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2 SAMOVAR, CNRS, Télécom SudParis, Université Paris-Saclay,

9 rue Charles Fourier, 91000 Évry, France
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Abstract. Homing, synchronizing and distinguishing sequences (HSs,
SSs, and DSs) are used in FSM (Finite State Machine) based testing
for state identification and can significantly reduce the size of a returned
test suite with guaranteed fault coverage. However, such preset sequences
not always exist for nondeterministic FSMs and are rather long when
existing. Adaptive HSs, SSs and DSs are known to exist more often
and be much shorter that makes them attractive for deriving test suites
and adaptive checking sequences. As nowadays, a number of specifica-
tions are represented by nondeterministic FSMs, the deeper study of
such sequences, their derivation strategies, and related complexity esti-
mations/reductions is in great demand. In this paper, we evaluate the
complexity of deriving adaptive HSs and SSs for noninitialized FSMs,
the complexity of deriving DSs for noninitialized merging-free FSMs.
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1 Introduction

Many problems in automata theory, for example, such as automata/Finite State
Machine (FSM) based test derivation methods (see, for example, [1,2,4,5,12,
13]), rely on the state identification sequences in the specification FSM, namely,
on distinguishing, homing, and synchronizing sequences (DSs, HSs, and SSs) that
can be preset or adaptive [3]. Distinguishing sequences are derived to identify the
initial state of the machine of interest, while homing and synchronizing sequences
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allow identifying its final state. Preset input sequences are derived before being
applied to the system of interest (FSM, implementation under test, etc.), while
for adaptive sequences the next input depends on the outputs produced for the
previous inputs. Adaptive sequences can be represented by a tree or an acyclic
FSM [14] called a test case. Adaptive distinguishing and homing sequences exist
more often than the preset ones and are usually shorter.

When deriving adaptive DSs/HSs/SSs for deterministic FSMs one can con-
sider a successor or a spanning tree [12,18]. However, based on the above trees
for nondeterministic FSMs, for all types of sequences there are no necessary
and sufficient conditions when an adaptive sequence exists. Another approach
[8] constructs an adaptive HS for the case when each pair of states has such an
adaptive HS and these conditions are necessary and sufficient for a noninitialized
complete observable FSM to have an HS. However, for a weakly initialized FSM
with a proper subset of initial states the conditions become only sufficient. The
same situation holds for adaptive DSs if an FSM under study is merging-free, i.e.,
an FSM where for each input, the FSM cannot move from two different states
to the same state with equal outputs. The pairwise ‘homeability’ for the set of
states can be also effectively used for deriving an adaptive SS for a given non-
deterministic FSM. Indeed, it was shown in [11] that such adaptive SS exists for
a noninitialized FSM if and only if each state pair is adaptively homing and the
FSM has a state that is definitely reachable from any other state. The obtained
results allowed to evaluate the upper bound on the length of a shortest adaptive
HS/SS for complete noninitialized possibly nondeterministic FSMs; however, the
question of the complexity for deriving such corresponding test cases remained
open.

The main contribution of this paper is therefore the complexity evaluation
of derivation of an adaptive HS/SS for noninitialized complete FSMs and an
adaptive DS for noninitialized complete merging-free FSMs. We show that given
the FSM under study having n states and q outputs, a corresponding test case
has at most (n − 1)2n/2 + n + 1 states and the complexity of deriving such a
test case is O(qn5).

The rest of the paper has the following structure. Section 2 contains the
preliminaries. The procedure for deriving adaptive HSs and DSs based on those
for each pair of states is presented in Sect. 3 along with its complexity estimation
while Sect. 4 describes the construction of SSs. Section 5 briefly describes the
related work and Sect. 6 concludes the paper.

2 Preliminaries

A finite state machine (FSM), or simply a machine, is a 5-tuple S =
<S, I,O, hS , Sin> where S is a finite nonempty set of states with the set
Sin ⊆ S of initial states, I and O are finite input and output alphabets, and
hS ⊆ S × I × O × S is a transition relation. FSM S is noninitialized if Sin = S
and in this case, we omit the set Sin of initial states and a noninitialized FSM
is denoted as a 4-tuple <S, I,O, hS>. FSM S is an initialized FSM if |Sin| = 1
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and FSM S with the initial state sj is denoted S/sj . If 1 < |Sin| < |S| then FSM
S often is called weakly initialized. FSM S is nondeterministic if for some pair
(s, i) ∈ S × I, there exist several pairs (o, s′) ∈ O × S such that (s, i, o, s′) ∈ hS ;
otherwise, the FSM is deterministic. FSM S is observable if for every two transi-
tions (s, i, o, s1), (s, i, o, s2) ∈ hS it holds that s1 = s2. FSM S is complete if for
every pair (s, i) ∈ S×I, there exists a transition (s, i, o, s′) ∈ hS . In the following,
we consider complete observable possibly nondeterministic FSMs unless some-
thing different is explicitly stated. An example of a complete nondeterministic
FSM is shown in Fig. 1. A complete observable FSM is merging-free [20] if for
every two different states s1 and s2 and any input i it holds that if (s1, i, o, s′

