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Abstract. Within the EU-funded Pulse project, we are implementing a data
analytic platform designed to provide public health decision makers with
advanced approaches to jointly analyze maps and geospatial information with
health care data and air pollution measurements. In this paper we describe a
component of such platform, designed to couple deep learning analysis of
geospatial images of cities and some healthcare and behavioral indexes collected
by the 500 cities US project, showing that, in New York City, urban landscape
significantly correlates with the access to healthcare services.
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1 Introduction

Recent advances in machine learning and deep learning enable the design and
implementation of novel data analysis pipelines that allow fusing heterogeneous data
sources to extract novel insights and predictive patterns. These approaches seem par-
ticularly suitable to help increasing our insights in the relationships between the urban
landscape of cities and the behavior of their residents, with particular focus on well-
being and healthcare indexes. In this context, it can be of interest of health care
planners and city decision-makers to have instruments able to find clusters of city areas
that share similar urban structures and to analyze some behavioral indexes of their
residents, in particular to see potential correlations and to plan similar interventions in
the different clusters, even if such clusters contain areas that are geographically far. We
have applied such approach in the context of the PULSE (Participatory Urban Living
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for Sustainable Environment) EU-project1. PULSE aims at developing a set of models
and technologies to predict and manage public health problems in cities and promote
health. It follows a participatory approach where citizen provide data through personal
devices that are integrated with information from heterogeneous sources: open city
data, health systems, urban sensors and satellites. The project deals with various issues
concerning air quality, lifestyle and personal behavior and it aims to investigate the
correlations between the exposure to atmospheric pollutants, the citizen habits and the
health of the citizen themselves, focusing on asthma and type 2 diabetes. PULSE is
being implemented in 5 major cities all over the world. Within PULSE, we are
implementing a data analytic platform that will provide public health decision makers
with advanced approaches to jointly analyze maps and geospatial information with
health care data and air pollution measurements.

In this paper we will describe the results obtained with a prototypical component of
such platform, designed to couple deep learning analysis of geospatial images of cities
and some healthcare and behavioral indexes, showing that in New York City urban
landscape significantly correlates with the access to healthcare services.

2 Deep Learning and Transfer Learning Models

Deep neural models provide flexible instruments to perform non-linear approximation
of a variety of multivariate functions and to extract latent variables from a data set. In a
nutshell, deep neural models are neural networks with many layers, able to map non-
linear functions with a number of parameters that is typically lower than their equiv-
alent models with one layer only. Such models are particularly attractive since they can
be used to perform clustering, regression and classification starting from data sets made
of images, texts, time series.

In dependence of the nature of the input data set, different architectures can be
exploited, ranging from the combination of many Convolutional layers in the case of
images to the use of Long-term/Short-term networks in the case of time series and
speech/text data.

Recently, an increasing number of papers are using deep learning to examine the
relationships between the urban landscape and some environmental or citizens’
behavioral data [1–3].

One of the main limits of deep learning models is related to the need of very large
data sets in order to be able to gain advantage of their capability of encoding even the
finest details that can be important to map input data, without getting trapped into noise
and poor parameters estimates.

Rather interestingly, in order to deal with this problem, it is possible to resort to an
increasing set of pre-trained deep learning models that can be used for the task of
transfer learning [4], i.e. models that are able to represent the input space into a set of
latent variables on the basis of a mapping mechanism, usually a deep neural network,
learned on a large (external) data set, so that the relationships between such latent

1 “http://www.project-pulse.eu”.
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variables and the outcomes can be later learned on a specific and smaller data set.
A well-known example is Inception-v3, a convolutional neural network trained on
more than a million images from the ImageNet database (http://www.image-net.org).
The network has 48 layers and can classify images into one thousand object categories,
including trees and many animals. Another interesting example is represented by the
Painters [5] networks, developed to automatically classify Paintings of famous artists.
In principle, any of those methods can be used following the transfer learning paradigm
to represent images coming from urban landscape of New York City.

