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Abstract. Cell nuclei segmentation is important for several applica-
tions, such as the detection of cancerous cells and cell cycle staging. The
main challenges and difficulties, associated with this task, arise due to
the presence of overlapping nuclei, image intensity inhomogeneities and
image noise.

Several classical methods have been proposed for cell nuclei segmen-
tation. However, they depend strongly on manual setting of parameters
and they are sensitive to noise. Recently, deep learning is becoming state-
of-the-art, due to its enhanced performance in many tasks of computer
vision, such as object detection, classification and segmentation. Deep
learning models are robust to the presence of noise and are able to auto-
matically extract meaningful features from the image. Although deep
learning models perform significantly better than the traditional meth-
ods, they are computationally more expensive.

In this paper we present a computationally efficient approach for high
throughput nuclei segmentation based on deep learning. Our approach
combines the object detection capability of Fast YOLO with the seg-
mentation ability of U-Net. We applied our method to 2D fluorescence
microscopy images with DAPI stained nuclei. Our results show that our
method is competitive with Mask R-CNN, but significantly faster. In
fact, with our method, an image of size 1388 × 1040 is segmented in
approximately 1.6 s which is about nine times faster than the Mask R-
CNN (15.1 s). Additionally, our results show that the improvements in
computational efficiency come at only a small cost in performance.
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1 Introduction

Nuclear segmentation provides valuable information about nuclei morphology,
DNA content and chromatin condensation. For instance, morphological and tex-
tural features can be used for cell cycle staging [9,18] and detection of patho-
logical mutations associated with cancer [14]. Cell overlapping, image noise and
non-uniform acquisition and preparation parameters make the segmentation pro-
cedure a challenging task.

Manual segmentation is time-consuming and depends on the subjective
assessment of the human operator [8]. Thus, it is not a practical approach in high-
throughput applications where a huge number of nuclei need to be accurately
detected. Hence, new automatic segmentation tools are needed and machine
learning and computer vision approaches are the most common choices [21].

Classical approaches include Otsu’s thresholding followed by watershed
algorithm, graph-cuts based methods, K-means clustering and region growing
[12,20]. However, these techniques often require the tuning of manual parame-
ters, they are sensitive to noise and sometimes can be very specific for given types
of images. Deep learning approaches, successfully applied in many other fields,
are obvious choices for nuclei segmentation because they are robust to noise,
able to learn automatically the parameters and present a good generalization
capacity.

Several deep learning based approaches have been proposed for cell nuclei seg-
mentation and it is shown that their performance is better in terms of accuracy
when compared to traditional techniques mentioned above. U-Net [17], a simple
and computationally efficient convolutional network, winner of the Cell Track-
ing Challenge in 2015, is one of the most used architectures in biomedical image
segmentation and cell nuclei as well. It performs semantic segmentation, that
is, it makes classification in a pixel wise basis. It is able to classify single pixels
but not objects (sets of pixels). For example, if two or more nuclei are touching,
it will classify them as being a single object. Since in nuclei segmentation task
each nucleus needs to be identified separately, several authors proposed meth-
ods, based on U-net, to address this difficulty. Ronneberger et al. had already
proposed, in the original U-net paper [17], the use of a weighted cross entropy
loss function where the weight maps are created in a way to give higher weights
to pixels that are closer to two or more boundaries, in that way the model can
learn the separation between close objects. Other approaches convert the binary
problem into a ternary one, by changing the last layer of U-Net to predict not
only the nuclei but also the contour of each nucleus [5,7]. Recently, the winners
of the Kaggle data competition 2018 [1,2] have shown a novel way to tackle the
problem of nuclei segmentation. They changed the ground truth masks by adding
a third channel that represents the touching borders between nuclei. In this way
the masks contain three classes: background, nuclei and touching borders. Fur-
thermore, they used an encoder-decoder type architecture based on U-Net and
the encoder was initialized with pre-trained weights. Since then several studies
[10,19] have applied similar approaches using U-Net by allowing it to predict
both the nuclei and touching borders.