1),
(s2, i, o, s′

2) ∈ hS , then s′
1 �= s′

2.
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Fig. 1. A complete observable nondeterministic FSM S

The behavior relation hS is extended to input and output sequences in usual
way and given an input sequence i1 . . . il, we say that an output sequence
o1 . . . ol ∈ out(s, i1 . . . il) if and only if there exists a state s′ such that
(s, i1 . . . il, o1 . . . ol, s

′) ∈ hS . Given an input/output pair io and a state s of
a complete observable FSM S, state s′ is the io-successor of state s of FSM S
if (s, i, o, s′) ∈ hS . The io-successor of state s not necessarily exists and in this
case, we say that the io-successor of state s is the empty set. A trace of FSM S
at state s is a sequence of input/output pairs which label consecutive transitions
starting from state s, tr = i1o1 . . . ilol (or i1/o1 . . . il/ol). A sequence i1 . . . il is
an input sequence of the trace while o1 . . . ol is an output sequence. Since FSM
S is observable, given state s and a trace γ of the FSM, the γ-successor of state
s is state s′ which is reached from s via the trace γ. If γ is not a trace at state
s then the γ-successor of state s is empty or sometimes we say that in this case
the γ-successor of state s does not exist. Given non-empty subset S′ of states
and a trace γ of the FSM, the γ-successor of S′ is the union of γ-successors over
all states of the set S′.

Test Case Definition. An input sequence α is called adaptive if the next input
depends on the output to the previous one. An adaptive input sequence can be
represented by a tree or a special FSM that is called a test case [14]. Given an
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input alphabet I and an output alphabet O, a test case TC(I,O) over an input
alphabet I and an output alphabet O is an initialized initially connected observ-
able single-input output-complete FSM that has an acyclic transition graph. In
other words, at each state either only one input with all possible outputs is
defined or there are no outgoing transitions, and in the latter case, the state
is a deadlock state. A test case is a partial FSM once |I| > 1. By definition, a
test case TC(I,O) represents an adaptive experiment with a complete FSM S
over alphabets I and O in the following way. If input i1 is a defined input at
the initial state t0 of TC(I,O) then first, the input i1 is applied to the FSM S
under investigation and TC(I,O) moves to the i1o-successor t1 of state t0 if S
produces the output o as the response to the input i1. The next input to apply
is the input defined at state t1, etc. The procedure terminates when a deadlock
state is reached. The height of the test case TC(I,O) is the length of a longest
trace from the initial state to a deadlock state of TC(I,O) and it specifies the
length of the longest input sequence that can be applied to an FSM S during
the adaptive experiment.

Given FSM S = <S, I,O, hS>, a test case TC(I,O) is a homing test case
(HTC) for S if for every trace γ from the initial state to a deadlock state, the
γ-successor of the set Sin in S is a singleton or the empty set. FSM S is homing if
S has a homing test case. A homing test case is a synchronizing test case (STC)
for the FSM S, if there exists a state s such that for every trace γ of TC(I,O)
from the initial to a deadlock state, γ-successor of Sin is either {s} or the empty
set. A homing test case represents an adaptive homing sequence and a homing
test case for machine S in Fig. 1 is shown in Fig. 3. By direct inspection, one can
assure that an HTC in Fig. 3 is not an STC for S.

A test case TC(I,O) is a distinguishing test case (DTC) if every trace γ
from the initial state to a deadlock state can be a trace at most at a single state
of the set Sin. A distinguishing test case represents an adaptive distinguishing
sequence.

In [8], it is shown that a noninitialized observable FSM has a homing test
case if and only if each pair of states is homing while in [20] it is it is shown that a
noninitialized observable merging-free FSM has a distinguishing test case if and
only if each pair of states has such test case. For a STC corresponding necessary
and sufficient conditions are established in [11]. Given a complete observable
noninitialized FSM, there exists a synchronizing test case if and only if the FSM
has a homing test case and there exists a state definitely reachable from any
other state. State s′ ∈ S is definitely-reachable (d-reachable) from state s ∈ S if
there exists a test case P(s, s′) over alphabets I and O such that for every trace
γ of P(s, s′) from the initial state to a deadlock state, the γ-successor of state s
in FSM S is either the empty set or is the set {s′}. We hereafter refer to such
a test case as a d-transfer test case. In [15], necessary and sufficient conditions
are established that allow to check if state s ∈ S is definitely reachable from the
initial state s0 of the initialized FSM S. In particular, it is proven that state s of
an initialized FSM S is definitely reachable from state s0 if and only if S has a
single-input acyclic submachine S′ with the initial state s0 and the only deadlock



90 N. Yevtushenko et al.

state s such that for each input defined in some state of S′, the state has all the
transitions of S labeled with this input. Moreover, in the same paper, an efficient
method is proposed for checking whether a state s is definitely reachable from
the initial state of an initialized complete FSM, and in [11], this procedure is
adjusted for arbitrary states s and s′.

