
Chapter 3
The Basics of Syntactic Parsing in ACT-R

In this chapter, we introduce the basics of syntactic parsing in ACT-R. We build
a top-down parser and learn how we can extract intermediate stages of pyactr
simulations. This enables us to inspect detailed snapshots of the cognitive states that
our processing models predict.

3.1 Top-Down Parsing

Now that the basic ACT-R cognitive architecture is in place and we’re more familiar
with its specific implementation in pyactr, let us build a basic model of syntactic
parsing. Specifically, we will build a top-down parser, i.e., a parser that uses the
grammar to make predictions about the sentential structure of the upcoming input.

There are three properties of the human parser that we want our model to capture
(Marslen-Wilson 1973, Frazier and Fodor 1978, Tanenhaus et al. 1995, Steedman
2001, Hale 2011 among others):

i. the parser is incremental: syntactic parsing and semantic interpretation do not
lag significantly behind the perception of individual words;

ii. the parser is predictive: the processor forms explicit representations of words
and phrases that have not yet been heard;

iii. finally, the parser satisfies the competence hypothesis: understanding a sen-
tence/discourse involves the recovery of the structural description of that sen-
tence/discourse on the syntax side, and of the meaning representation on the
semantic side.

A top-down parser satisfies these conditions and it has the pedagogical advantage
of being very simple (too simple, in fact, to be cognitively plausible). It is, therefore,
a good place to start.

© The Author(s) 2020
A. Brasoveanu and J. Dotlačil, Computational Cognitive Modeling
and Linguistic Theory, Language, Cognition, and Mind 6,
https://doi.org/10.1007/978-3-030-31846-8_3

39

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-31846-8_3&domain=pdf
https://doi.org/10.1007/978-3-030-31846-8_3


40 3 The Basics of Syntactic Parsing in ACT-R

Suppose we have a context-free grammar with the following rules:

(1) S → NP VP
NP → ProperN
VP → V NP
ProperN → Mary
ProperN → Bill
V → likes

For simplicity, we assume that we have only two proper names in our language and
one transitive verb. Our goal is to build a top-down parser that is able to analyze the
sentence Mary likes Bill. We assume the sentence is presented to the comprehender
one word at a time in themanner of self-paced reading tasks (Just et al. 1982). In such
tasks, the words are hidden and only one word is uncovered at a time with a spacebar
press. The human reader decides when to press the spacebar to uncover the next word
(which automatically hides the current word), hence the name of self-paced reading.
So reading our sentenceMary likes Bill will happen in four successive stages. In one
such version of self-paced reading (the so-called non-cumulative moving-window
paradigm), the whole process would look as in (2) below.

(2) i. initial display: ---- ----- ----

ii. after one spacebar press: Mary ----- ----

iii. after another spacebar press: ---- likes ----

iv. after the third spacebar press: ---- ----- Bill

Self-paced reading tasks mimic an essential aspect of naturally-occurring lan-
guage comprehension with auditory stimuli: the signal is strictly linearly and strictly
incrementally presented one word at a time. Just as in naturally-occurring verbal
interactions, and unlike in normal reading situations, the linguistic signal cannot be
‘rewound’ to previous words—we cannot just look back and reread previous parts of
the text—or ‘fast-forwarded’ to subsequent words—we cannot jump ahead to parts
of the text that do not immediately follow the word currently being read.

With the empirical task fully characterized as a self-paced reading task, we can
proceed to the characterization of our processing model. A top-down parser can be
thought of as a push-down automaton, i.e., an automaton that has a basic form of
memory represented as a stack. The stack stores parsing goals and subgoals in a
strict, total order and these goals are accomplished one at a time by accessing the top
of the stack. In our case, the parsing goals are simply syntactic categories that have
to be parsed, i.e., that have to be identified in the incoming string.

For example, whenwe start the parsing process, we push the initial goal of parsing
an S node onto the stack. The stack has now only one goal in it, namely ‘parse an
S’, and the goal sits at the top of the stack.

(3) S

We pop goals off the stack one at a time: we can only look at the top of the stack
and remove the current top goal when this goal is (i) accomplished or (ii) broken



3.1 Top-Down Parsing 41

down exhaustively into subgoals. For example, we will pop the ‘parse an S’ goal off
the stack when we apply the first grammar rule in (1) above and replace this goal
with two subgoals: first parse an NP (i.e., identify an NP in the incoming word input),
then parse a VP. The resulting stack will now have two goals: the top one is ‘parse
an NP’, and the one below it is ‘parse a VP’.

(4) S ⇒ NP
VP

The parser works by modifying the contents of its stack based on two pieces of
information: the top element on the stack and, possibly, the current word that has to
be parsed (the leftmost word in the incoming string of words).

We can sum up top-down parsing as a parsing strategy that applies two algo-
rithm schemata, expand and scan, in this order (see Hale 2014 among others for an
introduction):

(5) Top-down parsing rules:

a. expand: if the stack has a symbol X on top, and the grammar contains
a rule X → A B or X → A, pop X and push down onto the stack the
symbols B and A (in that order), or the symbol A, respectively.

b. scan: if the top of the stack has a terminal symbol (a symbol like V or
ProperN that rewrites to a lexical item, that is, a part of speech) and w,
the leftmost word to be parsed, is of that part of speech, then pop the
terminal symbol off the stack and remove w from the word string that is
to be parsed.

Let us now implement a top-down parser in pyactr that consists of these two
general parsing rules and uses the grammar in (1). Recall that the example sentence
we will parse isMary likes Bill.

3.2 Building a Top-Down Parser in pyactr

Let us start with the first standard step, importing pyactr.

[py1] >>> import pyactr as actr 1

We should now specify the types of chunks we need. We will have one type for
parsing goals. The parsing goal will keep track of:

• the stack content: we only need two positions in the stack for our current
purposes—the top and the bottom of the stack; this is a consequence of the
fact that our grammar (1) generates at most binary branching trees with no left
recursion (cf. Resnik 1992);

• the current word being parsed (if any);



42 3 The Basics of Syntactic Parsing in ACT-R

• the current task of the parser, that is, the current state our parsing model is
in—basically, ‘parsing’ if the parse is still ongoing, and ‘done’ if the parsing is
finished.

