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Abstract For the production of a high-performance concrete (HPC) matrix, a large
amount of binder is normally used. The production of ordinary Portland cement
(OPC) as the binder of concrete accounts for 7% of CO2 emission, which has notable
environmental impacts, and subsequently results in unsustainable concrete. The aim
of the present study was to investigate the effect of replacing OPC with calcium
sulfoaluminate cement (CSA) or ground granulated blast-furnace slag (GGBS) as
sustainable binders on the engineering properties of HPC. Additionally, the effect
of introducing double hooked-end (DHE) steel fibers at a fiber volume fraction of
1% on the properties of HPC was assessed. The compressive strength, splitting
tensile strength, flexural strength, and modulus of elasticity of HPC were evaluated.
Moreover, a scanning electron microscopy (SEM) method was used to study the
microstructure of the concretes. The results indicate that the replacement of OPC
with CSA cement results in an improvement in the mechanical properties of HPC
particularly at later ages of curing, while combination CSA cement with OPC and
GGBS in the binary and ternary systems degrades the concrete’s strengths. The
addition of 1%DHE steel fibers significantly increased the engineering properties of
concrete. The results show that the bond between a cement matrix and steel fibers has
been enhanced due to the expansive behavior of CSA cement. The SEM observation
also shows the significant influence of CSA cement on the microstructure of concrete
by forming a rich amount of ettringite which subsequently results in an improvement
in the properties of concrete.
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1 Introduction

Portland cement concrete is the most widely used human-made material on the
planet; around 25 billion metric tons are produced globally each year (Celik et al.
2014). Recently, the demand for using high-performance concrete (HPC) has widely
increased throughout theworld.As is commonly known, for the production of anHPC
matrix, a large amount of binder is normally used. Even though the reasons for con-
crete’s dominance are diverse, themassive production and consumption cycle of con-
crete have a significant environmental impact, making the concrete industry unsus-
tainable. Currently, Portland cement concrete production accounts for around 7% of
carbondioxide (CO2) emissions annually.Most of the emissions are attributable to the
production of ordinary Portland cement (OPC) clinker. The current approach to over-
come this problem is through the reducing clinker factor and through replacing OPC
with supplementary cementitious materials such as fly ash, slag, silica fume, and nat-
ural pozzolan (Gartner &Hirao 2015). However, due to growing field experience and
increasing demand for those materials, there is an essential need to develop concrete
made with a new kind of cement such as calcium aluminate cements (CAC), calcium
sulfoaluminate cement (CSA), alkali-activated binders, and supersulfated cements
(Juenger et al. 2011). Recently, CSA cement gained an increased attention due to
its lower amount of CO2 emission as compared to that of OPC (Gartner 2004). It is
reported that the CO2 emissions may drop by up to 35% if OPC is replaced with CSA
cement (Berger et al. 2013). Additionally, concretes fabricated with CSA cement can
result in an increased sulfate resistance, high impermeability and chemical resistance
and a low chance for alkali–silica reactions (Tang et al. 2015).

Several benefits of HPC compared to conventional concretes have significantly
increased its use in different structural applications. However, the brittleness of HPC
is higher with respect to the normal-strength concrete due to the higher strength,
which subsequently increases the vulnerability of HPC to the initiation and propa-
gation of cracks of different sizes within the concrete body (Savino et al. 2018). The
addition of discrete fibers in concrete is recognized as a suitable solution to overcome
thisweakness and developmaterials with enhanced tensile strength, flexural strength,
toughness, and thermal shock strength (Sanal et al. 2016; Afroughsabet et al. 2016,
2018; Cattaneo and Biolzi 2010; Simões et al. 2017). This study was aimed at ana-
lyzing the effects of CSA cement and DHE steel fibers on the engineering properties
of HPC. Compressive strength, splitting tensile strength, flexural strength, modulus
of elasticity, and microstructural observations were performed in order to evaluate
the properties of concrete at different curing ages. The findings of this research are
highly promising and show that the simultaneous use of CSA cement and DHE steel
fibers can significantly increase the engineering properties of HPC.
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2 Materials and Methods