Note that since any d-transfer test case P(s, s′) is an acyclic submachine
of the machine S, then the length of any trace in P(s, s′) does not exceed the
number n of states of S; in other words, one needs at most n − 1 inputs to
adaptively transfer the possibly nondeterministic machine from state s to state
s′. Therefore, the length of a longest trace in a shortest test case P(s, s′) is
polynomial and is at most n − 1.

Given a uninitialized complete observable FSM S, if there is no state s that
is definitely reachable from any other state then FSM S has no synchronizing
test case. On the other hand, if there exists state s that is definitely reachable
for any other state then this condition does not guarantee that the FSM has a
synchronizing test case; the FSM must also be homing.

As an example, consider an FSM P in Fig. 2. By direct inspection, one can
assure that state 3 is d-reachable from state 1 via input b while being d-reachable
from state 2 via input a. Note that, for FSM S in Fig. 1, there is no state that
is d-reachable from any other state.

1 2

3

a/0
a/1

b/2

b/1

b/0

a/0

a/0

b/2

Fig. 2. A complete observable nondeterministic FSM P where state 3 is d-reachable
from states 1 and 2

Despite the fact that there are many research papers on evaluating the
complexity of the existence check of adaptive HS/SS/DS and their length (see
Sect. 5), the complexity of their derivation even for noninitialized complete non-
deterministic FSM is unknown. We furthermore utilize the above cited criteria
to estimate the complexity of deriving HTCs, STCs and DTCs for noninitialized
nondeterministic FSMs. For the sake of simplicity, we hash states, inputs and
outputs by integers; however, for simplifying the reading we still use characters
s, i, o.

3 Deriving Homing and Distinguishing Test Cases

We first come back to the definition of k-homing pairs of different states [7].
Given a noninitialized complete observable possibly nondeterministic FSM S =
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<S, I,O, hS> and two different states sa and sb, the pair {sa, sb} is 1-homing
if there exists an input i{sa,sb} such that for every o ∈ O, the i{sa,sb}o-successor
of the pair {sa, sb} has at most one state. Let all the pairs of k-homing states
be determined for some k > 0. Then the pair {sa, sb} is (k + 1)-homing if it is
not k-homing and there exists an input i{sa,sb} such that for every o ∈ O, the
pair of i{sa,sb}o-successors of states sa and sb either is at most k-homing or the
i{sa,sb}o-successor of the pair {sa, sb} has at most one state. The pair {sa, sb} is
homing if {sa, sb} is k-homing for some k > 0.

In fact, the above definition for checking if a pair of different states is homing
is constructive and can be used for deriving a homing test case for a homing pair
of states. Moreover, when each pair of different states is homing a partial order
relation can be established over pairs of different states when {sa, sb} > {sp, sm}
if and only if {sa, sb} is a j-homing pair while {sp, sm} being k-homing for
k < j. Let the pair {sa, sb} be j-homing, j > 0. If j = 1 then there exists
an input i{sa,sb} such that for every o ∈ O, the i{sa,sb}o-successor of {sa, sb}
has at most one state. If j > 1 then there exists an input i{sa,sb} such that for
every o ∈ O, the pair of i{sa,sb}o-successors of states sa and sb either is at most
(j − 1)-homing or the i{sa,sb}o-successor of the pair {sa, sb} has at most one
state. Correspondingly, we propose to derive an array Input where for each pair
{sa, sb} the corresponding input i{sa,sb} is saved.

Consider FSM S in Fig. 1. There are 1-homing pairs {2, 3} and {2, 4} with
i{2,3} = a and i{2,4} = b. Pairs {1, 2}, {1, 3} and {1, 4} are 2-homing with the
inputs i{1,2}, i{1,3}, i{1,4} such that for every o ∈ O, i{1,2}o-successor (i{1,3}o-
successor or i{1,4}o-successor) of the corresponding pair is either 1-homing or
those successors are singletons. Correspondingly, i{1,2} = b, i{1,3} = i{1,4} = a.
Pair {3, 4} is 3-homing with the input i{3,4} such that for every o ∈ O, the
i{3,4}o-successor of this pair is at most 2-homing or is a singleton and thus,
i{3,4} = b. The array Input is shown in Table 1.