[py2] >>> actr.chunktype("parsing_goal", 1
... "stack_top stack_bottom parsed_word task") 2

The second chunk type we need to declare is one that will enable us to represent
the incoming sentence, i.e., the word string to be parsed. This might seem counter-
intuitive: why shouldwe represent the sentence to be parsed in a chunk? The sentence
is external to the agent, it’s what the agent reads or hears. However, at this point we
have no way of representing the surrounding environment and the basic input/output
interfaces between the mind and the environment. We therefore have to represent a
sentence internally as a chunk. When we introduce the vision and motor modules in
Chap.4, we will be able to develop a more intuitive and elegant solution.

The chunk type for sentences only needs to store three words, since our target
sentence is that long:

[py3] >>> actr.chunktype("sentence", "word1 word2 word3") 1

3.2.1 Modules, Buffers, and the Lexicon

Let us now initialize the model and set up more convenient ways of accessing the
declarative memory module and the goal buffer:

[py4] >>> parser = actr.ACTRModel() 1
>>> dm = parser.decmem 2
>>> g = parser.goal 3

The goal buffer will store a parsing_goal chunk, which carries the informa-
tion that drives the parsing process, and which is updated throughout that process.
But we also need to store the word sequence that we need to parse, so we will create
a second buffer that is similar to the goal buffer and that will store the sentence to be
parsed.

Having two goal-like buffers is not uncommon in ACT-R. The first buffer is
the actual goal buffer, which keeps track of the information driving the cognitive
process. The other one is the imaginal buffer. This buffer is associated with the
imaginal module and maintains an internal image of the information associated with
the current cognitive process, thereby providing contextual information relevant for
the current task. Thus, storing the sentence to be parsed in the imaginal buffer is an
acceptable approximation of the cognitive behavior we’re trying to model.

[py5] >>> imaginal = parser.set_goal(name="imaginal", delay=0.2) 1

In [py5], we create a new goal buffer, the imaginal buffer. The string
"imaginal" sets the name under which the model will recognize and access the



3.2 Building a Top-Down Parser in pyactr 43

buffer (e.g., in production rules). The delay attribute of the imaginal buffer is the
time needed to encode/set a chunk in the buffer, which is 0.2 s (200 ms). This is
the default ACT-R value for this buffer, in contrast to the goal buffer which sets a
chunk immediately. Finally, [py5] assigns this new buffer to a variable imaginal
so that we can access it more easily in the Python interpreter.

The goal and imaginal buffers—more generally, all the buffers at any given point
in a cognitive process—provide the internal state, or the context, of the cognitive
process at that point. For example, chunks in memory that share values with chunks
in the goal or imaginal buffers are contextually ‘primed’: they are more salient than
other items and are easier to retrieve because they are relevant in context.

Thus, the cognitive context in the sense of ‘the current state of the buffers’ has
a function similar to variable assignments in first-order logic. Assignments in first-
order logic provide the current context of interpretation relative to which upcoming
expressions are interpreted. Similarly, the state of the buffers in an ACT-R model of
the mind provide the context for the next step in the cognitive process.

We can even extend this analogy to models, i.e., to the other parameter that the
interpretation function in first-order logic is relativized to. The ACT-R counterpart
of a first-order logic model is the content of the modules, particularly the facts stored
in declarative memory and the rules stored in procedural memory.

We can now add chunks to the goal and imaginal buffers:

[py6] >>> g.add(actr.chunkstring(string=""" 1
... isa parsing_goal 2
... task parsing 3
... stack_top S 4
... """)) 5
>>> g 6
{parsing_goal(parsed_word= , stack_bottom= , stack_top= S, task= parsing)} 7
>>> imaginal.add(actr.chunkstring(string=""" 8
... isa sentence 9
... word1 Mary 10
... word2 likes 11
... word3 Bill 12
... """)) 13
>>> imaginal 14
{sentence(word1= Mary, word2= likes, word3= Bill)} 15

Thegoalbuffer switches to an activeparsing state/task, and the current pars-
ing goal, i.e., the top of the stack, is set to parsing a sentence (S). In the imaginal
buffer, we set the sentence to be parsed toMary likes Bill.

We are now ready to start answering the main question of the chapter: how do
we implement the top-down parser itself? We will assume that the grammar and
associated parsing rules are part of the proceduralmodule, i.e., they are encoded
in production rules. This contrasts with lexical information, which is commonly
encoded in declarative memory. See Lewis and Vasishth (2005) for more discussion
and arguments for this division of labor between declarative and procedural memory
when encoding the lexicon and the grammar and parser.

We specify our lexicon first. For simplicity, our lexical representationswill encode
only the form (weuse thewritten form, for simplicity) and thepart of speech (syntactic
category) tags of our lexical items:



44 3 The Basics of Syntactic Parsing in ACT-R

[py7] >>> actr.chunktype("word", "form cat") 1
>>> dm.add(actr.chunkstring(string=""" 2
... isa word 3
... form Mary 4
... cat ProperN 5
... """)) 6
>>> dm.add(actr.chunkstring(string=""" 7
... isa word 8
... form Bill 9
... cat ProperN 10
... """)) 11
>>> dm.add(actr.chunkstring(string=""" 12
... isa word 13
... form likes 14
... cat V 15
... """)) 16
>>> dm 17
{word(cat= ProperN, form= Mary): array([0.]), 18
word(cat= ProperN, form= Bill): array([0.]), 19
word(cat= V, form= likes): array([0.])} 20

3.2.2 Production Rules

We now turn to the production rules that encode both our context-free grammar rules
in (1) and the top-down parsing strategy codified by the expand and scan rules
in (5).

The first rule is an expanding rule, encoding the first phrase structure rule of our
grammar: we expand S into NP and VP, in that order.

[py8] >>> parser.productionstring(name="expand: S ==> NP VP", string=""" 1
... =g> 2
... isa parsing_goal 3
... task parsing 4
... stack_top S 5
... ==> 6
... =g> 7
... isa parsing_goal 8
... stack_top NP 9
... stack_bottom VP 10
... """) 11
{’=g’: parsing_goal(parsed_word= , stack_bottom= , 12

stack_top= S, task= parsing)} 13
==> 14
{’=g’: parsing_goal(parsed_word= , stack_bottom= VP, 15

stack_top= NP, task= )} 16

Note how the rule pops the S goal off the stack and replaces it with two subgoals
NP and VP, in that order. We do not modify the current task, which should remain
specified asparsing, so we omit it from the specification of the action: the chunk in
the consequent/right-hand side of the production rule only specifies the slots whose
values should be updated, namely stack_top and stack_bottom.

