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Abstract. Performance testing is a critical task to ensure an accept-
able user experience with software systems, especially when there are
high numbers of concurrent users. Selecting an appropriate test work-
load is a challenging and time-consuming process that relies heavily on
the testers’ expertise. Not only are workloads application-dependent, but
also it is usually unclear how large a workload must be to expose any
performance issues that exist in an application. Previous research has
proposed to dynamically adapt the test workloads in real-time based on
the application behavior. By reducing the need for the trial-and-error test
cycles required when using static workloads, dynamic workload adapta-
tion can reduce the effort and expertise needed to carry out performance
testing. However, such approaches usually require testers to properly con-
figure several parameters in order to be effective in identifying workload-
dependent performance bugs, which may hinder their usability among
practitioners. To address this issue, this paper examines the different
criteria needed to conduct performance testing efficiently using dynamic
workload adaptation. We present the results of comprehensively evalu-
ating one such approach, providing insights into how to tune it properly
in order to obtain better outcomes based on different scenarios. We also
study the effects of varying its configuration and how this can affect the
results obtained.

Keywords: Software engineering · Performance testing ·
Performance bug · Workload · Web systems and applications

1 Introduction

Performance testing plays a critical role in the software industry in order to
successfully engineer reliable systems and guarantee the best experience for the
final users. When a system exhibits failures or errors, it can cause severe damages
to companies such as economic and reputational losses. Moreover, the risk of
suffering performance degradation in systems is exacerbated with the increase
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of services residing in the cloud, which must support millions of users interacting
with the system at the same time through web or mobile applications [11].

The goal of performance testing is to evaluate how well an application can
perform under a particular workload [21,30]. However, it is difficult to generate
effective test cases that can expose performance issues promptly as it requires
testers to evaluate multiple combinations of workloads, actions, and data [24].
Additionally, a large number of enterprise systems that were developed as data-
centric applications are now deployed as software as a service (SaaS) in the
cloud. The problem with services in the cloud is that they are difficult to test
because their backend components are distributed, thus, making it difficult to
emulate the flow of the application, especially when the services are consumed
by multiple users at the same time [16,31].

Conducting performance testing typically requires a lot of effort and exper-
tise from testers. The performance of each application is unique and although
the application could be the same, different versions and releases are still dis-
tinctive, so the set of performance tests needs to be updated accordingly [34].
This problem emphasizes the need for an expert on the application under test
in order to get some insights regarding its weakness [38]. However, this situa-
tion could lead to dependencies and bottlenecks in the workflow of the testing
team [2]. Moreover, due to the strict demands for shorter time-to-market prod-
ucts, testers are required to automate as much as possible their test plans so they
can move at the same rate of emerging methodologies such as Agile, Continu-
ous Integration, and Continuous Deployment. In addition, complete coverage of
performance testing is not always achievable, as there are no automated oracles
that can assure that a system is completely safe in terms of performance [40].
Load testing, an important part of performance testing, is the standard approach
for assessing how an application behaves under different loads to find scenarios
where it suffers performance issues (e.g., CPU bottlenecks, deadlocks) leading
to high response time or low throughput [24] that affect the user experience.

One important problem in load testing is that most of the tools used to
assess the performance of applications depend on static (i.e., pre-configured)
workloads [32] such as Apache JMeter1 and IBM RPT2. A major disadvantage
of these tools is that, in order to define a correct load to stress the applications,
they require human expertise and several runs of trial-and-error, hence, taking a
lot of time. Additionally, manually designing, executing, and analyzing the values
of a test workload can be very difficult due to the scale of the test, increasing
the risk of overlooking problems or potential bugs [10].

