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Abstract. Radiotherapy planning is a crucial task in cancer patients’
management. This task is, however, very time consuming and prone to
a high intra and inter subject variance and human errors.

In this way, the present line of work aims at developing a tool to help
the specialists in this task. The developed tool will consider the delimi-
tation of anatomical regions of interest, since it is crucial to identify the
organs at risk and minimize the exposure of these organs to the radia-
tion.

This paper, in particular, presents a lung segmentation algorithm,
based on image processing techniques, such as intensity projection and
region growing, for Computed Tomography volumes. Our pipeline con-
sists in first separating two halves of the volume to isolate each lung.
Then, three techniques for seed placement are developed. Finally, a tra-
ditional region growing algorithm has been changed in order to automat-
ically derive the value of the threshold parameter.

The results obtained for the three different techniques for seed place-
ment were, respectively, 74%, 74% and 92% of DICE with the Iterative
Region Growing algorithm.
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Although the presented results have as use case the Hodgkin Lym-
phoma, we believe that the developed method is generalizable to any
other pathology.

Keywords: Lung segmentation · Computed Tomography (CT) · 3D

1 Introduction

In 2019, 1,762,450 new cancer cases and 606,880 cancer deaths are projected
to occur in the United States. For Hodgkin Lymphoma alone, 8,110 people are
predicted to be diagnosed in 2019 and 1,000 people are likely to die [17].

Radiation therapy has a dominant role in cancer treatment and has always
been a major part of the effort to cure cancer patients. The main goal of radio-
therapy is to deliver a prescribed dose to the target volume, while sparing nor-
mal tissue [1]. Since radiotherapy is a personalised and localised treatment, the
definition of tumour and target volumes is vital to its successful execution [3].
Contouring these regions is, however, a time consuming part of radiotherapy
treatment planning [9] since in current clinical practice, this important task is
typically performed visually on a slice-by-slice basis with very limited support
of automated segmentation tools.

Computed Tomography (CT) is normally used as the basis for radiotherapy
for two main reasons: (1), it can be used to improve the accuracy of dosimetry cal-
culations, since it contains density information, allowing to calculate treatment
beam, and (2) can be used to locate the patient with respect to the treatment
machine, being more reliable in representing the shape and position compared
with other image modalities [15]. Moreover, unlike other procedures, the patient
can be scanned in the treatment position, which is an advantage [15].

We have thus developed an image processing pipeline to perform 3D segmen-
tation of the lungs using CT information. The main contributions of the present
work include:

– a new image processing method to identify volumes of interest for each half
of the body containing the right or the left lung (Sect. 3.1);

– three new techniques to place a seed inside the lung (Sect. 3.2);
– a new, iterative, 3D region growing algorithm that automatically determines

the threshold (Sect. 3.3);
– extensive evaluation of the results on a database with 132 lungs (Sect. 5).

The methods presented are simple, fast and do not need a training phase.
Also, the parameter setting is made based on expert knowledge of the problem at
hand. The three Seed Placement methods, combined with the Iterative Region
Growing algorithm achieved, respectively, 74%, 74% and 92% of DICE and 72%,
72% and 90% of True Positive Rate.

This document is organised as follows. Section 2 presents the state of the art
on lung segmentation in CT. Section 3 describes the here proposed method in
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all its components: separation of right and left body volumes in Sect. 3.1; three
methods for seed placement in Sect. 3.2; and the new, iterative, region growing
technique in Sect. 3.3. The experimental design is outlined in Sect. 4, while results
are given in Sect. 5. The document finishes in Sect. 6 with some conclusions and
directions for future work.

2 Related Work

A search was performed for works on lung segmentation in CT volumes published
in the past 5 years. Most of the works [2,7,11,20] use classifiers in their pipelines.
This has the disadvantage of the need of a train phase and consequently, a
(large) number of cases for the algorithms to learn with. Some other studies [6,
13,21] make use of active contour techniques. These type of models typically
need an arbitrary parameterization of the curves, thus, losing the opportunity to
effectively use information present in the geometry of objects [4]. Other proposals
include complex techniques such as Markov-Gibbs random field [18]. We believe
that, with the increased use of digital imaging, and with its inherent higher
quality, simpler approaches could be more adequate [5]. In the papers [8,12],
segmentation is performed in 2D and 3D connectivity is performed afterwards.
This may lead to “jagged” and inconsistent final results.