To explore the effects of CSA cement, GBBS andDHE steel fibers on the engineering
properties of concrete, eight different concrete mixes were developed in this study.
The concrete mixes included concretes containing 100% OPC and 100% CSA, 50%
OPC and 50% CSA, 25% OPC with 50% CSA and 25% GBBS without and with
1% DHE steel fibers. To assess the effect of curing age on the strength of concrete,
the compressive strength tests were conducted at the ages of 1, 7, 28, and 56 days.
Additionally, the splitting tensile tests were performed at 7, 28, and 56 days. All the
other features of the concretes were evaluated at 28 days.

2.1 Materials

The binder materials used in this study were ASTM Type I Portland cement; CSA
produced by Italcementi Group and ground granulated blast-furnace slag. Both natu-
ral sand, with a 2.9 fineness modulus, and crushed gravel, with a nominal maximum
size of 19 mm, were used as the aggregates at a volume fraction of 50%. To achieve
the desired workability in different concrete mixes, a Driver Care 10-Sika, was used
as a superplasticizer. Additionally, in CSA cement-based concretes, tartaric acid was
used as a retarder to increase the setting time of those mixes. Double hooked-end
(DHE) steel fibers with a 60-mm length and an aspect ratio of 65 were employed in
this study.

2.2 Concrete Mixtures and Mixing Procedure

The water-binder ratio was maintained at 0.35 and the water amount was 157 l for all
mixtures. A pan mixer was used for the preparation of all the mixes. Prior to adding
the raw materials, the surface of the pan mixer was cleaned with a wet towel to avoid
the absorption of aggregates moisture by the mixer. The mixing procedure, which
was designed by trial, was chosen as follows: initially, the fine aggregate and cement
were mixed for one minute. Afterward, approximately half of the water including SP
was introduced into the mixer; the ingredients were further mixed for two minutes.
The saturated surface dry (SSD) coarse aggregates and remaining mixing water were
then introduced and themixingwas continued for another 5min. To fabricate uniform
fiber-reinforced concrete, discrete fibers were added gradually to the rotating mixer
and were mixed for an additional 5 min in order to obtain a homogenous concrete
mix. Details of mix proportions and the results of a slump test are summarized
in Table 1. The content of SP in that table is given as a percentage of the total
mass of the binder. To determine the workability of fresh concrete, slump tests were
performed as per ASTM C143 (2010) during the preparation of the concrete mixes.
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The specimensweremoldedwith different dimensions thatmatched the requirements
of their standard tests. The samples were covered with a wet plastic sheet to prevent
them from dripping water in the first 24 h of curing. Then, the concrete specimens
were demolded and immersed in lime-saturated water at 23 °C until reaching their
testing ages. For each test, three samples were prepared, and the average value is
reported as the final result.

2.3 Testing Methods

Compressive and splitting tensile strength tests were performed using a 3000-KN
universal compression machine in accordance with ASTM C39 (2003) and ASTM
C496 (2011), respectively. Cubic specimens 100 mm in size were used to determine
the compressive strength, whereas cylindrical specimens with a diameter of 100 mm
and a height of 200 mm were used to evaluate the splitting tensile strength of the
concrete. The flexural strength tests were carried out as per EN 14651 (2007) on
prismatic beamswith dimensions of 150× 150× 600mm. Themodulus of elasticity
tests was conducted on the cylindrical specimens with dimensions of 100× 200 mm
as per ASTM C469 (2014). To study the microstructure of concrete made with
different types of binders, several images were taken from the fracture surface of
concrete specimens by using scanning electron microscopy (SEM) method.

3 Results and Discussion

3.1 Consistency

The consistency of the different mixes developed in this study was evaluated by a
slump test, and the results are shown in Table 1. The slump values of the concrete
varied between 19 and 23 cm.

