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Abstract. We address the problem of cross-domain classification of
hyperspectral image (HSI) pairs under the notion of unsupervised
domain adaptation (UDA). The UDA problem aims at classifying the
test samples of a target domain by exploiting the labeled training sam-
ples from a related but different source domain. In this respect, the use
of adversarial training driven domain classifiers is popular which seeks to
learn a shared feature space for both the domains. However, such a for-
malism apparently fails to ensure the (i) discriminativeness, and (ii) non-
redundancy of the learned space. In general, the feature space learned
by domain classifier does not convey any meaningful insight regarding
the data. On the other hand, we are interested in constraining the space
which is deemed to be simultaneously discriminative and reconstructive
at the class-scale. In particular, the reconstructive constraint enables
the learning of category-specific meaningful feature abstractions and
UDA in such a latent space is expected to better associate the domains.
On the other hand, we consider an orthogonality constraint to ensure
non-redundancy of the learned space. Experimental results obtained on
benchmark HSI datasets (Botswana and Pavia) confirm the efficacy of
the proposal approach.

Keywords: Domain adaptation · Adversarial training ·
Hyperspectral images

1 Introduction

The current era has witnessed the acquisition of a large volume of satellite remote
sensing (RS) images of varied modalities, thanks to several national and interna-
tional satellite missions. Such images showcase relevance in a range of important
applications in areas including urban studies, disaster management, national
security and many more. One of the major applications in this regard concerns
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the analysis of (i) images of a given area on ground but acquired at different
time instants, and (ii) images of different geographical areas but composed of
similar land-cover types. Usually, it is non-trivial to generate training samples
for all the images and hence it is a common practice to reuse the training samples
obtained from images with similar characteristics to new images for carrying out
the supervised learning tasks. To this end, the paradigm of inductive transfer
learning, in particular domain adaptation, is extremely popular.

By definition, the unsupervised domain adaptation (UDA) techniques typi-
cally consider two related yet diverse data domains: a source domain S equipped
with ample amount of training samples, and a target domain T where the test
samples are accumulated. Since the data distributions are different for the two
domains: P (S) �= P (T ), the classifier trained on S fails to generalize for T fol-
lowing the probably approximately correct (PAC) assumptions of the statistical
learning theory [17,18].

Traditional UDA techniques can broadly be classified into categories based
on: (i) classifier adaptation, and (ii) domain invariant feature space learning. In
particular, a common feature space is learned where the notion of domain diver-
gence is minimized or a transformation matrix is modelled to project the samples
of (source) target domain to the other counterpart [4,13]. Some of the popular
ad hoc methods in this category include transfer component analysis (TCA)
[15], subspace alignment (SA) [6], geodesic flow kernel (GFK) [9] based manifold
alignment etc. Likewise, UDA approaches based on the idea of maximum mean
discrepancy (MMD) [20] learn the domain invariant space in a kernel induced
Hilbert space. Recently, the idea of adversarial training has become extremely
popular in UDA. Specifically, such approaches are based on a min-max type
game between two modules: a feature generator (G) and a discriminator (D).
While D tries to distinguish samples coming from S and T , G is trained to
make the target features indistinguishable from S [11]. The RevGrad algorithm
is of particular interest in this respect as it introduces a gradient reversal layer
for maximizing the gradient of the D loss [7]. This, in turn, directs G to learn
a domain-confused feature space, thus reducing the domain gap substantially.
Adversarial residual transform networks (ARTN) [3] is another notable approach
that uses adversarial learning in UDA. Besides, the use of generative adversarial
networks (GAN) have been predominant in the recent past for varied cross-
domain inference tasks: image style transfer, cross-modal image generation, to
name a few. Some of the GAN based endeavors in this regard are: DAN [8],
CycleGAN [5] and ADDA [19].