An innovative approach in the literature is to adapt the workloads, in real
time, based on the behavior of the application under test. These types of
approaches aim to reduce the effort and expertise needed to carry out perfor-
mance testing efficiently. A representative example of this type of approach is
DYNAMO [3], which can automatically find an adequate workload for a web
application without requiring multiple test runs while increasing the number of

1 http://jmeter.apache.org/.
2 https://www.ibm.com/us-en/marketplace/ibm-rational-performance-tester.

http://jmeter.apache.org/
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performance bugs found. This is achieved by dynamically defining the appropri-
ate workloads on the fly based on the analysis of the intermediate testing results.
However, despite its potential benefits, one disadvantage of DYNAMO is that
users are required to define several parameters in order to configure it properly
(otherwise, there is a risk that results may vary and have negative impacts in
the testing process), a characteristic which might hinder its usability and effec-
tiveness. Hence, there are improvements that can be done in terms of identifying
the proper combination of the different variables involved in the configuration
of DYNAMO, and of this type of approach in general.

To address the above issue, the contributions of this paper are the following:

1. A comprehensive evaluation of the DYNAMO approach, assessing a broad
range of configuration alternatives to conduct performance testing efficiently
using dynamic workload adaptation.

2. A set of rules of thumb, derived from our experiments using DYNAMO, that
advise practitioners in the appropriate usage of these types of approaches.

3. An insightful analysis of how the different configuration variables can affect
DYNAMO’s behavior and its results.

The rest of this paper is structured as follows: Sect. 2 presents the back-
ground and related work. Section 3 explains the DYNAMO approach, while
Sect. 4 describes the experimental evaluation and results obtained from the use
of DYNAMO. Finally, Sect. 5 presents the conclusions and future work.

2 Background and Related Work

Performance testing is a type of testing whose objective is to ensure that an
application-under-test (AUT) is capable of running its business operations under
certain varieties of loads [21,29]. As shown in Fig. 1, a performance tester typ-
ically configures a Load tool (e.g., Apache JMeter) to run a test for a certain
amount of time, usually several hours or even days in the case of industrial appli-
cations. In this context, a test workload is comprised of many concurrent virtual
customers and a series of operations such as logins, searches, and click events to
emulate the real use of the AUT. In order to identify performance issues, mon-
itoring tools collect performance-related information, such as throughput and
response time, during the execution of the test. Finally, the tester analyzes the
outputs from the monitoring tool to identify trends in the collected data and
determine possible bottlenecks or failures in the system.

Software testing automation has become crucial for organizations as often-
times they require faster deployments and reduced time-to-market. Therefore,
testing automation is incorporated as a crucial step in the software development
life cycle to minimize the appearance of bugs in production code and reduce the
testing efforts. Test suits are collections of test cases designed to evaluate the
behavior of software applications. Nevertheless, testing is complex and expen-
sive, then the approach presented in [20] explains how to focus the testing using
a property-oriented technique to reduce the complexity of the test suits and yet
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Fig. 1. Performance testing - Contextual view

obtain complete coverage. The authors of [8] propose an architecture to auto-
mate the performance testing of microservices by monitoring key indicators like
the throughput, response time, and availability, which are used to detect bot-
tlenecks. A framework is proposed by [23] to combine the use of conformance
testing and load testing in order to save time and efforts during the validation
of web services. Traditionally these types of testing are run by different teams
verifying distinctive inputs and outputs. This work is an extension of [25] imple-
menting timed automata and a test generation algorithm to discover bugs and
system degradations that appear during high loads of users because of the lack
of optimization in the code. Also, in [7], the authors define metrics to test web
applications focusing on the stability, quality, and the difficulties involved to
automate a test case. Other approaches use model-based testing to reduce the
test case derivation efforts [13,14,26]. In [14], the author examines techniques
for model-based testing of web applications and websites that apply statistical
usage models to generate and evaluate appropriate test suites. Similarly, the
works in [13,26] explore the automation of test case derivation to facilitate test-
ing for automotive software.

