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Annalisa Franco3 , and Alessandra Lumini3

1 Computer Architecture Group, CITIC, Universidade da Coruña, A Coruña, Spain
{eric.lopez,carlos.vazquez.regueiro}@udc.es

2 Centro de Investigación en Tecnolox́ıas Intelixentes (CiTIUS),
Universidade de Santiago de Compostela, Santiago de Compostela, Spain

xose.pardo@usc.es
3 DISI - Department of Computer Science and Engineering,
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Abstract. Data labelling is still a crucial task which precedes the train-
ing of a face verification system. In contexts where training data are
obtained online during operational stages, and/or the genuine identity
changes over time, supervised approaches are less suitable.

This work proposes a face verification system capable of autonomously
generating a robust model of a target identity (genuine) from a very
limited amount of labelled data (one or a few video frames). A self-
updating approach is used to wrap two well known incremental learning
techniques, namely Incremental SVM and Online Sequential ELM.

The performance of both strategies are compared by measuring their
ability to unsupervisedly improve the model of the genuine identity over
time, as the system is queried by both genuine and impostor identities.
Results confirm the feasibility and potential of the self-updating app-
roach in a video-surveillance context.

Keywords: Face verification · Video-surveillance ·
Incremental learning · Self-updating

1 Introduction

The aim of face verification in video-surveillance (FViVS) is to determine
whether the faces captured in a sequence of video frames belong to a target
(genuine identity). In addition to the general difficulties found in face verifi-
cation using still photos, such as pose variations, illumination conditions, or
occlusions, video face verification also incorporates its own issues (e.g. motion
blur, low-resolution).

Depending on the treatment received by the video data three different sce-
narios emerge [13]. First, in Video-to-Video face verification (V2V) a system is
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queried using a sequence of video frames in order to find the same target iden-
tity in another part of the video [23]. Second, in Still-to-Video (S2V) a system
is queried with a still photo in order to find the same identity in a video [1,5].
And finally, in Video-to-Still (V2S) verification tasks the goal is to find a target
identity in a set of still images using a video query [4,8].

Offline learning is commonly used when a large number of labelled face images
are available for training in advance, and offers a good coverage of the (station-
ary) target domain. However, due to the high computational complexity required
for retraining, it is not adequate for purpose where the regularly update of the
classifier is needed. Conversely, online learning presents an efficient alternative
by updating the classifier knowledge upon the arrival of new data. When the
availability of labels is scarce, or relevant visual changes are expected in the
target’s appearance after the modelling, online approaches are advantageous. It
also learns to remove patterns that become extraneous and redundant over time.
Thus, online learning has two components namely incremental and decremental
learning, though here, we will only address the first one.

Hybrid approaches begin with an offline supervised learning, and then
enhance the model over time in a semi-supervised or unsupervised way [4,22].
Online approaches build and update their models in a semi-supervised or unsu-
pervised way [20]. In biometry, both approaches are commonly referred as tem-
plate updating. Here, we use self-updating to refer to methods where the decision
whether to update or not is also driven by themselves.

Deserving a special mention, deep learning techniques have boosted face ver-
ification in terms of performance. Notwithstanding, their requirements of huge
amount of training data hinder the applicability to real scenarios. In FViVS
(either V2V or S2V/V2S) this limitation is due to the difficulty in curating and
annotating such large video datasets as needed. In order to circumvent these dif-
ficulties, solutions like fine-tuning [21], or the utilisation of pre-trained networks
as feature extractors have been proposed [19]. Nevertheless a general solution
to transfer face recognition is still far from being reached [18]. Similarly, despite
its growing interest in the scientific community, the adaptation of deep learning
techniques to semi or unsupervised scenarios remains something pendent [24].

This work proposes a FViVS system capable of autonomously generates a
robust model of a target identity, when starting with a minimum template. This
template is unsupervisedly improved over time, as new samples of the target
and different identities (impostors) are presented. To achieve this behaviour,
incremental learning methods were selected. The scenario where a controlling
agent selects one video frame that contains the target face, and the system is
able to create the complete model by itself, epitomises an illustrative case of use.
The main contributions are:

1. The application of a self-updating strategy to FViVS.
2. A comparison between two classification approaches designed for incremental

learning (Incremental SVM [15] and Online Sequential ELM [16]) within a
self-updating framework.

