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Abstract. Diatoms are a major group of aquatic microalgae. They are
widely used in different fields such as environmental studies to estimate
water quality. This paper presents the use of convolutional neural net-
works (CNNs) to identify diatoms during their life cycle. This life cycle
involves morphological and other changes to the diatom frustule adding
intraclass variance and making harder the classification task. The per-
formance of CNNs is compared against a classical image classification
scheme (i.e., feature extraction and classification) using a 14 classes
dataset with a total number of 1085 images ranging from 40 to 120 images
per class. Classification accuracy was 99.07% and 99.7% for CNNs and
classical methods respectively.
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1 Introduction

Diatoms are a group of unicellular algae that are present in a great variety of
aquatic environments. It is estimated that the total number of species is more
than 200,000 (although the number of species already described is about 10,000).
Since diatoms can adapt themselves to the environment, they can be used as a
natural water quality indicator in environmental studies [5].

Diatoms are formed by two thecae that fit together to create a capsule known
as a frustule. The frustule is formed by silica and depending on its shape diatoms
can be centric (rounded frustule) or pennate (elongated frustule). The reproduc-
tion of the diatoms is asexual and sexual. In the asexual stage, the frustule is
separated in the two valves. Then the other half of the cell grows originating two
different diatoms, one bigger than the other. These differences in size are what is
called life cycle. After several generations, the size of the valve can not decrease
more triggering sexual reproduction. At this point, the cell form auxospores that
will form new full-size algae. This is called sexual reproduction.
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Traditionally, the task of identifying diatoms in samples from different
aquatic environments was made by biologists. They usually looked for different
morphometric features (length, width, shape) and frustule ornamentation such
as the striae density. The identification is made comparing against previously
described specimens [2]. Doing this task manually involves different challenges
due to inter-species similarities and intra-species dissimilarities, originated from
the various stages of the life cycle.

Different attempts to automate this process has been made [3,4,22]. This
task is challenging due to different factors such as to the vast number of diatom
species, similarities between them and the life cycle related changes in shape
and texture. Some researchers [21] used shape descriptors based on Legendre
polynomials and principal component analysis (PCA) in the identification of
the Cymbella cistula species. Others [20] applied PCA to the Fourier descriptors
extracted from the contour of the Tabellaria group. There are also recent studies
on the application of different classification methodologies and the consideration
of different image features such as textures, geometry, morphology and their
combination [3]. Convolutional neural networks (CNNs) have also been applied
with success for a high number of taxa [22]. However, the main source of errors
come from the misclassification of algae due to their life cycle.

In this paper, we present an extension of the work presented in [24]. Two
different contributions are added to the previous work. The main novelty of this
work resides on the one hand that the number of classes has been increased from
8 to 14 and secondly a different approach has been considered using CNNs to
classify the diatoms. CNNs have been applied recently to the taxonomic identifi-
cation of diatoms with a 99.51% of accuracy in 80 species. However, the dataset
used by these authors contains an average of 100 samples per taxa before apply-
ing any data augmentation technique. Due to the known need of relatively large
training datasets for training some architectures such as AlexNet or GoogleNet
from scratch, we propose to use transfer learning techniques as a fine-tuning
strategy to the complete the model or by fixing the convolutional layers to
use them as feature extractor to retrain the last part of the network [30]. In
both cases, the networks are initialized with the weights of their corresponding
architectures previously trained on ImageNet. In this work, ResNet18, AlexNet,
VGG11, SqueezeNet1.0, DenseNet121, and InceptionV3 have been compared.
Finally, a comparison between the results obtained with a traditional image
identification workflow (i.e., image preprocessing, segmentation, feature extrac-
tion, dimensionality reduction, and classification) and CNNs is presented.

2 Materials and Methods

2.1 Database

The database used in this work is formed by 1085 diatom images of 14 different
classes distributed as in Table 1.
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Table 1. Number of images per taxa.

# Taxa #valves

1 Gomphonema minutuma 74

2 Luticola goeppertianaa 117

3 Nitzschia amphibiaa 59

4 Nitzschia capitellataa 95

5 Eunotia tenellab 68

6 Fragilariforma bicapitatab 100

7 Gomphonema augur var augurb 98

8 Stauroneis smithii grunowb 92

9 Sellaphora pupulac 40

10 Sellaphora obesac 72

11 Sellaphora blackfordensisc 57

12 Sellaphora capitatac 120

13 Sellaphora auldreekiec 40

14 Sellaphora lanceolatac 53
aAvailable in [1]
bAvailable in [18]
cAvailable in [19]

2.2 Traditional Image Classification

The first step to carry out is image segmentation and contour extraction. Then
three different sets of features are extracted to describe the segmented image
and the contour. After that, all the features undergo a dimensionality reduction
process. Finally, a classifier is used with this reduced set of features. The method
is more extensively described in [24].