Conducting performance testing of software systems is particularly challeng-
ing as it requires a significant amount of effort to carry out. For instance, iden-
tifying the limits of a system is not trivial. Testers require to have previous
experience and knowledge about the system to define the correct workloads [27].
Another problem is that there are no methods to assess the effectiveness of per-
formance testing. So the authors of [35] propose the use of mutation testing
during performance testing to measure the efficiency of the test suits to dis-
cover errors. Mutation testing is a type of test that involves the introduction
of faults (mutants) into the code through some predefined rules to unveil errors
in the system. Effective performance testing techniques are required to cover
a system from high-priority bugs. In [37], the authors propose a model-based
approach to test web applications generating synthetic workloads based on the
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data dependencies and transactions of the application under test. The authors
in [4] explain that it is not feasible to test all the possible inputs in multi-core
applications. Therefore, automation is applied to generate appropriate test cases
using genetic algorithms. The work presented in [15] defines a declarative app-
roach to incorporate performance testing into continuous software development.
With such approach it is possible to model goal-oriented performance tests into
the development life cycle.

More recent approaches incorporate new emerging technologies. Machine
learning, for instance, uses black box testing, which identifies performance prob-
lems based on the feedback and outputs provided by the application. Other
methods take into account the use of cloud resources [17] to calculate how
many resources are needed to run an application without affecting the perfor-
mance. In [18], the authors explore the detection of software defective modules
using clustering-based under-sampling and artificial neural network. Metamor-
phic testing [36], on the other hand, aims to reduce the complexity of the testing
configuration, the human-based expertise and the use of diagnostic tools to ana-
lyze variables like the optimization of Garbage Collection [29].

In general, the process of defining an appropriate test workload to detect per-
formance issues in systems is a difficult problem. Workloads must be representa-
tive of the application under test and they must reflect the variability of human
behavior [12]. Moreover, workloads are related to specific variables depending on
the application under test and it is difficult for a human to identify patterns [5].
Despite there are tools to generate synthetic workloads for testing [9,39] these
rely on static techniques for workload generation. This type of technique requires
to invest more time and resources to identify an adequate workload for the sys-
tem. With static workloads, a predetermined number of users are defined per
run, whereas in an adaptive approach various diverse workloads will be generated
in-test until a high workload (maximum number of users) is found such that the
system can handle it without crashing. Other performance testing approaches
are based on static code analysis. For instance, the authors of [34] determine the
performance tests based on commits and the usage of unit-tests. Meanwhile, the
work presented in [33] describes the performance analysis of software systems
as a comparison of two versions of software and their performance results to
find possible (regression) bugs. In response to these limitations, approaches that
dynamically adapt the workload have been proposed [3,22]. This paper conducts
an evaluation of DYNAMO because of its advantages of adjusting the workload
on the fly using the analysis of key performance metrics to create a customized
workload for the AUT with minimal knowledge or experience from the tester.
Moreover, in relation to bug accuracy, previous work [3,22] has proved the ben-
efits of using DYNAMO to find bugs in comparison with static approaches.

3 DYNAMO Overview

The goal of DYNAMO [3] is to help testers to define appropriate workloads
without a trial-and-error process. To achieve this, DYNAMO relies on the use of
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adaptive workloads. Applying adaptive workloads can help to reduce the time
invested to find a suitable workload, therefore saving money and resources. This
is because an inappropriate low test workload can overlook performance issues
in the application [21]. In contrast, using a “too” high load can saturate the
system and prevent the detection of some issues due to critical failures that may
arise on the system (as presented in Fig. 2 for illustrative purposes only, as the
actual workload curves are application-specific).
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Fig. 2. Bugs vs Test workload example

DYNAMO works by constantly monitoring key performance indicators (dur-
ing the test run execution) to automatically adjust the workload as required. To
adjust the workload, a set of the functional transactions are incremented, based
on a threshold evaluation that identifies those transactions to be increased, as
well as by how much. The transactions that will be stressed are called workload
sensitive (WKS). DYNAMO works in two phases: Phase 1 (Ph1), whose objec-
tive is to identify the workload sensitive transactions (WKS) involved in the
test, and Phase 2 (Ph2), whose goal is to exercise the WKS as much as possible,
while avoiding the saturation of the system (as shown in Fig. 3).