3. A study of the relevance of the initial template in the self-updating strategy.
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The rest of the paper is organised as follows: Sect. 2 presents common strate-
gies used to develop an unsupervised face verification system. Section 2.1 formally
defines the hypothesis and the elements of a self-updating system. Sections 4
and 5 describe the experimental setting and the performed experiments. Finally,
Sect. 6 exposes the conclusions of this work.

2 Unsupervised Face Verification in Videos

Traditionally, the use of template updating methods have been focused in two
similar but different tasks: (i) the adaptation of a previously trained model to
mitigate the impact of changes in either environments or facial appearance [4,7],
and, (ii) the gradual improvement of a template when the amount of labelled
data is low [25]. This work try to provide insights on the second challenging task.

The absence of labels entails the necessity for somehow inferring this infor-
mation and solving the dilemma of updating or not (Sect. 2.1). In the literature
this is usually referred as the stability-plasticity or the exploitation-exploration
dilemmas [9,11]. In the specific case of videos, the possibility of exploiting a time
series of images will help in the task of this inference (Sect. 2.2).

2.1 Self-updating

Firstly proposed in the scope of natural language processing [25], this approach
relies on the output of the model to infer the labels to perform the template
updating. The updating will be performed whenever the target identity is veri-
fied [6,8]. Consequently, once the initial model is created (using a quite limited
amount samples), the labelling (i.e. supervision) requirements is null.

In contrast, the main concern is how to determine the adequate threshold of
the confidence value assigned to each label. Each new sample, labelled as belong-
ing to the genuine identity and which confidence value is above the threshold,
is used to update the template. While a high confidence threshold avoids the
template corruption by outliers, it also prevents the system from accepting new
valuable samples that differ from the ones contained in the template. Conversely,
lower confidence thresholds can ease the acceptance and the subsequent addition
of diverse information at the risk of corrupting the model with false positives.

2.2 Temporal Coherence

Often remarked as one of the keys to the actual development of an unsupervised
learning method [8,20,24], the idea behind temporal coherence is something
quite intuitive for humans. For example, if one of colleagues puts on a wig and
sunglasses in front of you, it is natural to assume that the identity of this person
is still the same despite his drastic look change. In videos, this idea is exploited
assuming that successive frames tend to contain very similar information [2].

In FViVS, the exploitation of temporal coherence is performed with the help
of a face tracker. This way, we can assume that an output video sequence of a
face tracker belongs to the same identity despite changes in pose or illumination
that could potentially damage the performance of a frame by frame recogniser.
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3 Self-updating for FViVS

The idea of self-updating methods is to rely on the current model (M t) at time t,
to make the decision about updating itself when a video query has been identified
(at time t) as belonging to the same identity. This way, unlabelled samples are
gathered over time in order to improve the model without supervision.

Taking this into account the considered scenario assumes that initially (t =
0) a controlling agent selects one or a few video frames of the target identity
(genuine) from a sequence given by a face tracker to create the template. It is
also assumed the availability of a bunch of negative samples (impostors) from the
domain of operation (in the literature this set is often called Universal Model,
UM [4]) necessary to compare against the genuine information we are retrieving.
The set of both the genuine template and the UM compose the set D0.

Over time (t = 1, 2, 3...), the system is queried with new video sequences from
unknown identities (both genuine and impostor) from the Cohort Model, CM
[4]. If the model M t accepts the query sequence, the sequence will be added to
Dt in order to generate Dt+1 and create the model M t+1. In the opposite case,
Dt+1 remains the same so as M t+1. The hypothesis of self-updating systems
consist on assuming that this procedure will allow to improve performance.

3.1 Decision Rules for Self-updating

Since using a self-updating strategy gives to the models the power of deciding
the label of a video sequence, we need to define three different rules:

– The Frame Decision Rule (FDR). This rule assigns a score to every frame
of the query video sequence. It corresponds to the outcome provided by the
selected model (Sect. 3.2) and, consequently, dependant on it.

– The Sequence Decision Rule (SDR). This rule is the actual implementation
of the exploit of the temporal coherence described in Sect. 2.2. It is assumed
that even if some frames of the sequence are not recognised we could still use
the fact that the whole sequence belongs to a same identity in order to reject
or accept it.
In practical terms, this rule assigns an unique score to every query video
sequence based on the individual scores given by the FDR to each frame of
their frames. It is computed using the median of the scores assigned by the
FDR to each frame of the sequence (which is the equivalent of a majority
voting). Identities will be verified by fixing a threshold. The cautiousness
or greediness in this fixation is directly related with the stability-plasticity
dilemma.

