 these access
operations are explicit. By our definition of reputation, we can assume that for
every source S referenced by S′, w(S)S′ ∈ r(S). Hence, the popularity of S is

p(S) =
|inbound links| + 1

|inbound links| + |missing links| + 2

On its basis, we establish the corresponding order on S:

Definition 2 (Popularity). For any S, S′ ∈ S, S ≤P S′ ↔ p(S) ≥ p(S′).

Finally, we define a third order relation ≤K over sources S × S: intuitively,
S ≤K S′ means that source S has at least the same knowledgeability as S′,
where knowledgeability reflects the number of sources to which S refers. For
simplicity, given the definition of p(S) based on r(S), knowledgeability k(S) is
the inverse of p(S), computed as

k(S) =
|outbound links| + 1

|outbound links| + |missing links| + 2

On its basis, we establish the corresponding order on S:
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Definition 3 (Knowledgeability). For any S, S′ ∈ S, S ≤K S′ ↔ k(S) ≥
k(S′).

The highest value of knowledgeability corresponds to the totality of the avail-
able sources. For simplicity, we include in this count the source itself:

Definition 4 (Source Completeness). A source S satisfies source complete-
ness if |outbound links| = |S|.

The three dimensions of reputation, popularity, and knowledgeability estab-
lish a generic computable metric on the trustworthiness of a source S:

Definition 5 (Source Trustworthiness). Source trustworthiness is computed

t(S) = Φ(φ(r(S)), ψ(p(S)), ξ(k(S)))

with Φ a given function and φ, ψ, ξ appropriate weights on the parameters.

The choice of φ, ψ, ξ is essentially contextual, as it determines the role that
each parameter has in the computed value of t(s), e.g. to stress knowledgeability
as more important than popularity, or reputation as more relevant than knowl-
edgeability. Fixing these parameters to 1 provides the basic evaluation with all
equipollent values. Φ can be interpreted e.g. as

∑
X, X, max(X): again, this

choice can be contextually determined.
To distinguish between different semantic strategies for information conflict

resolution, we first weight the notion of source trustworthiness with respect to
source order and calculate an average value.

Definition 6 (Sources with Higher Trustworthiness). Let S∼
<tS

denote the
set of sources with higher trustworthiness <t than a given source S ∈ S.

We now partition this set as follows: we denote with T the subset of S∼
<tS

such
that ∀S′ ∈ T , S′ trusts information φ; we denote with T⊥ the complement of T .

Definition 7 (Weighted Trustworthiness). Average trustworthiness of T is

t(T ) =
∑|T |

∀S′∈T t(S′)
|T |

Let t(T⊥) denote the average trustworthiness for the complement partition.
If t(T ) > t(T⊥), then S trusts φ, else S trusts ¬φ.

In the case of weighted trustworthiness there is a possible parity outcome: either
the selection of a different strategy (e.g., the simpler majority trustworthiness)
or a random assignment is possible. Finally, on the basis of the trustworthiness
assessment, we establish the corresponding order on S:

Definition 8 (Trustworthiness). For any S, S′ ∈ S, S ≤t S′ ↔ t(S) ≥ t(S′).

Note that the general definition allows for a partial order, as it is possible that
the trustworthiness values of two distinct sources be equivalent or incomparable.
The following resolution strategies assume that a strict order is being obtained.
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3 Trustworthiness Selection Strategies

We define several strategies to implement negative trust based on the Trust-
worthiness relation defined in Sect. 2. Recall that distrust requires an agent to
reject incoming contradictory information in favor of currently held data. In this
context, we establish such a choice on the basis of higher trustworthiness.

Definition 9 (Distrust). Assume S <t S′, S ∈ outbound links(S′). If S′

trusts φ and φ is inconsistent with the profile of S, then S distrust φ and
trusts ¬φ.