During Ph1, DYNAMO conducts two test runs (TR1, TR2) in order to
identify the WKS transaction. In TR1, a known low workload is used, while
a higher workload (w.r.t. TR1) is used in TR2. After TR1 and TR2 have fin-
ished, DYNAMO calculates the performance differences (deltas) per transaction
between both runs in order to identify which transactions are the most workload-
sensitive. For example, a basic welcome page could be a non-sensitive transaction
because its content is static, while executing a login operation is typically more
sensitive due to all the internal process triggered to verify a user (e.g., interfacing
with a Single Sign-On service). Finally, the transactions are sorted in descending
order of their deltas, and the leading ones are considered WKS.

In Ph2, DYNAMO keeps monitoring the performance of the WKS trans-
actions (identified in Ph1) during the rest of the test run execution. Further-
more, their performance is iteratively evaluated, using an adjustment strategy,
to identify those transactions that need a workload increment. DYNAMO cur-
rently supports 3 strategies to perform the workload adjustments: Min, which



Efficient Performance Testing Through Dynamic Workload Adaptation 221

Fig. 3. DYNAMO’s phases summary

increases the WKS transactions with the best performance; Max, which increases
the WKS transactions with the worst performance; and Random, which selects
a random set of WKS transactions to be adjusted.

In terms of configuration, DYNAMO requires several user inputs: (1) the
test duration (e.g., 1 day). (2) the duration ratio between phases (i.e., 50/50%).
(3) Two known seed workloads (WK1,WK2), one low (e.g., 1 user) and the other
relatively higher than the first (e.g., 10 users). They are used by Ph1 to conduct
the two calibration test runs (i.e., TR1, TR2). (4) A percentage of transactions
of interest (%WKS), used by Ph1 to define how many (starting from the top)
of the sorted transactions will be tagged as WKS. (5) A sample interval (SI),
used by Ph2, to define how often the performance of the workloads will be eval-
uated (e.g., 5 min). (6) An error rate threshold (ERT), used by Ph2, to define
what is considered saturation (e.g., 90%). (7) An adjustment strategy (ADS),
used by Ph2, to identify the transactions whose workloads need to be increased.
(8) A workload increment (WKINC) to define how big the increment will be
(e.g., 20 users). (9) A percentage (%WKINC) to define how many WKS trans-
actions will be increased, based on the chosen adjustment strategy (i.e., 30%).

4 Experimental Evaluation

Our experiments aimed to evaluate DYNAMO’s accuracy, in terms of both WKS
labeling and bug finding, with a special emphasis on any trade-offs existing
between the accuracies w.r.t. DYNAMO’s configuration. Specifically, the con-
ducted experiments addressed the following research questions:

– RQ1. Which is the best ratio (between DYNAMO Ph1 and Ph2) w.r.t. WKS
labeling accuracy?
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– RQ2. Which is the best ratio (between DYNAMO Ph1 and Ph2) w.r.t. bug
finding accuracy?

In the following paragraphs, we describe the experimental setup used as well
as the obtained results.

4.1 Experimental Setup

The test environment consisted of two virtual machines (VMs) running in iso-
lated conditions to avoid noise during the experiments. One VM worked as the
client running JMeter and DYNAMO. The other VM ran a web server host-
ing the application-under-test (AUT). The client VM had 2 virtual CPUs at
2.20 GHz, 4 GB of RAM and 150 GB of hard disk, running Ubuntu 14.04 with
OpenJDK 1.7 with a 1.6 GB heap. This VM also used Apache JMeter 3.2 (a lead-
ing open-source tool used for load testing (See footnote 1)) and the latest version
of DYNAMO [3]. The server VM had 20 virtual CPUs at 2.20 GHz, 50 GB of
RAM and 150 GB of hard disk, running Ubuntu 14.04 with IBM JVM 1.8 with
a 25 GB heap and Apache Tomcat 7.0 as web server container. Additionally,
IBM WAIT was used as diagnostic tool due to its robust capabilities to detect
performance errors [29,41] such as memory leaks and resource bottlenecks.