– The Update Rule (UR). This rule marks how and when the model will be
updated. In our case, whenever the identity is verified. Since it is planned to
use only incremental methods, the update will consist in perform a partial fit
using the actual query sequence.
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3.2 Selected Incremental Learning Methods

Any classification method can be used within a self-update strategy. A self-
updating method is used as a ‘wrapper’ one that in practice converts a supervised
classification method into an unsupervised one.

In this work we compare two different incremental learning techniques within
this strategy. The advantage of the incremental methods is that they provide a
natural way of performing the template updating:

– Incremental Support Vector Machines (I-SVM). [15] Solves the widely
known problem of the Linear Support Vector Machines [3] by using the
Stochastic Gradient Descent approach to incrementally find the hyper-plane
parameters of the solution:

w0 · x + b0 = 0

where w0 and b0 are the parameters of the hyper-plane and x represents a
vector in the feature space.

– Online Sequential Extreme Learning Machine (OS-ELM). [16]
Derived by the well known ELM neural network classifier [12], this approach
is specifically adapted to be able to compute and update the weight values
sequentially as more data is becoming available (‘chunk-by-chunk’ or one-by-
one).
In our case, a sigmoid function is used as activation function and the number
of hidden nodes is empirically fixed at Ñ = 80.

4 Experimental Setting

In this section, the experimental setup is explained. First, the database and the
face detection algorithms are described. Then, the protocol for testing and the
metrics used are presented.

4.1 FACE COX Database

The FACE COX database [13] gathers video frames of a total of 1000 users.
There are 3 video sequences captured by 3 different cameras (cam1, cam2 and
cam3) and a high quality still photo of each user. The faces of the subjects,
who walked along a S-path, were captured on fixed cameras with varying pose,
illumination, scale, and amount of blur. Each camera recorded a part of the path,
without temporal overlapping between them.

As it has been explained in Sect. 3, in a self-update strategy the update is
performed after each video query. In this dataset, the number of sequences of a
same user is quite limited (3 sequences per user). Therefore, a priori, this dataset
would allow a maximum of 3 updates (without taking into account the testing
needs). In order to mitigate this limitation, each video sequence was divided in
a number of sub-sequences, while being ware of their temporal order.
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Table 1. FACE COX database user and camera division learning.

Genuine Impostor

still cam1 cam2 cam3 still cam1 cam2 cam3

Train 0 0 0 0 300 300 300 300

Gallery 0 700 700 0 0 0 0 0

Probe 0 0 0 700 0 0 0 700

4.2 Face Detection and Feature Extractor

A face detection over each frame of the sequence is performed in order to isolate
and correctly align the region of the face from the rest of the background using
the tool provided in the Dlib library [14]. After that, we use the power of the
pre-trained ResNet Convolutional Neural Network [10] implementation provided
by the Dlib library [14] for feature extraction. This implementation achieves
an accuracy of 99.38% in the LFW dataset and has shown to have very good
properties in terms of robustness to non-identity related variations [17].

4.3 Training and Testing Protocol

Inspired by the protocol proposed by FACE COX database, we have created
different subsets (Table 1):

– The train subset contains face images used as negative samples to train
each method. In our experiments this subset is conformed by the images of
300 users taken from each 3 cameras.

– The gallery subset that contains the images used to create the initial tem-
plate as well as the ones used to simulate the video queries (both genuine and
impostor). To build this set in our experiments we will use the images from
the other 700 users taken from cam1 and cam2. Each video sequence taken
from each camera were divided in 5 different sub-sequences given a total of
10 possible queries.

– The probe subset contains the images used to perform the testing of the
system. The testing will be performed after each query of the learning phase
to follow the evolution of the model. To build this subset we will use images
taken from cam3 from the same 700 users used to build the gallery subset. In
this case we have divided each user sequence into 10 sub-sequences.

The identities that are present in the train subset will not be present in the
other two subsets. This way, the identities of the training subset will conform the
Universal Model (UM) and the identities in the gallery and the probe subset will
make up the Cohort Model (CM). In the experiments, each identity will have
a specific CM that will contain its data and the data of the 10 ‘most similar’
(using a SVM metric [17]) impostors.
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(a) TAR@FAR5 perfor-
mance.

