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Abstract. Bounded exhaustive testing (BET) is an elementary tech-
nique in automated unit testing. It consists in testing a function with all
input data up to a given size bound. We implement BET to check logical
and program properties, before attempting to prove them formally with
the deductive verification tool Why3. We also present a library of enu-
meration programs for BET, certified by formal proofs of their properties
with Why3. In order to make BET more efficient, we study and compare
several strategies to optimize these programs.
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1 Introduction

Bounded Exhaustive Testing (BET, for short) automates unit testing of a func-
tion by checking one of its properties for all admissible inputs up to some size.
Although this method is limited to small input data, its relevance is recog-
nized [15,21] since it facilitates debugging by providing the smallest counterex-
amples, and provides confidence by guaranteeing the absence of errors below
some size bound. This makes BET complementary to methods adapted to data
of larger size, such as random testing. Whatever, the subject of this paper is
not to compare BET with other test methods, but to improve the quality and
availability of BET tools.

BET has first been used to check properties of functional languages, as exem-
plified by SmallCheck in Haskell [20]. Then, BET has been adapted to several
proof assistants, e.g., to Isabelle in Quickcheck [4] and more recently to Coq, in
an extension of QuickChick [14] named CUT (Coq Unit Testing) [7].

BET is also relevant to check properties produced by deductive verification,
aka. verification conditions that a given program satisfies a given specification.
We present a prototypical implementation of BET in the deductive verifica-
tion tool Why3 [3]. Programs for Why3 are written in WhyML, a verification-
oriented dialect of ML with some functional features, such as polymorphic alge-
braic types, but also imperative features, such as loops or records with mutable
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fields. The functional behavior of WhyML programs can be specified with formal
annotations: preconditions, postconditions, invariants and loop variants, asser-
tions, etc., in a first-order logic with polymorphic types. Why3 standard library
defines theories or data structures for common types such as integers, lists or
arrays. Why3 reduces programs and specifications to logical verification con-
ditions whose satisfiability entails that the programs meet their specifications.
Then, automated provers (e.g., SMT solvers) or proof assistants (e.g., Coq) can
be used to prove these logical statements. Why3 also provides extraction to get
correct-by-construction OCaml programs.

Some BET tools implement techniques such as constraint solving or local
choice with backtracking, either to enumerate data or to derive enumeration
programs from data definitions (see [6, Section 7] for references). However, these
techniques may fail or enumerate data too slowly. For effectiveness, we consider
BET using a distinct handwritten enumeration program for each family of data
of interest. Dubois and Giorgetti proposed BET for Coq with such custom enu-
meration programs, defined either in Coq or in Why3 language [6].

Confidence in BET is increased if its enumeration programs are certified, ide-
ally with formal proofs of their properties. Genestier et al. [10] developed a first
version of the ENUM library, gathering enumeration programs in C language,
formally specified with ACSL clauses and proved with Frama-C plugin WP for
deductive verification. An adaptation to Why3 of a small fragment of this library
has been presented to the French community [11,12]. Here we present a larger
version of this library and its certification with Why3.

Another challenge for BET is to design and implement efficient enumeration
algorithms. We examine here several ways to reduce their algorithmic cost: by
implementing algorithms in a more efficient language (C versus WhyML), or
by using optimized compilation. We also study the negative impact that these
optimizations might have on certification.

The first contribution of this work is an implementation of BET to check
Why3 properties (Sect. 2). The second contribution is a library of enumeration
programs certified with Why3 (Sect. 3). The third contribution is an experimen-
tal study to optimize enumeration programs without sacrificing too much their
certification (Sects. 4 and 5).

2 Bounded Exhaustive Testing for Why3

This section presents our implementation of bounded exhaustive testing for
Why3 properties. It consists of a generic BET function (described in Sect. 2.2)
and a library of enumeration programs (detailed in Sect. 3). All enumeration
programs implement the same interface, described in Sect. 2.1. Two examples of
BET are given in Sects. 2.3 and 2.4, respectively with success and exhibiting a
counterexample.



