
A Multi-stage Approach to Facilitate
Interaction with Intelligent Environments

via Natural Language

Zinovia Stefanidi, Asterios Leonidis(&), and Margherita Antona

Institute of Computer Science (ICS), Foundation for Research
and Technology – Hellas (FORTH), Heraklion, Crete, Greece
{zinastef,leonidis,antona}@ics.forth.gr

Abstract. Due to the proliferation of Internet of Things (IoT) devices and the
emergence of the Ambient Intelligence (AmI) paradigm, the need to facilitate
the interaction between the user and the services that are integrated in Intelligent
Environments has surfaced. As a result, Conversational Agents are increasingly
used in this context, in order to achieve a natural, intuitive and seamless
interaction between the user and the system. However, in spite of the continuous
progress and advancements in the area of Conversational Agents, there are still
some considerable limitations in current approaches. The system proposed in
this paper addresses some of the main drawbacks by: (a) automatically inte-
grating new services based on their formal specification, (b) incorporating error
handling via follow-up questions, and (c) processing multiple user intents
through the segmentation of the input. The paper describes the main components
of the system, as well as the technologies that they utilize. Additionally, it
analyses the pipeline process of the user input, which results in the generation of
a response and the invocation of the appropriate intelligent services.
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1 Introduction

Research in the area of Intelligent Environments is booming over the last several years.
The evolution of Internet of Things (IoT) along with the emergence of Ambient
Intelligence (AmI) technologies have led to a plethora of web-based services and
devices, with which the user interacts on an everyday basis, especially in the context of
the Intelligent Home.

In order to achieve a natural and intuitive interaction with the intelligent environ-
ment, conversational agents (i.e. “chatbots”) can be employed that utilize natural
language - in the form of speech or text - to interact with the user. Over the last couple
of years, due to advancements in Machine Learning (ML) and Speech Recognition and
Understanding (SRU), their capabilities have expanded and their usage has spread,
becoming a part of millions of households (118.5 Million Smart Speakers in the US
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alone since December 20181). Popular examples of conversational agents in the form
of virtual assistants are Amazon’s Alexa2, Microsoft’s Cortana3, Apple’s Siri4 and
Google Assistant5.

Using a conversational agent to communicate with a smart environment is not a new
concept. There are a number of systems that use chatbots for home automation and
control, even as kitchen assistants. However, in spite of the continuous progress and
advancements in this area, there are still some considerable limitations in existing
approaches. In particular, such systems require either user configuration before use, or
reprogramming when adding a new service. This is inefficient, time-consuming, prone to
errors, and most notably not user-friendly. Furthermore, errors in case of wrong or
missing information when communicating with the Chatbot are not optimally handled
from a user-centered perspective, thus resulting into a lack of understanding of the user’s
intent. This can prove to be particularly problematic, considering that errors during a
conversation are commonplace. Especially, when speech recognition is involved, noise
can easily alter the users input. Additionally, when the user’s request is complex (e.g.
“Turn on the oven for 45 min at 180 °C and turn on the air-conditioning for 30 min at
22 °C”), the necessary information is easily omitted or wrongly provided. Moreover,
previous approaches are unable to handle input containing more than one user intents.
For instance, the message “turn off the water heater and play relaxing music in the
bathroom”, should be split into two separate commands, namely “turn off the water
heater” and “play relaxing music in the bathroom” that should be handled consecutively.

The proposed system aims to provide a scalable software framework that can be
used by conversational agents in order to facilitate user interaction with any of the
available services of the intelligent space (e.g. home, classroom, greenhouse) in a
natural manner. To that end, the framework:

• automatically integrates new services based on their formal API specification
without the need for reconfiguration or user action

• incorporates fundamental error handling, by posing a series of follow up
questions to the user, in order to acquire the necessary missing information and

• handles user input containing multiple intents by splitting it into separate sen-
tences, which are then processed sequentially.

2 Related Work

Nowadays, Conversational Agents are becoming an integral part of our daily lives.
A steadily increasing number of applications utilize them to achieve a more natural and
seamless interaction between the user and the system. Notable applications that

1 https://www.nationalpublicmedia.com/wp-content/uploads/2019/01/Smart-Audio-Report-Winter-
2018.pdf.