The second rule is once again an expanding rule: NP is expanded into ProperN.

[py9] >>> parser.productionstring(name="expand: NP ==> ProperN", string=""" 1
... =g> 2
... isa parsing_goal 3
... task parsing 4
... stack_top NP 5



3.2 Building a Top-Down Parser in pyactr 45

... ==> 6

... =g> 7

... isa parsing_goal 8

... stack_top ProperN 9

... """) 10
{’=g’: parsing_goal(parsed_word= , stack_bottom= , 11

stack_top= NP, task= parsing)} 12
==> 13
{’=g’: parsing_goal(parsed_word= , stack_bottom= , 14

stack_top= ProperN, task= )} 15

Note that the rule only updates the top of the stack. The bottom of the stack is left
unmodified, so it is omitted throughout the rule.

The third production rule expands VP into V and NP:

[py10] >>> parser.productionstring(name="expand: VP ==> V NP", string=""" 1
... =g> 2
... isa parsing_goal 3
... task parsing 4
... stack_top VP 5
... ==> 6
... =g> 7
... isa parsing_goal 8
... stack_top V 9
... stack_bottom NP 10
... """) 11
{’=g’: parsing_goal(parsed_word= , stack_bottom= , 12

stack_top= VP, task= parsing)} 13
==> 14
{’=g’: parsing_goal(parsed_word= , stack_bottom= NP, 15

stack_top= V, task= )} 16

This rule is almost identical to the first rule: we only change the syntactic category
symbols. Crucially, note that the rule is triggered only when the ‘parse a VP’ goal is
at the top of the stack. Thus, to trigger this third rule, something must happen after
the successive application of the first and second rules "expand: S ==> NP
VP" and "expand: NP ==> ProperN" that will promote the VP goal from
the bottom of the stack to the top of the stack.

Goals at the bottom of the stack can be promoted to the top when the top goal is
popped off the stack and is not replaced by another goal. This is what happens in a
scan step: in our case, a scan rule needs to (i) pop the ProperN goal off the top of
the stack and, at the same time, (ii) scan the first word Mary of our target sentence.

That is, once we have a terminal (ProperN, V) at the top of our stack, we have to
check that the terminal matches the category of the word to be parsed. If so, the word
is parsed. We achieve this by means of two rules. First, we place a retrieval request
for a lexical item stored in declarative memory whose form is the current word to be
parsed. Then, if a lexical item is successfully retrieved and the syntactic category of
that lexical item is the same as the terminal at the top of our stack, the current word
is scanned and the top symbol on our stack is popped.

The two retrieval rules for our two terminal symbols (ProperN, V) are provided
below. In both cases, we place a retrieval request based on the form of the first word
in the sentence to be parsed (=w1) and we change the state of the parsing goal to
retrieving (rather than parsing):



46 3 The Basics of Syntactic Parsing in ACT-R

[py11] >>> parser.productionstring(name="retrieve: ProperN", string=""" 1
... =g> 2
... isa parsing_goal 3
... task parsing 4
... stack_top ProperN 5
... =imaginal> 6
... isa sentence 7
... word1 =w1 8
... ==> 9
... =g> 10
... isa parsing_goal 11
... task retrieving 12
... +retrieval> 13
... isa word 14
... form =w1 15
... """) 16
{’=g’: parsing_goal(parsed_word= , stack_bottom= , 17

stack_top= ProperN, task= parsing), 18
’=imaginal’: sentence(word1= =w1, word2= , word3= )} 19

==> 20
{’=g’: parsing_goal(parsed_word= , stack_bottom= , 21

stack_top= , task= retrieving), 22
’+retrieval’: word(cat= , form= =w1)} 23

[py12] >>> parser.productionstring(name="retrieve: V", string=""" 1
... =g> 2
... isa parsing_goal 3
... task parsing 4
... stack_top V 5
... =imaginal> 6
... isa sentence 7
... word1 =w1 8
... ==> 9
... =g> 10
... isa parsing_goal 11
... task retrieving 12
... +retrieval> 13
... isa word 14
... form =w1 15
... """) 16
{’=g’: parsing_goal(parsed_word= , stack_bottom= , stack_top= V, 17
task= parsing), ’=imaginal’: sentence(word1= =w1, word2= , word3= )} 18

==> 19
{’=g’: parsing_goal(parsed_word= , stack_bottom= , 20

stack_top= , task= retrieving), 21
’+retrieval’: word(cat= , form= =w1)} 22

If the retrieved lexical item matches the top of our stack in syntactic category,
we parse the word, pop the top symbol off the stack, and move to the next word in
our sentence (that is, we promote word2 in our sentence to word1, and word3 to
word2):

[py13] >>> parser.productionstring(name="scan: word", string=""" 1
... =g> 2
... isa parsing_goal 3
... task retrieving 4
... stack_top =y 5
... stack_bottom =x 6
... =retrieval> 7
... isa word 8
... form =w1 9
... cat =y 10
... =imaginal> 11
... isa sentence 12
... word1 =w1 13
... word2 =w2 14
... word3 =w3 15
... ==> 16



3.2 Building a Top-Down Parser in pyactr 47

... =g> 17

... isa parsing_goal 18

... task printing 19

... stack_top =x 20

... stack_bottom None 21

... parsed_word =w1 22

... =imaginal> 23

... isa sentence 24

... word1 =w2 25

... word2 =w3 26

... word3 None 27

... ˜retrieval> 28

... """) 29
{’=g’: parsing_goal(parsed_word= , stack_bottom= =x, 30

stack_top= =y, task= retrieving), 31
’=retrieval’: word(cat= =y, form= =w1), 32
’=imaginal’: sentence(word1= =w1, word2= =w2, word3= =w3)} 33

==> 34
{’=g’: parsing_goal(parsed_word= =w1, stack_bottom= None, 35

stack_top= =x, task= printing), 36
’=imaginal’: sentence(word1= =w2, word2= =w3, word3= None), 37
’˜retrieval’: None} 38

Note how on lines 20–21 of [py13], the top of the stack is popped, so the symbol
on the bottom of the stack is promoted to the top of the stack. Similarly, the imaginal
buffer is updated on lines 23–27. The word =w1 that we just parsed is deleted from
the sentence, so the word string that we still need to parse contains only words =w2
and =w3. These remaining words are promoted to the word1 and word2 positions.
We also clear the retrieval buffer (~retrieval> on line 28).