BET with Certified and Optimized Data Generators 161

2.1 Common Interface of Enumeration Programs

Since enumeration is a particular form of iteration, we specify and implement
enumeration programs (sometimes hereafter called generators) by adapting the
modular iterators defined by Filliâtre and Pereira [8,9]. Our generators modify
a state, called a cursor, whose type is

type cursor = { current: array int; mutable new: bool; }

in WhyML. The field current stores the last data generated so far. For simplicity,
it is here a mutable array of integers, but other types can be used similarly. The
Boolean flag new is set to false if and only if the data stored in the current field
has already been exploited, for instance to test a property.

The generators presented in this paper are composed of two functions
(declared on Lines 3 and 4 in Listing 1.1): a constructor create_cursor initiates
the cursor with the first element of the iteration, and a function next replaces
the data in the cursor with the next one, if it exists. Otherwise, it sets the field
c.new to false.

2.2 BET Function

BET is implemented by the generic function small_check in Listing 1.1, whose
execution tests the property defined by the oracle function (first parameter)
for all data of size n (second parameter). The first parameter of the module
SmallCheck (on Line 2) is a characteristic predicate of the enumerated data.

Note that the input type for the oracle function is a list rather than an array,
because Why3 has limited support for function parameters that are functions
working with mutable data. For the same reason, the generator functions can-
not be input parameters for small_check function. Therefore we define them as
module parameters (on Lines 3–4). They can be instantiated thanks to Why3’s
module cloning mechanism, as detailed in Sect. 2.3.

The return type verdict is composed of the field witness storing either a
counterexample, if it exists, or the empty list (Nil) otherwise, and the field
rank storing either the number of data tested when the witness is found, or
the total number of tested data if there is no counterexample. The function
small_check first creates the cursor (line 12), then converts the cursor array into a
list (line 18), by using the to_list function from Why3 standard library. Finally,
small_check tests each generated data with the oracle (line 19). If a counterex-
ample is found, it is stored in the local variable ce (line 22), the enumeration is
stopped and the function returns the counterexample and the number of data
tested so far. Otherwise, the function stops when all data have been tested.

The diverges clause (on Line 10) declares that the function is not guaranteed
to terminate. To prove its termination it is necessary to annotate its while loop
with a variant, an integer expression whose value is non-negative before the loop
and strictly decreases between two successive loop iterations. Defining a unique
variant for all kinds of enumerated data is a challenging task out of the scope of
the present study.
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1 module SmallCheck

2 predicate is_XXX (a: array int)

3 val create_cursor (n: int) : cursor

4 val next (c: cursor) : unit

5

6 type verdict = { witness: list int; rank: int; }

7

8 let small_check (oracle: list int → bool) (n: int) : verdict

9 requires { n ≥ 0 }

10 diverges

11 =

12 let c = create_cursor n in

13 let ref r = 0 in

14 let ref ce = Nil in

15 while c.new do

16 r := r+1;

17 let a = c.current in

18 let l = to_list a 0 a.length in

19 if oracle l then

20 next c

21 else begin

22 ce := l;

23 c.new ← false

24 end

25 done;

26 { witness = ce; rank = r }

27 end

Listing 1.1. BET function in WhyML.

2.3 Example of BET

We illustrate our BET for Why3 with functions and properties on permutations
of a given size. Permutations on a finite set is an important topic in combinatorics
and group theory. They have recently been formalized as injective endofunctions
in Coq [6, Section 3]. The present example is the first step of an adaptation of
that case study to Why3.

The permutation p on the set [0..n− 1] of first n natural numbers is encoded
by the Why3 integer array a of its images, i.e., a[i] = p(i) for 0 ≤ i < n. We
characterize these permutation arrays with the predicate

predicate is_permut (a: array int) = range a ∧ injective a

where (range a) specifies that the values of array a are in [0...a.length − 1]
and (injective a) specifies injectivity of the function represented by a, i.e.,
uniqueness of values in a.

Let us consider the reverse function in Listing 1.2. The function reverses the
order of the elements of its input array. For instance, it turns the array 4 1 0 7

into the array 7 0 1 4 . It proceeds by exchanging symmetrical elements with



BET with Certified and Optimized Data Generators 163

respect to the middle of the array. We want to prove that the function reverse

preserves permutations. This property is specified by the precondition and the
postcondition on Lines 2–3.