A. Segmentation and Contour Extraction. Semi-automatic global thresh-
olding based on the Otsu method and morphological operations was used. In this
process, few images were manually discarded due to inhomogeneous illumination
and noise.

B. Feature Extraction. Three different descriptors have been used to describe
the images. Elliptical Fourier descriptors (EFD) model the diatom contour while
Gabor filters and phase congruency (PC) descriptors characterize the diatom
ornamentation.

– Elliptical Fourier descriptors. The method to calculate EFD is described in
[16]. It starts with a contour image and calculates the Freeman chain code.
Then the x, y projections of the chain code are calculated. Finally, the Fourier
coefficients are obtained from these projections. It was empirically determined
that the first 30 coefficients are sufficient to represent the contour.
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– Phase congruency descriptors. The phase congruency is based on the fact
that all Fourier components are in phase in areas where signals occur, i.e.,
corners, edges, and textures of the images. PC descriptors are calculated as
in [28]. Starting from the phase congruency maximum (M) and minimum
(m) momentum images(described in [14]), the mean and standard deviation
were calculated for both images. Those images combine the phase congruency
information of each orientation. A total of 4 phase congruency descriptors are
obtained.

– Gabor filters descriptors. Gabor based descriptors are calculated by the same
method as in [3] and initially described in [6]. First, the log-Gabor filters are
calculated as shifted Gaussians for different orientations and scales. These
filters are applied to the images and then the first and second order statistics
are obtained for every sub-band.

C. Dimensionality Reduction. After the feature extraction, a total of 223
features were obtained. Therefore a dimensionality reduction is needed. For such
purpose, Linear Discriminant Analysis (LDA) [7] was selected as it was proven
that enhances classification results over other techniques such as PCA. LDA
projects the feature space into a new smaller subspace that maximizes the sepa-
ration between classes. With this supervised method, the original 223 dimensions
space is reduced to N − 1 dimensions, where N is the number of classes in the
dataset (N = 14 in this work).

D. Classification. In machine learning, a classifier can be defined as a function
that takes the values of different features of a sample and gives as an output the
prediction of the class to which the sample belongs [23]. In [24], different super-
vised and non-supervised classifiers were tested. Among the tested algorithms,
Hierarchical Agglomerative Clustering [25] was chosen as it achieved the best
results with the proposed dataset. Hierarchical clustering is a machine learning
algorithm to cluster unlabeled data points. It produces a set of nested clus-
ters organized as a hierarchical tree that can be visualized using a dendogram.
They may correspond to meaningful taxonomies e.g. diatom taxa. The initial
phase of this algorithm states that every single observation is a different cluster.
Then a distance function between clusters is computed, and the closer clusters
are merged. The algorithm finishes once the number of clusters is equal to the
previously defined number of clusters.

2.3 Deep Learning

The number of images contained in this dataset is reasonable for applying tra-
ditional machine learning methods but is far from the amount required by deep
learning techniques as explained in [22]. This number can be decreased to 100
samples per class by using transfer learning techniques [8]. However, most of the
classes have fewer samples than that, and the number should be later reduced
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by partitioning the dataset into training, validation and test datasets. To deal
with this problem, we added a data augmentation step that performs:

1. Horizontal flip
2. Vertical flip
3. Random rotation between 0◦ and 90◦

The combination of these three transformations is randomly applied each
time a batch is requested during the training. After this process, images are
resized to the network input size, i.e., 224× 224 pixels. Figure 1 shows some
examples of this process.

Fig. 1. Data augmentation examples. Note that after the size normalization the aspect
ratio of the original images is not preserved. This fact will have a negative effect in the
learning process reducing the final classification accuracy.

Fig. 2. Scheme of the Alexnet network tested. Source: http://alexlenail.me/NN-SVG/
AlexNet.html

Since image classification is a common task, several classification network
architectures have been proposed in the literature. In this case, we have

http://alexlenail.me/NN-SVG/AlexNet.html
http://alexlenail.me/NN-SVG/AlexNet.html
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tested ResNet18 [9], AlexNet [15] (see Fig. 2), VGG11 [26], SqueezeNet1.0 [12],
DenseNet121 [10], and InceptionV3 [27]. To deal with convergence problems due
to the low number of samples per class, two transfer learning techniques have
been applied. One of them is fine-tuning, in which a pre-trained model in used to
initialize the network and then all the weights are adjusted during training. The
other one consists in using the convolutional layers as a feature extractor and
then training only the last part of the architecture. In all cases, the model weights
were initialized with the ones from their corresponding pre-trained models on
ImageNet since it has demonstrated to be successful on a wide range of trans-
fer tasks [11]. Therefore, ImageNet is only used to learn good general-purpose
features as a starting point for our diatom classification task.