Finally, as a convenience, the parsed word =w1 is stored in the parsed_word
slot of the parsing goal chunk (line 22 in [py13]), and we enter a new printing
state (line 19 in [py13]). This new state will trigger a print action reporting which
word was just parsed. The print action, performed by the rule in [py14] below, is
helpful to us as modelers, but it is not a necessary part of our processing model.

[py14] >>> parser.productionstring(name="print parsed word", string=""" 1
... =g> 2
... isa parsing_goal 3
... task printing 4
... =imaginal> 5
... isa sentence 6
... word1 ˜None 7
... ==> 8
... !g> 9
... show parsed_word 10
... =g> 11
... isa parsing_goal 12
... task parsing 13
... parsed_word None 14
... """) 15
{’=g’: parsing_goal(parsed_word= , stack_bottom= , 16

stack_top= , task= printing), 17
’=imaginal’: sentence(word1= ˜None, word2= , word3= )} 18

==> 19
{’!g’: ([([’show’, ’parsed_word’], {})], {}), 20
’=g’: parsing_goal(parsed_word= None, stack_bottom= , 21

stack_top= , task= parsing)} 22

The production rule in [py14] says that, if the current parsing goal is in a
printing state (line 4 in [py14]) and the slot word1 in the imaginal buffer is
not empty (the squiggle ~ on line 7 is negation), that is, we still have words to parse,
thenwe should print theparsed_word in thegoal buffer (lines 9–10). Line 9!g>



48 3 The Basics of Syntactic Parsing in ACT-R

should execute an action that involves the goal buffer. The action is then specified
on line 10: call the method show, which will print the value of the parsed_word
slot. When we’re done printing, we delete the contents of the parsed_word slot
and re-enter an active state of parsing (lines 11–14).

The last production we have to consider is the ‘wrap-up’ production we trigger at
the end of the parsing process, provided in [py15] below. The parsing process ends
when the word1 slot in the imaginal buffer chunk has the value None (line 7) and
the task is printing (line 4). We therefore print the final word of the sentence that
was just parsed (lines 9–10) and declare the parsing process done by clearing the
imaginal and goal buffers (lines 11–12).

[py15] >>> parser.productionstring(name="done", string=""" 1
... =g> 2
... isa parsing_goal 3
... task printing 4
... =imaginal> 5
... isa sentence 6
... word1 None 7
... ==> 8
... !g> 9
... show parsed_word 10
... ˜imaginal> 11
... ˜g> 12
... """) 13
{’=g’: parsing_goal(parsed_word= , stack_bottom= , 14

stack_top= , task= printing), 15
’=imaginal’: sentence(word1= None, word2= , word3= )} 16

==> 17
{’!g’: ([([’show’, ’parsed_word’], {})], {}), 18
’˜imaginal’: None, ’˜g’: None} 19

3.3 Running the Model

We run the model as before: we first instantiate a simulation of the model and then
run it.
[py16] >>> parser_sim = parser.simulation() 1

>>> parser_sim.run() 2
(0, ’PROCEDURAL’, ’CONFLICT RESOLUTION’) 3
(0, ’PROCEDURAL’, ’RULE SELECTED: expand: S ==> NP VP’) 4
(0.05, ’PROCEDURAL’, ’RULE FIRED: expand: S ==> NP VP’) 5
(0.05, ’g’, ’MODIFIED’) 6
(0.05, ’PROCEDURAL’, ’CONFLICT RESOLUTION’) 7
(0.05, ’PROCEDURAL’, ’RULE SELECTED: expand: NP ==> ProperN’) 8
(0.1, ’PROCEDURAL’, ’RULE FIRED: expand: NP ==> ProperN’) 9
(0.1, ’g’, ’MODIFIED’) 10
(0.1, ’PROCEDURAL’, ’CONFLICT RESOLUTION’) 11
(0.1, ’PROCEDURAL’, ’RULE SELECTED: retrieve: ProperN’) 12
(0.15, ’PROCEDURAL’, ’RULE FIRED: retrieve: ProperN’) 13
(0.15, ’g’, ’MODIFIED’) 14
(0.15, ’retrieval’, ’START RETRIEVAL’) 15
(0.15, ’PROCEDURAL’, ’CONFLICT RESOLUTION’) 16
(0.15, ’PROCEDURAL’, ’NO RULE FOUND’) 17
(0.2, ’retrieval’, ’CLEARED’) 18
(0.2, ’retrieval’, ’RETRIEVED: word(cat= ProperN, form= Mary)’) 19
(0.2, ’PROCEDURAL’, ’CONFLICT RESOLUTION’) 20
(0.2, ’PROCEDURAL’, ’RULE SELECTED: scan: word’) 21
(0.25, ’PROCEDURAL’, ’RULE FIRED: scan: word’) 22