Table 1. DaCapo programs

Name Description

avrora It simulates a program running on a grid

batik It processes vector-based images

eclipse It executes tests in an Eclipse development environment

fop It generates PDF files

h2 It runs banking transactions in a database system

jython It runs Python scripts

luindex It indexes documents

lusearch It runs keyword searches over a data corpus

pmd It reviews a set of Java classes

sunflow It renders images

tomcat It runs queries in a Tomcat server

tradebeans It runs stock transactions through Java Beans

tradesoap It runs stock transactions through SOAP

xalan It transforms XML files into HTML files

The AUTs used were DaCapo3 and SPECJVM4, which are two well-known
Java benchmarks that are highly used in the literature. In order to utilize them
3 http://dacapobench.org/.
4 https://www.spec.org/jvm2008/.

http://dacapobench.org/
https://www.spec.org/jvm2008/
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as web applications, we used a servlet-based tool that enables their access and
execution via web, so that each program (within the benchmark) can be used as
a different functional transaction [28]. The Dacapo test plan consisted of its 14
benchmark programs (shown in Table 1) configured to run using their small size,
1 iteration, and 2 threads. Meanwhile, due to the complexity of SPECJVM, some
benchmarks were executed by their specific sub-benchmarks (i.e., scimark: fft,
lu, sor, sparse and monte carlo) to create a test plan of 13 operations, as shown
in Table 2. The configuration used to run the benchmarks was 0 s warm-up time,
10 s iteration, small data sets, and 2 threads.

Furthermore, to monitor the key performance indicators, we used JMeter for
the throughput (tps), error rate (%) and, response time (ms) while nmon5 col-
lected CPU utilization (%) and memory consumption (MB). Additionally, WAIT
was used to monitor the number (and criticalness) of the identified performance
issues.

Table 2. SPECJVM programs

Name Sub-benchmark Description

compiler .compiler It compiles Java source files

compress all It runs a data compression alg

crypto .rsa It encrypts/decrypts files

MPEGaudio all It decodes audio files

scimark fft, lu, sor, sparse and monte carlo It executes floating point ops

serial all It serialises/deserialises objects and
primitives

startup .helloworld It runs a hello word program

sunflow all It runs visualization operations

XML .transform It transforms XML documents

The response time during Ph1 determines which transactions are WKS. In
Ph2, the error rate evaluates if the overall workload has reached the threshold
and decides whether to increase the load applying one of the three available
strategies or to rollback to a previous value and try a different combination to
increase the workload. CPU utilization and Memory consumption were moni-
tored to validate the minimal overhead introduced by the use of DYNAMO in
the client machine.

DYNAMO has several configuration options to generate adaptive workloads.
Therefore, choosing a different combination of parameters can lead to distinct
results. The values used in the experiments were defined to cover as many scenar-
ios as possible. The configurations we used for DYNAMO are shown in Table 3.

5 http://nmon.sourceforge.net/.

http://nmon.sourceforge.net/
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It is worth mentioning that the test durations and the workload values were
defined, per AUT, based on the maximum capacity supported by our test envi-
ronment.

4.2 Results

To answer RQ1, our analysis initially focused on assessing how well Ph1 could
identify WKS transactions. To accomplish this, we firstly executed DYNAMO
using all the in-scope Ph1/Ph2 ratios. Then, the obtained results were com-
pared against a baseline, which was used to calculate the accuracy of Ph1 for
labeling WKS transactions. The baseline was created following the traditional
performance testing approach, typically utilized in the industry, of using static
(i.e., pre-configured) test workloads [19]. Thus, the baseline was calculated with
the average results of 10 test runs carried out (per AUT) using a range of static
workloads (their consolidated response time information is shown in Table 4).