1 let reverse (a: array int) : unit

2 requires { is_permut a }

3 ensures { is_permut a }

4 =

5 let n = a.length in

6 let ref x = 0 in

7 let ref y = n-1 in

8 while x < y do

9 let v = a[x] in

10 a[x] ← a[y];

11 a[y] ← v;

12 y := y - 1;

13 x := x + 1

14 done

Listing 1.2. Reverse function under test.

Since WhyML predicates are not necessarily decidable, all specifications are
ignored when a program is run. In particular, the postcondition (is_permut a) is
not executable. In order to test it, a Boolean function implementing the logical
predicate is_permut has to be provided. A Boolean function implementing a
logical predicate, when it exists, is a decision procedure for this predicate. The
Boolean function and a proof that it corresponds to the predicate are together
called a Boolean reflection. This mechanism has several applications, e.g., proof
automation [13].

The Boolean function

let function b_permut (a: array int) : bool = b_range a && b_injective a

decides the predicate is_permut if b_range and b_injective respectively are deci-
sion procedures for the predicates range and injective. We only detail the
Boolean reflection b_range of the predicate

predicate range (a: array int) =

∀ i: int. 0 ≤ i < a.length → in_interval a[j] 0 n

a naive (i.e., non-optimized) implementation of the predicate injective being
similar. The predicate

predicate in_interval (x l u: int) = l ≤ x < u

is a specificity of WhyML. It is indeed both a logical predicate and a Boolean
function, because it is also the case for comparison operators on integers. Thus,
we have its Boolean reflection for free.

The Boolean function b_range in Listing 1.3 is a decision procedure for the
predicate range. The universal quantification is implemented by a for loop that
stops at the first array value not in the interval [0..n−1]. The postcondition (on
Line 2) ensures that the Boolean function decides the logical predicate range:
the function returns true if and only if the predicate holds for the input array a.
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1 let function b_range (a: array int) : bool

2 ensures { result ↔ range a }

3 =

4 let n = a.length in

5 for j = 0 to n - 1 do

6 invariant { range_sub a 0 j n }

7 if not (in_interval a[j] 0 n) then return false

8 done;

9 true

Listing 1.3. Boolean function b_range.

A loop invariant (on Line 6) helps to prove the postcondition. It uses the
generalization

predicate range_sub (a: array int) (l u b: int) =

∀ i: int. l ≤ i < u → in_interval a[i] 0 b

of range which controls that each element of the subarray a[l..u − 1] is in the
interval [0...b − 1].

Whereas implementing a decision procedure is in general a difficult problem,
it becomes simple for the family of first-order properties on integer arrays where
all quantifications on array indices and values are bounded. All such universal
quantifications (∀) can be implemented by a for loop as in the former example,
and implementing an existential quantification (∃) is similar. Genestier et al. [10]
showed that these array properties are common in combinatorics. They proposed
a general pattern of Boolean reflection, when the properties are specified by
ACSL predicates and implemented by Boolean functions in C language. The
decidability property is proved generically, once for all, for all kinds of predicates.
So, it holds for free (without requiring specific annotations) for each pattern
instantiation. The adaptation of this feature to WhyML is left as future work.

1 use permutation.Permutation

2 use permutation.Enum

3

4 clone SmallCheck with

5 predicate is_XXX = is_permut,

6 val create_cursor = create_cursor,

7 val next = next

8

9 let test () : verdict

10 diverges

11 =

12 let n = 6 in

13 small_check (fun l → let a = to_array l in reverse a; b_permut a) n

Listing 1.4. Test program.

A simple program to test that the reverse function preserves permutations is
presented in Listing 1.4. The declarations on Lines 1 and 2 import other modules.
The module Permutation provides the predicate is_permut and its Boolean reflec-
tion b_permut. The module Enum provides a cursor and its functions to enumerate
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permutations. The declaration on Lines 4–7 imports a clone of the generic mod-
ule SmallCheck, instantiated with the characteristic predicate is_permut and the
enumeration functions for permutations. This cloning provides the type verdict

and the right instance of the generic function small_check to test properties for
all permutations with a given size. For the size n = 6 the test program (on Lines
9–13) uses this instance and an anonymous oracle function working as follows:
as required by small_check, its input l is a list of integers. The function to_array

from Why3 standard library transforms it into an array a, then reversed in-place
by application of the reverse function. Finally the Boolean function b_permut is
applied to the resulting array.