As the UDA problem is frequently encountered in RS, the aforementioned
ad hoc techniques have already been explored in the RS domain [18]. A recent
example [1] proposes a hierarchical subspace learning strategy which consid-
ers the semantic similarity among the land-cover classes at multiple levels and
learns a series of domain-invariant subspaces. The use of a shared dictionary
between the domains is also a popular practise for HSI pairs [21]. As far as the
deep learning techniques are concerned, the use of GAN or domain independent
convolution networks are also explored in this regard [2].
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In this work, we specifically focus on the domain classifier (DC) based adver-
sarial approach towards UDA. Precisely, the DC based UDA approaches simul-
taneously train the domain classifier and a source specific classifier using the fea-
ture generator-discriminator framework. While the domain classifier is entrusted
with the task of making the domains overlapping, the source classifier helps in
avoiding any trivial mapping. However, we find the following shortcomings of the
standard DC based approaches: (i) the learned space does not encourage discrim-
inativeness. In particular, the notion of intra-class compactness is not explicitly
taken into account, which may result in overlapping of samples belonging to
fine-grained categories. (ii) the learned space is ideally unbounded and does not
convey any meaningful interpretation and may be redundant in nature.

In order to resolve both the aforementioned issues, we propose an advanced
autoencoder based approach as an extension to the typical DC based UDA. In
addition to jointly training the binary domain classifier and the source-specific
multiclass classifier, we specifically add two other constraints on the learned
latent space for the source specific samples. The first one is the reconstructive
constraint that is directed to reconstruct one sample from another sample from S
both sharing the same class label. This essentially captures the classwise abstract
attributes better than a typical autoencoder setup. Further, this loss helps in
concentrating the samples from S at the category level. The other one is the
orthogonality constraint to ensure that the non-redundancy of the reconstructed
features in the source domain. Optimization of all four loss measures together is
experimentally found to better correspond S and T . The main contributions of
this paper are:

– We introduce a class-level sample reconstruction loss for the samples in S in a
typical DC based UDA framework. This makes the learned space constrained
and bounded.

– We enforce an orthogonality constraint over the source domain to keep the
reconstructed features in the source domain non-redundant.

– Extensive experiments are conducted on the Botswana and Pavia HSI
datasets where improved classification performance on T can be observed.

The subsequent sections of the paper discuss the methodology followed by
the experiments conducted and concluding remarks.

2 Methodology

In this section, we detail the UDA problem followed by our proposed solution.

Preliminaries: Let XS = {(xs
i , y

s
i )}NS

i=1 ∈ XS⊗YS be the source domain training
samples with xs

i ∈ R
d and ys

i ∈ {1, 2, . . . , C}, respectively. Likewise, let XT =
{(xt

j}NT
j=1 ∈ XT be the target domain samples obtained from the same categories

as of XS . However, PS(XS) �= PT (XT ). Under this setup, the UDA problem
aims at learning fS : XS → YS which is guaranteed to generalize well for XT .

In order to learn an effective fS , we propose an end-to-end encoder-decoder
based neural network architecture comprising of the following components: (i)
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a feature encoder fE , (ii) a domain classifier fD, (iii) a source specific classifier
fS , and (iv) a reconstructive class-specific decoder fDE . Note that the feature
encoder is typically implemented in terms of the fully-connected (fc) layers with
non-linearity. For notational convenience, we denote the encoded feature repre-
sentation corresponding to an input x by fE(x).

We elaborate the proposed training and inference stages in the following. A
depiction of our model can be found in Fig. 1.

2.1 Training

Given the encoded feature representations, the proposed loss measure is com-
posed of the losses from the following components in the decoder:

Source Classifier fS: The mapping, fS is a multiclass softmax classifier trained
solely on XS . We express the corresponding loss in terms of the cross-entropy
that is defined as the log-likelihood between the training data and the model
distribution [10]. Specifically, we deploy an empirical categorical cross-entropy
based loss,

LS = −E(xs
i ,y

s
i )∈XS

[ys
i log fS(fE(xs

i ))] (1)

where ED denotes the empirical expectation over domain D.