A minimum of 1% superplasticizer was required to adjust the consistency of
concrete. Higher content of superplasticizer was used in CSA-based and in blended
concretes compared to that of OPC to obtain an almost similar slump value. This
can be explained by the fineness of CSA and a GBBS particle size that is lower
compared to that of OPC. Furthermore, the fast rate of CSA cement hydration and
its high demand of water to generate ettringite are other reasons that necessitate
the addition of greater amounts of superplasticizer. The results further indicate that
the incorporation of steel fibers had a negative influence on the properties of fresh
concrete. The long steel fibers and aggregates interlock in the body of concrete and
lead to a reduction in the slump value. To attain the same consistency in the concretes
with and without fibers, the content of the superplasticizer was slightly increased.
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3.2 Compressive Strength

The compressive strength results of different mixes at curing ages of 1, 7, 28, and
56 days are shown in Fig. 1.

The compressive strength of concretes containing CSA cement is significantly
lower after 1 day compared to that of the OPC mix. This reduction at an early age
can be explained by the presence of the retarder in the CSA concrete that postponed
the formation of ettringite, and subsequently reduced the strength of the concrete.
The full replacement of OPC with CSA cement led to a reduction in compressive
strength of 55% after 1 day, while its strength at 7 dayswas slightly higher than that of
the OPC concrete. It was also observed that the compressive strength of the CSAmix
was increased by 10% and 12% after 28 days and 56 days, respectively, compared
to that of the OPC concrete. The compressive strength of the concrete containing
50% OPC and 50% CSA cement was lower than that of the reference OPC concrete
at all the curing ages considered in this study (reduction of 42%, 32%, 21%, and
13% at 1, 7, 28, and 56 days of curing, respectively, compared to those of the OPC
concrete). Similar to CSA concrete mix, the significant amount of strength reduction
after 1 day is attributed to the presence of the retarder. However, the compressive
strength has been increased at later ages as a result of the formation of ettringite
(ye’elimite hydration) and also the hydration of alite and belite which are the main
components of OPC. The lowest compressive strength at day 1 was achieved by the
CSA-blend mix containing three types of binders (i.e., OPC25-CSA50-SL25 mix).
However, compared to OPC concrete; the concrete compressive strength reduction
is limited by aging (of about 80%, 28%, 15%, and 9% at 1, 7, 28, and 56 days of
curing, respectively). Introducing GGBS can result in an increase in the cohesiveness
of the cementitious matrix, which reduces the formation of micro-cracks leading to
an increased strength of concrete. Moreover, GGBS fills the capillary pores of the
cement matrix and consequently improves the properties of the interfacial transition
zone (ITZ), while the observed strength reduction at an early age (1 day) can be
attributed to the lower hydration rate of concretes incorporating GGBS, which has

Fig. 1 Compressive strength
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been well documented in the literature (Celik et al. 2014). Concretes with steel fibers
exhibited the same trend with a slight increase in compressive strength.

3.3 Splitting Tensile Strength

The splitting tensile strength results of different concrete mixes at curing ages of 7,
28, and 56 days are shown in Fig. 2. The full replacement of OPC with CSA cement
resulted in a slight reduction after 7 days, while after 28 and 56 splitting strength
increased (11%) with respect to OPC.

The strength reduction at 7 days can be attributed to the presence of the retarder
which delayed the ettringite formation.However, at later ages of curing, a rich amount
of ettringite was formed as a result of ye’elimite hydration, which consequently
caused an improvement in the strength of concrete. The results further indicate that a
combination of OPC and CSA cements at equal percentage of 50% led to a reduction
in the splitting tensile strength of concrete at all curing ages considered in this study.
For instance, the splitting tensile strength of the OPC50-CSA50 concrete reduced
by 18%, 22%, and 19% at 7, 28, and 56 days, respectively, compared to those of
OPC. The incorporation of slag in OPC-CSA concrete led to an improvement in the
splitting tensile strength, while its strength is lower compared to that of the reference
OPC concrete. This increased strength can be attributed to the formation of addi-
tional C–S–H gel, particularly at later ages which is the main strength-contributing
compound. Moreover, as observed for compressive strength, slag also fills in the
capillary pores and improves the features of ITZ and microstructures of the cement
matrix. It was noticed that the best performing mix was the CSA concrete which
attained a 56-day splitting tensile strength of 4.77 MPa, while the lowest strength
was gained by the OPC50-CSA50 concrete with strength of 3.47MPa. The results of
fiber-reinforced concrete indicate that the addition of 1% DHE steel fibers can sig-
nificantly increase the splitting tensile strength of concrete. For instance, the splitting