Table 3. Experimental configuration parameters for DYNAMO

Phase Parameter Value

Initial
Settings

(1) Test duration 100min for SPECJVM and 200min
for DaCapo

(2) Ph1 and Ph2 ratios 10/90, 20/80, 40/60, 60/40, and
80/20

Phase 1
Settings

(3) Calibration workloads [WK1,
WK2]

[1,10] for SPECJVM and [2,20] for
DaCapo

(4) Number of transactions
considered as WKS (%WKS)

30% and 50%

Phase 2
Settings

(5) Sample interval (SI) 5min

(6) Error rate threshold (ERT) 90%

(7) Adjustment strategy (ADS) Min

(8) Workload increment (WKINC) 5 users

(9) WKS transactions to be
increased (%WKINC)

50%

To maximize the representativeness of the baseline (i.e., covering the full
spectrum of potential test workloads, starting with a close-to-idle scenario and
ending with a saturated environment), both AUTs were initially tested with a
very low workload (i.e., 1 and 2 concurrent users for SPECJVM and DaCapo,
respectively). Then, the workload was gradually increased, per test run, by 100%
(w.r.t. the initial workloads used), until reaching a high enough workload that
provoked saturation in the system (i.e., 10 and 20 concurrent users for SPECJVM
and DaCapo, respectively).
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Table 4. Baselines sorted by response time

Trans. ID DaCapo Average
response time (ms)

Trans. ID SPECJVM Average
response time (ms)

10 34,076.66 01 15,514.34

09 37,903.85 07 26,085.40

08 42,888.26 06 26,319.86

14 43,272.39 08 27,039.00

04 51,381.02 04 29,763.84

07 62,803.12 02 31,332.79

01 63,576.74 03 32,090.00

13 69,162.31 10 33,366.21

02 70,003.78 09 34,099.33

12 73,513.73 05 45,603.02

11 82,565.42 12 48,367.00

05 107,204.49 11 71,762.47

06 118,468.68 13 354,635.71

03 208,623.71 - -

Furthermore, we calculate of the accuracy of Ph1 to correctly label WKS
transactions. It was based on a set B of baseline transactions and a set S of
labeled transactions (which is the main output of Ph1) in order to determine how
many of the S transactions belong to the B set. Let B be a finite set of (baseline)
transactions B = {b1, b2, . . . , bn} and n(B) its cardinality. Let S be the set of
sample transactions S = {s1, s2, · · · , sn} sorted in descending order according to
their response time. Now, a function f(si) is defined to indicate whether a given
sample transaction si will be taken into account when calculating the percentage
of accuracy (as depicted in Eq. 1).

f(si) =

{
0, if si /∈ B

1, if si ∈ B
(1)

Then, the percentage of accuracy can be computed as the sum of the values
for all si ∈ S from the previously defined function, all divided by the cardinality
of B. This is depicted in Eq. 2.

percentage of accuracy =

∑
si∈S

f(si)

n(B)
(2)

Figure 4 depicts the results obtained using DaCapo with a %WKS of 30%.
It can be seen that there is a tendency to achieve a higher accuracy when using
a higher duration ratio. However, by using a Pareto ratio of 20/80, it is still
possible to achieve an accuracy above 75%, which is very close to the accuracies



226 O. Huerta-Guevara et al.

obtained when using higher ratios (e.g., 60/40 or above). This demonstrates that
it is feasible to use a lower Ph1/Ph2 duration ratio without compromising the
accuracy of the WKS labeling. A slightly lower ratio appears when using 40% of
ratio during Ph1, but this value is explained due to the closer delta values of the
transactions in the 30% range. An additional advantage of using a ratio of 20%
(in Ph1) is that it leaves more time for Ph2, hence increasing the possibility to
find more performance bugs.
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Fig. 4. Accuracy of Ph1 for DaCapo using a %WKS of 30%