3.3 Running the Model 49

(0.25, ’g’, ’MODIFIED’) 23
(0.25, ’imaginal’, ’MODIFIED’) 24
(0.25, ’retrieval’, ’CLEARED’) 25
(0.25, ’PROCEDURAL’, ’CONFLICT RESOLUTION’) 26
(0.25, ’PROCEDURAL’, ’RULE SELECTED: print parsed word’) 27
(0.3, ’PROCEDURAL’, ’RULE FIRED: print parsed word’) 28
parsed_word Mary 29
(0.3, ’g’, ’EXECUTED’) 30
(0.3, ’g’, ’MODIFIED’) 31
(0.3, ’PROCEDURAL’, ’CONFLICT RESOLUTION’) 32
(0.3, ’PROCEDURAL’, ’RULE SELECTED: expand: VP ==> V NP’) 33
(0.35, ’PROCEDURAL’, ’RULE FIRED: expand: VP ==> V NP’) 34
(0.35, ’g’, ’MODIFIED’) 35
(0.35, ’PROCEDURAL’, ’CONFLICT RESOLUTION’) 36
(0.35, ’PROCEDURAL’, ’RULE SELECTED: retrieve: V’) 37
(0.4, ’PROCEDURAL’, ’RULE FIRED: retrieve: V’) 38
(0.4, ’g’, ’MODIFIED’) 39
(0.4, ’retrieval’, ’START RETRIEVAL’) 40
(0.4, ’PROCEDURAL’, ’CONFLICT RESOLUTION’) 41
(0.4, ’PROCEDURAL’, ’NO RULE FOUND’) 42
(0.45, ’retrieval’, ’CLEARED’) 43
(0.45, ’retrieval’, ’RETRIEVED: word(cat= V, form= likes)’) 44
(0.45, ’PROCEDURAL’, ’CONFLICT RESOLUTION’) 45
(0.45, ’PROCEDURAL’, ’RULE SELECTED: scan: word’) 46
(0.5, ’PROCEDURAL’, ’RULE FIRED: scan: word’) 47
(0.5, ’g’, ’MODIFIED’) 48
(0.5, ’imaginal’, ’MODIFIED’) 49
(0.5, ’retrieval’, ’CLEARED’) 50
(0.5, ’PROCEDURAL’, ’CONFLICT RESOLUTION’) 51
(0.5, ’PROCEDURAL’, ’RULE SELECTED: print parsed word’) 52
(0.55, ’PROCEDURAL’, ’RULE FIRED: print parsed word’) 53
parsed_word likes 54
(0.55, ’g’, ’EXECUTED’) 55
(0.55, ’g’, ’MODIFIED’) 56
(0.55, ’PROCEDURAL’, ’CONFLICT RESOLUTION’) 57
(0.55, ’PROCEDURAL’, ’RULE SELECTED: expand: NP ==> ProperN’) 58
(0.6, ’PROCEDURAL’, ’RULE FIRED: expand: NP ==> ProperN’) 59
(0.6, ’g’, ’MODIFIED’) 60
(0.6, ’PROCEDURAL’, ’CONFLICT RESOLUTION’) 61
(0.6, ’PROCEDURAL’, ’RULE SELECTED: retrieve: ProperN’) 62
(0.65, ’PROCEDURAL’, ’RULE FIRED: retrieve: ProperN’) 63
(0.65, ’g’, ’MODIFIED’) 64
(0.65, ’retrieval’, ’START RETRIEVAL’) 65
(0.65, ’PROCEDURAL’, ’CONFLICT RESOLUTION’) 66
(0.65, ’PROCEDURAL’, ’NO RULE FOUND’) 67
(0.7, ’retrieval’, ’CLEARED’) 68
(0.7, ’retrieval’, ’RETRIEVED: word(cat= ProperN, form= Bill)’) 69
(0.7, ’PROCEDURAL’, ’CONFLICT RESOLUTION’) 70
(0.7, ’PROCEDURAL’, ’RULE SELECTED: scan: word’) 71
(0.75, ’PROCEDURAL’, ’RULE FIRED: scan: word’) 72
(0.75, ’g’, ’MODIFIED’) 73
(0.75, ’imaginal’, ’MODIFIED’) 74
(0.75, ’retrieval’, ’CLEARED’) 75
(0.75, ’PROCEDURAL’, ’CONFLICT RESOLUTION’) 76
(0.75, ’PROCEDURAL’, ’RULE SELECTED: done’) 77
(0.8, ’PROCEDURAL’, ’RULE FIRED: done’) 78
parsed_word Bill 79
(0.8, ’g’, ’EXECUTED’) 80
(0.8, ’imaginal’, ’CLEARED’) 81
(0.8, ’g’, ’CLEARED’) 82
(0.8, ’PROCEDURAL’, ’CONFLICT RESOLUTION’) 83
(0.8, ’PROCEDURAL’, ’NO RULE FOUND’) 84

The parser runs as expected: we successfully parse our three-word sentence. The
time course of the parsing is as follows.

The first word Mary is parsed at the 250 ms mark when the scan: word rule
is fired for the first time (lines 22–25) and printed by the time 300 ms of simulation
time have elapsed (line 29 in [py16]).



50 3 The Basics of Syntactic Parsing in ACT-R

The second word likes is parsed at the 500 ms mark when the scan: word rule
is fired for the second time (lines 47–50) and printed after 550 ms of total simulation
time (line 54).

The final word Bill is parsed at the 750 ms mark when the scan: word rule is
fired for the third and final time (lines 72–75) and printed after 800 ms of simulation
time have passed (line 79).

Let us examine the content of the declarative memory module at the end of the
simulation. It should contain the lexical items we added at the very beginning of the
simulation, as well as the chunks stored in the goal and imaginal buffers right before
we cleared them at the end of the parsing process (recall that clearing the buffers
always moves their contents to declarative memory).

[py17] >>> dm 1
{word(cat= ProperN, form= Mary): array([0. , 0.25]), 2
word(cat= ProperN, form= Bill): array([0. , 0.75]), 3
word(cat= V, form= likes): array([0. , 0.5]), 4
sentence(word1= None, word2= None, word3= None): array([0.8]), 5
parsing_goal(parsed_word= Bill, stack_bottom= None, 6

stack_top= None, task= printing): array([0.8])} 7

As expected, we see in [py17] that the goal chunk stored in declarative memory
has an empty stack, and the imaginal chunk has an empty sentence (no words).
Furthermore, both these chunks have been stored/activated in memory at the 800 ms
mark, i.e., at the end of the simulation.

We also see the three lexical items Mary, likes and Bill, each of which has two
activation time stamps. The first activation time is at 0 ms, when they were all added
to declarative memory before running the simulation. The second activation time is
at 250, 500 and 750 ms respectively, when they were parsed during the simulation.
Specifically, these are the times when the retrieval buffer was cleared by the three
firings of the scan: word rule.

Chapter 6 discusses the inner workings of declarative memory in detail. We will
see there that this schedule of activations for items in memory is a crucial component
of determining the relative salience of items in memory. The salience, or activation,
of an item modulates how easy it is to retrieve it—specifically, the probability of a
successful retrieval and the time that the retrieval takes.