With this protocol in place, a source with a higher trustworthiness will always
reject incoming contradictory information from a lower ranked source. It is also
fair to assume that where t(S) = t(S′), a conservative source S will not change
its current information. The process of modifying currently held information to
accommodate for newly incoming one (mistrust) starts therefore on the assump-
tion that the source of incoming information has lower trustworthiness degree
than the receiver. On this basis, implementing a mistrust strategy has a com-
plex dynamic: the user can be more or less inclined to a belief change and it can
require more or less evidence for it to happen. Therefore, different strategies can
be designed. One strategy requires that a majority of agents with higher trust-
worthiness agree on the new incoming data. A stronger strategy requires that
the totality of agents with higher trustworthiness agree. Reaching the desired
number of agents to implement a mistrust strategy might be a dynamic process
resulting from a temporally extended analysis of the set of sources. We design
the different strategies assuming Definition 6 of the subset S∼

<tS
of sources with

higher trustworthiness as the sources which the receiver S has to consider.
The weakest strategy is defined by an agent which allows for a mistrust

operation based on the presence of at least one source with higher reputation
that contradicts her current belief state:

Definition 10 (Weak Trustworthiness). If ∃S′ ∈ S∼
<tS

such that S′ trusts
information φ, then S trusts φ.

To accommodate a contradicting φ, the source S has to modify the current set
of belief, Γ , to some subset Γ ′ which can be consistently extended with φ, i.e.
removing any formula implying ¬φ. A stronger strategy is for the agent to accept
the content on which the majority of sources with higher trustworthiness agree:

Definition 11 (Majority Trustworthiness). Assume T ⊆ S∼
<tS

such that
∀S′ ∈ T , S′ trusts information φ. We denote with T⊥ the complement of T . If
|T | > |T⊥|, then S trusts φ, else S trusts ¬φ.

In the case of a parity outcome, either the selection of a different strategy or a
random assignment are possible. Note that the above strategy does not account
for the order within the subset S∼

<tS
: it only partitions it according to the truth

value of a formula and then selects the partition with higher cardinality. A more
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refined majority strategy will weight each member S′ ∈ T and T⊥ on the basis
of their trustworthiness value t(S′). Then an average value will be assigned to
the corresponding partition and the strategy will select the formula held by
the partition with a higher value. If the cardinality of the partition has to be
considered, the sum of the trustworthiness values of the sources can be assigned
to each partition. The strongest strategy requires the agent to change her mind
if all other agents with higher trustworthiness agree:

Definition 12 (Complete Trustworthiness). If ∀S′ ∈ S∼
<tS

, S′ trusts infor-
mation φ, then S trusts φ.

The Majority and Complete Trustworthiness strategies above have a strong effect
on knowledge diffusion in the presence of full communication. The Consensus rule
below holds even if the content from the most trustworthy source is not initially
held by the majority of agents.

Proposition 1 (Consensus). Assume S′ ∈ outbound links(S) holds ∀S <
S′ ∈ S∼. Then S converges towards consensus on the information trusted by the
most trustworthy source.

4 Rule-Based Semantics for the Strategies

The natural deduction calculus (un)SecureND [20] defines trust, mistrust and
distrust protocols according to the informal semantics described in Sect. 1. It
formalizes a derivability relation on formulas from sets of assumptions (contexts)
as accessibility on resources issued by sources. In this section, we provide an
extension of the calculus with a rule-based implementation of the trustworthiness
selection strategies from Sect. 3.

Definition 13 (Syntax of (un)SecureND).

S∼ := {A <t B <t · · · <t N}
BFS := aS | φS

1 → φS
2 | φS

1 ∧ φS
2 | φS

1 ∨ φS
2 | ⊥

mode := Read(BFS) | Write(BFS) | Trust(BFS)
RESS := BFS | mode | ¬RESS

ΓS := {φS
1 , . . . , φS

n}

Every S ∈ S is a content producer which has a trustworthiness value based on
its interactions with any other S′ ∈ S. Any S ∈ S is ordered with respect to the
others by the trustworthiness order.1 Formulas in the set BFS express content
produced by source S and they are closed under logical connectives. Functions on
contents in the set mode refer to reading, writing and trusting formulas. Every
source S is identified by the set of contents it produces, denoted by ΓS called
the profile of S. A formula expresses access from a source S to content issued by
another source S′ (metavariables S, S′ are substituted by variables A,B):
1 In other versions of this logic, the order between elements in S is differently defined,

e.g. imposed by access policies, see e.g. [20,22,23].
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Definition 14. An (un)SecureND-formula ΓA 
 RESB says that under the
content expressed by source A, some content from source B is validly accessed.