For efficiency and to get an explicit test result, the test code is executed in
OCaml, after extraction of the test program and related modules. Thanks to
some additional lines of OCaml code, the test result is displayed as follows:

Test passed. 720 data tested.

meaning that the test was successful for the 6! = 720 permutations of size 6.
This BET is executed in less than one second, in the environment used for the
experimentation described in Sect. 4, where more efficiency results are provided.

The current prototype does not allow to set a time limit for BET, but it can
be completed with this feature. The approach is suitable for arrays containing
integers in a small interval, as it is the case for permutations here. For larger
integer ranges, random generation is preferable.

2.4 Counterexample

What happens if there is an error in a tested function? To illustrate the behavior
of small_check in that case we inject an error on Line 9 of the reverse function
(in Listing 1.2) that becomes the following one:

let v = a[y] in

When running the same test (in Listing 1.4) for this erroneous version, the
following output

Test failed after 1 test(s). Counterexample:

[0 1 2 3 4 5 ]

provides as counterexample a permutation that the false version of the reverse

function transforms into the array

[4 4 3 3 4 4 ]

which is not a permutation. This BET discovers this error only after generating
one test case. In general, more test cases may be required.

3 Certified Library of Enumeration Programs

ENUM is a library of certified enumeration programs for BET, freely distributed
at https://github.com/alaingiorgetti/enum.1 Its first releases were composed of
1 The work presented in this paper is in release 1.2 of ENUM.

https://github.com/alaingiorgetti/enum
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C programs specified in ACSL language and verified with Frama-C plugin WP
for deductive verification [10]. This section presents a new part of ENUM, com-
posed of enumeration programs specified and implemented in WhyML. It is an
almost complete adaptation in WhyML of the C/ACSL enumeration programs,
completed by new generators. Its programs implement algorithms that enumer-
ate combinatorial structures [2] and have various applications in combinatorics.

Section 3.1 introduces some expected properties of these generators and their
formalization in WhyML. Section 3.2 presents a simple way to define a generator,
by filtering the output of another generator. Section 3.3 describes the techniques
we use to assist formal proofs that the generators satisfy their expected proper-
ties. Finally, the content of the library is detailed in Sect. 3.4.

3.1 Properties

Each data enumeration program is expected to satisfy the following three behav-
ioral properties. Soundness is the property that each generated data satisfies the
characteristics (or data invariant) of its family, such as being a duplicate-free
or a sorted array. Completeness is the property that the program produces all
existing data with a given size, without omitting any of them. Generally, proving
completeness is more challenging than proving soundness. Therefore, we limit
ourselves to algorithms enumerating data in a predefined strict total order, here-
after denoted by ≺, and we adopt two strategies. The first strategy is to specify
completeness as the conjunction of the following three properties: the property
min that the first generated data is the smallest one, the property max that the
last generated data is the largest one, and the property inc (for “incrementality”)
that each data a2 generated from data a1 is the smallest data strictly greater
than a1. In other words, no sound data a3 is such that a1 ≺ a3 ≺ a2. When
proving completeness seems too difficult, the second strategy is to address the
less challenging property – named progress – that each generated data is strictly
greater than the former generated data. Since we assume that there are finitely
many data with each size, progress entails termination of bounded-exhaustive
enumeration.

1 val create_cursor (n: int) : cursor

2 requires { n ≥ 0 }

3 ensures { c.new → sound result }

4 ensures { c.new → min result.current }

5

6 val next (c: cursor) : unit

7 requires { sound c }

8 ensures { c.new → sound c }

9 ensures { c.new → lt (old c.current) c.current }

10 ensures { c.new → inc (old c.current) c.current }

11 ensures { not c.new → max (old c.current) }

Listing 1.5. Contracts of enumeration functions.

Listing 1.5 shows a declaration of the enumeration functions with their con-
tracts (pre- and postconditions) formalizing these properties in WhyML. The
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precondition on Line 2 specifies that the size n of data should be a natural num-
ber. The function create_cursor (resp. next) should set the cursor field c.new

to false if and only if there is no data for a given size n (resp. the input cur-
sor contains the last data). Therefore, most of the properties are formalized by
postconditions guarded by the condition that the Boolean flag c.new is true.