The dataset was split into 3 different parts to train and evaluate the models.
The 80% of the images were used for training whereas the other 20% was divided
into validation: 10%, and test: 10%. This was repeated 10 times following a 10
fold cross validation scheme. Data augmentation was applied after this division.
Analogously to the pretrained models, the subtracted mean m and standard
deviation σ used to normalize the inputs were (m = 0.485, σ = 0.229), (m =
0.456, σ = 0.224), (m = 0.406, σ = 0.225) for training, validation and testing
respectively.

3 Results

Two different tests were done with the dataset. In the first experiment, the
images were analyzed with a traditional image classification scheme obtaining a
classification accuracy of 99.7%. In the second experiment, different CNNs were
tested, being Densenet with 99.07% accuracy the best result achieved.

Figure 3 is a representation of the clusters using t-Distributed Stochastic
Neighbor Embedding (t-SNE) [17] algorithm to reduce the dimension of the fea-
ture vector. In such figure, it can be observed that the separation of the clusters
allows to identify each cluster with a different class. Despite not being perfectly
differentiated all the clusters in this representation, it is possible to assure that
they are well separated in the 14 dimensions hyperplane of the features space
according to the classification results where only 3 observations were misclassi-
fied.

Figure 4 represents the confusion matrix with the correctly identified samples
and the errors produced by the classifier. In addition to classification accuracy,
different objective metrics were calculated to assess the clustering performance
[13,29]. These metrics measure similarities with the ground truth (RAND), the
similarity between elements of the same cluster (Silhouette), the similarities
between the class assignment and the ground truth classes (Adjusted Mutual
Information), if a cluster contains only members of the same class (Homogene-
ity) and if all the members of the same class are assigned to the same cluster
(Completeness) Table 2 shows the values for the metrics. The values close to 1
indicates that the clusters are separated and well defined.

Tables 3 and 4 show the accuracies of the CNN models on the test set. All
architectures obtained better results with the use of fine-tuning rather than
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Fig. 3. Representation of the data using t-SNE algorithm for visualization. The data
after the dimensionality reduction using LDA produces well separated clusters.

Table 2. Clustering metrics.

Metric RAND Silhouette Adjusted mutual
information

Homogeneity Completeness

Value 0.9959 0.5173 0.9947 0.9951 0.9948

using them as a feature extractor, being the average accuracy difference between
both techniques of around 11%. DenseNet, ResNet and VGG are the model
architectures that provide the highest accuracy. From them, DenseNet shows the
best results by achieving 99.07% of the samples correctly classified and having
only one image misclassified. With the use of the convolutional layers as a feature
extractor, SqueezeNet provides the best results with an accuracy of 93.52%. The
differences between the two transfer learning techniques may be caused by the
dissimilarity between diatoms and the classes in the ImageNet dataset. Based
on that, it reasonable to have better results when the weights of the feature
extractor are adjusted to the new dataset.

Regardless of the model used, the average per class accuracies show that the
most challenging classes for both techniques are: Nitzschia amphibia, Sellaphora
blackfordensis, and Sellaphora pupula. Nitzschia amphibia is often classified as
Gomphonema minutum. Misclassification between them may be caused by the
similarities of their lateral views as shown in Fig. 5(a)–(b). On the other hand,
Sellaphora blackfordensis and Sellaphora pupula are often misclassified as Sell-
aphora capitata and Sellaphora auldreekie. The confusion between those classes
is most likely to be caused by their high general similarity (Fig. 5(c)–(f)).
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Fig. 4. Confusion matrix of the classification results obtained using hierarchical
agglomerative clustering. Elements in the main diagonal represent the correct iden-
tifications while the other elements are the errors.