Table 1. Array input for FSM S in Fig. 1

State pairs {1, 2} {1, 3} {1, 4} {2, 3} {2, 4} {3, 4}
Inputs b a a a b b

The main operation when constructing homing test cases is determining an
io-successor for a given state (pair of different states). For this reason, we first
assume that an FSM is given as a two-dimensional array IOsuc. Columns of
IOsuc correspond to states of the given FSM while the rows correspond to
possible io-pairs, i.e., given a state and an io-pair, the related cell has either the
corresponding io-successor or it is empty (the transition is not defined). With
the help of such structure, the calculation of an io-successor of a given state can
be considered as an elementary operation. Table 2 has the array IOsuc for FSM
S in Fig. 1. If FSM S is homing then we also prepare in advance the array Input
where for each pair of different states {sa, sb} the corresponding input i{sa,sb} is
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saved as described above. In fact, given these structures, the calculation of an
io-successor will be reduced to a proper indexing in a certain array.

Table 2. The array IOsuc for FSM S in Fig. 1

io-pairs/States 1 2 3 4

a0 3 2 2 −
a1 2 − 4 3

b0 1 1 3 1

b1 3 2 − 2

Given a pair {s1, s2} of different states of a homing complete observable
FSM, the following algorithm returns a special homing test case HTC{s1,s2} for
the pair {s1, s2}. Indeed, in test case HTC{s1,s2} returned by Algorithm 1 each
state pair is listed only once. The reason is that the algorithm constructs a HTC
for a state pair in such a way that each state pair representing its current state
has a bigger degree of the ‘homeability’ than its successors (see Proposition 1).

Algorithm 1. Deriving a homing test case HTC{s1,s2} for a homing pair
{s1, s2}
Input : A homing complete observable, possibly nondeterministic FSM S

represented by two-dimensional array IOsuc and the array Input that
for each pair {sa, sb} contains the corresponding input i{sa,sb}

Output: A homing test case HTC{s1,s2} for the pair {s1, s2} ⊆ S
Construct a test case HTC{s1,s2} =< Q, I,O, h, q0 > where
Q = {q0 = {s1, s2}, D}, h = ∅, the pair {s1, s2} is unmarked;
while there exists an unmarked pair {sa, sb} ∈ Q do

Select an unmarked pair {sa, sb} ∈ Q;
Extract the input i{sa,sb} of the array Input;
foreach i{sa,sb}o-successor {s′

a, s
′
b} of {sa, sb} extracted from the array

IOsuc do
if s′

a �= s′
b then

Add to h the transition ({sa, sb}, i{sa,sb}, o, {s′
a, s

′
b})

if {s′
a, s

′
b} /∈ Q then

Q = Q ∪ {{s′
a, s

′
b}}; {s′

a, s
′
b} is unmarked

else
Add to h the transition ({sa, sb}, i{sa,sb}, o, s

′
a); Q = Q ∪ {s′

a};

foreach o ∈ O such that i{sa,sb}o-successor of the state {sa, sb} does not
exist do

Add to h a transition ({sa, sb}, i, o,D)

Label state {sa, sb} as a marked state;

return HTC{s1,s2}
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Given FSM S in Fig. 1, the test case is derived by the use of the array
Input and following partial order over the FSM state pairs: {1, 3} > {2, 3},
{1, 3} > {2, 4}.

{1,3}

{2,3} {2,4}

{4} {2} {1}

a/0 a/1

a/0 a/1 b/1 b/0

Fig. 3. A homing test case HTC{1,3}

By construction of a test case HTC{s1,s2}, the following statement holds.

Proposition 1. Given an FSM S with n states and a homing pair {s1, s2} of
S, there exists a homing test case HTC{s1,s2} such that states of HTC{s1,s2}
are pairs of different states of FSM S in the union with singletons of S and the
deadlock state D. Moreover, given a j-homing state q1 and an m-homing state
q2, if j ≤ m, then state q2 is unreachable from state q1 in HTC{s1,s2}.

Corollary 1. The number of states of HTC{s1,s2} does not exceed n(n−1)/2+
n+1 while the number of transitions of the test case HTC{s1,s2} does not exceed
|O|n(n − 1)/2.

We now discuss the complexity of deriving the array Input and test case
HTC{s1,s2}.