3.4 Failures to Parse and Taking Snapshots of the Mind
When It Fails

We can run the parser on ungrammatical sentences to see if, and how exactly, it
fails. Let’s try to parse the word sequence Bill Mary likes. The parser should fail
while parsing the second word Mary because the noun does not match the parser’s
expectation to see a verb.

We add the relevant chunks to the goal and imaginal buffers and start a new
simulation. Note that, in general, it is recommended to reset the declarative memory
module (and various buffers) before rerunning a model simulation.



3.4 Failures to Parse and Taking Snapshots of the Mind When It Fails 51

A simple way to reset the model is to reinitialize it from scratch, that is, restart
with parser = actr.ACTRModel() etc. You can take a look at the code for
the more advanced models in Chaps. 7, 8 and 9 to see how to reset the state of a
model without restarting it from scratch, so that multiple simulations with the same
initial model state can be run.
[py18] >>> g.add(actr.chunkstring(string=""" 1

... isa parsing_goal 2

... task parsing 3

... stack_top S 4

... """)) 5
>>> imaginal.add(actr.chunkstring(string=""" 6
... isa sentence 7
... word1 Bill 8
... word2 Mary 9
... word3 likes 10
... """)) 11
>>> parser_sim2 = parser.simulation() 12
>>> parser_sim2.run() 13
(0, ’PROCEDURAL’, ’CONFLICT RESOLUTION’) 14
(0, ’PROCEDURAL’, ’RULE SELECTED: expand: S ==> NP VP’) 15
(0.05, ’PROCEDURAL’, ’RULE FIRED: expand: S ==> NP VP’) 16
(0.05, ’g’, ’MODIFIED’) 17
(0.05, ’PROCEDURAL’, ’CONFLICT RESOLUTION’) 18
(0.05, ’PROCEDURAL’, ’RULE SELECTED: expand: NP ==> ProperN’) 19
(0.1, ’PROCEDURAL’, ’RULE FIRED: expand: NP ==> ProperN’) 20
(0.1, ’g’, ’MODIFIED’) 21
(0.1, ’PROCEDURAL’, ’CONFLICT RESOLUTION’) 22
(0.1, ’PROCEDURAL’, ’RULE SELECTED: retrieve: ProperN’) 23
(0.15, ’PROCEDURAL’, ’RULE FIRED: retrieve: ProperN’) 24
(0.15, ’g’, ’MODIFIED’) 25
(0.15, ’retrieval’, ’START RETRIEVAL’) 26
(0.15, ’PROCEDURAL’, ’CONFLICT RESOLUTION’) 27
(0.15, ’PROCEDURAL’, ’NO RULE FOUND’) 28
(0.2, ’retrieval’, ’CLEARED’) 29
(0.2, ’retrieval’, ’RETRIEVED: word(cat= ProperN, form= Bill)’) 30
(0.2, ’PROCEDURAL’, ’CONFLICT RESOLUTION’) 31
(0.2, ’PROCEDURAL’, ’RULE SELECTED: scan: word’) 32
(0.25, ’PROCEDURAL’, ’RULE FIRED: scan: word’) 33
(0.25, ’g’, ’MODIFIED’) 34
(0.25, ’imaginal’, ’MODIFIED’) 35
(0.25, ’retrieval’, ’CLEARED’) 36
(0.25, ’PROCEDURAL’, ’CONFLICT RESOLUTION’) 37
(0.25, ’PROCEDURAL’, ’RULE SELECTED: print parsed word’) 38
(0.3, ’PROCEDURAL’, ’RULE FIRED: print parsed word’) 39
parsed_word Bill 40
(0.3, ’g’, ’EXECUTED’) 41
(0.3, ’g’, ’MODIFIED’) 42
(0.3, ’PROCEDURAL’, ’CONFLICT RESOLUTION’) 43
(0.3, ’PROCEDURAL’, ’RULE SELECTED: expand: VP ==> V NP’) 44
(0.35, ’PROCEDURAL’, ’RULE FIRED: expand: VP ==> V NP’) 45
(0.35, ’g’, ’MODIFIED’) 46
(0.35, ’PROCEDURAL’, ’CONFLICT RESOLUTION’) 47
(0.35, ’PROCEDURAL’, ’RULE SELECTED: retrieve: V’) 48
(0.4, ’PROCEDURAL’, ’RULE FIRED: retrieve: V’) 49
(0.4, ’g’, ’MODIFIED’) 50
(0.4, ’retrieval’, ’START RETRIEVAL’) 51
(0.4, ’PROCEDURAL’, ’CONFLICT RESOLUTION’) 52
(0.4, ’PROCEDURAL’, ’NO RULE FOUND’) 53
(0.45, ’retrieval’, ’CLEARED’) 54
(0.45, ’retrieval’, ’RETRIEVED: word(cat= ProperN, form= Mary)’) 55
(0.45, ’PROCEDURAL’, ’CONFLICT RESOLUTION’) 56
(0.45, ’PROCEDURAL’, ’NO RULE FOUND’) 57

Just as before, our goal is to parse a sentence S ([py18], line 4), namely Bill Mary
likes (lines 8–10). The parser correctly parses the first word Bill and prints it (line
40). But the parsing process stops after 450 ms because the word Mary retrieved



52 3 The Basics of Syntactic Parsing in ACT-R

from declarative memory is of category ProperN (line 55). The top of the goal stack,
however, stores the category V, which is what the parser was expecting to retrieve
(lines 48–49).

To facilitate the inspection of simulations and models, pyactr provides a way to
advance simulations one step at a time, rather than letting them run from beginning
to end. This makes it easy to check the internal state of the buffers, as well as to
diagnose/debug our models, e.g., if the model gets stuck in an infinite loop. Let’s run
the simulation in [py18] again and go through it step by step.

[py19] >>> g.add(actr.chunkstring(string=""" 1
... isa parsing_goal 2
... task parsing 3
... stack_top S 4
... """)) 5
>>> imaginal.add(actr.chunkstring(string=""" 6
... isa sentence 7
... word1 Bill 8
... word2 Mary 9
... word3 likes 10
... """)) 11
>>> parser_sim3 = parser.simulation() 12
>>> parser_sim3.step() 13
(0, ’PROCEDURAL’, ’CONFLICT RESOLUTION’) 14

Very little happens in the first step: the parser simply enters a ‘conflict resolution’
state in which it identifies the rules that can be fired given the initial cognitive state
(that is, the initial state of the buffers).