Deep Learning Based Cell Nuclei Segmentation 55

Recently, He et al. [11] proposed Mask R-CNN. This is an architecture
designed for instance segmentation, where the main goal is to obtain a segmen-
tation mask for each object in the image. It corresponds to the segmentation of
individual objects in an image. Instance segmentation is a combination of object
detection, where the goal is to identify each object’s category and bounding box,
and segmentation. Therefore, in instance segmentation, different instances of the
same object have different labels. Mask R-CNN has essentially two stages, the
first stage is a region proposal network (RPN) which generates region propos-
als. For each pixel, it proposes k bounding boxes and a score that tells if the
bounding box contains an object or not. In the second stage, for each of the
bounding boxes proposed by RPN, features are extracted and classification and
bounding box regression is performed. Additionally, the mask branch generates
a segmentation mask for the object enclosed in the bounding box. Although
Mask R-CNN was developed for segmentation of natural images, Johnson et al.
[13] have demonstrated that it can be used for the task of nuclei segmentation.
Similar conclusions are drawn by Vuola et al. [19], in a study where a comparison
between U-Net, Mask R-CNN and an ensemble of these two models was made.
Their results showed that Mask R-CNN performs better in the nuclei detection
task and U-Net performs better in the segmentation task. Finally, by combining
the strengths of both models, the ensemble model performs better than both
models separately. However, the main problem associated with Mask R-CNN is
its high computational cost.

In this work we present an alternative to Mask R-CNN for nuclei instance
segmentation. Speed is an important factor to take into consideration if the
method is going to be implemented in clinical routine. We propose a deep learn-
ing based approach that achieves good segmentation results and is computa-
tionally efficient. Our approach is based on a combination of Fast YOLO for
instance detection and U-Net for segmentation. According to [15], Fast YOLO
can be used for real time object detection in video and it is one of the fastest
object detection methods, hence its superiority compared to Mask R-CNN with
respect to computational efficiency.

This paper is organized as follows: in Sect. 1 a review of the methods for
cell nuclei segmentation and the goal of this work were presented. In Sect. 2 a
novel deep learning approach is presented for cell nuclei instance segmentation.
Section 3 describes the dataset used in this project, training of the proposed app-
roach and evaluation metrics. In Sect. 4, the main experimental results regarding
nuclei segmentation are presented as well as a comparison with some state-of-
the-art methods mentioned in Sect. 1. Finally, in Sect. 5 conclusions and topics
requiring future studies are presented.

2 Proposed Approach

The proposed approach for cell nuclei instance segmentation is based on a combi-
nation of two deep learning models: Fast YOLO [15] and U-Net [17], as illustrated
in Fig. 1. YOLO is an architecture designed for object detection and classifica-
tion, which is faster than Mask R-CNN. This is due to the fact that instead of
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using an RPN, which is based on a sliding window approach, YOLO applies a
single network to the full image. In YOLO the image is divided into regions and
then bounding boxes and class probabilities are predicted for each region. There
is just one single network that divides the image and predicts objects and its
corresponding classes, additionally this network can be trained end-to-end.

We used a smaller version of YOLO (Fast YOLO1), which has fewer convolu-
tional layers, hence it is faster than YOLO. Nevertheless, Fast YOLO only gives
a bounding box for each detected nucleus, and we want to obtain a segmenta-
tion mask for each nucleus. Therefore, we combine Fast YOLO with an U-Net
trained to segment individual nuclei. We start by feeding the input image to the
Fast YOLO, this will provide us bounding boxes for all detected objects in that
image, steps A and B in Fig. 1, respectively. After this step, for each bounding
box, the corresponding image patch is extracted and resized to a patch of size
80 × 80 (see step C in Fig. 1), this patch is then fed to the U-Net which will
give as output a binary mask, where 0 and 1 denote pixels belonging to the
background and nucleus, respectively, (step D in Fig. 1). Then, the output of the
U-Net, which has size 80× 80, is resized again to its original size. Finally, a spa-
tial arrangement (step F in Fig. 1) is necessary to obtain the final segmentation
mask.