For deriving the set of all 1-homing pairs, for each pair of different states
all input/output pairs io have to be studied, i.e., the complexity of this step is
O(|I||O||S|2) and each test case for a 1-homing pair has at most (n + 2) states
and is constructed according to Algorithm1. If k is the maximum integer such
that there exists a pair of states that is k-homing then k is at most O(|S|2). For
deriving the set of all j-homing pairs, j ≤ k, the same check should be performed,
and thus, the complexity of the check whether each pair of states is homing is
O(|I||O||S|2k) or at most O(|I||O||S|4). The array Input is constructed during
this check and thus, the derivation of the array Input has the same complexity.
Therefore, the following proposition holds.

Proposition 2. Given an FSM S = <S, I,O, hS> with n states, the (time)
complexity of checking whether this FSM is homing is O(|I||O||S|4). The problem
of deriving the array Input has the same complexity.
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If each pair of states is homing then the noninitialized FSM S is homing and
at the next step, an HTC for the FSM has to be constructed. Here we notice
that in [8], [7], a procedure for deriving HTC was proposed but the complexity of
the HTC derivation was not evaluated. In this paper, we propose a modification
of that algorithm that allows us evaluating the size of a returned HTC as well
as the (time) complexity of the HTC derivation.

Algorithm 2. Deriving a HTC when all pairs of different states are homing
Input : A complete observable, possibly nondeterministic homing FSM S

represented by two-dimensional array IOsuc and the array Input that
for each pair {sa, sb} contains the corresponding input i{sa,sb}

Output: A homing test case HTC for S, |S| = n > 2
Construct a test case HTC =< Q, I,O, h, q0 > where Q = {q0 = {s1, s2}2, D},
h = ∅, the pair {s1, s2}2 is unmarked;
j = 2;
while j ≤ n do

while there exists an unmarked pair {sa, sb}j ∈ Q do
Select an unmarked pair {sa, sb}j ∈ Q;
Extract the input i{sa,sb} of the array Input;
foreach i{sa,sb}o-successor {s′

a, s
′
b} of {sa, sb} extracted from the array

IOsuc do
if s′

a �= s′
b then

Add to h the transition ({sa, sb}j , i{sa,sb}, o, {s′
a, s

′
b}j)

if {s′
a, s

′
b} /∈ Q then

Q = Q ∪ {{s′
a, s

′
b}j}; {s′

a, s
′
b}j is unmarked

else
Add to h the transition ({sa, sb}j , i{sa,sb}, o, s

′
a);

Q = Q ∪ {s′
a};

Label state {sa, sb}j as a marked state;

j + +;
Construct the intersection HTC ∩ S/sj of FSMs HTC and S/sj ;
foreach state ({sa, sb}r, s), r < j, of HTC ∩ S/sj and io such that the
transition function h of HTC has a transition ({sa, sb}r, i, o, sk) do

if the io-successor sp of state sj is different from sk then
replace the transition ({sa, sb}r, i, o, sk) in h to
({sa, sb}r, i, o, {sk, sp}j)

foreach state ({sa, sb}r, s) of HTC ∩ S/sj and each input/output pair io,
such that state s has no io-successor in HTC do

Add to h a transition ({sa, sb}r, i, o,D);

return HTC

We now investigate some properties of the FSM HTC returned by
Algorithm 2.
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Proposition 3. An FSM HTC returned by Algorithm2 is a homing test case
for the FSM S.

Proof. We first show that the FSM HTC returned by Algorithm2 has an acyclic
transition graph. By construction, given a state {sa, sb}r, only states {sk, sp}j ,
j ≥ r, can be reached from state {sa, sb}r. Moreover, if r = j, then due to Propo-
sition 1, if state {sa, sb}r is reachable from state {sk, sp}r and the pair {sa, sb}
is j-homing, then the pair {sk, sp} is at most l-homing for l < r and thus,
state {sk, sp}r is unreachable from state {sa, sb}r in HTC as only HTC{sp,sm},
{sp, sm} ⊆ S, are used when deriving HTC at the r-th iteration of Algorithm 2.
The FSM under construction is indeed single-input as at each iteration of Algo-
rithm2 the transitions added to h refer to a single input i{sa,sb}. Output com-
pleteness is handled by the last instruction at each iteration.

We now should show that when a singleton sk is reached then for this trace
only sk can be reached from any state of S. The statement holds for states s1
and s2 by construction of the test case HTC{s1,s2}. When states s3, . . . , sn are
added at the next iterations, if some trace at some of these states does not take
the FSM S to state sk then the singleton {sk} would not be a deadlock state in
the HTC.

Proposition 4. Given the FSM S with n states and the maximum integer k
such that FSM S has a pair of different states that is k-homing but is not (k−1)-
homing, the FSM HTC returned by Algorithm2 has at most (n−1)2n/2+n+1
states and the height at most (n − 1)k.