Let’s go through some more steps. To do that, we use the method steps with
a parameter that provides the exact number of steps the simulation should advance
through. In [py20], we advance 10 steps, as reflected in the 10 lines of simulation
output.

[py20] >>> parser_sim3.steps(10) 1
(0, ’PROCEDURAL’, ’RULE SELECTED: expand: S ==> NP VP’) 2
(0.05, ’PROCEDURAL’, ’RULE FIRED: expand: S ==> NP VP’) 3
(0.05, ’g’, ’MODIFIED’) 4
(0.05, ’PROCEDURAL’, ’CONFLICT RESOLUTION’) 5
(0.05, ’PROCEDURAL’, ’RULE SELECTED: expand: NP ==> ProperN’) 6
(0.1, ’PROCEDURAL’, ’RULE FIRED: expand: NP ==> ProperN’) 7
(0.1, ’g’, ’MODIFIED’) 8
(0.1, ’PROCEDURAL’, ’CONFLICT RESOLUTION’) 9
(0.1, ’PROCEDURAL’, ’RULE SELECTED: retrieve: ProperN’) 10
(0.15, ’PROCEDURAL’, ’RULE FIRED: retrieve: ProperN’) 11

Let’s now advance our simulation to the point where the rule "scan: word"
has just fired. To be able to do that, we have to be able to check the current event, i.e.,
the most recent step taken in the simulation, and stop when this event is a "scan:
word"-rule firing.

The current event is an attribute of the simulation. For example, the current event
in our simulation is a ProperN retrieval:

[py21] >>> parser_sim3.current_event 1
Event(time=0.15, proc=’PROCEDURAL’, action=’RULE FIRED: retrieve: ProperN’)2



3.4 Failures to Parse and Taking Snapshots of the Mind When It Fails 53

As shown in [py21], the event has three attributes:
• time—the simulation time at which the event occurred (150 ms in our case),
• proc—the module or buffer that is affected (procedural memory in our case),
and

• action—the cognitive action that has taken place.

Let us now advance to the first firing of the "scan: word" rule. We do this by
running a while loop in the Python interpreter: the command on line 2 in [py22]
below, i.e., advance one step through the simulation, should be executed while the
condition on line 1 is satisfied. That condition says that the action attribute of the
current event should not be a "scan: word" firing. Note that != is non-identity
in Python; ! is customarily used for negation in programming languages, and it is
distinct from ACT-R negation ~.

[py22] >>> while parser_sim3.current_event.action != ’RULE FIRED: scan: word’: 1
... parser_sim3.step() 2
... 3
(0.15, ’g’, ’MODIFIED’) 4
(0.15, ’retrieval’, ’START RETRIEVAL’) 5
(0.15, ’PROCEDURAL’, ’CONFLICT RESOLUTION’) 6
(0.15, ’PROCEDURAL’, ’NO RULE FOUND’) 7
(0.2, ’retrieval’, ’CLEARED’) 8
(0.2, ’retrieval’, ’RETRIEVED: word(cat= ProperN, form= Bill)’) 9
(0.2, ’PROCEDURAL’, ’CONFLICT RESOLUTION’) 10
(0.2, ’PROCEDURAL’, ’RULE SELECTED: scan: word’) 11
(0.25, ’PROCEDURAL’, ’RULE FIRED: scan: word’) 12

We can now inspect our buffers. As expected, the top of our parsing goal stack
is a ProperN terminal, the first word Bill is about to be removed from the sentence
stored in the imaginal buffer (but is still there at this simulation step), and the lexical
representation for Bill is accessible in the retrieval buffer:

[py23] >>> g 1
{parsing_goal(parsed_word= Bill, stack_bottom= None, 2

stack_top= VP, task= printing)} 3
>>> imaginal 4
{sentence(word1= Bill, word2= Mary, word3= likes)} 5
>>> parser.retrieval 6
{word(cat= ProperN, form= Bill)} 7

Let us now advance to the point where the parsing process failed. We will step
through the simulation until the action attribute of the current event starts with the
string ’RETRIEVED’. That will be the point where the second word in our string,
namely Mary has been retrieved:

[py24] >>> while not parser_sim3.current_event.action.startswith(’RETRIEVED’): 1
... parser_sim3.step() 2
... 3
(0.25, ’g’, ’MODIFIED’) 4
(0.25, ’imaginal’, ’MODIFIED’) 5
(0.25, ’retrieval’, ’CLEARED’) 6
(0.25, ’PROCEDURAL’, ’CONFLICT RESOLUTION’) 7
(0.25, ’PROCEDURAL’, ’RULE SELECTED: print parsed word’) 8
(0.3, ’PROCEDURAL’, ’RULE FIRED: print parsed word’) 9
parsed_word Bill 10
(0.3, ’g’, ’EXECUTED’) 11
(0.3, ’g’, ’MODIFIED’) 12
(0.3, ’PROCEDURAL’, ’CONFLICT RESOLUTION’) 13



54 3 The Basics of Syntactic Parsing in ACT-R

(0.3, ’PROCEDURAL’, ’RULE SELECTED: expand: VP ==> V NP’) 14
(0.35, ’PROCEDURAL’, ’RULE FIRED: expand: VP ==> V NP’) 15
(0.35, ’g’, ’MODIFIED’) 16
(0.35, ’PROCEDURAL’, ’CONFLICT RESOLUTION’) 17
(0.35, ’PROCEDURAL’, ’RULE SELECTED: retrieve: V’) 18
(0.4, ’PROCEDURAL’, ’RULE FIRED: retrieve: V’) 19
(0.4, ’g’, ’MODIFIED’) 20
(0.4, ’retrieval’, ’START RETRIEVAL’) 21
(0.4, ’PROCEDURAL’, ’CONFLICT RESOLUTION’) 22
(0.4, ’PROCEDURAL’, ’NO RULE FOUND’) 23
(0.45, ’retrieval’, ’CLEARED’) 24
(0.45, ’retrieval’, ’RETRIEVED: word(cat= ProperN, form= Mary)’) 25

We can once again inspect the current cognitive state of the model/mind, i.e., the
buffer contents:
[py25] >>> parser.retrieval 1

{word(cat= ProperN, form= Mary)} 2
>>> g 3
{parsing_goal(parsed_word= None, stack_bottom= NP, 4

stack_top= V, task= retrieving)} 5
>>> imaginal 6
{sentence(word1= Mary, word2= likes, word3= None)} 7

And the cause of the parsing failure is apparent: the retrieval buffer stores a
ProperN while the top of the parsing goal stack, i.e., our current parsing expec-
tation/prediction, is a V. The parser therefore halts before the second word in our
sentence can be scanned, as shown by the unchanged chunk in the imaginal buffer.