We observed a similar trend with the SPECJVM results, where duration
ratios from 20/80 onwards had a good accuracy (above 75%). This supports our
finding that the Pareto ratio can achieve a high level of accuracy. Only when
using a ratio of 10% in Ph1, the accuracy drops. This is the result of having
only a short amount of time in Ph1, which makes impossible to label with high
accuracy the WKS transactions. Finally, it is important to highlight that, in the
cases where the accuracy did not reach 100%, the missed transactions were the
ones closest to the WKS transactions (according to the baseline table). These
results also reinforced the finding that DYNAMO’s accuracy tends to be high
and that the Pareto ratio can achieve a high accuracy without spending “too
much” time in Ph1 (as it would not bring any real benefit).

To answer RQ2, the focus of our analysis shifted to assess how well Ph2 could
identify performance issues. With that aim in mind, we fed WAIT (i.e., our cho-
sen diagnosis tool) with snapshots of the JVM state (i.e., Javacores [6]) sampled
during the execution of the test runs. These samples were taken in intervals of
30 s, following common industrial standards [1]. WAIT provided a report with
all the identified bugs sorted by their frequency of occurrence, information that
was used to classify the bugs as low or high relevant. A bug was considered
as high relevant if it occurred above 5% (of the test run duration). Alterna-
tively, it was considered as low relevant. Regarding bug finding, DYNAMO’s
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Fig. 5. Percentage of time in Ph2 to find a stable load

Ph2 enhances this process by finding a load big enough to stress, as much as
possible, the AUT without reaching a point of saturation (called stable load).
To define the appropriate load, DYNAMO takes samples of the response times,
calculates the average of the error rates, and makes load adjustments on the fly.
Figure 5 depicts the time taken to achieve a stable load per phase ratio. There,
it can be noticed how an earlier stable load was found when using a ratio of
10/90. Yet, the second best result came from the load with a Pareto ratio of
20/80, where the stable load was found when the lapsed time was at 34% (for
WKS of 50%) and 28.13% (for WKS of 30%) of the total time of the workload.
This is in comparison with spending 87% of the time for the 80/20 ratio.
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When analyzing the number of performance bugs found during Ph2 across
the different duration ratios, we observed that the number of bugs decreased
when the time spent in Ph2 was lower (as depicted in Fig. 6). Additionally, if the
ratio in Ph2 is lower, the time required to find a stable load is longer (as shown
in Fig. 5). Consequently, there is less time to find bugs. In terms of load, when
a %WKS of 50% was used, a stable load was found earlier and also the number
of adjustments was higher. This explains why this value of %WKS found more
performance bugs during Ph2 (as shown in Fig. 6) due to the use of higher loads
of users as depicted in Fig. 7.
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Fig. 7. Number of users during Ph2

With these results, it is possible to assert that using a higher load is better to
find bugs than using a lower load for a long time. This observation denotes the
importance of finding a high enough load to stress a system, but without reach-
ing a saturation point (as that would negatively affect the bug-finding process).
Also, it is crucial to consider the distribution of the WKS transactions during
Ph2, as a higher %WKS ratio (e.g., 50%) will work better. This is because there
will be a broader range of eligible transactions to increase the load, rather than
overstressing the server with a load composed of a limited number of transac-
tions. In summary, during Ph2 a higher %WKS is recommended to find a better
workload to stress the system and find more bugs.