Indeed, Algorithm 2 has at most (n − 1) iterations and at each iteration at
most (n − 1)n/2 pairs of states are added. Moreover, there can be at most n
singletons and a deadlock state D reached by traces which are not traces at
some state of FSM S. The height of HTC under construction does not exceed
the maximal height k of HTC{sp,sm}, {sp, sm} ⊆ S, attached at most (n − 1)
times.

Since there is only one defined input with all possible outputs at each inter-
mediate state of HTC returned by Algorithm2, the following statement holds.

Corollary 2. Given a homing FSM S with n states, the FSM HTC returned
by Algorithm 2 has at most |O|(n − 1)2n/2 transitions.

Proposition 5. The (time) complexity of Algorithm2 is O(|O|n5).

Proof. The proof is performed by evaluating the complexity at an iteration step
of Algorithm 2. At the iteration j we have at most (j −2)n(n−1)/2 states which
are pairs of different states in HTC under construction. Correspondingly, the
analysis of transitions at this step requires O(|O|(j − 2)n(n − 1)/2) operations.

At the same time, at the iteration j we perform the intersection of HTC
under construction and S/sj , the former having jn(n−1)/2 states which are pairs
of different states and |O| transitions to process at each state while the latter
having n states. Correspondingly, the complexity of checking all the transitions
of the intersection needs O(|O|njn(n − 1)/2) operations and this number is
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higher than that for analyzing states of HTC under construction. Adding up
the number of operations for j = 2, . . . , n−1 we obtain the complexity O(|O|n5)
for Algorithm 2.

As a corollary to the above propositions and keeping in mind Proposition 2,
the following statement can be established.

Theorem 1. Given a homing FSM S = <S, I,O, hS>, |S| = n, and the max-
imum integer k such that FSM S has a pair of different states that is k-homing
but is not (k − 1)-homing, there exists a homing test case of the height at most
(n − 1)k with at most (n − 1)2n/2 + n + 1 states, at most |O|(n − 1)2n/2 tran-
sitions; the (time) complexity of deriving this test case is O(|O|n5) when S is
represented by arrays IOsuc and Input.

Note that the complexity of HTC derivation depends only on the number
of states of the FSM under experiment as well as its number of outputs. How-
ever, differently from other approaches for deriving homing/synchronizing/dis-
tinguishing sequences, it does not directly depend on the number of inputs when
the array Input is already derived.

Corollary 3. Given an FSM where all pairs of different states are at most 1-
homing, there exists a homing test case HTC for the FSM S that has the height
at most (n − 1).

Consider an example of FSM S in Fig. 1 for illustrating Algorithm2. We
start with a pair {1, 2}2; the b0-successor is {1} while the b1-successor is {2, 3}2.
According to the array Input we consider input a for the pair {2, 3} and obtain
the a0-successor {2} and the a1-successor {4}. After adding state 3 as an initial
state the b0-successor {1} of {1, 2}2 becomes a new state {1, 3}3. Since input a
corresponds to the pair {1, 3} in the array Input, we add corresponding transi-
tions to states {2, 3}3 and {2, 4}3 and to singletons {1}, {2}, {4}. Adding state
4 as an initial state does not add more transitions to the test case.

We also notice that HTC returned by Algorithm2 can be minimized. For
example, in HTC in Fig. 4 states {2, 3}2 and {2, 3}3 can be merged into a single
state since {2, 3}3 is not reachable from any state reachable from {2, 3}2 but
generally it is not the case and such optimization is out of the scope of this
paper.

It also should be mentioned that the observability and completeness of an
FSM under investigation are the necessary conditions when using Algorithms 1
and 2 for deriving a homing test case. If the FSM is nonobservable then it can
well happen that when adding a new state at the j-th iteration of Algorithm 2 not
pairs of states but bigger subsets can be obtained when deriving the intersection
HTC∩S/sj . If the FSM is partially specified then as it is shown in [19], even the
problem of checking the existence of an adaptive homing sequence is PSPACE-
complete.

Another interesting fact is that both above algorithms can be applied for
deriving a distinguishing test case for a merging-free FSM. This relies on the
following proposition.
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{1,2}2

{1,3}3 {2,3}2

{2,3}3 {2,4}3

{4} {2} {1}

b/0 b/1

a/0 a/1

a/1 a/0 b/1 b/0

a/0

a/1

Fig. 4. HTC for FSM S in Fig. 1

Proposition 6. Given a complete merging-free noninitialized observable possi-
bly nondeterministic FSM S, a test case TC is a homing test case for S if and
only if the TC is a distinguishing test case for S.

Indeed, due to properties of merging free FSMs, given a merging-free FSM
S, a pair of different states of a complete FSM S is j-homing, j > 0, if and only
if this pair is j-distinguishing for S.