We assume that a predicate

predicate sound (c: cursor)

encapsulates the data invariant. Then, the generator is sound if the first gen-
erated data satisfies this predicate (postcondition on Line 3) and if the output
of the next function satisfies this predicate (postcondition on Line 8) whenever
its input does (precondition on Line 7). The progress property is formalized on
Line 9, with a predicate lt formalizing the strict total order ≺. (The expressions
(old e) and e in a function postcondition respectively denote the values of the
expression e before and after the function call.) The properties min, inc and max
(entailing completeness) are respectively formalized on Lines 4, 10 and 11, with
predicates min, inc and max respectively formalizing minimality, incrementality
and maximality of the restriction of the order ≺ to data satisfying the data
invariant sound.

3.2 Enumeration by Filtering

Assume you already have implemented, specified and certified an enumeration
program for some family of data. Then an enumeration program for those data
that satisfy an additional constraint can easily be implemented by running your
program and selecting among its outputs those satisfying that constraint. Of
course, the more data are rejected, the less effective is the resulting program.
However, we show in this section that this filtering technique provides a spec-
ification, an implementation and a certification of the resulting enumeration
program almost for free.

The generic module in Listing 1.6 formalizes filtering in WhyML. It pro-
vides an enumeration program for a family Z of integer arrays by filtering those
arrays in a family X (characterized by the predicate is_X) that satisfy the addi-
tional constraint is_Y, implemented by the Boolean function b_Y. The module
is parameterized by the predicates is_X and is_Y, the Boolean function b_Y and
the enumeration functions create_cursor_X and next_X of X data. The module
provides enumeration functions create_cursor and next of data in family Z.

The function create_cursor searches the first Z data by enumeration of X

data started from the first one (given by create_cursor_X) and selection of the
first enumerated data satisfying is_Y, if it exists. (Otherwise, the field c.new is
set to false by the function next_X.)

The function next proceeds similarly, but from the current cursor c. If the
current data in the cursor is the last one satisfying is_Z but subsequent X data
exist, then they are enumerated (by next_X) in the cursor. If furthermore none of
them are in the Z family, then the cursor no longer contains a sound data. This
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is acceptable because, in that case, the new field is set to false. As specified on
Line 11 of Listing 1.5, the cursor is expected to contain the maximal data only
as input of the next function when it sets the c.new field to false, not necessarly
as its output. It is possible to restore the maximal Z data in the output cursor,
but this makes the generator less effective.

When the Boolean function b_Y decides the predicate is_Y and the enu-
meration functions create_cursor_X and next_X satisfy their contract given in
Listing 1.5, the resulting enumeration functions create_cursor and next satisfy
the same contract. This is automatically proved by Why3. So, it also holds for
all instantiations of the module Filter, for free.

1 module Filter

2 predicate is_X (a: array int)

3 predicate is_Y (a: array int)

4 predicate is_Z (a: array int) = is_X a ∧ is_Y a

5

6 val b_Y (a: array int) : bool

7 ensures { result ↔ is_Y a }

8

9 val create_cursor_X (n: int) : cursor

10 requires { n ≥ 0 }

11 val next_X (c: cursor) : unit

12

13 let create_cursor (n: int) : cursor

14 requires { n ≥ 0 }

15 diverges

16 =

17 let c = create_cursor_X n in

18 while c.new && not (b_Y c.current) do

19 next_X c

20 done;

21 c

22

23 let next (c: cursor) : unit

24 diverges

25 =

26 if c.new then next_X c;

27 while c.new && not (b_Y c.current) do

28 next_X c

29 done;

30 end

Listing 1.6. Filtering in WhyML.

3.3 Auto-active and Interactive Verification

We combine the following two techniques to assist deductive verification of the
enumeration programs. Auto-active verification [16] consists in providing addi-
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tional specifications, such as variants (for termination), invariants, assertions and
lemmas (for partial correctness), before running an automated prover. Interac-
tive verification consists in reducing the proof goal step by step, by applying
rules – named tactics in Coq and transformations in Why3.