(b) TAR and FAR at the
operational threshold.

(c) AUC performance.

Fig. 1. Supervised performance of I-SVM and OS-ELM. Performance is measured after
each query (in this case only genuine ones) presented to the system.

It is important to note that the train subset will be used as the validation
set that will help us to fix the decision threshold of the SDR (see Sect. 3.1). The
value of this operational threshold will be set to 10% FAR of the model created
using the initial template.

4.4 Metrics

The metrics used to evaluate our system were the Area Under the Curve (AUC)
of the Receiver Operating Characteristic (ROC) generated by the True Accep-
tance Rate (TAR) and False Acceptance Rate (FAR) when we vary the decision
threshold. Besides, measurements of TAR at FAR of 5% (TAR@FAR5) and
Transaction Level performance are also provided [4].

Performance is measured using using the probe subset, with a distribution
of 10 sub-sequences per genuine identity and 1 sub-sequence per impostor iden-
tity. Then, the results obtained for each identity are averaged between the 700
identities from the probe subset.

5 Experiments and Results

The high degrees of freedom of the self-updating strategy forced us to be cautious
during the testing. The first step we have taken is to establish a baseline or
‘upper-limit’ in the achievable performance. That is the case where the system
is updated in a supervised manner (Sect. 5.1).

Afterwards, we have moved to measure the performance evolution by actu-
ally using the self-update strategy in unsupervised conditions (Sect. 5.2). Both
genuine and impostor sequences are presented. The system needs to distinguish
between them and update or not consequently. Finally, we highlight the impor-
tance of a good initial template for achieving good final performance (Sect. 5.3).
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(a) TAR@FAR5 perfor-
mance.

(b) TAR and FAR at the
operational threshold.

(c) AUC performance.

Fig. 2. Unsupervised performance of I-SVM and OS-ELM using a 1 frame initial tem-
plate. Performance is measured after each query presented to the system.

5.1 Supervised Learning (Baseline)

The supervised case represents the upper-limit since labels query labels are pro-
vided to the system. Consequently, it does not have to decide between accepting
or not. The initial template is composed by just one frame, the first one of the
sequence which is used to create M0. From this point, the system is queried with
10 different queries from the genuine identity.

Performance is measured on the probe subset using the members of the CM of
each identity, at the initial step (t = 0) and after each query (t = 1, 2, ..., 10). This
means that the CM is conformed by the genuine identity and the 10 most similar
impostors (see Sect. 4.3). This has been done in order to have comparable results
of this experiment with the following made under unsupervised conditions.

As it can be seen in Fig. 1a and c, both methods are able to achieve quite
high performance (+0.90 TAR@FAR5 and +0.95 AUC) showing an overall good
supervised modelling. However, it is important to note that the OS-ELM method
shows the best behaviour in two important aspects. First, Fig. 1a shows a quicker
improvement in performance, proving that this method is able to build a more
robust model with the same data. This effect is specially visible during the first
steps, when the genuine information is more limited.

Second, when the performance is measured for a given operational threshold
(Fig. 1b), OS-ELM shows a more steady FAR over time than I-SVM. This can be
specially relevant in the unsupervised learning due to the fact that an increasing
FAR means that the probability of accepting impostors during the training will
increase as well, and thus the risk of corrupting the model.

5.2 Unsupervised Learning (1 Frame Template)

Here we start testing the unsupervised capabilities of the two methods. The
philosophy of the experiment is similar to the former one, requiring now the use
of the SDR to distinguish between genuine and impostor identities. Thus, after
the generation of M0 using the initial template (1 frame), the system is queried
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(a) TAR@FAR5 perfor-
mance.

(b) TAR and FAR at the
operational threshold.

(c) AUC performance.

Fig. 3. Unsupervised performance of I-SVM and OS-ELM using a 5 frames initial
template. Performance is measured after each query presented to the system.

by 10 genuine sequences and 10 impostor sequences, both of them belonging to
the gallery subset (identities of the CM). For each genuine query (odd query,
t = 1, 3, ..., 19) we will have an impostor query (even query, t = 2, 4, ..., 20)
afterwards. Each impostor query belongs to a different identity.