Note that the FSM in Fig. 2 is merging-free and thus, a homing test case, i.e.,
the test case in Fig. 5 without transitions from singletons is also a distinguishing
test case 1.

In the next section, the complexity of the derivation of an adaptive synchro-
nizing sequence is evaluated based on the complexity for deriving an HTC for a
homing FSM.

4 Deriving Synchronizing Test Cases

As mentioned above, there exists a synchronizing test case for a complete non-
initialized observable FSM S if and only if the FSM S has a homing test case
and there exists a state s ∈ S that is definitely-reachable state from any other
state. Moreover, in [11], the authors propose just appending the singletons of the
HTC with d-transfer test cases. In this paper, we discuss this procedure more
detailed in order to evaluate whether the complexity will be increased when a
HTC is appended for deriving a STC.
1 Note that for the sake of simplicity, in the Figure we omit the deadlock state D and

corresponding incoming transitions.
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{1,2,3}= {1,2}2

{1,3}3

{1}
{1,2}3

{2}

{3}

b/0

b/2

b/1

a/0
a/1

b/2

b/0 b/1

b/2

a/0

Fig. 5. STC for FSM S in Fig. 2

The complexity of the procedure for checking if there exists a state that is
d-reachable from any other state requires again considering all pairs of states.
Similar to the check of homing pairs, we check each pair {i, 1}, i = 2, 3, . . . , n, of
different states to conclude whether state 1 is d-reachable from any other state. If
state 1 does not possess this property we check state pairs {i, 2}, i = 1, 3, . . . , n,
etc. If there is no state that is d-reachable from any other state then the FSM
has no synchronizing test case. The complexity of this check is O(|I||O||S|2|S|)
or at most O(|I||O||S|3). If there exists state s that is d-reachable from any other
state then in order to append a HTC with the corresponding transfer test cases,
we define the relation of j-d-reachability that also is a partial order over the
FSM states.

Given state s′ that is d-reachable from any other state, we say that s′ is 1-
d-reachable from state s if there exists an input is such that for each o ∈ O, the
iso-successor of s is empty or is a singleton {s′}. Given a subset of states from
which state s′ is j-d-reachable, j > 0, we say that state s′ is (j + 1)-d-reachable
from state s if there exists an input is that for each o ∈ O, the iso-successor of
state s′ is l-d-reachable from state s for l < j. In other words, similar to j-homing
pairs we establish a partial order relation over states due to the d-reachability of
state s′. Similar to the array Input, we derive an array Input-d where for each
state s of the FSM S the corresponding input is is stored.

Correspondingly, we propose Algorithm3 for deriving a STC for a complete
observable FSM S.

As an example, consider an FSM in Fig. 2. The corresponding array Input-d
is shown in Table 3.
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Algorithm 3. Deriving a STC when all pairs of different states are homing
and state s′ is d-reachable from any other state
Input : A complete homing observable, possibly nondeterministic FSM S

represented by two-dimensional array IOsuc,
HTC, and the array Input-d that has for each state s the

corresponding input is
Output: A synchronizing test case STC for S, |S| = n > 2
STC := HTC =< Q, I,O, h >;
foreach singleton {s} of STC do

Add to the transition relation h the transition ({s}, is, o, {s′
a}) if the

iso-successor s′
a of state s exists

foreach state {sa} of STC do
foreach and input/output pair io, such that state sa has no io-successor in
STC do

Add to h a transition ({sa}, i, o,D)

return STC

Table 3. Array Input-d for FSM in Fig. 2; state 3 is d-reachable from states 1 and 2

States 1 2 3

Inputs b a −

The corresponding synchronizing test case for the FSM in Fig. 2 is presented
in Fig. 5. Note that, in Fig. 5 we omitted the transitions to the deadlock state D;
some of these transitions are added at the third step of Algorithm3 for preserving
the output completeness of the returned test case. Indexes for state pairs indicate
the number of j-th iteration of Algorithm 2 for deriving the corresponding HTC.

Since the d-reachability is a partial order relation and the array Input-d
inherits the corresponding property, the following statement holds.

Proposition 7. An FSM STC returned by Algorithm3 is a synchronizing test
case for the FSM S.

Similar to HTC derivation, the following statements estimate the complexity
of the STC derivation taking advantage of the Input-d utilization.

Proposition 8. Given a FSM S with n states, the FSM STC returned by Algo-
rithm3 has the same set of states as the initial HTC while the number of tran-
sitions can be increased at most by |O|n.

Proposition 9. Given a homing FSM S with n states and its HTC, the com-
plexity of Algorithm3 is O(|O|n4).

As a corollary to Propositions 4 and 9, the following statements hold.