3.4 Contents of ENUM Library

Metrics on the library and its contents are collected in Table 1. The first column
assigns a name to each generator. The number of lines of code (resp. WhyML
annotations) is recorded in the second (resp. third) column. The fourth (resp.
fifth) column gives the number of transformations (resp. lemmas) needed for the
proof of the soundness, progress and completeness properties. All of them have
been proved automatically with Why3 1.2.0 and the SMT solvers Alt-Ergo 2.2.0,
CVC4 1.6 and Z3 4.7.1, except the completeness property for the generator of
permutations, which required an interactive proof of two lemmas with Coq 8.9.0.

The first block of lines in Table 1 concerns effective enumeration programs.
The first four are adaptations of C++ programs proposed in [2]. The program
rgf (for “restricted growth function”) enumerates the arrays a of length n such
that a[0] = 0 and a[i] ≤ a[i−1]+1 for 1 ≤ i ≤ n−1. sorted generates all arrays
from {0, ..., n−1} to {0, ..., k−1} sorted in increasing order. perm enumerates the
permutations on {0, ..., n− 1}. barray (for “bounded array”) (resp. endo) (for
“endo-array”) enumerates the arrays of length n whose values are in {0, ..., k−1}
(resp. {0, ..., n − 1}). fact enumerates the n! factorial arrays [12] f of length n
such that 0 ≤ f [i] ≤ i for 1 ≤ i ≤ n − 1.

Table 1. Verification results.

Array family Code Spec. Trans. Lemma Time (s)

rgf 26 22 1 0 1.98

sorted 22 26 4 0 3.21

perm 42 86 5 16 16.35

barray 22 23 3 0 3.14

fact 22 20 1 0 1.53

endo 22 22 0 0 1.13

sorted ⊂ barray 24 15 0 0 1.05

inj ⊂ barray 24 16 0 0 0.92

surj ⊂ barray 34 25 0 0 1.1

comb ⊂ barray 17 10 0 0 0.84

The second block concerns enumeration programs obtained by filtering
(Sect. 3.2). We denote by Z ⊂ X an enumeration program of data Z by fil-
tering among more general data X. For instance, sorted ⊂ barray enumer-
ates increasing arrays filtered among bounded arrays. By filtering from barray
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we get generators for the following data families: arrays sorted in increasing
order, injections from {0, ..., n − 1} to {0, ..., k − 1}, for n ≤ k (inj ⊂ barray),
surjections from {0, ..., n − 1} to {0, ..., k − 1}, for n ≥ k (surj ⊂ barray),
and combinations of n elements selected from k, (comb ⊂ barray), which are
encoded by arrays c of length n such that 0 ≤ c[0] < . . .< c[n − 1] ≤ k − 1.

4 Experimentation Protocol

This section presents the experimental protocol we have designed in order to
compare various ways of implementing, certifying and optimizing data enu-
meration programs. We consider two programming and specification languages,
C/ACSL and WhyML, the properties detailed in Sect. 3.1, and the execution
techniques (interpretation, extraction and compilation) detailed in Sect. 4.1.
The goal of the experimentation is to answer the research questions detailed
in Sect. 4.2.

All proofs and time measures were performed on a Ubuntu 18.04 virtual
machine, with a Core i5-8259U processor.

4.1 Execution

There are several ways to run an enumeration program: With Why3 as inter-
preter (command why3 execute), by executing code compiled from OCaml
source code extracted from WhyML code, or by compiling and executing C code,
either extracted from WhyML code or written by hand. Indeed, Rieu-Helft [19]
has developed a method to extract in C language a subset of programs written in
WhyML. The C code can be compiled with gcc or with the certified C compiler
CompCert [17]. Indeed, when you compile a program with an ordinary compiler
like gcc, you have no assurance that the executed code has the same seman-
tics as the source code. In contrast, the CompCert compiler is formally verified,
using machine-assisted mathematical proofs, to be exempt from miscompilation
issues.

4.2 Research Questions

We gather experimental data in order to answer the following research questions.
In a nutshell, RQ1 is about certification only, RQ2 about efficiency only and RQ3
about how to find a good compromise between both quality criteria.