Perhaps the most similar work to the one here proposed is the one presented
in [14], where 3D Region Growing is also used. Their work, however, uses “of the
shelf tools” belonging to ITK. Moreover, the experimental results are obtained
on a database of only 30 full Chest CT exams.

As can be seen, several different algorithms have already been proposed.
They are characterised by their complexity, high running time or segmentation
in 2D, and need of large training database. This complexity is, in some cases,
justified by the application on diseased lungs. No application on radiotherapy
planning was found. Here, a new, tridimensional, simple method, based solely on
image processing, is proposed. Not recurring to classification techniques, makes
our proposal simpler, faster and there is no need of a large training set, requiring
only some basic anatomic knowledge.

3 Lung Segmentation

The proposed algorithm is composed of three main blocks, as shown in Fig. 1.
In “Laterality separation”, a copy is made of the initial volume, with each new
volume containing only one of the lungs. In “Seed definition”, the initialisation
of the following segmentation method is automatically determined. Three dif-
ferent methodologies are presented for this step. Lastly, in “Segmentation”, the
lung volumes are identified. A new, iterative, region-growing-based technique is
proposed for this step.
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Fig. 1. Lung segmentation pipeline.

3.1 Separation Between Right and Left Lungs

Gray values are first transformed to Hounsfield Units (HU), a measure of
radiodensity. Rescale Slope and Intercept, needed for this transformation, were
retrieved from the DICOM header. The idea is then to threshold the volume
in a way that only the lungs are present. Literature, however, is slightly discor-
dant on the HU values of the lung. For instance, in [8], the interval [−700,−400]
is given, in [14], the interval [−1000,−500] is used, while in [21], the interval
[−1000,−400] is mentioned. For this part of the work, the interval [−800,−500]
showed to produce good results, given that the method is quite robust to this
selection. In this way, a mask MHU is created with zeros except in the voxels for
which its values belongs to the interval HU, there being one. A sum projection
of this mask is then made, creating a “cumulative transverse plane”, as shown
in the left part of Fig. 2. A sum projection of this plane is then done, creating
a line profile, as shown in the right part of Fig. 2. A search for a local minimum
gives the output of this part of the algorithm. Two volumes can now be created,
by zeroing all the values to the left (or the right) of the found local minimum.

Fig. 2. Separation between right and left lungs. Left, cumulative transverse plane with
separation line superimposed in dashed green; Right, cumulative profile, with local
minimum as a green star and the separation line in dashed green. (Color figure online)

3.2 Placement of the Seed

Three different techniques are here proposed for the choice of a seed. These are
described next.

Method 1. This technique uses anatomic and image acquisition knowledge and
starts by placing the seed in the position [13 ,

2
3 ] for the right lung and [23 ,

2
3 ] for

the left lung, of the central coronal plane. A vertical search is then performed
until an intensity corresponding to the theoretical value of the HU of the lungs,
that is, a value in the range [−800,−500] is found. When the seed is not found,
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Fig. 3. Seed location by Methods 1 (left) and 2 (right). The first method consists on
the search of an intensity value in the interval [−800− tolerance,−500+ tolerance] on
the vertical axis, whereas the second method searches for the voxel in the interval that
corresponds to the minimal distance to the initial seed.

it is added a tolerance to this interval, iteratively, until the search detects a value
in the range [−800−tolerance,−500+tolerance]. An illustration of this method
is given on the left side of Fig. 3.

Method 2. In this method, the seed initialisation is made as in the previous
method. The closest point to each seed in the mask MHU is then selected as the
new seed. An illustration of this method is given on the right side of Fig. 3.