The objective of the proposed approach is to first minimize the loss function
of the Fast YOLO network, as described in [15], and then minimize the loss
function of the U-Net, which we’ve defined as:

Loss = 0.5 × binary cross entropy + 0.5 × (1 − dice coefficient) (1)

where the definition of binary cross entropy (BCE) and dice coefficient (DC) is
represented in Eqs. 2 and 3, respectively.2

BCE = −
N∑

i=1

yi × log(ŷi) + (1 − yi) × log(1 − ŷi) (2)

DC =
2 × |X ∩ Y |
|X| + |Y | (3)

3 Experiments

In this section the dataset used in the experiments is described. Additionaly,
details regarding the training of the proposed deep learning approach and eval-
uation metrics used to measure the performance of the model are presented.

1 The architecture of Fast YOLO (illustrated in Fig. 1), is different from the one pre-
sented in the original YOLO paper [15]. In fact, the architecture of Fast YOLO used
in this work is a smaller version of YOLOv2, which has some improvements over
YOLO, as stated in [16].

2 N is the total number of pixels in a given image, yi is the true label of the pixel i
and ŷi denotes the predicted label for the pixel i.
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Fig. 1. Overview of the proposed approach for cell nuclei instance segmentation. The
input image is fed to the Fast YOLO architecture (step A). Fast YOLO will give as
output bounding boxes for all of the detected objects in the input image (step B).
Afterwards, each patch inside the bounding box proposed by the previous architecture
is resized to 80 × 80 (step C) and fed to the U-Net (step D). The output patch of the
U-Net is then resized to the original size (step E). Finally, after spatial arrangement,
the final segmentation mask is obtained, (step F).

3.1 Data

The training dataset used in the experiments consists of 130 fluorescence
microscopy images of normal murine mammary gland cells stained with DAPI,
with size 1388 × 1040. This dataset comes from the study presented by Ferro et
al. [9]. Additionally, another dataset with one nucleus per image and patch size
80 × 80 was necessary to train the U-Net. This dataset was obtained from the
original one by using the skimage tool regionprops. For each image, the ground
truth mask was labeled, then regionprops tool was applied to measure the prop-
erties of the labeled mask regions, which include the bounding box coordinates
for each object. This operation allows to extract one patch per nucleus, which
is then resized to a patch of size 80 × 80.

3.2 Training

Fast YOLO. The implementation used for Fast YOLO is based on a publicly
available implementation by Thtrieu which was released under the GNU General
Public License v3.0 [3]. In order to train the Fast YOLO with our dataset, we
had to generate XML files based on Pascal VOC format. These files were gener-
ated from the ground truth data using skimage tool regionprops and lxml.etree



58 H. Narotamo et al.

module. We’ve adapted the network for our problem, the number of classes in
our problem is one, therefore we changed the number of filters of the last layer
to 30, according to the formula 5×(classes+5) [3]. We also changed the number
of classes to 1 and resized the original image to an image of size 1024 × 1024. All
of the other parameters remained unchanged. Finally, Fast YOLO was trained
from scratch, using Adam optimizer, first it was trained for 200 epochs with
learning rate 0.0001, then it was trained for another 600 epochs with learning
rate 0.00001.

U-Net. We implemented the U-Net model using Keras with Tensorflow back-
end. The architecture of the model implemented is represented in Fig. 2. This
model was trained for 100 epochs, with a learning rate of 0.001, using Adam
optimizer, without dropout, with Xavier initialization and with ReLU as acti-
vation functions, except the final activation function of the last layer which is a
sigmoid activation function.

Fig. 2. U-Net architecture used for the segmentation step of the proposed approach.