3 Data and Methods

Our analysis is based on two data sources: NYC high resolution images and healthcare
data coming from the 500 cities project [6]. NYC images have been collected by the
“The National Agriculture Imagery Program” (NAIP) that acquires aerial imagery
during the agricultural growing seasons in the continental United States. In particular,
we have downloaded an image having an original resolution of 0.5 m and have
downsampled it to 2 m which allows to have a fine-grained representation of the aerial
urban landscape (see Fig. 1).

As it will be explained in the following, the reason for the downsampling is that the
big image has been subdivided into tiles and the neural network adopted can accept
images having maximum size of 299 pixel; we had to tune the ground resolution in
order to have meaningful tiles, embracing a sufficiently-sized area.

Fig. 1. NAIP image of NYC.
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Health care data have been extracted from the repository made available by the 500
Cities project. “500 cities” is a collaboration between CDC, the Robert Wood Johnson
Foundation, and the CDC Foundation2. The project provides city- and census tract-
level small area estimates for chronic disease risk factors (unhealthy behaviors), health
outcomes, and clinical preventive service use for the largest 500 cities in the United
States. NYC is divided in 2166 census tracts and the latest data available concerns
2017. The 27 chronic diseases measures provided by the project are listed in Table 1.

The measures include major risk behaviors that lead to illness, suffering, and early
death related to chronic diseases and conditions, as well as the conditions and diseases
that are the most common, costly, and preventable of all health problems.

Table 1. 500 cities measures grouped by category. The 27 measures include 13 health
outcomes, 9 prevention practices and 5 unhealthy behaviors.

Category Measure

Health outcomes Arthritis among adults aged � 18 years
Current asthma among adults aged � 18 years
High blood pressure among adults aged � 18 years
Cancer among adults aged � 18 years
High cholesterol among adults aged � 18 years who have been screened in the past 5
years
Chronic kidney disease among adults aged � 18 years
Chronic obstructive pulmonary disease among adults aged � 18 years
Coronary heart disease among adults aged � 18 years
Diagnosed diabetes among adults aged � 18 years
Mental health not good for � 14 days among adults aged � 18 years
Physical health not good for � 14 days among adults aged � 18 years
All teeth lost among adults aged � 65 years
Stroke among adults aged � 18 years

Prevention Current lack of health insurance among adults aged 18–64 years
Visits to doctor for routine checkup within the past year among adults aged � 18 years
Visits to dentist or dental clinic among adults aged � 18 years
Taking medicine for high blood pressure control among adults aged � 18 years with
high blood pressure
Cholesterol screening among adults aged � 18 years
Mammography use among women aged 50–74 years
Papanicolaou smear use among adult women aged 21–65 years
Fecal occult blood test, sigmoidoscopy, or colonoscopy among adults aged 50–75 years
Older adults aged � 65 years who are up to date on a core set of clinical preventive
services by age and sex

Unhealthy
behaviors

Binge drinking among adults aged � 18 years
Current smoking among adults aged � 18 years
No leisure-time physical activity among adults aged � 18 years
Obesity among adults aged � 18 years
Sleeping less than 7 h among adults aged � 18 years

2 https://www.cdc.gov/500cities/index.htm.
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3.1 The Data Analysis Pipeline

The pipeline implemented in our work is described in Fig. 2. The NAIP NYC image has
been subdivided into image square blocks having size of 256 � 256 pixels, corresponding
to a 512 m edge. Therefore, it was possible to estimate the value of each of the 27 variables
collected by “500 Cities” for each block. During this process, blocks out of the tracts or
over the sea have been excluded, thus reducing the dataset. The images have been then
processed by a pretrained deep model, thus extracting the final features for each image.
Images are clustered by resorting to k-means clustering, and the clusters, confirmed with
visual inspection, are associated to the healthcare indexes by statistical analysis.