Method 3. The third method follows from the reasoning presented in Sect. 3.1.
The z position of each seed (coronal plane) is given as the local maximum closest
to the position chosen to separate the lungs (see right part of Fig. 2). Having this
coordinate, the sagittal plane of MHU can be retrieved for each lung, top-left plot
of Fig. 4. Local maximum of the sum projection is chosen as the x coordinate of

Fig. 4. Seed location by Method 3 (illustration for one of the lungs, only). See text for
a more detailed explanation. (Color figure online)
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the seed, as shown in the right plot of Fig. 4. For the y coordinates, the biggest
connected component of the sagittal plane of MHU is first selected (yellow region
in top-left plot of Fig. 4), the sum profile computed, and the local maximum
position is determined, bottom plot of Fig. 4.

3.3 Iterative Region Growing

Traditional region growing algorithm (Algorithm 1) starts with a given seed and
adds a neighbour to the segmented region if the difference between the value of
the neighbour pixel and the average value of the pixels already in the region does
not exceed a threshold. This threshold needs to be manually set, case by case,
as it often depends not only on the problem, but also on the image in question.

Algorithm 1. Traditional Region Growing Algorithm.
Inputs:
Seed vector, s = [sx, sy, sz]
Volume to be segmented, CT
Tolerance threshold, Th
Output:
Volumetric mask, Mask, with the same size as CT

Initialise Mask as a volume with the same size as CT , filled with zeros
Initialise Checked as a volume with the same size as Mask, filled as false
Initialise NeedsCheck as an empty stack

Set Mask at s to one
Set Checked at s to true
Add neighbour coordinates of s to NeedsCheck.

while NeedsCheck is not empty do
Pop a point p from NeedsCheck
Set Checked at p to true

Calculate ms, the average of CT grey values in the points where Mask = 1
Retrieve mp, the grey value of CT in p

if |ms −mp| > Th then
Set Mask at p to one
Add neighbour coordinates of p to NeedsCheck

end if

end while

We propose to automatically and iteratively update the value of the tolerance
threshold, Th, as demonstrated in the Algorithm 2. In this version, we have now
three parameters, the Tolerance Threshold Initialisation Th0, Maximum Area
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Threshold ThH , and Minimum Area Threshold ThL, which may, at first seem
worse than the previous version with one parameter only. We note, however, that
Algorithm 1 is extremely sensitive to the value of Th. In the iterative version,
ThH and ThL can be set based on previous knowledge of the problem, in this
case, biomedical knowledge on maximum and minimum lung volumes. Th is
first initialised (Th0), and is then iteratively adjusted accordingly to the volume
resulting from the segmentation algorithm. If this volume is superior/inferior
to ThH/ThL, then Th is be increased/decreased, respectively. In this way, the
algorithm is very robust to the initial value of Th0.

Algorithm 2. Iterative Region Growing Algorithm.
Inputs:
Seed vector, s = [sx, sy, sz]
Volume to be segmented, CT
Tolerance threshold initialisation, Th0

Maximum area threshold, ThH

Minimum area threshold, ThL

Output:
Volumetric mask, Mask, with the same size as CT

Th initialisation, Th = Th0

while Algorithm 1 is iterating do
if Count(Mask == 1) > ThH then

Stop Algorithm 1
Update Th, Th = Th− 10
Restart Algorithm 1

end if
if Count(Mask == 1) < ThL then

Update Th, Th = Th + 10
Restart Algorithm 1

end if
end while

Before the application of the Region Growing algorithm, voxels have been
resampled to an isomorphic resolution of [5, 5, 5] millimetres to remove variance
in scanner resolution. Slice thickness and pixel spacing information present in the
DICOM headers is used for this transformation. The values of the parameters
were set as follows: Th0 = 225 HU, ThL = 3000 voxels (375 mL), and ThH =
40000 voxels (5000 mL).

4 Experimental Methodology

Provided by Institute of Oncology of Porto (IPO), the private dataset of patients
with Hodgkin Lymphoma used in this research work includes CT volumes used
for radiotherapy planning, acquired after the frontline chemotherapy treatment
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and the corresponding ground truth contours delimited by experts. CT volumes
were acquired with a pixel spacing of 1.0, 1.1, 1.2 or 1.3 mm and a difference of
patient position between adjacent slices of 2.0, 2.5 or 5.0 mm, all in the DICOM
format [16]. Information has been collected for a total of 69 patients (both adults
and infants). However, the ground truth is only available for 132 lungs.