2 https://developer.amazon.com/alexa-voice-service/sdk.
3 https://developer.microsoft.com/en-us/cortana.
4 https://developer.apple.com/siri/.
5 https://developers.google.com/assistant/sdk/.
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incorporate Chatbots can be found in numerous fields, such as medicine [1, 2] and
education [3–6]. Particularly in Intelligent Environments, populated by multiple
heterogeneous devices and different IoT ecosystems, a single chatbot can serve as a
common interface [7]. According to [7], this approach can address technological as
well as human-centric challenges of IoT systems.

In the context of the Intelligent Home, there have been a number of applications
that employ a chatbot or voice commands for the automation and control of the house
[8–12]. Some of them accept as input simple commands such as “Turn on” and
“Home” [8], while others understand natural language and engage in a conversation
with the user [9, 10]. Some systems particularly focus on the Smart Kitchen, devel-
oping a conversational kitchen assistant that provides cooking recipes and nutrition
information [13, 14]. In [13], the conversational agent can also reason about dietary
needs, constraints and cultural preferences of the users, whereas in [14], it can guide the
user throughout the cooking process.

For the development of conversational agents, different technologies and frame-
works are employed, such as IBM’s Watson6, Google’s DialogFlow7 and Facebook’s
Messenger Platform8. The majority of those technologies rely on intent classification
and intent extraction of the user input, using Natural Language Processing
(NLP) methods. This entails training a Machine Learning model with multiple
examples for each user intent. Another technique used to process user input utilizes
keyword and action lists, where the former contains all the possible keywords relevant
to the system (e.g. light, TV, temperature) and the latter contains all possible actions
(e.g. open, close, increase).

3 System Objectives

The proposed system aims to facilitate Human - Computer Interaction (HCI), in the
context of an AmI environment, by utilizing the Natural Language Interaction para-
digm. It incorporates a Conversational Agent in the form of a Virtual Assistant with
whom the user can interact, not only through text messages, but also through speech.
The components of an AmI environment are exposed as services to the system,
enabling the user to communicate with the environment through the Conversational
Agent in a natural and intuitive manner. In particular, the system’s objectives are
threefold: (a) provision of information regarding the intelligent environment, (b) exe-
cution of commands that affect the intelligent environment, and (c) programming the
behavior of the surrounding intelligent environment.

Provision of Information. An integral part of the system is the provision of infor-
mation about the environment using natural language. For instance, in the context of
the Smart Greenhouse, the user can inquiry about the condition of the crops or the
environmental conditions inside the greenhouse. The system provides timely

6 https://www.ibm.com/watson.
7 https://dialogflow.com/.
8 https://developers.facebook.com/docs/messenger-platform/.
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information by communicating with the appropriate service. Consequently, the user can
be kept informed and up-to-date about the environment, even remotely.

Execution of Commands. Another essential part of the system is to execute com-
mands issued in natural language. For example, in the context of the Smart Kitchen, the
user can turn on the coffee machine, or turn off the oven by expressing that intent. The
system understands the task the user wants to perform and calls the appropriate
function of the corresponding service. Therefore, the user can perform even complex
actions instantly and intuitively.

Programming of the Surrounding Environment. Apart from acquiring information
and executing actions, the user can program the environment by defining automations
in the form of if-then statements. Through the trigger-action paradigm, users can define
triggers that initiate specific actions when their conditions are met. For instance, in the
context of the Smart Greenhouse, a trigger could be “if humidity falls below 50%”, with
the resulting action being “turn on the sprinklers”. Thus, common operations in the
user’s environment are automated using natural language.

Fig. 1. The overall architecture of the proposed system.
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4 System Architecture

As Fig. 1 illustrates, the system comprises of three main categories of components
namely: (a) components that process user input aiming to extract its meaning,
(b) components that interact with the services of the intelligent environment, and
(c) components that manage the conversation flow and communicate with the user.

Preprocessor. It processes the user input before sending it to the Sentence Separator
and performs various actions (e.g. lowercasing, lemmatization and error correction) to
streamline the subsequent steps of the analysis pipeline.

Sentence Separator. Splits the user input into independent sentences. For example,
the input “turn on the light and the TV” is split into the sentences “turn on the light”
and “turn on the TV”. This is achieved through a heuristic approach, which incorpo-
rates the Dependency Parsing and Part-of-speech (POS) Tagging facilities of the
SpaCy9 framework, along with custom algorithms that aim to generate complete
sentences by filling-in any implicitly defined data.

Meaning Extractor. This component uses Rasa NLU10, an open source Python
library for intent classification and entity extraction. In particular, three machine
learning models are used, which are trained using the training examples that every
intelligent service has registered in the IE Service Knowledge Base, as seen in Fig. 2.