3.2 Image Blocks

The NAIP NYC image has been subdivided into 8336 images of 256 � 256 pixels.
Each image is a square with edge equal to 512 m. It must be underlined that the original
image is georeferenced, meaning that each single pixel is precisely located in space. The
small derived tiles are georeferenced as well and can be effectively overlapped to the
health and well-being maps. The images have been processed resorting to the Matlab
Image Processing and Mapping toolboxes, which are capable of properly managing
georeferenced images. Figure 3 shows some examples of the resulting images.

It is possible to note that some of the squares have white areas, corresponding to
unmapped zones, due to the irregular borders of the image and to the presence of sea,
rivers. Due to the availability of the vector map of the borders of NYC, we have been
able to quantify, for each tile, the amount of its surface lying inside the borders of the
city; we then filtered the original tile set and maintained only those having a minimal
overlapping of 90%.

3.3 Estimation of the Healthcare Indexes for Each Image Block

The healthcare indexes of the 500 Cities database are collected for census tracts and
NYC has, as already reported, 2166 census tracts. In order to carry out our analysis,

Fig. 2. The data analysis pipeline
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we had to determine the value of the considered variables for each image block. In fact,
a given tile overlaps, in general, several tracts. Therefore, we had to implement a
simple estimator of the healthcare index of the block, as:

hci blockð Þ ¼
P

j wjhci jð Þ
P

j wj

where hci(j) is the value of the generic health care index for the j-th census tract and wj

is the percentage of the image block covered by the mentioned tract. An example is
shown in Figs. 3 and 4.

In order to properly quantify hcis, the blocks with a white area greater than 10% of
the image have been removed. The final number of image blocks used for the following
analysis has thus lowered to 2512 images. Each image has been then processed by
resorting to a deep neural model to extract a set of latent features.

Fig. 3. The quantification of the healthcare index value (SLEEP) of a block.

Fig. 4. Original census tracts with the 500 Cities SLEEP index (left hand side) and derived
quantification of the healthcare index values for SLEEP variable (right hand side).
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3.4 Deep Neural Networks Processing and Clustering

As a deep neural network model used for transfer learning, we have selected the
network developed for the 2016 Painters by number competition [6]. In such compe-
tition the goal was to learn how to discriminate the authors of paintings between 1584
unique painters, starting from a training set of 79433 instances; the test set was
composed of 23817 instances. In this case, a deep neural network model was learned,
with 23 layers, mostly convolutional layers with some max pooling layer. The Painters
network computes a layer of 2048 latent variables before the final discrimination layer
implemented with a soft-max non-linear function. Those latent variables can be used as
a way to embed generic images in the latent space. Therefore, using the software
Orange (https://orange.biolab.si) and its Python pipeline, we have processed all image
blocks with the Painters model, thus obtaining a final data matrix of 2512 examples
with 2048 features.

Such features have been used to cluster the image blocks by resorting to the well-
known K-means clustering algorithm. The value of K has been derived with a grid
search between 2 and 6 and taking the value that maximize the Silhouette coefficient.

3.5 Correlation and Statistical Analysis

The final step of the data analysis pipeline is represented by the search of statistical
correlations between the clusters and their hcis. Univariate multinomial logistic
regression was applied to estimate the probability to belong to a specific cluster given
single variables’ values. Multivariate multinomial logistic regression was performed
after removal of samples characterized by missing values. A backward stepwise
selection procedure based on AIC was applied to identify the most informative set of
variables jointly modulating the probability to belong to the clusters. Multinomial
logistic regression and the stepwise selection procedure were implemented in the R
packages “nnet” and “stats”, respectively. Analyses were performed by the R software
tool version 3.5.1 (http://www.r-project.org).

4 Results

4.1 Clustering

K-means was run on the 2512 instances with Euclidean distance and 10 reruns.
4 clusters were found to maximize Silhouette coefficient. The output of the clustering
algorithm has been validated by analyzing the cluster distribution with the tSNE two-
dimensional mapping, as reported in Fig. 5. It is easy to see that the four clusters are in
general well separated in the two-dimensional space3.