It can be noted in Fig. 2a and c an important drop in performance of both
methods with respect to the supervised cases. An explanation can be found on
the fact that initial performance (≈ 0.2 TAR) is too poor to make a reliable deci-
sion, as Fig. 2b seems to proof. While FAR at the operational threshold remains
mostly the same, TAR drops compared with the supervised case. Nevertheless,
the self-updating strategy stills manages to achieve an important improvement
specially in TAR@FAR5, +0.32 in I-SVM and +0.39 in OS-ELM (see Table 2).
Overall, OS-ELM shows a slightly better performance respect I-SVM in every
performance measurement.

One explanation for the moderate performance showed by both models in
this experiment, could be found on the high requirements that were demanded.
Specially because the template which was built with just one video frame. It
could be affirmed that such a poor initial performance does not allow a system
to start accepting/rejecting the right information. In the next section, we will
repeat the same experiment with the difference that the template is built with
5 frames instead of just one.

5.3 Unsupervised Learning (5 Frame Template)

This experiment is the same that the previous one but changing the initial
template from 1 frame to the 5 first frames As it can be seen in Fig. 3a and c,
performance is significantly improved respect to the one-frame template. In both
cases, TAR@FAR5 reaches values of 0.84.

Nevertheless, despite having a pretty similar performance, Fig. 3b shows an
important difference between both methods. While OS-ELM maintains a steady
FAR during all the experiment, I-SVM increases it over time. This could possibly
means that I-SVM has a more unstable performance for a given threshold during
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Table 2. Summary of TAR@FAR5 performances values obtained.

Model Template Initial Final Superv. Final Unsuperv.

Value Improv. Value Improv.

I-SVM 1 frame 0.170 0.926 +0.756 0.498 +0.328

5 frames 0.415 0.946 +0.531 0.846 +0.431

OS-ELM 1 frame 0.187 0.981 +0.794 0.583 +0.396

5 frames 0.297 0.983 +0.686 0.848 +0.551

the online training. Nevertheless, since every impostor query has a different
identity, this malfunctioning is not reflected too much in TAR@FAR5. Unlike
the accepted genuine sequences, the impact of the accepted impostors is not
constructive. This may have greater impact in the case where a same impostor
is repeatedly querying the system.

5.4 Discussion

In Table 2, a summary of the experiments conducted in this work is presented.
We have added the case of an initial template of 5 frames in supervised con-
ditions in order to see the complete picture. Overall it can be said that the
self-updating strategy is able to improve performance in every experiment. It
is important to remark the extremely low labelled conditions (1 or 5 low qual-
ity video frames) in which our experiments were conducted have not been able
to avoid this improvement. On the other hand, our experiments show that the
self-updating strategy is quite sensible to the initial performance of the model
(which in our case is expressed in the necessity of more genuine data to create
the initial template). This fact makes our systems move from about 0.50 to 0.85
TAR@FAR5.

One final appointment to mention is how the systems are affected by our
decisions when defining the self-updating strategy. In this case, for the sake
of simplicity, a fixed threshold in the SDR was established in order to decide
whether to update or not. This threshold was fixed selecting the point of M0

ROC curve that corresponds to a 10% FAR. Nevertheless, we cannot assure that
this ROC point will be stable with time. Therefore, the fixed threshold benefits
the classification methods that preserve (or even decrease) the ROC point of
functioning (as it can be seen in Fig. 3b where, unlike OS-ELM, I-SVM’s FAR
constantly increases).

6 Conclusions

In this work, the unsupervised FViVS problem using a self-update strategy has
been explored. The case of study starts with a surveillance agent selecting one
frame from a video sequence, and then the autonomous video-surveillance system
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try to detect the same identity within the same or a different video sequence,
while incrementally build a robust model of the target identity.

Experiments showed that a self-updating strategy seems to be viable to build
the identity model without the necessity of labels, or at least capable of improv-
ing initial performance. In addition, the importance of a correct decision rule
is highlighted during the online training as well as its correlation with the clas-
sification method at hand. This fact makes OS-ELM performance stands out
respect to I-SVM.

For future work, the aim is to perform a deeper study including more clas-
sification techniques and an extended experimental assessment. It would also
be interesting to explore the behaviour of this approach in life-long learning
conditions in order to study its robustness to unwanted drifts.
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