• Level-1 model: a general model that aggregates indicative examples from all the
connected services

• Level-2 service-specific models: they describe which intents a service can accom-
modate (i.e. the functions that if offers)

• Level-3 function-specific models: they define in detail the arguments that a specific
function of a certain service can have.

In more detail, the Level-1 model is mainly used for deciding the service with
which the user wants to communicate, whereas the Level-2 model is primarily used for

Fig. 2. Part of the definition of the “turn on the oven” intent. Rasa NLU relies on such detailed
definitions to understand user input.

9 https://spacy.io: A library for advanced natural language processing in Python.
10 https://rasa.com.

A Multi-stage Approach to Facilitate Interaction 71

https://spacy.io
https://rasa.com


firstly deciding the function of the service that needs to be called and then extracting its
arguments. Finally, Level-3 models are used for extracting the missing or wrong
arguments of the initial user input, in a follow-up clarification dialog, when needed.
This hierarchical approach is used to improve the accuracy of intent classification as
already confirmed in [15]. Moreover, common user intentions such as “greet” and
“help” are also incorporated and recognized from these models, with their semantics
being model-dependent. For instance, the treatment of the “help” intent differs between
the generic Level-0 model and a specific Level-1 model; in the former case the system
should provide a general help message to the user, whereas in the latter case, the system
should deliver context-sensitive instructions with respect to the given service.

Intelligent Environment Services and Knowledge Base. Each AmI service should
provide an API that contains information about all the functions it exposes to the
environment (Fig. 3). Concretely, for each function, its definition should contain the
function arguments, their type, and their range or accepted values. In addition, it should
include training examples of user input that correspond to the specific function being
called. These examples are used to train the model that determines which service
function needs to be called for a given user input. The set of all the services’ formal
specifications populate the Intelligent Environment Services’ Knowledge Base.

Natural Language Generation (NLG) Extensions. Every service should provide a
Natural Language Generation (NLG) extension providing information or the dialogue.
Specifically, this extension should supply, for every function in the service, “dialog
functions” that are responsible for generating in natural language the system’s response
upon successful execution or in different failure cases (e.g. when arguments are
missing, when an argument is wrong), so as to correctly produce the response that will
communicate the outcome to the user (e.g. provide a summary to the user with respect
to the lock state of the home’s doors, windows and shutters).

Fig. 3. Part of the formal API specification of an AmI Greenhouse’s service.
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Response Generator. This component uses ChatScript11, which is a “next Genera-
tion” Chatbot engine with various advanced features and capabilities, in order to
generate the responses to be communicated to the user. It invokes the appropriate
dialog function from the service’s NLG extension, depending on the state of the
conversation, to produce the response. For instance, when an argument of a function is
missing, it calls the corresponding dialog function which asks the user for that missing
argument (e.g. “Which window do you want to open?”). The Response Generator also
produces the responses to user intents that are not directed to a specific service, but
refer to a more general context (e.g. when a user says “thank you” or “hello”).

Dialog Manager. It is the core component of the system, keeping the system’s state
and controlling the flow of information. It communicates with the Meaning Extractor to
discover the appropriate service and function and extract any provided arguments.
Comparing the currently extracted data with the data that the discovered service
requires, it deduces the system’s state (e.g. wrong or missing arguments, successful
extraction of all required arguments) and delegates control to the Response Generator
for the generation of the appropriate response. In addition, provided that the state
indicates that an intelligent service has to be invoked and all the required data are in
place, the Dialog Manager is responsible of executing the call and forwarding the result
to the Response Generator for further processing.

Mobile Application. This component is a chat environment where the user can
communicate with the Conversational Agent via text messages or speech through a
smartphone, as depicted in Fig. 4.

Fig. 4. Sample conversations between the Chatbot and the user in the context of a Smart
Greenhouse.

11 http://chatscript.sourceforge.net.
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5 The Analysis Pipeline

The input is processed in consecutive steps in order to understand the user’s intentions,
invoke the appropriate intelligent service, and generate the response (Fig. 5). The
analysis pipeline is used for all three types of user intentions in the context of the
intelligent environment, namely the acquisition of information, the execution of
commands and the programming of the environment’s behavior.