Proposition 10. Given a homing FSM S with n states and the FSM HTC
returned by Algorithm2 of height l, the FSM STC returned by Algorithm3 has
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at most (n − 1)2n/2 + n + 1 states, at most |O|(n − 1)2n/2 + |O|n transitions
and its height is at most (l + n).

Theorem 2. Given a homing FSM S with n states where there exists a state
that is d-reachable from any other state and the maximal integer k such that
FSM S has a pair of different states that is k-homing but is not (k − 1)-homing,
there exists a synchronizing test case with at most (n − 1)2n/2 + n + 1 states, at
most |O|((n−1)2n/2+n) transitions, of the height at most (n−1)k+n, and the
complexity of deriving this test case is O(|O|n5) when S is represented by arrays
IOsuc, Input and Input-d.

Note again, that similar to homing test case derivation, the complexity of
deriving a STC for a noninitialized observable FSM does not directly depend
on the cardinality of its input alphabet when HTC and the array Input-d are
given.

5 Related Work

The problems of checking the existence and derivation of homing, synchronizing
and distinguishing sequences have been widely investigated in the past seventy
years. Major results obtained in this area mainly concern the deterministic FSM
case: for noninitialized complete deterministic minimal machines the existence
decision and derivation of an appropriate sequence for the final state identifica-
tion (HS and SS) can be performed in polynomial time [16]. However, whenever
the machine is weakly initialized or partial [19] the corresponding decision prob-
lems become PSPACE-complete. There is the same complexity for the existence
check of a distinguishing sequence for a uninitialized deterministic machine [12].
However, even for the ‘good’ case of HS and SS for deterministic FSMs the prob-
lem becomes much harder when constructing a shortest HS or SS. Indeed, the
problem of deriving a shortest HS/SS is NP-hard even for complete noninitialized
deterministic minimal FSMs [16].

In some cases, the complexity of the existence check or derivation of a cor-
responding state identification sequence can be reduced via adaptive strategy.
A remarkable example of such complexity reduction has been considered in [12]
where the existence check of an adaptive DS has been proven to be solved in
polynomial time with respect to the number of FSM states.

For nondeterministic machines, the problems listed above become harder.
Indeed, as homing, synchronizing and distinguishing sequences have exponen-
tial length in this case [6,9,17], their existence check and derivation cannot be
performed in polynomial time. The adaptive test case length however can be
reduced: for homing and synchronizing sequences when considering complete
noninitialized FSMs, while for distinguishing sequences for merging-free FSMs.
Related decision problems have been considered in [8,10,11,20] and have been
proven to have polynomial complexity, as well as polynomial length of the cor-
responding sequences (with respect to the number of FSM states). In [8], an
algorithm for deriving an adaptive homing sequence has been proposed, while
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[11] presents a similar contribution for synchronizing sequences. Nevertheless,
to the best of our knowledge, the complexity of the derivation of such adaptive
sequences for nondeterministic FSMs has not been investigated yet. Therefore,
the contributions of the current paper are inline with the current state of the art
and moreover, are rather promising as they establish the polynomial complex-
ity of the derivation of adaptive SS and HS for nondeterministic noninitialized
FSMs, as well as for adaptive DS for merging-free FSMs.

6 Conclusion

In this paper, we have investigated the complexity of deriving adaptive homing
and synchronizing sequences for a complete observable noninitialized possibly
non-deterministic FSM as well as the complexity of deriving an adaptive dis-
tinguishing sequence for merging-free FSMs. In fact, this complexity can be
polynomial with respect to the product of the number of FSM states and the
cardinality of its output alphabet. The main trick consists of the proposed data
structures for representing the FSM under experiment, that allow considering an
io-successor calculation as an elementary operation. Another important contri-
bution lies in the proposal of a partial order over the FSM state pairs identifying
the degree of homeability.

We note however, that the reachability of the upper bound O(|O|n5) for
an FSM with n states and |O| outputs, for deriving a homing/synchronizing
test case might not be tight similar to distinguishing test cases for merging-
free nondeterministic FSMs. For the future work, we thus would like to specify
the FSM classes where worst theoretical upper bounds are reached while for
other classes, we would like to investigate some potential optimizations of the
proposed algorithms. We also note that in this work we only consider nonini-
tialized FSMs, and there is still an open problem of evaluating the complexity
of adaptive HS/SS/DS derivation for weakly initialized nondeterministic FSMs.
The corresponding research is also left for the future work, together with the
identification of the class of FSMs where the worst theoretical upper bounds are
reached.

Acknowledgement. The authors would like to thank Dr. Hüsnü Yenigün for fruitful
discussions on the complexity of FSM state identification sequences; those discussions
together with the joint results on the existence check of the related sequences were
very helpful for moving forward to the complexity of the HS/SS/DS derivation, i.e.,
the results presented in this paper.
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