The Class-Specific Source Reconstruction fDE: Note that fS ensures bet-
ter inter-class separation of the source domain samples in the learned space.
However, it does not consider the notion of intraclass compactness which is
essential for demarcating highly overlapping categories. In addition, we simulta-
neously require the learned space to be meaningful and to capture the inherent
class-level abstract features of both S and T .

To this end, let us define two data matrices XS ∈ R
NS×d and X̂S ∈ R

NS×d

from XS in such a way that the ith row of both the matrices refers to a pair
of distinct data points obtained from a given category. Under this setup, fDE

aims to reconstruct X̂ in the decoder branch given fE(XS). We formulate the
corresponding loss as:

LR =
NS∑

i=1

‖X̃S − X̂S‖2F (2)

Note that X̃S denotes the projected fE(XS) onto the decoder. Since we
perform cross-sample reconstruction in this encoder decoder branch (fE and
fDE), fE essentially captures abstract class-level features of XS . Besides, LR

further ensures within-class compactness. As a whole, the joint minimization of
LS and LR ensures that fE essentially learns a space which is simultaneously
discriminative and meaningful.

Domain Classifier fD: The role of fD is to project the samples from S and
T onto the shared space modelled by �fE . Let us assign the domain label 0 to
all the source samples Xs

i and label 1 to all the target samples Xt
i . We define

XD = [XS ,XT ] and YD = [ŶS , ŶT ] where ŶS = 0 is an all zero vector of size NS
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and ŶT = 1 of size NT . Given that, fD maximizes a typical binary cross-entropy
based classification error through a min-max game between fE and fD in such a
way that the learned space becomes highly domain invariant. Formally we define
the loss measure for fD as:

LD = −E(xD
k ,yD

k )∈(XD,YD)[y
D
k log fD(fE(xD

k ))] (3)

Orthogonality Constraint: An additional orthogonality constraint over the
reconstructed source domain features is added to the total loss to ensure their
non-redundancy. The constraint is given as:

fDE(XS)T fDE(XS) = I (4)

However, Eq. (4) imposes a hard constraint over the optimization problem,
so instead of incorporating it in the total loss, we minimize a softer version given
as:

LO = fDE(XS)T fDE(XS) − I (5)

where I denotes identity matrix.

Fig. 1. Schematic flow of the proposed UDA model.

In Fig. 1, the source features XS are encoded as fE(XS) and then are sent to
source classifier fS . In addition, XD = [XS , XT ] is encoded as fE(XD) and sent
to domain classifier fD. The reconstruction loss and orthogonality constraints
are applied of the reconstructed source features fDE(XS).
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2.2 Optimization and Inference

Based on the Eqs. (1), (2), (3) and (5), the overall loss function L can be repre-
sented as a two stage optimization process:

Stage 1:
L1 = min

fS ,fE
LS + LR + LO (6)

Stage 2:
L = min

fS ,fE
max
fD

L1 − LD + λR (7)

where λ denotes the weight of the regularizer R on the learnable parameters. We
follow the standard alternate stochastic mini-batch gradient descent approach
to optimize L. We find that the order of optimization of the individual terms
does not matter in this case.

During testing, the target samples are assigned labels through fS(fE(XT )).

3 Experiments

3.1 Datasets

Two benchmark hyperspectral datasets have been considered to validate the
efficacy of our approach.

The first dataset is the Botswana hyper-spectral imagery (Fig. 2) [14]. The
satellite imagery was acquired by NASA EO-1 satellite in the period 2001–2004
using the Hyperion sensor with the spatial resolution of 30 m spanning over
7.7 km strip. The imagery consists of 242 bands that covering the spectral range
of 400–2500 nm. However in the current study, a preprocessed version of the
dataset is used that comprises 10 bands obtained following a feature selection
strategy.

Fourteen classes that correspond to land cover features on the ground are
identified for the dataset. Many of the classes are fine-grained in nature with
partially overlapping spectral signatures, causing the adaptation task extremely
difficult. The source dataset (SD), consisting of 2621 pixels and target dataset
(TD), containing 1252 pixels are created from spatially disjoint regions within
the study area, leading to subtle differences in S and T , respectively.