Fig. 5. Common misclassifications of the CNN models. Nitzschia amphibia (a) is some-
times classified as Gomphonema minutum (b), Sellaphora blackfordensis (c) as Sell-
aphora capitata (d), and Sellaphora pupula (e) as Sellaphora auldreekie (f).
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Table 3. Fine tuning results

AlexNet DenseNet Inception RestNet SqueezeNet VGG

Eunotia tenella 100% 100% 100% 100% 100% 100%

Fragilariforma bicapitata 90% 100% 100% 100% 100% 100%

Gomphonema augur 100% 100% 100% 100% 100% 100%

Stauroneis smithii 100% 100% 100% 100% 100% 100%

Gomphonema minutum 100% 100% 100% 100% 100% 100%

Luticola goeppertiana 91.67% 100% 100% 100% 91.67% 100%

Nitzschia capitellata 100% 100% 100% 100% 100% 100%

Nitzschia amphibia 83.33% 83.33% 83.33% 83.33% 83.33% 83.33%

Sellaphora pupula 50% 100% 100% 100% 75% 100%

Sellaphora obesa 100% 100% 100% 100% 100% 100%

Sellaphora blackfordensis 83.33% 100% 83.33% 83.33% 83.33% 83.33%

Sellaphora capitata 100% 100% 100% 100% 75% 100%

Sellaphora auldreekie 100% 100% 100% 100% 100% 100%

Sellaphora lanceolata 100% 100% 100% 100% 80% 100%

TOTAL 94.44% 99.07% 98.15% 98.15% 92.59% 98.15%

Table 4. CNN as a feature extractor results

AlexNet DenseNet Inception RestNet SqueezeNet VGG

Eunotia tenella 85.71% 100% 71.43% 42.86% 100% 100%

Fragilariforma bicapitata 100% 100% 90.00% 100% 100% 100%

Gomphonema augur 100% 100% 100% 100% 100% 100%

Stauroneis smithii 100% 100% 100% 100% 100% 100%

Gomphonema minutum 85.71% 100% 100% 100% 100% 85.71%

Luticola goeppertiana 100% 100% 66.67% 91.67% 100% 100%

Nitzschia capitellata 100% 100% 100% 100% 100% 88.89%

Nitzschia amphibia 66.67% 50% 33.33% 100% 66.67% 50%

Sellaphora pupula 0.00% 100% 0.00% 25.00% 75% 50%

Sellaphora obesa 57.14% 71.43% 14.29% 100% 71.43% 100%

Sellaphora blackfordensis 33.33% 83.33% 16.67% 100% 66.67% 83.33%

Sellaphora capitata 91.67% 91.67% 41.67% 75% 100% 91.67%

Sellaphora auldreekie 100% 50% 50% 100% 100% 100%

Sellaphora lanceolata 80% 100% 60% 80% 100% 60%

TOTAL 84.26% 91.67% 65.74% 88.89% 93.52% 89.81%

4 Discussion

This work pursued two main purposes as a sequel of the previously presented
[24]. On the one hand, use a larger dataset with more different classes for testing
the method described for diatoms life cycle classification. Elsewhere, test deep
learning CNNs with the same dataset to compare with the results obtained with
traditional classification algorithms.
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With the new dataset (14 classes), a 99.7% accuracy was obtained with clas-
sical methods, whereas a similar result than the 98% obtained with a smaller
dataset (8 classes) in [24].

Despite the good results obtained for 14 classes, the dataset can be still con-
sidered small. The absence of loss of precision when some additional classes were
included in the experiment needs to be corroborated in the case of considering
a significantly large number of classes (e.g., 50–100) together with a sufficiently
high number of samples per class. This would be a more realistic situation where
a higher number of diatoms coexist in the same ecosystem.

Convolutional Neural Networks classified correctly the 99.07% of the samples
in the best scenario and 65.74% in the worst case. Concerning per class accura-
cies, it has been shown that three classes (Nitzschia amphibia, Sellaphora pupula
and Sellaphora blackfordensis) are the most difficult to classify independently of
the learning technique. The best results were obtained using a fine-tuning strat-
egy and thus, adjusting all the weights whereas the worst results were obtained
using the first layers of the pre-trained models as fixed feature extractors. This
may be caused due to the differences between the different application domains.
While models trained on ImageNet learn how to classify instances from categories
such as animals or objects, diatoms are very different from those. Therefore, using
such models as a feature extractor do not allow to extract the needed features
for diatom classification. On the contrary, models trained on ImageNet can gen-
eralize with good results to other classification problems with some adjustments.

5 Conclusions

Increasing the number of classes present in the dataset and, consequently, the
number of images has not decreased the accuracy of the method based on
image descriptors and a traditional classifier. It remains close to 99%. More-
over, the results obtained using Deep Learning reach also high classification
rates. Although the dataset is small to train a CNN to classify diatom accord-
ing to the taxa, a transfer learning procedure has been applied to obtain the
99.07% of samples correctly classified. From the two proposed techniques, fine
tuning (adjusting all the network weights) achieves the best performance since
diatoms differ from the objects of the categories commonly used to initialize the
architectures.
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