RQ1: What is the most convenient approach to certify the enumeration pro-
grams? Since we have two versions, one in C/ACSL and another one in WhyML,
we want to compare the effort required to prove their properties with Frama-
C/WP and Why3. We quantify this proof effort with the number of lines of
specification. These numbers for WhyML version are in Table 1.
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RQ2: What is the most efficient way to run our programs? The efficiency of
our generators is estimated by computing their speed, i.e., the number of data
generated per second, for all the ways to run our programs presented in Sect. 4.1.
Indeed, we implement algorithms already optimal in memory, producing each
data on the fly, starting from the data previously produced. Thus, only one data
is stored in memory at a time.
RQ3: Since certification and optimization are two desirable but potentially
antagonistic quality criteria, which language and tool combination provides the
best compromise between both? From the answers to the former two questions
we try to derive a good compromise between data generation speed and proof
effort.

5 Experimentation Results

This section exploits experimental results to answer our research questions.

To answer RQ1 we first analyze some metrics collected in Table 1 for the version
in WhyML and the metrics in Table 2 for the version in C/ACSL, for the most
effective programs (the first 5 in Table 1, without filtering). These metrics are the
numbers of lines of code and specification and the time required for proofs. The
number of transformations is not comparable, as Frama-C/WP does not offer
a transformation mechanism. We also do not compare the number of lemmas,
because all lemmas in WhyML are used to prove completeness, but completeness
is neither specified nor proved in the C/ACSL version. Nevertheless, the average
proof time with C/ACSL is 1.69 times longer than with WhyML. The total
numbers of lines of code and specifications are 76 and 154 in C/ACSL and 134
and 174 in WhyML program, i.e. not much more for one more specified property.

Table 2. Verification results with the C/ACSL version.

Array family Code Spec. Trans. Lemma Time (s)

rgf 13 29 0 0 5.71

sorted 13 32 0 0 5.50

perm 24 35 0 0 22.98

barray 13 29 0 0 5.19

fact 13 29 0 0 5.14

Since the completeness property was not proved formerly with Frama-C/WP,
we have tried to adapt to that environment its specification and successful proof
with Why3. Although the adaptation of the specification to ACSL language did
not require much effort, we have not yet managed to demonstrate any fragment
of the completeness property with Frama-C/WP. We assume that this is due to
the different memory models used by Why3 and WP. A memory model defines
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links between the program variables and the mathematical terms used in the
proof obligations. It represents a mapping of the memory, management processes
(reading, writing, allocating, releasing) and their properties. While Why3 has a
simple memory model for arrays, producing concise proof obligations, the WP
memory model produces more complex proof obligations. This convinces us that
Why3 is more convenient than Frama-C/WP for the certification of ENUM.

To answer RQ2 we compare the speed of data generation of various interpre-
tations or compilations of implementations and extractions in WhyML, OCaml
and C of the same enumeration algorithm. We consider an algorithm to enumer-
ate permutations [2, p. 243], and assume that speeds would be classified in the
same order for other generators.

The first column of Table 3 gives the size of the generated permutations.
The other columns display the number of millions of data generated per sec-
ond, for four implementations and execution scenarios. A dash (-) indicates that
generation exceeds the 6 h time limit.

Table 3. Speed of data generation (number of millions of data per second).

Size WhyML OCaml (extraction) C (extraction) C/ACSL (handwritten)

7 0.011 0.3 0.8 1

8 0.019 1.75 5.7 6.7

9 0.02 4.59 21.34 27.91

10 0.021 5.41 43.72 60.48

11 0.021 5.57 50.52 71.28

12 0.021 5.58 51.33 73.57

13 - 5.6 51.53 74.4

14 - - 51.76 75.62

The interpretation of WhyML code is the least efficient enumeration method.
It is not surprising since the other methods include a compilation, usually more
efficient than an interpretation. Next comes the execution of its extraction in
OCaml. For instance, the OCaml program enumerates 5.58 × 106 permutations
of size 12 in 1 s. This may be appropriate in some applications, but is well below
the speeds of the C programs. Indeed, C is a low-level imperative programming
language. It has been designed to provide low-level memory access, which allows
it to reduce the memory allocation required and optimize performance, particu-
larly through the use of pointers.

Although the extracted C code is behind the handwritten one, its speed is
much higher than that of the OCaml code. Its performance allows us to con-
tinue our efficiency study only for the C code extracted from the WhyML code.
Figure 1 shows data generation speeds for this C code compiled with gcc (without
and with -O3 optimization option) and CompCert compilers. This experiment
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confirms the claim that code compiled with CompCert is about twice as fast as
that compiled by gcc without optimization, and quantifies the claim that it is
a bit slower than that compiled by gcc with higher levels of optimization2: the
code compiled by gcc with its third level of optimization is about 40% faster
than the one compiled by CompCert.
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Fig. 1. Speed of data generation for different compilations.