Step 1: Initially, the Entity Extractor dynamically trains at run-time its internal
recognition mechanisms with the appropriate model(s), based on the current dialog
state; the training models are retrieved from the IE Services’ KB. In particular, at the
beginning the Entity Extractor loads the general Level-1 model that collects indicative
examples from all the available Level-2 models (i.e. available Intelligent Environment
Services), so as to be able to determine the service that the user most likely refers to. As
soon as the desired service is detected (see Step 5), then the service-specific Level-2
model is used for training to facilitate the recognition of the desired function. Finally, if
the conversation’s state indicates that a number of arguments are missing or are
incorrect, then a Level-3 model that corresponds only to the selected function is
automatically generated and loaded to aid the extraction of the missing/incorrect data in
a follow-up dialog.

Step 2: The user input is forwarded from the UI to the Preprocessor, where it is
adapted appropriately.

Step 3: The adapted input is propagated from the Preprocessor to the Sentence
Separator, which will split it into sentences if needed.

Step 4: Each distinct sentence is dispatched to the Dialog Manager, where further
processing begins to understand the user’s intentions and act accordingly.

Fig. 5. A high-level view of the analysis pipeline.
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Step 5: The input is forwarded to the Meaning Extractor component (whose internal
recognition mechanisms have been prepared during step 1) to firstly discover which IE
service the user wants to use (e.g. Light Service, HVAC Service, Cooking Assistance
Service), and subsequently decide to which function of that service the user refers to
(i.e. extract the user’s intent which uniquely identifies a specific function). During this
step, possible entities that correspond to the arguments of the desired function are also
extracted. This information is sent back to the Dialog Manager for further processing.

Step 6: Since the desired function is detected, the system knows the exact number of
arguments and types that it should anticipate. Subsequently, if any arguments have
been extracted during the previous step (i.e. step 5), their types and values are com-
pared with the expected ones; if any mismatches are found (e.g. missing arguments,
incorrect types, values outside of the permitted bounds), the dialog’s state changes
accordingly and the Dialog Manager is notified to act accordingly (i.e. start a follow-up
dialog to address these issues).

Step 7: If the system has all the necessary information to execute the function (i.e. no
missing or wrong arguments exist), then the actual call to the IE service is carried out.
As soon as the remote call returns, the Dialog Manager incorporates any results into the
state and forwards control to the Response Generator.

Step 8: The Response Generator examines the dialog’s state and schedules the gen-
eration of the appropriate response (see Step 9).

Step 9: If the user refers to a specific service, the Response Generator, depending on
the state of the conversation, calls the appropriate dialog function from the service’s
NLG extension in order to produce the response to be sent to the user, namely: (a) ask
for a missing argument, (b) notify that a value of an argument is out of range, (c) report
the success of a function call along with any returning messages, or (d) report the
failure of a function call and any possible error messages; for the two latter cases, the
Response Generator retrieves any data posted by the Dialog Manager at step 7 that
correspond to the value(s) that the function returned when invoked. For instance, if an
argument of a function is wrong, it calls the dialog function that informs the user about
the mistake, and asks for the missing argument (e.g. “The zone number should be
between 1 and 7 but you gave 9. So, in which zone do you want to turn on the water
pump?”); on the contrary, if a function call executed correctly, it uses the dialog
function that reports the success message to the user (e.g. “The alarm is set for
tomorrow morning at 6:45 AM”). If on the other hand the user’s intent is not directed
to a specific service, but belongs to a conversation topic of general interest, then an
internal built-in model is used to generate the answer without having to consult any
NLG extension.

Step 10: Finally, the response is communicated back to the user via the UI.
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6 Future Work

A significant future advancement of the system will be the integration of context
awareness. Contextual information, such as the location of the user, his profile, his
current activity, as well as the time the conversation is taking place, will further
enhance the system’s user-friendliness and efficiency. Additionally, the syntactic
structure and lexical analysis of the user input is going to be utilized for the
improvement of service disambiguation and intent classification. Another future
improvement could be the semi-autonomous generation of training examples for the
NLU JSON APIs of the services. This will increase the number of the training
examples and reduce human effort, while also potentially improving the accuracy of
intent classification. Furthermore, the system’s sentence separation will be enhanced, in
order to deal with more complex cases, where attributes are involved. For example, the
input “turn on the bedroom’s lights and TV” should be split into “turn on the bed-
room’s lights” and “turn on the bedroom’s TV”, with the attribute “bedroom’s” being
included in both sentences. The system will also undergo user-based evaluation in the
setting of simulated intelligent environments.

Acknowledgements. This work is supported by the FORTH-ICS internal RTD Program
“Ambient Intelligence and Smart Environments”.
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