The rule-based semantics of the calculus is given in Fig. 1. Atom establishes
derivability of formulas from well-formed contexts and under consistency pre-
serving extensions. We use the judgment Γ : profile for a profile consistently
construed by induction from the empty set. For brevity, we skip here the intro-
duction and elimination rules for logical connectives, see [20] and focus only on
the access rules. Differently from other versions of the same calculus, we drop here
negation-completeness: a source without access to a content item from another
source, will not assume access to its negation, i.e. uncertainty is admissible. read
says that from any well-formed source profile A, formulas from a profile B can be
read. trust says that if a content item is read and it preserves consistency when
added to the reading profile, then it can be trusted. write says that a readable
and trustable content can be written. By distrust, source A distrusts content
φB if it induces contradiction when reading from ΓA and A has higher trust-
worthiness than B. Its elimination uses →-introduction to induce write from
the receiver profile for any content that follows a distrust operation. This allows
Write(¬φB) when ¬Trust(φB) holds. Each of the mistrust rules applies one dif-
ferent strategy from Sect. 3 for a content item φB inducing contradiction when
reading from ΓA and A has lower trustworthiness than B. By weak mistrust,
A accepts φ (and removes from its own profile any conflicting information) by
the simple presence of B in the set of sources with a higher reputation of A:
this formulation is general enough to accommodate for the substitution of B in
this condition by any other source that A considers absolutely essential (appeal
to authority). majority mistrust requires computing the partitions of the set
of sources with higher trustworthiness than A and comparing their cardinal-
ity: any content φ held by the larger partition will be kept by A (even when
this reduces to an application of a distrust rule). In weighted majority, the
condition is expressed by the higher average reputation of the partition. By
complete mistrust the source A requires that every element in the set of sources
with higher reputation agrees on φ. By the rule write, every trusted content can
be written.

5 Evaluation

5.1 Use Case Description

In 2015, a measles outbreak took place in Disneyland, California. This event
received much attention online, and a quite strongly polarised discussion fol-
lowed up the news regarding this event. Public authorities and pro-vaccination
sources pointed out the importance of vaccination, and some of them blamed the
low vaccination rate as the main reason for this outbreak. On the other hand,
the anti-vaccination movement accused the government agencies and the pro-
vaccination movement of misinforming the public, since the children involved in
the outbreak were vaccinated. Two main factions are at work, the pro and the
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Fig. 1. The system (un)SecureND: access rules.

anti vaccinations. While sources do not always identify themselves as part of one
or the other, for many of them it is either clear what their stance is (e.g., when
they explicitly ‘attack’ each other), or we can make safe assumptions based on
our background knowledge (e.g., by assuming that authorities are pro vaccina-
tions). We have at our disposal a set of assessments of these articles collected
by means of user studies involving experts [6]. These assessments cover quality
dimensions like accuracy and prediction, and present an overall quality score
that is equivalent to the trustworthiness score defined here.

5.2 Data Preprocessing

We select a subset of 10 articles regarding this debate from a corpus of docu-
ments regarding the Disneyland measles outbreak2. The selection gives a small
but diverse set of views on the topic in terms of stance (pro or anti vaccinations)
and type of document (news article, official document, blog post, etc.). Provided

2 The dataset is available online at https://goo.gl/aouDJH.

https://goo.gl/aouDJH
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they all discuss the specific event selected, a clear network of references emerges.
However, such a network is rather sparse since a large majority of these sources
do not cite each other. As we are interested in capturing their polarity to compute
the three trustworthiness dimensions, we reconstruct the network as follows: (1)
a source criticizing another source is considered as a negative piece of evidence
regarding the reputation of the source mentioned; and (2) a source citing data
from another source, even in neutral terms, is considered a piece of evidence
regarding the popularity of the source cited. The resulting network of references
is represented in Fig. 2 and it illustrates only the relations emerging from the
corpus considered, representing a partial view on the real scenario because we
derive a source’s trustworthiness using one or more documents published by it as
a proxy; the more documents we observe from a source, the better we can assess
its trustworthiness value. For example, we estimate the source knowledgeability
from the number of citations of other sources. Some sources could be cited only
in some articles by the source under consideration. Also, we derive a source’s
trustworthiness based on the references it receives from the other sources con-
sidered, but we know that the set of sources is limited, and the scenario might
change when considering other sources (e.g., the number of citations of currently
poorly cited sources could rise). Given these considerations, the smoothing factor
added to Definitions 1, 2, and 3, helps to cope with the resulting uncertainty.