Fig. 2 Splitting tensile strength
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tensile strength of OPC-DHE1 concrete mix increased by 67%, 70%, and 77% at 7,
28, and 56 days of curing, respectively, compared to those of OPC concrete. This
improvement is attributed to the high tensile strength, elastic modulus, and effec-
tive anchoring mechanism of DHE steel fibers, which restrained the extension of
macro-cracks in concrete (Afroughsabet et al. 2016). It was also observed that the
simultaneous use of CSA cement and steel fibers was very effective in enhancing
the splitting tensile strength of concrete, and the best performing mix was attained
in the CSA-DHE concrete mix. The splitting tensile strength of the aforementioned
mix was increased by 57%, 95%, and 97% at 7, 28, and 56 days of curing, respec-
tively, compared to those of OPC concrete. This improvement can be attributed to
a more effective bond between the steel fibers and the CSA cement matrix due to
self-stressing that resulted from the expansive behavior of CSA cement. The effect
of curing age on the improvement of splitting tensile strength is relatively higher
in FRC compared to plain concrete. For instance, the splitting tensile strength of
CSA-DHE mix was increased by 42% and 60% at 28 and 56 days compared to its
7-day strength, respectively, while the increase was 28% and 42% for CSA concrete,
respectively.

3.4 Modulus of Elasticity

The 28-day modulus of elasticity of different concrete mixes is shown in Fig. 3. The
results indicate that the cement type had a significant influence on the modulus of
elasticity of the concrete. The full replacement of OPC with CSA cement caused an

Fig. 3 28-days modulus of elasticity
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increase of 24% in the 28-day modulus of elasticity. This increase can be explained
by the ability of CSA cement to densify the microstructure of the cement matrix and
improve the characteristics of ITZ, which consequently lead to an enhancement in
the modulus of elasticity of concrete.

The combination of OPC and CSA cements at equal percentages of 50% led to a
slight increase in the modulus of elasticity.

Additionally, the substitution of a portion ofOPCwith slag inCSA-blend concrete
mix resulted in an increase of 7% compared to that of OPC. The lowest modulus of
elasticity was attained by the mix containing 100% OPC, while the best performing
mix was the CSA mix, which attained a modulus of elasticity of 38.8 GPa.

The modulus of elasticity of OPC, CSA, OPC50-CSA50, and OPC25-CSA50-
SL25 concrete mixes containing 1% DHE steel fibers were 4%, 3%, 10%, and 8%
higher than those of the corresponding mixes without fibers, respectively. This result
suggests that the addition of steel fibers with higher elastic modulus compared to
that of the cement matrix can improve the modulus of elasticity of concrete.

3.5 Flexural Behavior

The diagram of the 28-day load-CMOD for different concrete mixes is shown in
Fig. 4. The behavior of concretes without fibers was almost linear up to the max-
imum load, followed by a steeper descending branch up to failure point, and then
the beam specimens split into two separated parts. The results indicate that the full
replacement of OPC with CSA cement resulted in an increase of 20% in the maxi-
mumflexural load of concrete. Similar to the splitting tensile strength results, the rich

Fig. 4 Flexural load-CMOD curves
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amount of ettringite in thismix thatwas produced by hydration of ye’elimite, which is
the main component of CSA cement, is the main reason for this improvement. It was
also observed that the flexural strength of CSA-blend mixes was lower compared
to that of the OPC mix. For instance, the flexural strength of OPC50-CSA50 and
OPC25-CSA50-SL25 mixes were 44 and 35% lower than that of the reference OPC
mix. As can be seen, the replacement of OPC with 25% of slag caused an improve-
ment in the flexural strength compared to that of the OPC50-CSA50 concrete. This
improvement can be attributed to the formation of additional C–S–H gel which is the
main strength-contributing compound as a result of the reaction between slag and
calcium hydroxide. Moreover, slag may fill in the capillary pores and improve the
features of transition zones and microstructures of the cement matrix.