It is also worth mentioning that the workload adjustments during Ph2 are
important because they are part of the core logic of DYNAMO. This illustrated
in Fig. 8, where one can see the adjustments made according to the error rate, as
well as the process of rollback. During the initial adjustments, the error passed
the threshold, then other adjustments were made following the operations shown
in Table 5 to define the final workload.
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Table 5. Adjustments

Operation Transactions

Increase [T11, T3]

Rollback [T11, T3]

Increase [T5, T6]

Increase [T5, T6]

Increase [T5, T6]

Increase [T5, T6]

Rollback [T5, T6]

Furthermore, the bugs considered as highly relevant (due to its frequency
of occurrence) were stable in all the phase ratios while using both 50% and
30% as %WKS, as depicted in Fig. 9. However, bugs with low relevance changed
depending on the ratio. This is because if less time is spent in Ph2, there is not
enough time to get data samples to analyze the relevance of these bugs. With
these results, the tradeoffs of changing the ratios were reflected in the finding of
low relevant bugs, while the high relevant bugs kept the same regardless of the
ratio. Also, the Pareto ratio generated results that were not far from the ratios
that spent more time in Ph2 (e.g., 90/10). What is more important, the Pareto
ratio did not compromise the accuracy in WKS labeling during Ph1.

In relation to bug accuracy, previous work [3,22] has proved that DYNAMO
is better for finding bugs than traditional testing approaches. Therefore, our
analysis concentrated on comparing the results from the different ratios (w.r.t.
Ph2). We conclude that Ph2 was affected by two main variables: The Ph2 ratio
and %WKS. As shown in Fig. 8, the Pareto ratio obtained good results (com-
pared to the other ratios), also the %WKS of 50% found more bugs. This was
also confirmed by Fig. 7, which showed that the %WKS of 50% had a big load,
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increasing the chances to find bugs. Lastly, lower ratios in Ph2 found a large
number of bugs; yet, most of them were categorized with low relevance and were
associated with a drop in accuracy caused by having less time during Ph2.
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5 Conclusions and Future Work

Identifying the appropriate load to stress a system to expose performance issues
is challenging. This task requires a lot of effort and experienced testers trying
different static workloads. Dynamic workload adaptation approaches make pos-
sible to find an appropriate workload automatically. However, they require sev-
eral configuration parameters. In this paper, we have comprehensively explored
such parameters using a representative example of this type of approaches called
DYNAMO, which works in 2 phases. After our evaluation, we were able to prove
the accuracy of DYNAMO’s Phase1 (Ph1) w.r.t. WKS labeling, where all the
ratios showed an accuracy above 75% except the lowest one (i.e., 10–90). This
was the consequence of the low time spent in Ph1. In DYNAMO’s Phase2 (Ph2),
we found that using a higher ratio of WKS transactions led to more transactions
to be adjusted and thereby a generated workload closer to the saturation point.
Moreover, it was possible to perceive that higher ratios during Ph2 provided
more time for workload adjustment, which left more time to run the “ideal”
workload. In addition, we showed that the Pareto ratio offered good results
between different ratios without compromising bug finding (in Ph2) and WKS
accuracy (in Ph1). Finally, we found that the bug finding accuracy during Ph2
was better when higher ratios were used, as this led to more adjustments and
testing time used to discover more bugs. These results offer practitioners a valu-
able reference regarding the use of DYNAMO and the benefits of implementing
a dynamic workload adaptation strategy for performance testing.
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In future work, we plan to explore other approaches of dynamic workload
adaptation to perform a comparative study and derive more guidelines for prac-
titioners. Moreover, we intend to incorporate machine learning techniques to
study the behavior of the approaches and then be able to make automatic recom-
mendations of the configuration parameters based on the characteristics learned
from the applications under test. Additionally, incorporate information about
the structure and behavior of the web application to focus the testing on sensi-
tive code that could trigger performance bugs. Finally, we plan to incorporate
the approaches in easy-to-use JMeter plugins with a friendly graphical interface
so it can be more easily adopted by performance engineering practitioners as
many of the approaches are built as basic research prototypes running in the
command line.
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