Four metrics were chosen, in the present work, to evaluate the results, Dice
coefficient, Jacquard index, True Positive rate, and Volumetric Similarity. While
the first three are overlap based, the last one is volume based [19]. These metrics
were chosen due to their complementarity. Dice coefficient and Jacquard index
are suitable when in the presence of outliers; True Positive rate for when recall
is important; and Volumetric Similarity is appropriate both in scenarios with
outliers and when the volume is important [19].

All of these metrics can be derived from the four basic cardinalities of the
confusion matrix:

– TP: Voxels correctly considered to belong to the lung
– FP: Voxels incorrectly considered to belong to the lung
– TN: Voxels correctly considered not to belong to the lung
– FN: Voxels incorrectly considered not to belong to the lung

The Dice coefficient (DICE), also called the overlap index, is the most fre-
quently used metric. It can be defined as:

DICE =
2TP

2TP + FP + FN
(1)

The Jaccard index (JAC) is defined as the intersection divided by the union:

JAC =
TP

TP + FP + FN
(2)

True Positive rate (TPr), also called Sensitivity or Recall, measures the portion
of positive voxels in the ground truth that are also identified as positive by the
segmentation being evaluated:

TPr =
TP

TP + FN
(3)

This metric is sensible to segments size, and it penalises errors in small seg-
ments more than in large segments. Volumetric similarity (VS) is a measure
that considers the volumes of the segments to indicate similarity:

V S = 1 − |FN − FP |
2TP + +FP + FN

(4)

5 Results and Discussion

Seed location performance was evaluated by checking if the automatic seed falls
within the ground truth mask and by its distance to the centroid of the ground
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Table 1. Seed placement performance. Best results in bold and signalled with “*” if
statistically significant, according to the paired-sample t-test at the 5% level.

Method 1 Method 2 Method 3

Percentage of valid seeds 78.03 78.03 100.00∗

Distance to centroid 21.47 18.61 6.41∗

truth masks1. It can be seen, from Table 1, that for method 3 all of the seeds
fall inside the lung region. Moreover, they are significantly closer to the centroid
of the ground truth mask, when compared with the seeds retrieved by the other
techniques.

Performance of the segmentation is shown in Table 2 for each automatic seed
finding method and also considering as seed the centroid of the ground truth
mask. As a baseline segmentation technique, a HU threshold was considered, by
retrieving the biggest connected component of MHU (yellow region on Fig. 4).

Table 2. Segmentation performance. Best results in bold and signalled with “*” if
statistically significant, according to the paired-sample t-test at the 5% level.

Segmentation Seed DICE JAC TPr VS

HU threshold Method 1 0.661 0.576 0.605 0.703

HU threshold Method 2 0.656 0.571 0.600 0.691

HU threshold Method 3 0.812 0.707 0.740 0.858

HU threshold GT centroid 0.812 0.707 0.740 0.861

Region Growing Method 1 0.736 0.703 0.716 0.779

Region Growing Method 2 0.720 0.687 0.700 0.752

Region Growing Method 3 0.894 0.853 0.871 0.926

Region Growing GT centroid 0.872 0.833 0.850 0.916

Iterative Region Growing Method 1 0.736 0.703 0.716 0.836

Iterative Region Growing Method 2 0.741 0.707 0.721 0.841

Iterative Region Growing Method 3 0.923 0.882∗ 0.900∗ 0.956∗

Iterative Region Growing GT centroid 0.886 0.846 0.863 0.930

It is clear, from Table 2, that the proposed Iterative Region Growing outper-
forms the Standard Region Growing. Moreover, the seeds returned by method
3 originate the best segmentation results, as to be expected from the results in
Table 1. In fact, results for Iterative Region Growing using the seeds returned
by Method 3 are statistically significant, according to the paired-sample t-test

1 We would like to note, however, that centroids do not necessarily fall inside the
ground truth mask.
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Table 3. Segmentation performance, considering valid seeds only. Best results are
presented in bold.