To answer RQ3 we first draw some conclusions from the former answers to
RQ1 and RQ2. Firstly, thanks to its elementary theory of arrays, Why3 makes
it possible to prove more challenging properties – such as completeness – than
Frama-C and its WP plugin. Moreover, C code automatically extracted from
WhyML code is almost as fast as handwritten C code, for a much lower imple-
mentation effort. If a higher speed (resp. more confidence) is expected, the C
code can be compiled with gcc -O3 (resp. CompCert).

It remains to evaluate the additional effort required to specify and implement
in WhyML enumeration programs suitable for C extraction. For the pointer-
adapted permutation generator, we had to write 49 lines of code (only 7 lines
more than for the original program), and 107 lines of specifications, so 21 lines
more than the original code. The number of specification lines is mainly related
to the fact that we control the memory manually. To download the proofs, we
need 56.31 s, 3.44 times more than the original code. In addition, in the case of
this program, completeness is not proved. Other generators (barray and fact)
were also adapted for extraction. All properties were proven for these programs,
but the specification effort was also greater than for their original codes. However,
we noted that many specifications were common to all programs.

6 Conclusion

We have presented a prototypical implementation of a bounded exhaustive test-
ing tool to check properties in the deductive verification tool Why3. It relies on
2 http://compcert.inria.fr/compcert-C.html.

http://compcert.inria.fr/compcert-C.html
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enumeration programs which are specified, implemented and certified by formal
proofs with Why3. The impact of several execution scenarios on their efficiency
has been evaluated experimentally.

Obviously, we do not claim that BET and our prototype are competing with
advanced property testing tools, such as QuickCheck and its commercial version
QuviQ [1]. Such a comparison would be of little interest, because we pursue
different goals. Our first goal is to certify the test tool, which as far as we
know has already been done only for and with the Coq proof assistant, in the
Quickchick tool [18]. Our second goal is to offer a free test tool to Why3 users,
complementing prover-based counterexample generation [5].

This is ongoing work and directions for future work are numerous. First, the
presented certification of enumeration programs should be extended to the entire
testing tool. Data enumeration should be generalized to address functions with
several parameters, complex datatypes (e.g. tree-like) and constraints between
parameters. The specification and certification of more efficient enumeration
programs may also be explored.

An important possible improvement concerns Boolean reflection, i.e., imple-
mentation and certification of a decision procedure for the characteristic pred-
icate of test data. We have shown two applications of this procedure: as a test
oracle, and as a filter to select the test data among a wider family. In the pre-
sented prototype the user has to write each procedure manually. A small-term
objective is to provide her with an automated mechanism of derivation of these
procedures, covering at least a first-order theory including integers and integer
arrays.

Acknowledgements. The authors warmly thank Raphaël Rieu-Helft for his help in
using extraction of WhyML programs in C, and Jean-Christophe Filliâtre for many
suggestions.
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5. Dailler, S., Hauzar, D., Marché, C., Moy, Y.: Instrumenting a weakest precondition
calculus for counterexample generation. J. Logic Algebraic Methods Program. 99,
97–113 (2018). https://doi.org/10.1016/j.jlamp.2018.05.003

6. Dubois, C., Giorgetti, A.: Tests and proofs for custom data generators. Formal
Aspects Comput. 30, 659–684 (2018)

7. Dubois, C., Giorgetti, A., Genestier, R.: Tests and proofs for enumerative combi-
natorics. In: Aichernig, B.K.K., Furia, C.A.A. (eds.) TAP 2016. LNCS, vol. 9762,
pp. 57–75. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-41135-4 4

http://www.quviq.com
https://www.jjj.de/fxt/fxtpage.html
http://why3.lri.fr/manual.pdf
https://doi.org/10.1007/978-3-642-35308-6_10
https://doi.org/10.1007/978-3-642-35308-6_10
https://doi.org/10.1016/j.jlamp.2018.05.003
https://doi.org/10.1007/978-3-319-41135-4_4


BET with Certified and Optimized Data Generators 175
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