On the other hand, the results of fiber-reinforced concretes illustrate that the
addition of fibers remarkably improved the post-cracking behavior of FRC with an
extensive cracking process between first crack load and peak load. It was noticed
that the addition of 1% DHE steel fibers changed the behavior of concrete and a
deflection-hardening performance was observed in all mixes reinforced with steel
fibers. In these concrete mixes, once the first crack occurred, the fibers bridging
the crack resisted the load and prevented further crack propagation. The excellent
performance of these mixes can be attributed to the ability of DHE steel fibers to
carry the load after matrix cracks until further cracks form. Figure 4 shows that
the best performance was observed with the mix where OPC was fully replaced
with CSA cement and reinforced with 1% steel fiber (i.e., CSA-DHE). The flexural
strength of this mix increased by 87% and 55% as compared to that of the OPC and
CSA concrete, respectively. The expansive behavior of CSA cement can lead to a
better bond between the cement matrix and steel fibers, which subsequently led to an
increase in the flexural strength of concrete. The results further show that the flexural
strength of OPC, CSA, OPC50-CSA50, and OPC25-CSA50-SL25 mixes containing
1% DHE steel fibers was increased by 60%, 55%, 120%, and 113%, respectively, as
compared to that of their correspondingmixes without fibers. As it can be observed in
the graph, the inclusion of steel fibers had the most influence on the flexural strength
of concrete where CSA cement was used in blend mixes. As previously mentioned,
the expansive behavior of CSA-blend mixes may lead to a better bond between the
cement matrix and steel fibers as a result of self-stressing, which subsequently leads
to an increase in the flexural strength of concrete.

3.6 SEM Observation

To study themicrostructural properties of concretes fabricated with different binders,
an SEM method was used and images of the fracture surface are shown in Fig. 5.
As one can observe, the hydration products of OPC concrete consist of a featureless
gel of C–S–H, ettringite crystals with a needle-like shape, and calcium hydroxide
(CH) crystals with a plate-like shape. The results indicate that the content of cal-
cium hydroxide is relatively higher than that of the ettringite. Additionally, it can
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Fig. 5 SEM images: a OPC b CSA concrete

be seen that the length of ettringite crystals developed in OPC concrete varied from
1 to 3 µm. Moreover, there are pores in the surface of the cement matrix that can
adversely affect the durability properties of concrete. Figure 8b shows the hydration
products of CSA cement-based concrete, whichmainly consist of prismatic ettringite
crystals of different sizes. This type of ettringite crystals causes an improvement in
the mechanical properties of concrete and also leads to the dimensional stability of
cement (Arjunan et al. 1999).

4 Conclusions

The following conclusions can be drawn from the experimental results: the slump
values of all concretes considered in this study varied from 19 to 23 cm. However,
a greater dosage of superplasticizer was used in CSA cement-based concretes to
achieve a similar consistency to that of the OPC mixes. The addition of steel fibers
adversely affects the consistency of concrete. The full replacement of OPCwith CSA
cement results in an increase in the mechanical properties of concrete particularly at
later ages. This can be attributed to the formation of a rich amount of ettringite crystals
which, due to the interlocking effect, improve the mechanical properties of concrete.
The results also indicate that the strength evolutions of CSA cement-based concretes
are higher compared to those of OPC mixes. The addition of 1% DHE steel fibers
in concrete significantly increases the mechanical properties of concrete, especially
the splitting tensile and flexural strengths of concrete. For instance, the splitting
tensile and flexural strengths of the OPC-DHE1 mix after 28 days were increased
by 70 and 61% over those of the OPC mix. These increases for the CSA-DHE1
mix compared to those of the CSA mix were 76 and 55%. Moreover, the addition
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of 1% DHE steel fibers in concrete results in a deflection-hardening behavior. The
SEM results indicate that the hydration products of OPC concrete mix are mainly
consist for portlandite, while prismatic ettringite crystals are the main products of
CSA cement-based concrete.
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