Segmentation Seed DICE JAC TPr VS

HU threshold Method 1 0.639 0.559 0.587 0.671

HU threshold Method 2 0.634 0.554 0.580 0.663

HU threshold Method 3 0.812 0.707 0.740 0.858

HU threshold GT centroid 0.786 0.685 0.717 0.834

Region Growing Method 1 0.925 0.883 0.900 0.952

Region Growing Method 2 0.895 0.854 0.870 0.922

Region Growing Method 3 0.894 0.853 0.871 0.926

Region Growing GT centroid 0.892 0.852 0.870 0.931

Iterative Region Growing Method 1 0.925 0.883 0.900 0.952

Iterative Region Growing Method 2 0.914 0.872 0.888 0.945

Iterative Region Growing Method 3 0.923 0.882 0.900 0.956

Iterative Region Growing GT centroid 0.900 0.859 0.877 0.939

at the 5% level, than all the other results, except the ones for Iterative Region
Growing using as seed the centroid of the ground truth mask and only for DICE.

We were also interested in studying the performance for solely the cases
where the seeds were placed inside the ground truth lungs. From Table 3, it can
be observed that when it does provide a valid seed, method 1 generates seeds
that lead to better segmentations according to DICE, JAC and TPr metrics.
When looking at VS, method 3 is still the best. This leads us to the believe that
the design of an algorithm that incorporates the ideas behind method 1 and
method 3 is a possible future direction.When looking at the segmentation algo-
rithms, differences between iterative and non-iterative versions are not significa-
tive according to the two-sample t-test at the 5% level, but they are significantly
better according to the same test, when compared with HU threshold.

When the seed is placed inside the lung in a region with HU on the interval
[−800,−500], the segmentation is robust to the seed location. For example, in
the case of one of the patients of our dataset, for method 1 the seed is located
near the frontier of the lung, while with method 3 it is located in the centre, but
both have very similar results on the segmentation metrics (see Fig. 5).

A fair comparison with the state of the art results is not possible due to
differences in the used databases. We stress, for instance, that our database is
composed of images from both adults and infants, increasing the segmentation
difficulty. We note, however, that our method, besides having the advantages,
when compared with the other state of the art techniques already described in
Sect. 2, such as its simplicity, low running time, no need of a training phase, etc,
achieves similar performances, even surpassing some of the recently proposed
algorithms such as the ones presented in [2,21].
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Fig. 5. Example of the results of lung segmentation for method 1 (top) and 3 (bottom).
Ground truth on the far left; CT with superimposed ground truth contour (red) and
seeds (blue) on the middle left; segmentation results on the middle right; and represen-
tation of the four cardinalities of the confusion matrix on the far right. (Color figure
online)

6 Conclusions and Future Work

Segmentation is a problem present in several domains [4,5]. Here, a new, volu-
metric technique for lung segmentation in CT is presented and evaluated. This
techniques are simple, fast, and does not need a training phase. Moreover, all the
parameter setting is made based on expert knowledge of the problem at hand.

In this way, this completely automated method for lung segmentation may
help to reduce the time dispensed by the clinicians when performing a manual
analysis of the CT scan, assisting them in making better decisions when selecting
the better treatment choice for the patient and/or evaluation of the effectiveness
of the received treatment.

In the present work, three intensity-based seed finding methods were tested
and an improvement of the typical Region Growing method was proposed. Seed
finding methods achieved 84%, 84% and 96% of Volume Similarity for methods
1, 2, and 3 with Iterative Region Growing, respectively. If only the valid seeds
are accounted for, the Iterative Region Growing method achieved results of 95%,
94% and 96%, respectively.

A possible improvement to the presented algorithm is to apply morphology
to the results in order to close possible holes that might be present in the final
segmentation. Another interesting approach would be to use this technique with
a database containing lung abnormalities, such as pleural effusions, consolida-
tions, and masses, since the current image segmentation approaches apply well
only if the lungs exhibit minimal or no pathological conditions [10].

In the future, we intend to work on the segmentation of other organs, such
as the esophagus. To develop iterative tools for better visualisation and manual
adjust of the results is another line of interest.
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