Fig. 2. Network of references resulting from the preprocessing of our corpus. Directed
arrows indicate positive (continuous line) or negative (dotted line) references.

5.3 Sources Ordering

Based on the network depicted in Fig. 2, and using the formulas presented in
Sect. 2, we compute the trustworthiness score for each of the sources in our
sample. The trustworthiness score is computed by averaging the reputation,
the knowledgeability, and the popularity of the sources, resulting in the scores
reported in Table 1. Figure 3 shows a graphical representation of the resulting
hierarchy of sources. Since the trustworthiness thus obtained shows a weak cor-
relation (0.2) with the overall scores provided by the users in the user study, we
explore alternative ways to aggregate the scores.

Weighted Trustworthiness. Applying weights to the trustworthiness param-
eters can yield a different hierarchy. Instead of applying an arbitrary weighing
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Table 1. Trustworthiness scores of the sources considered for our use case. The score
is computed by means of a simple average, where each component has the same weight.

Source Reputation Knowledgeability Popularity Trustworthiness

California Healthline 0.50 0.17 0.08 0.25

CDC 0.63 0.08 0.67 0.46

NYTimes 0.50 0.17 0.08 0.25

InfoWars 0.50 0.17 0.08 0.25

GreenMedInfo 0.50 0.25 0.08 0.28

Age of Autism 0.67 0.17 0.17 0.33

Science-Based Medicine 0.50 0.17 0.08 0.25

Heavy.com 0.50 0.08 0.08 0.22

Natural News 0.50 0.17 0.08 0.25

NPR 0.67 0.08 0.17 0.31

Fig. 3. Hierarchical ordering of the sources derived from the scores shown in Table 1

to the scores, we apply linear regression on the parameters, targeting the overall
quality scores provided by the users in the study. Once we learn the weights
for the parameters, we compute the trustworthiness scores. The resulting scores
show a 0.6 correlation with those provided by the users. Moreover, we also run
3-fold cross-validation (split the dataset into 3 parts and, in round, use two parts
as a training set for linear regression, and one for validation). For one item only,
our model is unable to make a prediction. Excluding such item, the resulting
average correlation between predicted and user-provided overall quality is −0.87
(Pearson) and −0.76 (Spearman). We consider these as promising results.

5.4 Applying Trustworthiness Selection Strategies

Here we illustrate how users could apply the selection strategies described in
Sect. 3. Figure 4 shows the scenario where the trustworthiness selection strategies
are applied. The sources analyzed in the previous step are now shown in white
if they present a positive stance with respect to vaccinations, in grey otherwise.
C is a new source with an unclear stance that joins the scenario. The stance of C
(i.e., whether C trusts vaccines or not) will be determined by comparison with

https://heavy.com
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the other sources. Assume that the trustworthiness of C is higher than that of
Heavy.com, but lower than the trustworthiness of all the other sources.

Fig. 4. Use case scenario. We adopt the same hierarchy as in Fig. 3. Sources in white
trust vaccinations. Sources in grey do not. C denotes an additional source which takes
part in the scenario and has not yet a clear stance.

Distrust. When C is confronted with Heavy.com and its lower trustworthiness
score, following the distrust rule it will distrust vaccines.

Weak Trustworthiness. Let us follow up on the previous scenario. C now dis-
trusts vaccines. When encountering all the other sources, if the weak mistrust
strategy is applied, C will revise its profile: now C trusts vaccines because
of several sources with trustworthiness higher than C trust φ. Note that
weak mistrust requires at least one source to trust φ in order to follow suit.

Majority Trustworthiness. In an alternative scenario, when encountering
the other sources, C can evaluate whether to trust φ or not based on whether
the majority of the sources trusts vaccines. We partition the sources based on
vaccines and ¬vaccines. With any strategy for determining the majority (par-
tition cardinality, average trustworthiness of the sources in the two partitions,
sum of the cardinalities in the two partitions), trust in vaccines prevails.

Complete Trustworthiness. When complete trustworthiness is applied, C
needs all the sources to agree on vaccines to add it to its profile. Since three
sources disagree, by applying this rule, we obtain that C d istrusts vaccines.