3.5 Top-Down Parsing as an Imperfect Psycholinguistic
Model

It is, however, not enough for our parser to correctly parse grammatical sentences
and fail for ungrammatical ones. Our top-downACT-R parser is not simply an imple-
mentation of an arbitrary parsing algorithm that is satisfactory as long as it works
correctly. This parser is meant to be a limited, but realistic model of a certain kind
of human cognitive behavior, namely syntactic parsing in comprehension-like tasks
(self-paced reading). Is our parser even remotely adequate as a psycholinguistic
model?

One of the empirical adequacy desiderata for our parser is that the temporal trace
of parsing a sentence should correspond to the temporal trace of an average human
participant completing the same task. For example, we see that our parser takes 800
ms to parse the sentence Mary likes Bill. This is roughly correct.

But there are various other properties of our parser that are more worrying. For
one, the parser requires this much time while abstracting away from what human
participants have to do during an actual self-paced reading task: internalizing visual
information, projecting sentence meaning, executing motor actions (pressing keys)
etc., so ultimately 800 ms might be too much given the very narrow amount of work
our parser actually does.

Another issue is that retrieving lexical information always takes 50 ms in our
current models and simulations, but this is hardly realistic. We know that lexical



3.5 Top-Down Parsing as an Imperfect Psycholinguistic Model 55

retrieval is dependent on various factors: word frequency, priming etc. These factors
are completely ignored here.

Finally, top-down parsers work well for right-branching structures like the sen-
tenceMary likes Bill, but they have significant difficulties with left branching struc-
tures. For such structures, the parser would have to store as many symbols on the
stack as there are levels of embedding. Since every expansion of a grammar rule
takes 50 ms, we expect left branching structures with n levels of embedding to take
50 ∗ n ms. This is at odds with actual human performance (see Johnson-Laird 1983;
Abney and Johnson 1991; Resnik 1992).1 The main reason for this is that our parser
generates predictions about syntactic structure exclusively based on the grammar and
completely ignores the actual evidence (the sentence to be parsed) until it reaches a
terminal on the leftmost branch.

In fact, purely top-down parsers consult the evidence (the word string) only after
they predict all the way to lexical items. That is, such pure top-down parsers would
place memory retrieval requests based on the terminal at the top of the parsing goal
stack. For example, if a ProperN is at the top of the stack, they would retrieve an
arbitrary ProperN from declarative memory and only after that, they check whether
the form of the retrieved ProperN matches the leftmost word to be parsed. If not, a
new retrieval request would be placed for a new ProperN in hopes that the form of
that new chunk would match the word to be parsed. In the worst case, such a purely
top-down parser would retrieve all chunks of category ProperN one at a time from
declarative memory and, finally, identify the one whose form matches the current
word to be parsed.

The temporal trace of such a parser would be very far from the temporal trace
of an average human participant completing the same task: if the lexicon contains
20 chunks of ProperN category, and a retrieval takes around 50 ms, it would take a
full second to parse the first word in the sentence Mary likes Bill in the worst-case
scenario. And this ignores the time needed to verify that 19 of the retrieved chunks are
mismatches, and then the time needed to backtrack and restart the retrieval process.

Thus, a more plausible human parser would consult the evidence, i.e., the word
string to be parsed, earlier and more often in the parsing process. Our top-down pars-
ing strategy needs to be complemented by a bottom-up parsing strategy. In principle,
we could switch from a purely top-down parser to a purely bottom-up parser that is
completely driven by the evidence. Such a parser would be incremental, but it would
not be predictive in the same way that the human parser seems to be. We will there-
fore not explore purely bottom-up (shift-reduce) parsers and instead move directly
to left-corner parsers, which combine top-down and bottom-up features: they can be
thought of as predictive top-down parsers with incremental bottom-up filtering. The
next chapter introduces left-corner parsers and models them in ACT-R and pyactr.

1Possessives provide typical examples of left-branching structures in English. This is a naturally-
occurring example: “You are, officially, my aunt’s sixth great-uncle’s wife’s mother’s husband’s
brother’s wife’s eighth great-granddaughter.” (https://people.com/archive/scoop-vol-82-no-13/).

https://people.com/archive/scoop-vol-82-no-13/


56 3 The Basics of Syntactic Parsing in ACT-R

3.6 Appendix: The Top-Down Parser

All the code discussed in this chapter is available on GitHub as part of the repository
https://github.com/abrsvn/pyactr-book. If you want to examine it and run it, install
pyactr (see Chap.1), download the files and run them the same way as any other
Python script.

File ch3_topdown_parser.py:

☞ https://github.com/abrsvn/pyactr-book/blob/master/book-code/ch3_
topdown_parser.py.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

https://github.com/abrsvn/pyactr-book
https://github.com/abrsvn/pyactr-book/blob/master/book-code/ch3_topdown_parser.py
https://github.com/abrsvn/pyactr-book/blob/master/book-code/ch3_topdown_parser.py
http://creativecommons.org/licenses/by/4.0/

	3 The Basics of Syntactic Parsing in ACT-R
	3.1 Top-Down Parsing
	3.2 Building a Top-Down Parser in pyactr
	3.2.1 Modules, Buffers, and the Lexicon
	3.2.2 Production Rules

	3.3 Running the Model
	3.4 Failures to Parse and Taking Snapshots of the Mind When It Fails
	3.5 Top-Down Parsing as an Imperfect Psycholinguistic Model
	3.6 Appendix: The Top-Down Parser