The second dataset consists of two hyperspectral imageries, one over the
Pavia City Center and the other over the University of Pavia (Fig. 3) [16].
The imageries captured from Reflective Optics Spectrographic Image System
(ROSIS). The Pavia City Center image consists of 1096 rows, 492 columns and
102 bands while the University of Pavia image consists of 610 rows, 340 columns
and 103 bands. Seven common classes are identified in both the images out of
which few share similar spectral properties thus making their classification chal-
lenging. We use Pavia University as the source dataset while Pavia City Center
as the target dataset. Since Pavia City Center image consists of 102 bands, the
same number of bands are used for Pavia University image as well where the
last band is dropped.
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Fig. 2. Botswana dataset with (a) colour composite of first three bands and (b) ground
truth. (Color figure online)

3.2 Protocols

The entire network is constructed in terms of fully-connected neural network
layers. In particular, fE has two hidden layers with the dimensions of the final
latent layer being 50. On the other hand, a single layer neural network is used
for both the source-centric classifier and the domain classifier with the required
number of output nodes. Relu(·) non-linearity is used for all the layers. The
weights for the loss terms are fixed through cross-validation and Adam optimizer
[12] is considered with an initial learning rate of 0.001.

We report the classification accuracy at T and compare the performance with
the following approaches from the literature: TCA, SA, GFK, and RevGrad for
Botswana dataset. However, for Pavia dataset, only GFK and RevGrad have
been used for comparison since the accuracies obtained from other classifiers
were quite insignificant. Note all the considered techniques aim to perform UDA
in a latent space and RevGrad acts like the benchmark: it implicitly showcases
the advantage of the proposed reconstructive loss term LR. In addition, we also
carried out ablation study on our proposed method by eliminating reconstruction
loss and orthogonality constraint one at a time.

3.3 Discussion

Tables 1 and 2 depict the quantitative performance evaluation and comparison
to other approaches for Botswana and Pavia datasets respectively. The highest
accuracy by a classifier for a given class is represented in bold.

For Botswana dataset, it can be inferred that the proposed approach outper-
forms the others with an overall classification accuracy of 74.5%. The RevGrad
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Fig. 3. Pavia dataset (a) colour composite and (b) the ground truth for the image of
Pavia City Center(c) colour composite and (d) the ground truth for the image of the
University of Pavia. (Color figure online)

Table 1. Performance evaluation on the Botswana dataset (in %).

Land-cover

classes

Pixel counts

for SD

Pixel counts

for TD

TCA [15] SA [6] GFK [9] RevGrad

[7]

Proposed

method

Water (1) 213 57 60.0 46.0 43.0 75.0 61.0

Hippo grass (2) 83 81 100.0 100.0 75.0 97.0 92.0

Floodplain

grasses 1 (3)

199 75 56.0 59.0 69.0 67.0 74.0

Floodplain

grasses 2 (4)

169 91 75.0 80.0 88.0 79.0 76.0

Reeds (5) 219 88 78.0 83.0 81.0 67.0 75.0

Riparian (6) 221 109 58.0 72.0 84.0 65.0 70.0

Firescar 2 (7) 215 83 98.0 100.0 100.0 97.0 100.0

Island interior

(8)

166 77 62.0 48.0 60.0 66.0 81.0

Acacia

woodlands (9)

253 67 27.0 40.0 44.0 47.0 50.0

Acacia

shrublands (10)

202 89 40.0 50.0 62.0 48.0 71.0

Acacia

grasslands (11)

243 174 79.0 92.0 92.0 73.0 74.0

Short mopane

(12)

154 85 89.0 93.0 91.0 73.0 79.0

Mixed mopane

(13)

203 128 48.0 61.0 65.0 77.0 73.0

Exposed soil

(14)

81 48 85.0 100.0 100.0 79.0 77.0

Overall accuracy

(OA)

− − 61.0 65.0 70.0 69.0 74.5
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Fig. 4. Two dimensional t-SNE of Botswana’s source and target datasets (a) before
domain adaptation (b) after domain adaptation.