6 Discussion

The goal of our model is to provide means to mimic human thinking and provide
a tool to systematically reason upon sources. The result of such reasoning is
a relative reference system of sources. When oracles, fact-checkers, and other
sources are available, such a reference system can be turned into an absolute
one: if the user knows that a given set of statements is true or false, she can
reason about the trustworthiness of the sources incorporating this additional
information in the networks. When oracles are not available, the reference system
can provide the user with a basis to coherently reason upon the sources she
observes.

https://heavy.com
https://heavy.com
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Frameworks like PageRank and its successors can be considered more evolved
and successful alternatives to the present proposal. While PageRank can be
applied to one or more networks to rank their sources, our system considers
three distinct networks, aggregates them, and can be either extended with other
networks or be used as reasoning support as it is. Hence we consider the present
a viable complement to existing approaches.

While assessing the veracity of information is not the focal point of our
system, the multidimensional approach we take shows promising robustness to
possible attacks. Suppose that in an echo-chamber, sources cite each other posi-
tively in order to increase their own reputation and popularity. If their citations
are limited to the sources in the echo chamber, their knowledgeability (and, thus,
their trustworthiness) will necessarily be low. If to remedy this sources start cit-
ing others outside the echo chamber, their knowledgeability will rise, but they
will also contribute to the popularity of these external sources. Still, vulnerabil-
ity to the knowledgeability score is possible in sufficiently large echo chambers.
Future developments will tackle this aspect more explicitly.

7 Related Work

Assessing the quality of information sources is a long-standing problem largely
addressed in the fields of humanities, where specific guidelines and checklists
have been proposed to address the issue of “source criticism” [3]. Such work has
also been extended to Web sources in [6,7], where a combination of crowdsourc-
ing and machine learning is adopted. Those works are complementary to the
present contribution since they do not compare directly the references among
sources. Counting links for a source as employed in this paper aims at mimicking
the evaluation of the bibliography mentioned in the source criticism checklist.
Another framework based on crowdsourcing is presented in [17].

Using fitness for purpose to assess information quality is a widely adopted
strategy, see [12,13]. In the present work, we start from the assumption that
where it is unclear or impossible for an agent to distinguish between contra-
dictory data, source assessment based on trustworthiness is a valuable strategy.
We show how such a protocol can be implemented through different selection
strategies. A related topic is the one of fake news, tackled for instance in [4,25].

Research on trust in computational domains has been extensive in the last
decades. Crucial aspects of the behavior of trust concern properties like propaga-
tion and blocking [8,10,14,16]. Solutions to these problems are various [2,9,11].
In the present work, we evaluate trust in information sources not on an absolute
scale, but rather with varying degrees. A related approach is presented in [19],
where a trust measure on agents is combined with the use of argumentation for
reasoning about beliefs. Similarly, we propose a trust evaluation of sources to
decide which information to maintain. The logic used in this work originates
from a model designed to model trust in resource access control scenario, and to
be able to block trust transitivity by design [21,23]. The logic has been applied
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to the Minimally Trusted Install Problem software management in [5], its neg-
ative counterpart [22], and tested to investigate optimal strategies to minimize
false information diffusion [24]. For other accounts of negative trust, see [1,18].

8 Conclusion

In this paper, we presented an extension of (un)SecureND, a logic modeling
trust on information, with strategies for assessing the trustworthiness of sources
as a function (average or otherwise) of their knowledgeability, popularity, and
reputation, possibly weighted. We evaluated this extension on a real-life case
study on the trustworthiness of Web sources and applied the selection strategies
to the resulting source hierarchy. We showed that a linear combination of these
parameters presents a decent correlation with user-provided assessments.

We plan to extend this work in two main directions. First, we will work on the
automation of the preprocessing phase. We expect to use natural language pro-
cessing for this and, in particular, author attribution to systematically identify
references among the sources, and textual entailment to capture the perspectives
taken by the different sources. Second, we will improve the parameters consid-
ered for assessing the trustworthiness. For instance, knowledgeability will have
to be assessed based on the estimated level of the truthfulness of the statements
made by the source. We plan to run an exhaustive user study to guide the design
of source trustworthiness assessment and selection. Lastly, we will experiment
with network centrality measures as alternative indicators for these parameters.
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