3.3 Evaluation Criteria

To test the performance of the proposed segmentation model, we calculated the
F1 score (see Eq. 7), at different thresholds of the intersection over union (IoU).
The IoU between two objects is given by:

IoU =
Area of overlap

Area of union
(4)

For each image, an m × n matrix is built. Where m denotes the total number
of objects in the ground truth mask, n the total number of objects in the pre-
dicted mask. And the component (i,j) corresponds to the IoU (Eq. 4) between
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object i and object j. The F1 score was calculated after applying different thresh-
olds to this matrix. That is, the F1 score was computed by varying the IoU
threshold (T) from 0.5 to 0.95, by steps of size 0.05. The F1 score requires the
calculation of the precision (Eq. 5) and recall (Eq. 6). Where TP, FP and FN
stand for true positives, false positives and false negatives, respectively. In one
hand, a nucleus detected by an automatic technique is considered as TP if, for a
given IoU threshold (T), its IoU with some ground truth nucleus is higher than
T. On the other hand, if its IoU is lower than T, it is considered as FP (extra
object). Finally, if for a given ground truth nucleus there isn’t a corresponding
detection, it will be considered as FN (miss detection).

Precision =
TP

TP + FP
(5)

Recall =
TP

FN + TP
(6)

F1 Score =
2 × Precision × Recall

Precision + Recall
(7)

3.4 Performance Comparison

We measured the performance of our approach and compared it with the perfor-
mance of four approaches: Yen’s thresholding plus watershed [12,22], Original
U-Net [17], similar approach to the winning solution of Kaggle 2018 [2] and
Mask R-CNN [11]. To simplify we denote these models as: Yen + watershed,
Original U-Net, Kaggle 2018 and Mask R-CNN, respectively. To compare the
performance between different models, a 13-fold cross validation was performed.
In other words, for each approach, except for Yen + watershed, we’ve trained
13 models with 120 images each and tested their performance on 10 images.
We perform leave-one-experiment-out cross-validation in order to avoid the bias
introduced during the evaluation, that is, to avoid the bias that would be intro-
duced when testing the model in images that were acquired in the same experi-
ment as some images that were used to train this model. The final F1 Score for
each approach is an average over the 13 models.

All experiments were carried out on an NVIDIA GPU GTX 1050 (4 GB) and
in Python 3.6. Additionally, all implementations are based on open-source deep
learning libraries Tensorflow and Keras [4,6].

4 Results

In this section, results regarding nuclei segmentation, F1 score and computa-
tional efficiency are presented. Additionally, a comparison with four state-of-
the-art methods is made.
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4.1 Nuclei Segmentation

We compared the performance of our approach with other state-of-the-art meth-
ods. Figure 3 shows a visual comparison between different models, regarding
nuclei segmentation. The four images (in the first row) were chosen in order
to emphasize the variability that exists between different input images. These
images represent the blue channel of the corresponding original fluorescence
images. As stated before, our dataset contains images stained with DAPI, which
is a nuclear stain that binds to the DNA and emits blue fluorescence. Therefore,
the blue channel of the original images contains information regarding the nuclei.

The third row in Fig. 3 shows the segmentation masks obtained by apply-
ing Yen + watershed, by observing this row it can be concluded that in some
cases the segmentation masks are bigger than the ground truth masks. This is
a disadvantage of the thresholding methods. Additionally, in comparison with
other approaches, this is the approach that presents more merges, i.e., two or
more nuclei that are joined into a big object. Results regarding Original U-Net
(fourth row) and Kaggle 2018 (fifth row) show that although these approaches
separate better the touching nuclei, in some cases there are gaps between these
nuclei. This can be explained by our ground truth data which also has gaps
between touching nuclei, in order to solve the problem as an instance segmen-
tation problem. On the other hand, in the results obtained with Mask R-CNN
and our approach those gaps disappear, since these two approaches are designed
specifically to solve the problem of instance segmentation.