Fig. 5. Bar chart for ablation study comparing effects of exclusion of different losses
on the classes of Botswana dataset.

technique on the other hand, produces an overall performance of 69%, thus
implying that an overall domain alignment (without class) is not suitable for this
dataset. The proposed method produces significant improvement in identifying
island interior (OA = 81%), acacia woodlands (OA = 50%) and acacia shrublands
(OA = 71%). These classes are difficult to handle having similar spectral prop-
erties with other classes and the ad hoc approaches considered for comparison
mostly failed to identify them. For other classes, the results are comparable
to the other techniques. Figure 4 shows the 2-D t-SNE comparing the source
and target features (before training) with projected source and target features
obtained after training.

The ablation study conducted on Botswana dataset showed that an OA of
65% is achieved when the reconstruction loss is not considered during while an
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Table 2. Performance evaluation on the Pavia dataset (in %).

Land-cover
classes

Pixel
counts
for SD

Pixel
counts
for TD

GFK [9] RevGrad [7] Proposed
method

Asphalt (1) 6631 7585 50.0 64.0 86.0

Meadows (2) 18649 2905 47.0 61.5 92.0

Trees (3) 3064 6508 92.0 94.0 84.0

Baresoil (4) 5029 6549 97.0 72.5 53.0

Bricks (5) 3682 2140 62.0 67.0 58.0

Bitumen (6) 1330 7287 41.0 51.0 57.0

Shadows (7) 947 2165 97.0 83.5 95.0

Overall
accuracy (OA)

− − 66.0 70.5 74.0

Fig. 6. Two dimensional t-SNE of Pavia’s source and target datasets (a) before domain
adaptation (b) after domain adaptation.

OA of 64% is recorded in absence of orthogonality constraint. Figure 5 presents
the accuracies obtained while conducting the ablation study on Botswana
dataset. Significant improvement is observed in the accuracy of hippo grass,
reeds and firescar 2 when all the losses and constraints are considered. It is also
observed that the accuracy water class is decreased considerably for the same
case. The accuracies for other classes are more or less same.

The similar trend is observed for Pavia dataset as well where our method
surpasses the other classifiers with an OA of 74%, while the benchmark RevGrad
classifier gives an OA of 70.5%. This affirms the inefficiency of domain alignment
(without class) on the Pavia dataset as well. In addition, there is a significant
improvement in classification of asphalt (OA = 86%) and meadows (OA = 92%)
classes. The spectral signature of meadows class overlaps with that of that of
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Fig. 7. Bar chart for ablation study comparing effects of exclusion of different losses
on the classes of Pavia dataset.

trees (since both are a subset of vegetation), but our classifier performs well in
identifying meadows much better than the other classifiers. For other classes, the
classification accuracies are more or less similar to those from other classifiers.
Figure 6 shows the t-SNEs of source and target features before and after training.

The ablation study on Pavia dataset showed an overall accuracy of 65%
when the classifier was trained without orthogonality constraint while training
without reconstruction loss gave an OA of 71%. Figure 7 compares the classwise
accuracies for Pavia dataset against different losses considered in our ablation
study. The results show that there is a significant improvement in the identi-
fying of shadows (OA = 95%) and asphalt (OA = 86%) when all the losses are
considered.

4 Conclusions

We propose a cross-domain classification algorithm for HSI based on adversarial
learning. Our model incorporates an additional class-level cross-sample recon-
struction loss for the samples in S within the standard DC framework in order
to make the learned space meaningful and classwise compact and an additional
orthogonality constraint over the source domain to avoid any redundancy within
the reconstructed features. Several experiments are conducted on the Botswana
and Pavia datasets to assess the efficacy of the proposed technique. The results
clearly establish the superiority of our approach with respect to a number of
existing ad hoc and neural networks based methods. Currently, our method only
relies on the spectral information. We plan to introduce the spatial aspect for
improved semantic segmentation of the scene by distilling the advantages of
convolution networks within the model.
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