3 It is worthwhile mentioning that this criterion was qualitatively used to assess also other deep neural
networks model; Painters turned out to generate the clusters that had the best tSNE spatial
distribution of clusters.
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Thanks to visual inspection, it is possible to highlight that the four clusters well
correspond to different urban landscapes. Cluster C1 corresponds to green areas,
Cluster C2 to residential areas with small houses, Cluster C3 to industrial areas and
larger buildings, Cluster C4 to residential with larger buildings. Four examples are
shown in Fig. 6. Cluster analysis clearly show that the deep neural network model is
able to map images in the latent space that share the intuitive notion of similarity that
humans may use when they have to classify urban landscape. The method is thus able
to automatically cluster similar areas where similar interventions can be planned.

Fig. 5. The tSNE representation of the data with colors identifying the four clusters.

Fig. 6. Four images representing the clusters.
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4.2 Correlation and Statistical Analysis

Univariate analysis shows that 22 over 27 variables were significantly correlated with
the clusters. This is also confirmed with visual inspection showing the variables dis-
tributions after equal frequency discretization against the clusters, as shown in Fig. 7.

In general, cluster C1, which is the one that groups green areas, has consistently
better prevention and health indicators, but worse sleeping indexes and leisure time.
Overall, there is a gradient with all indexes moving from cluster C1, to C2, to C3 and
finally to C4, which are the residential areas with large buildings.

A multivariate multinomial logistic regression has been performed to assess if
significant correlations are present even in the multivariate setting. In this case, after a
stepwise feature selection process, 20 variables have been selected. Of those, five
variables have been found to be significant (p � 0.01) in all sub-regressions performed
by the multinomial model: Colon screening (Fecal occult blood test, sigmoidoscopy, or
colonoscopy among adults aged 50–75 years), Chronic obstructive pulmonary disease
among adults aged � 18 years, High cholesterol among adults aged � 18 years who
have been screened in the past 5 years, Chronic kidney disease among adults aged
� 18 years and finally Stroke among adults aged � 18 years.

4.3 Mapping

The blocks and the clusters have been represented in the original map, confirming the
qualitative evaluation of the clusters reported above (Fig. 8).

Fig. 7. The different distributions of Cholesterol screening among adults aged � 18 years in the
different clusters. Inhabitants of cluster C1 have much higher propensity towards screening than
those who live in Cluster C4.
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We can find green areas (C1), residential areas with larger buildings (C2), industrial
areas (C3) and finally residential areas (C4).

5 Discussion and Conclusions

The data analysis pipeline described in this paper shows that it is possible to auto-
matically correlate urban landscape with healthcare indicators at the whole city level. In
the NYC case, such correlation seems particularly strong, probably because of social
factors, which, in the US society, makes health indicators related to the urban areas
where people live.

Our work has a number of implications.
First of all, it shows that deep neural networks designed to encode image data can

be successfully reused within transfer learning approaches. Their application to rep-
resent urban landscape seems very effective.

Second, in the context of the PULSE project, the capability of finding clusters of
similar urban landscape may allow to profile city areas, in which health care decision
makers may plan similar interventions.

Finally, the combination of urban landscape and healthcare indicators is not only
useful to hypothesize the intertwining of these two dimensions, but also to further
profile urban areas by finding similar areas with similar behaviors of their inhabitants,
thus allowing also life style interventions and more “precise” health care policies.

Fig. 8. The clusters remapped in NYC. (Color figure online)
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Of course, the analysis has some limitations. First of all, the “quantification” of the
health care indexes in the city blocks have been performed by a weighted averaging of
the indexes of the census tracts included in the blocks. The weights are computed
taking into account only the spatial overlap and not the actual number of inhabitants of
the blocks. Second, the results obtained are probably “proxies” of the wealth of the
people living in the different areas. For this reason, results may be representative of
specific cities and not generalizable to other ones.
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