The last column in Fig. 3 illustrates why Mask R-CNN model outperforms
all the other models. In this case there is high intensity variation along the input
image and the image contains a lot of touching and occluded nuclei. Therefore,
the classical method (Yen + watershed) struggles in detecting nuclei located on
the left side of the image. Interestingly, our approach performs better than Yen
+ watershed, but still it fails to identify some of the occluded nuclei. This is due
to the detection performance of Fast YOLO, which is worse than that of Mask R-
CNN, specially in regions with occluded nuclei, where some of the nuclei aren’t
detected. Mask R-CNN is the one that provides the best segmentation mask
for this input image. However, note that for the other three images the results
obtained with Mask R-CNN and the ones obtained with our model are quite
similar.

4.2 F1 Score vs IoU Threshold

Figure 4 shows a plot of average F1 score across increasing thresholds of IoU.
The accentuated decrease of the F1 score, at IoU ≈ 0.80, can be explained by
the presence of inaccurate boundaries on our ground truth data. For example,
since our ground truth masks are binary, in order to separate touching nuclei
and to solve the problem as an instance segmentation problem, we have drawn
lines to separate touching nuclei and considered the pixels contained in these
lines as belonging to the background, (this can be observed in the second row in
Fig. 3).
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Fig. 3. Nuclei segmentation results obtained by applying different methods. The first
row represents examples of the original images, for which we want to obtain the seg-
mentation mask. The second row represents the corresponding ground truth masks.
Finally, the third, fourth, fifth, sixth and seventh rows represent the corresponding
segmentation results obtained by applying Yen + watershed, Original U-Net, Kag-
gle 2018, Mask R-CNN and the proposed approach, respectively. (Color figure online)
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By comparing the deep learning approaches with the traditional method
(Yen + watershed), we can conclude that deep learning models significantly
outperform this classical method. Additionally, for IoU < 0.75 the performance
of our approach is similar to the performance of Mask R-CNN and better than
that of all of the other methods.

Fig. 4. Average F1-Score vs IoU threshold, comparison between different models: Yen
+ watershed (purple), original U-Net (green), Kaggle 2018 (blue), Mask R-CNN (red),
proposed approach (yellow). (Color figure online)

4.3 Computational Efficiency

Regarding computational efficiency we compared the training time and the test
time required by all the methods. Training time corresponds to the time a model
needs to learn a given task, in our case, the task of nuclei instance segmentation.
By observing Fig. 5(a), we can conclude that Mask R-CNN requires significantly
more time to learn the task of nuclei segmentation (about 1420 min), in com-
parison with all the other models. Although our approach requires more time to
train (450 min) than the Original U-Net (14 min) and Kaggle 2018 (100 min), it
also provides better segmentation masks as illustrated in Fig. 3.

On the other hand, regarding test time, which is the time required for a
model to give a segmentation prediction for an image, our results are presented
in Fig. 5(b). These results show that Mask R-CNN is the model that presents
the highest test time (15.1 s). Our approach in comparison with Mask R-CNN is
about nine times faster. Furthermore, Yen + watershed requires 1.8 s, which is
of the same order of magnitude as the test time of our approach (1.6 s), however
Yen + watershed presents the worst performance, as observed in Fig. 4.
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(a) (b)

Fig. 5. (a) Training time (in minutes) associated with each model. (b) Mean test time
per image (in seconds) for each model, for images of size 1388 × 1040.

5 Conclusions and Future Work

This paper addresses the important problem of nuclei segmentation for high
throughput applications.

We proposed a new approach that combines the Fast YOLO architecture,
specially designed for detection, with the U-Net that was conceived mainly for
segmentation purposes.

The segmentation quality obtained with the proposed method is comparable
to the existing deep-learning based state-of-the-art methods, e.g. Mask R-CNN,
but a significant reduction of almost 10× on the segmentation time was obtained.

In the future, morphological and textural features will be extracted from the
segmented nuclei for diagnosis of pathogenic mutations associated with cancer.
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